1
|
Valderrama-Mantilla AI, Martín-Cuevas C, Gómez-Garrido A, Morente-Montilla C, Crespo-Facorro B, García-Cerro S. Shared molecular signature in Alzheimer's disease and schizophrenia: A systematic review of the reelin signaling pathway. Neurosci Biobehav Rev 2025; 169:106032. [PMID: 39894421 DOI: 10.1016/j.neubiorev.2025.106032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
The Reelin signaling pathway, particularly the RELN-APOER2-DAB1 complex, has emerged as a key contributor to the neuropathology of Alzheimer's disease (AD) and Schizophrenia (SZ). Despite being distinct clinical conditions, these disorders exhibit similar patterns of cognitive decline, including early disruptions in synaptic function and memory impairments. Notably, individuals with SZ have a 2-4 fold increased risk of developing AD or other dementias, highlighting potential shared molecular mechanisms, and positioning Reelin as a pivotal link between them. This systematic review explores the role of Reelin and its signaling components across these disorders. In AD, Reelin disruption correlates with hallmark features such as Tau hyperphosphorylation, amyloid-beta accumulation, and cognitive deficits. In SZ, alterations in Reelin signaling, including epigenetic modifications affecting RELN expression, are linked to disruptions in neuronal development and synaptic plasticity, particularly in the parietal and prefrontal cortices. Additionally, genomic studies reveal specific RELN variants and allelic imbalances that may influence disease severity and treatment response in SZ, suggesting RELN's role as a potential biomarker for therapeutic outcomes. Region-specific Reelin alterations in both AD and SZ suggest differing impacts yet underscore a potential common molecular origin. Our findings highlight the Reelin pathway as a molecular convergence point, warranting further investigation as a therapeutic and diagnostic target for AD, SZ, and potentially other neuropsychiatric disorders. The interplay between genetic and epigenetic regulation of RELN may provide novel insights into neurodegeneration, with implications for personalized intervention strategies in AD and SZ.
Collapse
Affiliation(s)
| | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain.
| | - Ana Gómez-Garrido
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain.
| | - Cristina Morente-Montilla
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain.
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain; Department of Psychiatry, School of Medicine, University of Seville, Manuel Siurot AV, Seville 41013, Spain.
| | - Susana García-Cerro
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, Seville 41013, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, Madrid 28029, Spain.
| |
Collapse
|
2
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Su Y, Yang X, Yang L, Liu X, She Z, Zhang Y, Dong Z. Thyroid hormones regulate reelin expression in neuropsychiatric disorders. Can J Physiol Pharmacol 2022; 100:1033-1044. [PMID: 36166833 DOI: 10.1139/cjpp-2022-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incidence and prevalence of hypothyroidism in pregnancy have increased over the past two decades, leading to the occurrence of neuropsychiatric disorders. However, the underlying mechanisms of thyroid hormone (TH)-regulated gene expression and neuropsychiatric development during the postnatal period remain unknown. Recent achievements have shown that reelin, a large extracellular glycoprotein, plays a crucial role in neuronal migration and localization during the development of neocortex and cerebellar cortex, thereby participating in the development of neuropsychiatric diseases. Reelin-induced neuronal migration requires triiodothyronine (T3) from the deiodination of thyroxine (T4) by fetal brain deiodinases. Previous studies have reported decreased reelin levels and abnormal gene expression, which are the same as the pathological alternations in reelin-induced neuropsychiatric disorders including schizophrenia and autism. Low T3 in the fetal brain due to hypothyroxinemia during pregnancy may be detrimental to neuronal migration, leading to neuropsychiatric disorders. In this review, we focus on the reelin expression between hypothyroidism and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yadi Su
- College of Stomatology, Chongqing Medical University, Chongqing, 401334, PR China
| | - Xiaoyu Yang
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401334, PR China
| | - Xinjing Liu
- College of Public Health and Management, Chongqing Medical University, Chongqing, 401334, PR China
| | - Zhenghang She
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Youwen Zhang
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
4
|
Yamaguchi R, Matsudaira I, Takeuchi H, Imanishi T, Kimura R, Tomita H, Kawashima R, Taki Y. RELN rs7341475 associates with brain structure in japanese healthy females. Neuroscience 2022; 494:38-50. [DOI: 10.1016/j.neuroscience.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
5
|
Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14:219-230. [PMID: 35432739 PMCID: PMC8968214 DOI: 10.4252/wjsc.v14.i3.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accompanied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
6
|
Fu Y, Ren X, Bai W, Yu Q, Sun Y, Yu Y, Zhou N. Association between C-Maf-inducing protein gene rs2287112 polymorphism and schizophrenia. PeerJ 2021; 9:e11907. [PMID: 34484985 PMCID: PMC8381876 DOI: 10.7717/peerj.11907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Schizophrenia is a severely multifactorial neuropsychiatric disorder, and the majority of cases are due to genetic variations. In this study, we evaluated the genetic association between the C-Maf-inducing protein (CMIP) gene and schizophrenia in the Han Chinese population. Methods In this case-control study, 761 schizophrenia patients and 775 healthy controls were recruited. Tag single-nucleotide polymorphisms (SNPs; rs12925980, rs2287112, rs3751859 and rs77700579) from the CMIP gene were genotyped via matrix-assisted laser desorption/ionization time of flight mass spectrometry. We used logistic regression to estimate the associations between the genotypes/alleles of each SNP and schizophrenia in males and females, respectively. The in-depth link between CMIP and schizophrenia was explored through linkage disequilibrium (LD) and further haplotype analyses. False discovery rate correction was utilized to control for Type I errors caused by multiple comparisons. Results There was a significant difference in rs287112 allele frequencies between female schizophrenia patients and healthy controls after adjusting for multiple comparisons (χ2 = 12.296, Padj = 0.008). Females carrying minor allele G had 4.445 times higher risk of schizophrenia compared with people who carried the T allele (OR = 4.445, 95% CI [1.788–11.046]). Linkage-disequilibrium was not observed in the subjects, and people with haplotype TTGT of rs12925980–rs2287112–rs3751859–rs77700579 had a lower risk of schizophrenia (OR = 0.42, 95% CI [0.19–0.94]) when compared with CTGA haplotypes. However, the association did not survive false discovery rate correction. Conclusion This study identified a potential CMIP variant that may confer schizophrenia risk in the female Han Chinese population.
