1
|
Asahina K, Zelikowsky M. Comparative Perspectives on Neuropeptide Function and Social Isolation. Biol Psychiatry 2025; 97:942-952. [PMID: 39892690 PMCID: PMC12048258 DOI: 10.1016/j.biopsych.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Chronic social isolation alters behavior across animal species. Genetic model organisms such as mice and flies provide crucial insight into the molecular and physiological effects of social isolation on brain cells and circuits. Here, we comparatively review recent findings regarding the function of conserved neuropeptides in social isolation in mice and flies. Analogous functions of 3 classes of neuropeptides-tachykinins, cholecystokinins, and neuropeptide Y/F-in the two model organisms suggest that these molecules may be involved in modulating behavioral changes induced by social isolation across a wider range of species, including humans. Comparative approaches armed with tools to dissect neuropeptidergic function can lead to an integrated understanding of the impacts of social isolation on brain circuits and behavior.
Collapse
Affiliation(s)
- Kenta Asahina
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Sánchez-Marín L, Jiménez-Castilla V, Flores-López M, Navarro JA, Gavito A, Blanco-Calvo E, Santín LJ, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA 1 receptor-deficient mice. Neuropharmacology 2025; 268:110325. [PMID: 39864586 DOI: 10.1016/j.neuropharm.2025.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA1 receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA1 receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA1-null mice of both sexes. We hypothesized LPA1 receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA1-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA1-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA1 receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Violeta Jiménez-Castilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Juan A Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Ana Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Eduardo Blanco-Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco J Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain; Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001, Malaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain.
| |
Collapse
|
3
|
Jahanbani A, Rezazadeh D, Sajadi E, Haj Hosseini M, Ketabchi D, EskandariRoozbahani N. Human adaptation response to obesity. Int J Obes (Lond) 2025:10.1038/s41366-025-01791-9. [PMID: 40287541 DOI: 10.1038/s41366-025-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
This article examines the human body's adaptive responses to obesity from biological, behavioral, and evolutionary perspectives. It explores how ancient survival mechanisms, such as fat storage during scarcity, have persisted but become maladaptive in modern contexts of food abundance and sedentary lifestyles. Using the Thrifty Gene Hypothesis and General Adaptation Syndrome (GAS), the study investigates how chronic stress and genetic predispositions contribute to obesity. Chronic stress, as described in GAS, is linked to obesity through mechanisms like prolonged cortisol elevation, which promotes fat storage, particularly in the abdominal region, and disrupts hunger and satiety regulation. The article also explores the possibility that contemporary chronic stress may cause the body to buffer stressful conditions through fat accumulation. While the Thrifty Gene Hypothesis suggests that genetic traits evolved to optimize energy storage during scarcity, contributing to obesity in modern environments, it remains controversial. Critics argue that it oversimplifies obesity's causes, such as lifestyle and environmental factors. Although genetic variations influencing obesity susceptibility continue to evolve, the physiological mechanisms of fat storage and stress adaptation have remained largely unchanged since ancient times.
