1
|
Wang D, Zhang P, Mei X, Chen Z. Repair calvarial defect of osteoporotic rats by berberine functionalized porous calcium phosphate scaffold. Regen Biomater 2021; 8:rbab022. [PMID: 34211732 PMCID: PMC8240619 DOI: 10.1093/rb/rbab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
In this article, we propose a simple scheme of using berberine (BBR) to modify porous calcium phosphate ceramics (named PCPC). These BBR molecules regulate the crystallization of hydroxyapatite nanorods on PCPC. We found that these nanorods and the adsorbed BBR changed the interface micro-environment of PCPC by SEM images. The microenvironment of PCPC surface is essential for promoting BMSCs’ proliferation and differentiation. These results demonstrated that PCPC/BBR markedly improved the bone regeneration of osteoporosis rats. Moreover, PCPC/BBR had significantly increased the expression levels of ALP, osteocalcin and bone morphogenetic protein2 and RUNX2 in BMSCs originated from osteoporosis rats.
Collapse
Affiliation(s)
- Dahao Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Peng Zhang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou 121001, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
2
|
Yan Y, Yu H, Sun L, Liu H, Wang C, Wei X, Song F, Li H, Ge H, Qian H, Li X, Tang X, Liu P. Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract. Aging (Albany NY) 2020; 11:2699-2723. [PMID: 31076560 PMCID: PMC6535067 DOI: 10.18632/aging.101943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/27/2019] [Indexed: 12/16/2022]
Abstract
Senescence is a leading cause of age-related cataract (ARC). The current study indicated that the senescence-associated protein, p53, total laminin (LM), LMα4, and transforming growth factor-beta1 (TGF-β1) in the cataractous anterior lens capsules (ALCs) increase with the grades of ARC. In cataractous ALCs, patient age, total LM, LMα4, TGF-β1, were all positively correlated with p53. In lens epithelial cell (HLE B-3) senescence models, matrix metalloproteinase-9 (MMP-9) alleviated senescence by decreasing the expression of total LM and LMα4; TGF-β1 induced senescence by increasing the expression of total LM and LMα4. Furthermore, MMP-9 silencing increased p-p38 and LMα4 expression; anti-LMα4 globular domain antibody alleviated senescence by decreasing the expression of p-p38 and LMα4; pharmacological inhibition of p38 MAPK signaling alleviated senescence by decreasing the expression of LMα4. Finally, in cataractous ALCs, positive correlations were found between LMα4 and total LM, as well as between LMα4 and TGF-β1. Taken together, our results implied that the elevated LMα4, which was possibly caused by the decreased MMP-9, increased TGF-β1 and activated p38 MAPK signaling during senescence, leading to the development of ARC. LMα4 and its regulatory factors show potential as targets for drug development for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Yu Yan
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Haiyang Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hanruo Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, 100000, China
| | - Chao Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xi Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Fanqian Song
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hulun Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Harbin, 150081, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Hua Qian
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xiaoguang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Nitta Y, Muraoka-Hirayama S, Sakurai K. Catalase is required for peroxisome maintenance during adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158726. [PMID: 32335291 DOI: 10.1016/j.bbalip.2020.158726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
Although obesity contributes to the onset and pathogenesis of metabolic diseases, it has been repeatedly demonstrated that being overweight or mildly obese carries a survival advantage compared with being thin or normal-weight. This relationship is called the obesity paradox. Hence, it is necessary to clarify the underlying mechanism of obesity onset for the prevention and treatment of these diseases. Catalase is distributed in peroxisomes under normal redox conditions and catalase activity is increased during the differentiation of 3T3-L1 preadipocytes to adipocytes. Although peroxisomes are responsible for lipid metabolism, the role of peroxisomal catalase in the process of lipid accumulation remains unclear. The present study aimed to investigate the relationships among catalase activity, peroxisome content, and lipid accumulation during the differentiation of 3T3-L1 preadipocytes to adipocytes. Increased catalase activity and lipid accumulation were observed during the differentiation of preadipocytes. Silencing of catalase by small interfering RNA or treatment with 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, resulted in reduced lipid accumulation. Inhibition of catalase activity in peroxisomes increases hydrogen peroxide (H2O2) levels, which results in a reduction of peroxisome content. Extracellular H2O2 had no influence on lipid accumulation during differentiation. The occurrence of autophagy was clearly enhanced in cells treated with 3-AT. Spautin-1, an inhibitor of autophagy flux, protected against a reduction in lipid accumulation by treatment with 3-AT. Our data provide evidence that catalase protects against the degradation of peroxisomes via the occurrence of autophagy triggered by the generation of H2O2 in peroxisomes. These results suggest that catalase in peroxisomes is crucial to adipogenesis.