Collapse
Affiliation(s)
- Yingli Fu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Epidemiology and Biostatistics, Jilin University, School of Public Health, Changchun, Jilin, China
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Bai
- Center for Cognition and Brain Sciences, University of Macau, Macao SAR, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, Jilin University, School of Public Health, Changchun, Jilin, China
| | - Yaoyao Sun
- Department of Epidemiology and Biostatistics, Jilin University, School of Public Health, Changchun, Jilin, China
| | - Yaqin Yu
- Department of Epidemiology and Biostatistics, Jilin University, School of Public Health, Changchun, Jilin, China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
7
|
Yin J, Lu Y, Yu S, Dai Z, Zhang F, Yuan J. Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment. Hereditas 2020; 157:43. [PMID: 33158463 PMCID: PMC7648395 DOI: 10.1186/s41065-020-00158-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR. Results The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group. Conclusion The up-regulation of RELN mRNA expression was current in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.
Collapse
Affiliation(s)
- Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China
| | - Yana Lu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Shui Yu
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China
| | - Zhanzhan Dai
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P.R. China.
| | - Jianmin Yuan
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China.
| |
Collapse
|
8
|
Nakanishi K, Niida H, Tabata H, Ito T, Hori Y, Hattori M, Johmura Y, Yamada C, Ueda T, Takeuchi K, Yamada K, Nagata KI, Wakamatsu N, Kishi M, Pan YA, Ugawa S, Shimada S, Sanes JR, Higashi Y, Nakanishi M. Isozyme-Specific Role of SAD-A in Neuronal Migration During Development of Cerebral Cortex. Cereb Cortex 2020; 29:3738-3751. [PMID: 30307479 DOI: 10.1093/cercor/bhy253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/18/2018] [Indexed: 11/13/2022] Open
Abstract
SAD kinases regulate presynaptic vesicle clustering and neuronal polarization. A previous report demonstrated that Sada-/- and Sadb-/- double-mutant mice showed perinatal lethality with a severe defect in axon/dendrite differentiation, but their single mutants did not. These results indicated that they were functionally redundant. Surprisingly, we show that on a C57BL/6N background, SAD-A is essential for cortical development whereas SAD-B is dispensable. Sada-/- mice died within a few days after birth. Their cortical lamination pattern was disorganized and radial migration of cortical neurons was perturbed. Birth date analyses with BrdU and in utero electroporation using pCAG-EGFP vector showed a delayed migration of cortical neurons to the pial surface in Sada-/- mice. Time-lapse imaging of these mice confirmed slow migration velocity in the cortical plate. While the neurites of hippocampal neurons in Sada-/- mice could ultimately differentiate in culture to form axons and dendrites, the average length of their axons was shorter than that of the wild type. Thus, analysis on a different genetic background than that used initially revealed a nonredundant role for SAD-A in neuronal migration and differentiation.