Collapse
Affiliation(s)
- Alireza Jahanbani
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Sajadi
- Department of Basic Science, Faculty of veterinary medicine, Shiraz University, Shiraz, Iran
| | - Mahdiyeh Haj Hosseini
- Department of Physical Education and Sport Sciences, National University of Skills (NS), Tehran, Iran
| | - Deniz Ketabchi
- School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Trivedi TS, Prajapati J, Rawal RM, Muvvala SB, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure alters pain perception and increases long-term health risks in infants with neonatal opioid withdrawal syndrome. FRONTIERS IN PAIN RESEARCH 2025; 6:1497801. [PMID: 40313396 PMCID: PMC12043715 DOI: 10.3389/fpain.2025.1497801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
Background Opioids are often prescribed for pain relief, yet they pose risks such as addiction, dependence, and overdose. Pregnant women have unique vulnerabilities to opioids and infants born to opioid-exposed mothers could develop neonatal opioid withdrawal syndrome (NOWS). The study of opioid-induced epigenetic changes in chronic pain is in its early stages. This study aimed to identify epigenetic changes in genes associated with chronic pain resulting from maternal opioid exposure during pregnancy. Methods We analyzed DNA methylation of chronic pain-related genes in 96 placental tissues using Illumina Infinium Methylation EPIC BeadChips. These samples comprised 32 from mothers with infants prenatally exposed to opioids who needed pharmacologic NOWS management (+Opioids/+NOWS), 32 from mothers with prenatally opioid-exposed infants not needing NOWS pharmacologic treatment (+Opioids/-NOWS), and 32 from unexposed control subjects (-Opioids/-NOWS). Results The study identified significant methylation changes at 111 CpG sites in pain-related genes among opioid-exposed infants, with 54 CpGs hypomethylated and 57 hypermethylated. These genes play a crucial role in various biological processes, including telomere length regulation (NOS3, ESR1, ESR2, MAPK3); inflammation (TNF, MAPK3, IL1B, IL23R); glucose metabolism (EIF2AK3, CACNA1H, NOTCH3, GJA1); ion channel function (CACNA1C, CACNA1H, CLIC4, KCNQ5); autophagy (CTSS, ULK1, ULK4, ATG5); oxidative stress (NGF, NRG1, OPRM1, ATP1A2); aging (GRIA1, NGFR, PRLR, EIF4E); cytokine activity (TRPV4, RUNX1, CXCL8, IL18R1); and the risk of suicide (ADORA2A, ANKK1, GABRG2, IGSF9B). These epigenetic changes may influence 48 signaling pathways-including cAMP, MAPK, GnRH secretion, estrogen signaling, morphine addiction, circadian rhythms, and insulin secretion-profoundly affecting pain and inflammation-related processes. Conclusion The identified methylation alterations may shed light on pain, neurodevelopmental changes, and other biological mechanisms in opioid-exposed infants and mothers with OUD, offering insights into NOWS and maternal-infant health. These findings may also pave the way for targeted interventions and improved pain management, highlighting the potential for integrated care strategies to address the interconnected health of mothers and infants.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V. Uppala
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tithi S. Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Srinivas B. Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Afridi S, Muzzammil M, Ali I, Shahi MH. Neuropeptide Signaling in Glioblastoma: A Comprehensive Review of the Current State and Future Direction. Neuromolecular Med 2025; 27:27. [PMID: 40227382 DOI: 10.1007/s12017-025-08849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by complex pathophysiology and significant clinical challenges. Emerging research emphasizes the crucial role of neuropeptides in GBM and its influence on tumor progression, immune modulation, and therapy resistance. This review highlighted the importance of neuropeptides and their receptors in maintaining brain homeostasis and the glioblastoma tumor microenvironment. We discussed new therapeutic frontiers, including neuropeptide receptors as therapeutic targets, renin-angiotensin system, peptide receptor modulation, targeted cytotoxic analogs (such as Bombesin and Somatostatin), and advances in targeted radiotherapy. The review highlighted the potential of neuropeptide-based targeted therapies to improve GBM patient outcomes and suggests future research directions. This underscores the importance of targeting neuropeptide-related pathways for innovative therapeutic strategies in GBM, aiming to enhance patient prognosis and effective treatment.