Collapse
Affiliation(s)
- Yuuki Nitta
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Sanae Muraoka-Hirayama
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Koichi Sakurai
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan.
| |
Collapse
|
5
|
da Costa Gonçalves F, Paz AH. Cell membrane and bioactive factors derived from mesenchymal stromal cells: Cell-free based therapy for inflammatory bowel diseases. World J Stem Cells 2019; 11:618-633. [PMID: 31616539 PMCID: PMC6789183 DOI: 10.4252/wjsc.v11.i9.618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/23/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract associated with multifactorial conditions such as ulcerative colitis and Crohn's disease. Although the underlying mechanisms of IBD remain unclear, growing evidence has shown that dysregulated immune system reactions in genetically susceptible individuals contribute to mucosal inflammation. However, conventional treatments have been effective in inducing remission of IBD but not in preventing the relapse of them. In this way, mesenchymal stromal cells (MSC) therapy has been recognized as a promising treatment for IBD due to their immunomodulatory properties, ability to differentiate into several tissues, and homing to inflammatory sites. Even so, literature is conflicted regarding the location and persistence of MSC in the body after transplantation. For this reason, recent studies have focused on the paracrine effect of the biofactors secreted by MSC, especially in relation to the immunomodulatory potential of soluble factors (cytokines, chemokines, and growth factors) and extracellular vehicles that are involved in cell communication and in the transfer of cellular material, such as proteins, lipids, and nucleic acids. Moreover, treatment with interferon-γ, tumor necrosis factor-α, and interleukin-1β causes MSC to express immunomodulatory molecules that mediate the suppression via cell-contact dependent mechanisms. Taken together, we present an overview of the role of bioactive factors and cell membrane proteins derived from MSC as a cell-free therapy that can improve IBD treatment.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, GD 3015, Netherlands.
| | - Ana Helena Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| |
Collapse
|
6
|
Yu Y, Chen C, Huo G, Deng J, Zhao H, Xu R, Jiang L, Chen S, Wang S. ATP1A1 Integrates AKT and ERK Signaling via Potential Interaction With Src to Promote Growth and Survival in Glioma Stem Cells. Front Oncol 2019; 9:320. [PMID: 31114755 PMCID: PMC6503087 DOI: 10.3389/fonc.2019.00320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
Glioma stem cells (GSCs) have been considered to be responsible for treatment failure due to their self-renewal and limitless proliferative property. Recently, the Na+/K+-ATPase a1 (ATP1A1) subunit was described as a novel therapeutic target for gliomas. Interestingly, our previous proteomics study revealed that ATP1A1 is remarkably overexpressed in GSCs. In the current study, we investigated the role of ATP1A1 in regulating growth, survival, and tumorigenicity of primary human GSCs and the underlying molecular mechanism. We tested RNA and protein expression of ATP1A1 in glioma tissues and GSCs. In addition, we knocked down ATP1A1 in GSCs and assessed the effects thereof on growth, survival, and apoptosis. The role of ATP1A1 in signaling pathways was investigated in vitro. We found that the ATP1A1 expression level was associated with the grade of glioma. Knockdown of ATP1A1 in GSCs in vitro inhibited cell proliferation and survival, increased apoptosis, and halted cell-cycle progression at the G1 phase. Cell proliferation and survival were resumed upon rescue of ATP1A1 expression in ATP1A1-knockdown GSCs. The ERK1/2 and AKT pathways were inhibited through suppression of Src phosphorylation by ATP1A1 knockdown. Collectively, our findings suggest that ATP1A1 overexpression promotes GSC growth and proliferation by affecting Src phosphorylation to activate the ERK1/2 and AKT signaling pathways.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Huo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinmu Deng