Collapse
Affiliation(s)
- Keiko Nakanishi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Hiroyuki Niida
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Tsuyoshi Ito
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuki Hori
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Madoka Hattori
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Yamada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kosei Takeuchi
- Department of Medical Biology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Masashi Kishi
- Neuroscience Laboratory, Research Institute, Nozaki Tokushukai Hospital, Daito, Osaka, Japan
| | - Y Albert Pan
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.,Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shoichi Shimada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Association Between REELIN Gene Polymorphisms (rs7341475 and rs262355) and Risk of Schizophrenia: an Updated Meta-analysis. J Mol Neurosci 2020; 71:675-690. [PMID: 32889693 DOI: 10.1007/s12031-020-01696-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
Schizophrenia (SCZ) is a destructive neuropsychiatric illness affecting millions of people worldwide. The correlation between RELN gene polymorphisms and SCZ was investigated by previous researches, though the results remained conflicting. Based on the available studies, we conducted this meta-analysis to provide a more comprehensive outcome on whether the RELN gene polymorphisms (rs7341475 and rs262355) are associated with SCZ. A total of 15 studies with 25,403 subjects (9047 cases and 16,356 controls) retrieved from PubMed, ScienceDirect, EMBASE, Wiley, BMC, Cochrane, Springer, MDPI, SAGE, and Google Scholar up to June 2020 were included. Meta-analysis was performed using Review Manager 5.3. The heterogeneity was checked using I2 statistics and Q-test, whereas publication bias was also measured. The rs7341475 polymorphism showed a significantly lower risk for SCZ for the allele (A vs. G: OR = 0.93, 95%CI = 0.87-0.99), codominant 1 (AG vs. GG: OR = 0.92, 95%CI = 0.85-0.99), dominant model (AA+AG vs. GG: OR = 0.92, 95%CI = 0.86-0.98), and over dominant model (AG vs. AA+GG: OR = 0.92, 95%Cl = 0.86-0.99). The allele, codominant model 1, and dominant models remained statistically significant after the correction of the Bonferroni (p < 0.025). Subgroup analysis confirmed the association of allele and dominant models in the Caucasian after Bonferroni correction. For rs262355 polymorphism, a significantly increased risk of SCZ was found only in Caucasians for codominant 2, dominant, and allele models, but significance exists only for the allele model after Bonferroni correction. Publication bias was found in the case of codominant 2 and recessive models for rs7341475 in the overall population, but this publication was not found after performing the Bonferroni correction or after performing the subgroup analysis. No such publication was found for rs262355. The results suggest that RELN rs7341475 is associated with a lower risk of SCZ in the overall population and Caucasian population, but rs262355 is associated with an increased risk of SCZ only in the Caucasian population.
Collapse
|
10
|
Xu Q, Li M, Qin S, Li Y, Ning A, Fu Y, Wang D, Zeng D, Li H, Yu W, Yu S. Two Novel Loci of RELN Associated With Antipsychotics Response in Chinese Han Population. Front Pharmacol 2020; 11:7. [PMID: 32082176 PMCID: PMC7005197 DOI: 10.3389/fphar.2020.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background There are great individual differences in the drug responses; however, there are few prognostic drug response biomarkers available. RELN is one of the more extensively examined schizophrenia candidate genes. The purpose of this study was to determine whether RELN can affect antipsychotics response in the Chinese population. This may lead to the discovery of relevant novel drug response markers. Methods The unrelated 260 Chinese Han inpatients with schizophrenia were enrolled in the present study. The enrolled subjects have been prescribed antipsychotic medication during the study. A total of 15 SNPs of RELN were genotyped by MassARRAY® platform. The association of the RELN gene with therapeutic response to antipsychotics was analyzed based on sex and age at onset. Results Two novel SNPs of RELN were found to be associated with antipsychotic treatment response (rs155333, p = 0.010 and rs6465938, p = 0.049) at nominal significance threshold, but not after multiple correction. Our study also revealed highly significant association of a haplotype consisting of three SNPs (rs362814-rs362626-rs2237628) with antipsychotic treatment response. Even after permutation, the p-value indicated significant association (rs362814-rs362626-rs2237628: ACT, χ2 = 6.353, p = 0.0117, permuted p = 0.04). Furthermore, a novel SNP, rs2535764, was found to be associated with antipsychotic response under overdominant genetic model at a marginal significant level of 0.046 (C/T vs. C/C + T/T: p = 0.046, AIC = 314.7, BIC = 321.6). Conclusion Our data indicated that RELN can affect antipsychotic treatment outcomes in the Chinese population. SNPs of RELN could be used as predictive biomarkers for future personalized medicine of antipsychotic drug treatment. However, none of the three novel SNPs (rs155333, rs6465938, and rs2535764) remained significant after Bonferroni correction. Therefore, validation is needed in larger pharmacogenetic studies.