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongxin Zhao
- Department of Neurosurgery, First Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Rui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shali Wang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Telocinobufagin and Marinobufagin Produce Different Effects in LLC-PK1 Cells: A Case of Functional Selectivity of Bufadienolides. Int J Mol Sci 2018; 19:ijms19092769. [PMID: 30223494 PMCID: PMC6163863 DOI: 10.3390/ijms19092769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
Bufadienolides are cardiotonic steroids (CTS) identified in mammals. Besides Na+/K+-ATPase inhibition, they activate signal transduction via protein–protein interactions. Diversity of endogenous bufadienolides and mechanisms of action may indicate the presence of functional selectivity and unique cellular outcomes. We evaluated whether the bufadienolides telocinobufagin and marinobufagin induce changes in proliferation or viability of pig kidney (LLC-PK1) cells and the mechanisms involved in these changes. In some experiments, ouabain was used as a positive control. CTS exhibited an inhibitory IC50 of 0.20 (telocinobufagin), 0.14 (ouabain), and 3.40 μM (marinobufagin) for pig kidney Na+/K+-ATPase activity and concentrations that barely inhibited it were tested in LLC-PK1 cells. CTS induced rapid ERK1/2 phosphorylation, but corresponding proliferative response was observed for marinobufagin and ouabain instead of telocinobufagin. Telocinobufagin increased Bax:Bcl-2 expression ratio, sub-G0 cell cycle phase and pyknotic nuclei, indicating apoptosis. Src and MEK1/2 inhibitors blunted marinobufagin but not telocinobufagin effect, which was also not mediated by p38, JNK1/2, and PI3K. However, BIO, a GSK-3β inhibitor, reduced proliferation and, as telocinobufagin, phosphorylated GSK-3β at inhibitory Ser9. Combination of both drugs resulted in synergistic antiproliferative effect. Wnt reporter activity assay showed that telocinobufagin impaired Wnt/β-catenin pathway by acting upstream to β-catenin stabilization. Our findings support that mammalian endogenous bufadienolides may exhibit functional selectivity.
Collapse
|
8
|
Hsu IL, Chou CY, Wu YY, Wu JE, Liang CH, Tsai YT, Ke JY, Chen YL, Hsu KF, Hong TM. Targeting FXYD2 by cardiac glycosides potently blocks tumor growth in ovarian clear cell carcinoma. Oncotarget 2018; 7:62925-62938. [PMID: 26910837 PMCID: PMC5325337 DOI: 10.18632/oncotarget.7497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/17/2016] [Indexed: 12/19/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is an aggressive neoplasm with a high recurrence rate that frequently develops resistance to platinum-based chemotherapy. There are few prognostic biomarkers or targeted therapies exist for patients with OCCC. Here, we identified that FXYD2, the modulating subunit of Na+/K+-ATPases, was highly and specifically expressed in clinical OCCC tissues. The expression levels of FXYD2 were significantly higher in advanced-stage of OCCC and positively correlated with patients' prognoses. Silencing of FXYD2 expression in OCCC cells inhibited Na+/K+-ATPase enzyme activity and suppressed tumor growth via induction of autophagy-mediated cell death. We found that high FXYD2 expression in OCCC was transcriptionally regulated by the transcriptional factor HNF1B. Furthermore, up-regulation of FXYD2 expression significantly increased the sensitivity of OCCC cells to cardiac glycosides, the Na+/K+-ATPase inhibitors. Two cardiac glycosides, digoxin and digitoxin, had a great therapeutic efficacy in OCCC cells in vitro and in vivo. Taken together, our results demonstrate that FXYD2 is functionally upregulated in OCCC and may serve as a promising prognostic biomarker and therapeutic target of cardiac glycosides in OCCC.