Collapse
Affiliation(s)
- Qingqing Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yaojing Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailing Ning
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxiang Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duan Zeng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Xiao X, Yu H, Li J, Wang L, Li L, Chang H, Zhang D, Yue W, Li M. Further evidence for the association between LRP8 and schizophrenia. Schizophr Res 2020; 215:499-505. [PMID: 28495490 DOI: 10.1016/j.schres.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
Previous studies (including genome-wide association study (GWAS) and candidate gene studies) have revealed the important roles of genetic risk factors in schizophrenia, and RELN has been identified as a risk gene for this illness. We recently found that the low-density lipoprotein receptor-related protein 8 (LRP8), a receptor of Reelin (the protein encoded by RELN), was significantly associated with schizophrenia and bipolar disorder in European populations. To further enhance our understanding of its role in the risk of psychiatric illnesses, we conducted meta-analyses of a higher density of single nucleotide polymorphisms (SNPs, N=173) in LRP8 to understand their associations with schizophrenia in much larger samples (39,400 cases and 50,357 controls) from populations of European, Chinese and African American ancestries. The significant risk SNPs then underwent further analyses to understand their correlations with bipolar disorder and anxiety disorders, as well as LRP8 expression. We observed that rs5177 in the 3' untranslated region (3'UTR) of LRP8 was associated with schizophrenia and other psychiatric disorders, and rs5177 was also associated with LRP8 mRNA expression. These data further support LRP8 as a schizophrenia susceptibility gene, and suggest that this variant is likely a risk locus in general populations.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hao Yu
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Jun Li
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Dai Zhang
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital & Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Association between RELN polymorphisms and schizophrenia in a Han population from Northeast China. Psychiatr Genet 2019; 29:232-236. [PMID: 31469785 DOI: 10.1097/ypg.0000000000000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the association between the RELN gene and schizophrenia in the overall sample and samples stratified by sex in a northeastern Chinese population. METHODS A total of 1536 participants from Jilin Province, China, were recruited in this case-control study. Four single nucleotide polymorphisms (rs1062831, rs3808039, rs362746, and rs736707) in the RELN gene were genotyped. Binary logistic regression analysis was applied to detect associations between the genotypes of each single nucleotide polymorphism and schizophrenia. P values of no more than 0.003125 [0.05/(4 SNPs*4 different genetic models)] after Bonferroni correction were considered statistically significant. RESULTS All single-nucleotide polymorphisms conformed to Hardy-Weinberg equilibrium in the control group. Logistic regression analysis revealed that after Bonferroni correction, rs362746 was associated with schizophrenia under the recessive model (P = 0.001) and codominant model (P = 0.003) in the overall group. The association between schizophrenia and RELN single-nucleotide polymorphisms was not found in a sex-specific pattern after Bonferroni correction. CONCLUSION Our study provides and supports the evidence that RELN is a candidate gene for schizophrenia. Replication studies conducted in different populations are required, and the sex-specific association of this gene with schizophrenia warrants further exploration.
Collapse
|
13
|
Luo X, Chen S, Xue L, Chen JH, Shi YW, Zhao H. SNP Variation of RELN Gene and Schizophrenia in a Chinese Population: A Hospital-Based Case-Control Study. Front Genet 2019; 10:175. [PMID: 30891068 PMCID: PMC6413413 DOI: 10.3389/fgene.2019.00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/18/2019] [Indexed: 02/05/2023] Open
Abstract
Aims: We aimed to explore whether RELN contributes to the vulnerability and severity of clinical symptoms of schizophrenia (SZ) in a Chinese population. Methods: The following were conducted in an adult Han Chinese population from southern China: case-control association analyses of 30 representative single nucleotide polymorphisms (SNPs) that were screened according to specific programs based on bioinformatics tools and former research and quantitative trait locus analyses with SNPs and psychiatric symptoms evaluated with the positive and negative symptoms scale. Results: A 4-SNP haplotype consisting of rs362814, rs39339, rs540058, and rs661575 was found to be significantly associated with SZ even after Bonferroni correction (χ2 = 29.024, p = 6.42E-04, p Bonf = 0.017), and the T-C-T-C haplotype was a protective factor for SZ (OR = 0.050, 95% CI = 0.004-0.705). Moreover, the 4-SNP haplotype showed a significant association with G16 (active social avoidance) after false discovery rate correction (χ2 = 28.620, p = 1.697E-04, p FDR = 0.025). In addition, P7 (hostility) was related to the haplotype comprising rs2229864, rs2535764, and rs262355 (χ2 = 31.424, p = 2.103E-05, p adjustment = 0.019) in quantitative trait loci analyses. Conclusion: Overall, this study showed several positive associations between RELN and SZ, as well as psychiatric symptoms, which not only supports the proposition that RELN is a susceptibility gene for SZ but also provides information on a genotype-phenotype correlation for SZ in a Chinese population.
Collapse
Affiliation(s)
- Xia Luo
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Department of Psychiatry, Shantou University Medical College, Shantou, China
| | - Si Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Jian-Huan Chen, Yan-Wei Shi, Hu Zhao,
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jian-Huan Chen, Yan-Wei Shi, Hu Zhao,
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jian-Huan Chen, Yan-Wei Shi, Hu Zhao,
| |
Collapse
|
14
|
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265:25-38. [PMID: 29680514 DOI: 10.1016/j.psychres.2018.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, finding a reliable biomarker for the early detection of schizophrenia (Scz) has been a topic of interest. The main goal of the current review is to provide a comprehensive view of the brain, blood, cerebrospinal fluid (CSF), and serum biomarkers of Scz disease. Imaging studies have demonstrated that the volumes of the corpus callosum, thalamus, hippocampal formation, subiculum, parahippocampal gyrus, superior temporal gyrus, prefrontal and orbitofrontal cortices, and amygdala-hippocampal complex were reduced in patients diagnosed with Scz. It has been revealed that the levels of interleukin 1β (IL-1β), IL-6, IL-8, and TNF-α were increased in patients with Scz. Decreased mRNA levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), neurotrophin-3 (NT-3), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) genes have also been reported in Scz patients. Genes with known strong relationships with this disease include BDNF, catechol-O-methyltransferase (COMT), regulator of G-protein signaling 4 (RGS4), dystrobrevin-binding protein 1 (DTNBP1), neuregulin 1 (NRG1), Reelin (RELN), Selenium-binding protein 1 (SELENBP1), glutamic acid decarboxylase 67 (GAD 67), and disrupted in schizophrenia 1 (DISC1). The levels of dopamine, tyrosine hydroxylase (TH), serotonin or 5-hydroxytryptamine (5-HT) receptor 1A and B (5-HTR1A and 5-HTR1B), and 5-HT1B were significantly increased in Scz patients, while the levels of gamma-aminobutyric acid (GABA), 5-HT transporter (5-HTT), and 5-HT receptor 2A (5-HTR2A) were decreased. The increased levels of SELENBP1 and Glycogen synthase kinase 3 subunit α (GSK3α) genes in contrast with reduced levels of B-cell translocation gene 1 (BTG1), human leukocyte antigen DRB1 (HLA-DRB1), heterogeneous nuclear ribonucleoprotein A3 (HNRPA3), and serine/arginine-rich splicing factor 1 (SFRS1) genes have also been reported. This review covers various dysregulation of neurotransmitters and also highlights the strengths and weaknesses of studies attempting to identify candidate biomarkers.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ehsan Rashidi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasem Amooeian
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kara B, Sahin N, Kara M, Sakalli Cetin E, Topal H. The relationship between attention deficit hyperactivity disorder and reelin gene polymorphisms in Turkish population. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1478192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Bilge Kara
- Faculty of Medicine, Department of Psychiatry, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nilfer Sahin
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Mugla Sitki Kocman University, Mugla, Turkey
| | - Murat Kara
- Faculty of Medicine, Department of Medical Genetics, Mugla Sitki Kocman University, Mugla, Turkey
| | - Esin Sakalli Cetin
- Faculty of Medicine, Department of Medical Biology, Mugla Sitki Kocman University, Mugla, Turkey
| | - Hatice Topal
- Faculty of Medicine, Department of Pediatrics, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
16
|
Imai H, Shoji H, Ogata M, Kagawa Y, Owada Y, Miyakawa T, Sakimura K, Terashima T, Katsuyama Y. Dorsal Forebrain-Specific Deficiency of Reelin-Dab1 Signal Causes Behavioral Abnormalities Related to Psychiatric Disorders. Cereb Cortex 2018; 27:3485-3501. [PMID: 26762856 DOI: 10.1093/cercor/bhv334] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reelin-Dab1 signaling is involved in brain development and neuronal functions. The abnormalities in the signaling through either reduction of Reelin and Dab1 gene expressions or the genomic mutations in the brain have been reported to be associated with psychiatric disorders. However, it has not been clear if the deficiency in Reelin-Dab1 signaling is responsible for symptoms of the disorders. Here, to examine the function of Reelin-Dab1 signaling in the forebrain, we generated dorsal forebrain-specific Dab1 conditional knockout mouse (Dab1 cKO) and performed a behavioral test battery on the Dab1 cKO mice. Although conventional Dab1 null mutant mice exhibit cerebellar atrophy and cerebellar ataxia, the Dab1 cKO mice had normal cerebellum and showed no motor dysfunction. Dab1 cKO mice exhibited behavioral abnormalities, including hyperactivity, decreased anxiety-like behavior, and impairment of working memory, which are reminiscent of symptoms observed in patients with psychiatric disorders such as schizophrenia and bipolar disorder. These results suggest that deficiency of Reelin-Dab1 signal in the dorsal forebrain is involved in the pathogenesis of some symptoms of human psychiatric disorders.
Collapse
Affiliation(s)
- Hideaki Imai
- Division of Developmental Neurobiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi 332-0012, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi 332-0012, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshio Terashima
- Division of Developmental Neurobiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Yu Katsuyama
- Division of Developmental Neurobiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan.,Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
17
|
Yang Y, Yu H, Li W, Liu B, Zhang H, Ding S, Lu Y, Jiang T, Lv L. Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population. Behav Brain Funct 2018; 14:1. [PMID: 29298719 PMCID: PMC5753570 DOI: 10.1186/s12993-017-0133-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/22/2017] [Indexed: 12/02/2022] Open
Abstract
Background Schizophrenia (SZ) is a complex polygenic psychiatric disorder caused in part by abnormal dopamine levels. Cerebral dopamine neurotrophic factor (CDNF) 2 is known to protect and repair the dopaminergic system. Dopamine dysfunction is one of the pathogenesis of SZ. However, the relationship between CDNF2 and SZ has not been previously investigated. We speculated that CDNF2 may be a susceptibility factor for SZ. Methods To address this issue, we carried out a study to investigate the association between CDNF2 and SZ in the total sample 1371 (670 SZ patients and 701 healthy controls) Han Chinese population. Stage 1 included 528 SZ patients and 528 healthy controls; and stage 2 included 142 SZ patients and 173 healthy controls. The allele and genotype frequencies of five single nucleotide polymorphisms (rs2577074, rs2577075, rs2249810, rs6506891, and rs2118343) of CDNF2 were compared between patients and controls. Results We found a significant association in allele and genotype frequencies between the two groups at rs2249810 (χ2 = 4.38 and 6.45, respectively; P = 0.03 and 0.04, respectively). An association was also observed in males at rs2249810 (χ2 = 8.76; P = 0.03). Haplotype TGATC differed between SZ and controls in stage 2 samples (χ2 = 6.38; P = 0.01), and rs2118343 genotypes were associated with negative factor scores (F = 4.396; P = 0.01). Conclusions These results suggest that rs2249810 and haplotype TGATC of CDNF2 are an SZ susceptibility locus and factor, respectively, and that rs2118343 genotypes are associated with negative symptoms of SZ in the Han Chinese population.