Collapse
Affiliation(s)
- I-Ling Hsu
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-En Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsien Liang
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tsung Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhen-Yu Ke
- Institute of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Oral Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tse-Ming Hong
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Gonçalves FDC, Luk F, Korevaar SS, Bouzid R, Paz AH, López-Iglesias C, Baan CC, Merino A, Hoogduijn MJ. Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes. Sci Rep 2017; 7:12100. [PMID: 28935974 PMCID: PMC5608915 DOI: 10.1038/s41598-017-12121-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are a promising therapy for immunological disorders. However, culture expanded MSC are large and get trapped in the capillary networks of the lungs after intravenous infusion, where they have a short survival time. Hypothetically, living cells are a risk for tumor formation. To reduce risks associated with MSC infusion and improve the distribution in the body, we generated membrane particles (MP) of MSC and MSC stimulated with IFN-γ (MPγ). Tracking analysis and electron microscopy indicated that the average size of MP was 120 nm, and they showed a round shape. MP exhibited ATPase, nucleotidase and esterase activity, indicating they are enzymatically active. MP and MPγ did not physically interact with T cells and had no effect on CD4+ and CD8+ T cells proliferation. However, MP and MPγ selectively bound to monocytes and decreased the frequency of pro-inflammatory CD14+CD16+ monocytes by induction of selective apoptosis. MP and MPγ increased the percentage of CD90 positive monocytes, and MPγ but not MP increased the percentage of anti-inflammatory PD-L1 monocytes. MPγ increased mRNA expression of PD-L1 in monocytes. These data demonstrate that MP have immunomodulatory properties and have potential as a novel cell-free therapy for treatment of immunological disorders.
Collapse
Affiliation(s)
- Fabiany da C Gonçalves
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Franka Luk
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander S Korevaar
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rachid Bouzid
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana H Paz
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Carla C Baan
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana Merino
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Li D, Li K, Chen G, Xia J, Yang T, Cai P, Yao C, Yang Y, Yan S, Zhang R, Chen H. S100B suppresses the differentiation of C3H/10T1/2 murine embryonic mesenchymal cells into osteoblasts. Mol Med Rep 2016; 14:3878-86. [DOI: 10.3892/mmr.2016.5697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
|
11
|
Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, Hu B, Wang Y, Li X. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. Int J Biol Sci 2016; 12:836-49. [PMID: 27313497 PMCID: PMC4910602 DOI: 10.7150/ijbs.14809] [Citation(s) in RCA: 393] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/25/2016] [Indexed: 12/20/2022] Open
Abstract
Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by enhancing angiogenesis and osteogenesis in an ovariectomized rat model.
Collapse
Affiliation(s)
- Xin Qi
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieyuan Zhang
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.; 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Yuan
- 3. Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengliang Xu
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qing Li
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Niu
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Hu
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Wang
- 2. Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaolin Li
- 1. Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep 2016; 6:23241. [PMID: 26988030 PMCID: PMC4796790 DOI: 10.1038/srep23241] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) plays important roles in various types of cancer and amyotrophic lateral sclerosis (ALS). The details of GPNMB function and its interacting protein have not been clarified. Therefore, to identify GPNMB binding partners on the cell membrane, we used membrane protein library/BLOTCHIP-MS technology, which enables us to analyze all cell membrane proteins as binding partners of the GPNMB extracellular fragment. As a result of a comprehensive search, we identified the alpha subunits of Na(+)/K(+)-ATPase (NKA) as a possible binding partner. We confirmed the interaction between the GPNMB extracellular fragment and NKA by immunoprecipitation and immunostaining in NSC-34 cells. Indeed, endogenous GPNMB extracellular fragment bound to and colocalized with NKA alpha subunits. Furthermore, exogenous GPNMB extracellular fragment, i.e., human recombinant GPNMB, also bound to and colocalized with NKA alpha subunits. Additionally, we found that the GPNMB extracellular fragment had neuroprotective effects and activated the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways via NKA. These findings indicated that NKA may act as a novel "receptor" for the GPNMB extracellular fragment, offering additional molecular targets for the treatment of GPNMB-related diseases, including various types of cancer and ALS.