Collapse
Affiliation(s)
- Yongfeng Yang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Yu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Shuang Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China. .,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China. .,Department of Psychiatry of the Second Affiliated Hospital of Xinxiang Medical University, No. 388, Jianshe Middle Road, Xinxiang, 453002, China.
| |
Collapse
|
18
|
Guo W, Cai Y, Zhang H, Yang Y, Yang G, Wang X, Zhao J, Lin J, Zhu J, Li W, Lv L. Association of ARHGAP18 polymorphisms with schizophrenia in the Chinese-Han population. PLoS One 2017; 12:e0175209. [PMID: 28384650 PMCID: PMC5383423 DOI: 10.1371/journal.pone.0175209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 11/23/2022] Open
Abstract
Numerous developmental genes have been linked to schizophrenia (SZ) by case-control and genome-wide association studies, suggesting that neurodevelopmental disturbances are major pathogenic mechanisms. However, no neurodevelopmental deficit has been definitively linked to SZ occurrence, likely due to disease heterogeneity and the differential effects of various gene variants across ethnicities. Hence, it is critical to examine linkages in specific ethnic populations, such as Han Chinese. The newly identified RhoGAP ARHGAP18 is likely involved in neurodevelopment through regulation of RhoA/C. Here we describe four single nucleotide polymorphisms (SNPs) in ARHGAP18 associated with SZ across a cohort of >2000 cases and controls from the Han population. Two SNPs, rs7758025 and rs9483050, displayed significant differences between case and control groups both in genotype (P = 0.0002 and P = 7.54×10−6) and allelic frequencies (P = 4.36×10−5 and P = 5.98×10−7), respectively. The AG haplotype in rs7758025−rs9385502 was strongly associated with the occurrence of SZ (P = 0.0012, OR = 0.67, 95% CI = 0.48–0.93), an association that still held following a 1000-times random permutation test (P = 0.022). In an independently collected validation cohort, rs9483050 was the SNP most strongly associated with SZ. In addition, the allelic frequencies of rs12197901 remained associated with SZ in the combined cohort (P = 0.021), although not in the validation cohort alone (P = 0.251). Collectively, our data suggest the ARHGAP18 may confer vulnerability to SZ in the Chinese Han population, providing additional evidence for the involvement of neurodevelopmental dysfunction in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Weiyun Guo
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Cai
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ge Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany
| | - Jinfu Zhu
- Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany.,Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Ishii K, Kubo KI, Nakajima K. Reelin and Neuropsychiatric Disorders. Front Cell Neurosci 2016; 10:229. [PMID: 27803648 PMCID: PMC5067484 DOI: 10.3389/fncel.2016.00229] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Proper neuronal migration and laminar formation during corticogenesis is essential for normal brain function. Disruption of these developmental processes is thought to be involved in the pathogenesis of some neuropsychiatric conditions. Especially, Reelin, a glycoprotein mainly secreted by the Cajal-Retzius cells and a subpopulation of GABAergic interneurons, has been shown to play a critical role, both during embryonic and postnatal periods. Indeed, animal studies have clearly revealed that Reelin is an essential molecule for proper migration of cortical neurons and finally regulates the cell positioning in the cortex during embryonic and early postnatal stages; by contrast, Reelin signaling is closely involved in synaptic function in adulthood. In humans, genetic studies have shown that the reelin gene (RELN) is associated with a number of psychiatric diseases, including Schizophrenia (SZ), bipolar disorder (BP) and autistic spectrum disorder. Indeed, Reln haploinsufficiency has been shown to cause cognitive impairment in rodents, suggesting the expression level of the Reelin protein is closely related to the higher brain functions. However, the molecular abnormalities in the Reelin pathway involved in the pathogenesis of psychiatric disorders are not yet fully understood. In this article, we review the current progress in the understanding of the Reelin functions that could be related to the pathogenesis of psychiatric disorders. Furthermore, we discuss the basis for selecting Reelin and molecules in its downstream signaling pathway as potential therapeutic targets for psychiatric illnesses.
Collapse
Affiliation(s)
- Kazuhiro Ishii
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine Tokyo, Japan
| |
Collapse
|
20
|
Evaluating the relationship between reelin gene variants (rs7341475 and rs262355) and schizophrenia: A meta-analysis. Neurosci Lett 2015; 609:42-7. [PMID: 26455866 DOI: 10.1016/j.neulet.2015.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/09/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022]
Abstract
Studies have suggested that reelin (RELN) polymorphism was associated with the susceptibility of schizophrenia (SZ), but the results remained controversial. Thus, we conducted this meta-analysis to determine whether RELN variants (rs7341475 and rs262355) were associated with SZ risk. Studies were identified through retrieving Web of Science, PubMed and Embase databases from inception to May 2015. The genotype data were extracted to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). For rs7341475, five studies with 4741 SZ patients and 10075 controls are included and the results indicate that carriage of A allele is associated with decreased SZ risk in dominant genetic model (OR=0.90, 95%CI=0.83-0.98) and additive model (OR=0.90, 95% CI=0.84-0.97). Subgroup analysis indicates that the association between rs7341475 and SZ is only significant in Caucasian. For rs262355, four studies with 2017 SZ patients and 3274 controls are included, the results demonstrate that carriage of A allele is associated with increased risk of SZ only in Caucasian (dominant model: OR=1.17, 95%CI=1.01-1.37; additive model OR=1.13, 95%CI=1.02-1.27). This meta-analysis suggests that rs7341475 (A/G) and rs262355 (A/T) polymorphisms in RELN gene are inversely associated with SZ risk.
Collapse
|
21
|
Wang HG, Jeffries JJ, Wang TF. Genetic and Developmental Perspective of Language Abnormality in Autism and Schizophrenia. Neuroscientist 2015; 22:119-31. [DOI: 10.1177/1073858415572078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Language and communication through it are two of the defining features of normally developed human beings. However, both these functions are often impaired in autism and schizophrenia. In the former disorder, the problem usually emerges in early childhood (~2 years old) and typically includes a lack of communication. In the latter condition, the language problems usually occur in adolescence and adulthood and presents as disorganized speech. What are the fundamental mechanisms underlying these two disorders? Is there a shared genetic basis? Are the traditional beliefs about them true? Are there any common strategies for their prevention and management? To answer these questions, we searched PubMed by using autism, schizophrenia, gene, and language abnormality as keywords, and we reconsidered the basic concepts about these two diseases or syndromes. We found many functional genes, for example, FOXP2, COMT, GABRB3, and DISC1, are actually implicated in both of them. After observing the symptoms, genetic correlates, and temporal progression of these two disorders as well as their relationships more carefully, we now infer that the occurrence of these two diseases is likely developmentally regulated via interaction between the genome and the environment. Furthermore, we propose a unified view of autism and schizophrenia: a single age-dependently occurred disease that is newly named as Systemic Integral Disorder: if occurring in children before age 2, it is called autism; if in adolescence or a later age, it is called schizophrenia.
Collapse
Affiliation(s)
- Haoran George Wang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Joseph Joel Jeffries
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tianren Frank Wang
- Department of Molecular Genetics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Chen J, Cao F, Liu L, Wang L, Chen X. Genetic studies of schizophrenia: an update. Neurosci Bull 2015; 31:87-98. [PMID: 25652814 DOI: 10.1007/s12264-014-1494-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia (SCZ) is a complex and heterogeneous mental disorder that affects about 1% of global population. In recent years, considerable progress has been made in genetic studies of SCZ. A number of common variants with small effects and rare variants with relatively larger effects have been identified. These variants include risk loci identified by genome-wide association studies, rare copy-number variants identified by comparative genomic analyses, and de novo mutations identified by high-throughput DNA sequencing. Collectively, they contribute to the heterogeneity of the disease. In this review, we update recent discoveries in the field of SCZ genetics, and outline the perspectives of future directions.