Collapse
|
13
|
Qi X, Huang Y, Han D, Zhang J, Cao J, Jin X, Huang J, Li X, Wang T. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. ACTA ACUST UNITED AC 2016; 11:025005. [PMID: 26964015 DOI: 10.1088/1748-6041/11/2/025005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that three-dimensional (3D) hydroxyapatite (HAP)-collagen (COL)-coated poly(ε-caprolactone) (PCL) scaffolds (HAP-COL-PCL) possess appropriate nano-structures, surface roughness, and nutrients, providing a favorable environment for osteogenesis. However, the effect of using 3D HAP-COL-PCL scaffolds incorporating BMSCs for the repair of bone defects in rats has been not evaluated. 3D PCL scaffolds coated with HAP, collagen or HAP/COL and incorporating BMSCs were implanted into calvarial defects. At 12 weeks after surgery, the rats were sacrificed and crania were harvested to assess the bone defect repair using microcomputed tomography (micro-CT), histology, immunohistochemistry and sequential fluorescent labeling analysis. 3D micro-CT reconstructed images and quantitative analysis showed that HAP-COL-PCL groups possessed better bone-forming capacity than HAP-PCL groups or COL-PCL groups. Fluorescent labeling analysis revealed the percentage of tetracycline labeling, alizarin red labeling, and calcein labeling in HAP-COL-PCL groups were all greater than in the other two groups (P < 0.05), and the result was confirmed by immunohistochemical staining and histological analysis of bone regeneration. This study demonstrates that 3D HAP-COL-PCL scaffolds incorporating BMSCs markedly enhance bone regeneration of bone defects in rats.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China. These authors contributed equally
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ortega MT, Jeffery B, Riviere JE, Monteiro-Riviere NA. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells. J Appl Toxicol 2016; 36:189-98. [PMID: 25976427 DOI: 10.1002/jat.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 02/01/2023]
Abstract
We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells.
Collapse
Affiliation(s)
- M T Ortega
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - B Jeffery
- Mars Global Food Safety Center, Yanqi Economic Development Zone, Huairou, Beijing, People's Republic of China
| | - J E Riviere
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - N A Monteiro-Riviere
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
15
|
Feng MX, Hong JX, Wang Q, Fan YY, Yuan CT, Lei XH, Zhu M, Qin A, Chen HX, Hong D. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts. Sci Rep 2016; 6:19074. [PMID: 26743690 PMCID: PMC4705478 DOI: 10.1038/srep19074] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients’ quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.
Collapse
Affiliation(s)
- Ming-Xuan Feng
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - Jian-Xin Hong
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - Qiang Wang
- Orthopaedic Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yong-Yong Fan
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - Chi-Ting Yuan
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - Xin-Huan Lei
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - Min Zhu
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - An Qin
- Orthopaedic Department, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011,China
| | - Hai-Xiao Chen
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| | - Dun Hong
- Orthopaedic Department, Taizhou Hospital, Wenzhou Medical University, Linhai, 317000, China
| |
Collapse
|
16
|
Xu Z, Wang F, Fan F, Gu Y, Shan N, Meng X, Cheng S, Liu Y, Wang C, Song Y, Xu R. Quantitative Proteomics Reveals That the Inhibition of Na+/K+-ATPase Activity Affects S-Phase Progression Leading to a Chromosome Segregation Disorder by Attenuating the Aurora A Function in Hepatocellular Carcinoma Cells. J Proteome Res 2015; 14:4594-602. [PMID: 26491887 DOI: 10.1021/acs.jproteome.5b00724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongwei Xu
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Fengmei Wang
- Department
of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Fengxu Fan
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yanjun Gu
- Affiliated Hospital of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Nana Shan
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xiangyan Meng
- Department
of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Shixiang Cheng
- Affiliated Hospital of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yingfu Liu
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Chengyan Wang
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yueying Song
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Ruicheng Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, No. 1 Huizhi Huan Road, DongLi District, Tianjin 300309, China
| |
Collapse
|
17
|
Octanoate in Human Albumin Preparations Is Detrimental to Mesenchymal Stromal Cell Culture. Stem Cells Int 2015; 2015:192576. [PMID: 26074972 PMCID: PMC4444585 DOI: 10.1155/2015/192576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/29/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022] Open
Abstract
Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na+/K+ ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior.
Collapse
|