Collapse
Affiliation(s)
- Jingchun Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA,
| | | | | | | | | |
Collapse
|
23
|
Rui Q, Wang Y, Liang S, Liu Y, Wu Y, Wu Q, Nuamah I, Gopal S. Relapse prevention study of paliperidone extended-release tablets in Chinese patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:45-53. [PMID: 24576532 DOI: 10.1016/j.pnpbp.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the long-term efficacy, safety, and tolerability of paliperidone extended-release (pali ER), in Chinese patients with schizophrenia. METHODS In this parallel-group, relapse prevention, phase-3 study (screening [14-day], pali ER open-label run-in [8-week] and stabilization [6-week] phases, and double-blind (DB) treatment [variable duration], and open-label extension phases [24-week]), 136/201 patients with schizophrenia were randomized (1:1) to pali ER (3-12 mg) or placebo during the DB phase. RESULTS Final analysis showed that, out of 135 patients in ITT (DB) population, 71 (52.6%) had a relapse event, 45 (33.3%) were ongoing at the time the study was stopped, and 19 (14.1%) discontinued from the DB phase. Time to relapse (primary endpoint) favored pali ER (hazard ratio=5.23 [95% CI: 2.96, 9.25], p <0.0001). Rate of relapses (55/71 [77.5%] placebo; 16/64 [25%] pali ER) and secondary endpoints (change from baseline in Positive And Negative Syndrome Scale [PANSS] and Clinical Global Impression - Severity Scores) were significantly lower (p<0.001) in pali ER group vs placebo, in favor of pali ER. More psychiatric-related treatment-emergent adverse events (TEAEs) occurred in placebo- (21.1%) than pali ER group (10.9%). Most common (>3%) TEAEs in placebo group were insomnia and schizophrenia (8.5% each), while in pali ER group were aggression and akathisia (4.7% each), and schizophrenia, tremor, nausea, amenorrhea, and salivary hypersecretion (3.1% each). All serious TEAEs were psychiatric-related (schizophrenia, aggression, completed suicide, auditory hallucination, suicide attempt) and more frequent in placebo- (11.3%) versus pali ER group (3.1%). Death and tardive dyskinesia-related discontinuation (n=1 each) occurred in placebo group. Body weight increase from run-in baseline was greater in pali ER group (mean increase: 3.90 kg) versus placebo (mean increase: 2.05 kg). CONCLUSIONS This study confirms the findings from earlier pali ER global relapse-prevention studies and demonstrates that pali ER treatment (3-12 mg) is efficacious over the long-term and significantly delays relapse in Chinese patients with schizophrenia. No new safety signals were detected in this population.
Collapse
Affiliation(s)
- Qing Rui
- Janssen Research & Development, China
| | - Yang Wang
- Janssen Research & Development, China
| | - Shu Liang
- Peking University Sixth Hospital, Beijing, China
| | | | - Yue Wu
- Janssen Research & Development, China
| | - Qingqi Wu
- Janssen Research & Development, China
| | | | | |
Collapse
|
24
|
Peterson SM, Zhang J, Freeman JL. Developmental reelin expression and time point-specific alterations from lead exposure in zebrafish. Neurotoxicol Teratol 2013; 38:53-60. [PMID: 23665418 DOI: 10.1016/j.ntt.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 11/19/2022]
Abstract
Reelin (RELN) is a large glycoprotein that plays critical roles during and after neuronal development. In a previous study utilizing developing zebrafish, the RELN ortholog was in a subset of genes associated with neuronal function that was altered following exposure to 100ppb Pb at 72h post-fertilization (hpf). Although RELN is associated with neurodevelopment and neurological diseases, it represents a previously uncharacterized target for developmental Pb neurotoxicity. To further investigate Pb-induced expression decrease of RELN, a more detailed analysis was done using in situ hybridization and quantitative PCR (qPCR) on developing zebrafish at multiple developmental time points and at different exposure concentrations. Time points included in the analysis were 24, 36, 48, 60, 72 and 96hpf. The four exposure conditions tested were 10, 50 or 100ppb Pb as well as a control. In situ hybridization demonstrated concentrated expression of the gene in the telencephalon and in midbrain, hindbrain and spinal cord. Expression was less spatially restricted early in development but became isolated to specific cell populations in the central nervous system by 48hpf. The telencephalon demonstrated a high degree of expression throughout development. Pb exposure did not affect the observed location of expression at any of the time points tested. However, qPCR analysis demonstrated that reln expression statistically decreased in embryos exposed to the highest concentration compared to controls at 60hpf. No changes in brain morphology as assessed by measuring brain length and no significant increase in the number of apoptotic cells in the brain were observed at the highest exposure concentration. These data demonstrate that a decrease in reln expression occurs following Pb exposure at a concentration below one that results in changes in brain length or in the number of apoptotic cells in the zebrafish model system during a short window and is likely linked to concurrent developmental processes.
Collapse
Affiliation(s)
- Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
25
|
Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 2013; 68:122-35. [PMID: 22981949 PMCID: PMC3632377 DOI: 10.1016/j.neuropharm.2012.08.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/21/2022]
Abstract
Reelin is a glycoprotein that serves important roles both during development (regulation of neuronal migration and brain lamination) and in adulthood (maintenance of synaptic function). A number of neuropsychiatric disorders including autism, schizophrenia, bipolar disorder, major depression, Alzheimer's disease and lissencephaly share a common feature of abnormal Reelin expression in the brain. Altered Reelin expression has been hypothesized to impair neuronal connectivity and synaptic plasticity, leading ultimately to the cognitive deficits present in these disorders. The mechanisms for abnormal Reelin expression in some of these disorders are currently unknown although possible explanations include early developmental insults, mutations, hypermethylation of the promoter for the Reelin gene (RELN), miRNA silencing of Reelin mRNA, FMRP underexpression and Reelin processing abnormalities. Increasing Reelin expression through pharmacological therapies may help ameliorate symptoms resulting from Reelin deficits. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| | - S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA
| |
Collapse
|