Collapse
Affiliation(s)
- Shahid Afridi
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Muzzammil
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Intezar Ali
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mehdi H Shahi
- Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
6
|
Jülke EM, Özbay B, Nowicki M, Els-Heindl S, Immig K, Mörl K, Bechmann I, Beck-Sickinger AG. Intranasal Application of Peptides Modulating the Neuropeptide Y System. ACS Pharmacol Transl Sci 2025; 8:1168-1181. [PMID: 40242586 PMCID: PMC11997893 DOI: 10.1021/acsptsci.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
The neuropeptide Y multireceptor-multiligand system plays an important role in multiple physiological processes. Targeting the neuropeptide Y1 (Y1R) and Y2 (Y2R) receptors has gained interest in treating weight and mental disorders. Nose-to-brain delivery is an effective tool to overcome the challenges of peptide delivery to cerebral structures. In this study, fluorescently labeled peptides that selectively activate either Y1R or Y2R were studied. The permeability of these compounds was evaluated on Calu-3 cells, a model system of the nasal mucosa. Particular attention was paid to the stability of peptides, and translocation of the intact compounds was demonstrated by combining a permeability assay with a receptor activation assay. Two compounds, selectively targeting either Y1R or Y2R, were selected, and their uptake after intranasal application was analyzed in vivo. Two different imaging systems were compared: whole slide scanning and confocal microscopy. Both methods allow detecting specific signals from the fluorescently labeled peptides. While whole slide scanning provides a comprehensive anatomical overview, confocal microscopy offers an improved signal-to-noise ratio. Finally, peptide-specific signals were quantified over time, displaying rapid peptide uptake within the first 15 min and sustained signals for up to 24 h. Overall, cell-based and in vivo assays were combined to select peptides with high pharmacological potential for nasal applications.
Collapse
Affiliation(s)
- Eva-Maria Jülke
- Institute
of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Benginur Özbay
- Institute
of Anatomy, Faculty of Medicine, Leipzig
University, Liebigstraße
13, 04103 Leipzig, Germany
| | - Marcin Nowicki
- Institute
of Anatomy, Faculty of Medicine, Leipzig
University, Liebigstraße
13, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute
of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Kerstin Immig
- Institute
of Anatomy, Faculty of Medicine, Leipzig
University, Liebigstraße
13, 04103 Leipzig, Germany
| | - Karin Mörl
- Institute
of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute
of Anatomy, Faculty of Medicine, Leipzig
University, Liebigstraße
13, 04103 Leipzig, Germany
| | - Annette G. Beck-Sickinger
- Institute
of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Cortes MA, Bartley AF, Li Q, Davis TR, Cunningham SE, Garner MA, Perez PJ, Harvey AC, Gross AK, Dobrunz LE. Modulation of temporoammonic-CA1 synapses by neuropeptide Y is through Y1 receptors in mice. Neuropeptides 2025; 110:102504. [PMID: 39951960 DOI: 10.1016/j.npep.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Reduced levels of neuropeptide Y (NPY), an abundant neuromodulator in the brain, are linked to multiple neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). The CA1 region of hippocampus is important for anxiety regulation and highly expresses NPY. Injecting NPY into CA1 is anxiolytic and alleviates behavioral symptoms in a model of traumatic stress; these anxiolytic effects are blocked by a Y1 receptor antagonist. However the location of Y1Rs that mediate NPY's anxiolytic effects in CA1 remains unclear. CA1 receives inputs from entorhinal cortex through the temporammonic pathway (TA), which is important for fear learning and sensitive to stress. Our lab previously showed that NPY reduces TA-evoked synaptic responses, however, the subtype of NPY receptor mediating this reduction is unknown. Here we demonstrate that in mice both exogenous (bath-applied) and endogenously-released NPY act through Y1 receptors in the TA pathway. This is the first demonstration of Y1 receptor-mediated effect on synaptic function in CA1. Interestingly, chronic overexpression of NPY (in NPY-expressing interneurons) impairs the sensitivity of the TA-evoked synaptic response to a Y1 receptor agonist. However, the long-known NPY Y2 receptor-mediated effect on the Schaffer collateral (SC) pathway is unaffected by NPY overexpression. Therefore, NPY can have a pathway-specific impact on synaptic transmission in CA1 based on the differential expression of NPY receptors and their response to overexpression of NPY. Our results demonstrating that NPY acts at Y1 receptors in the TA pathway are consistent with the idea that the TA pathway underlies the anxiolytic effects of NPY in CA1.
Collapse
Affiliation(s)
- Mariana A Cortes
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Aundrea F Bartley
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Qin Li
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Taylor R Davis
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Stephen E Cunningham
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Patric J Perez
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Adela C Harvey
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Alecia K Gross
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Lynn E Dobrunz
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
9
|
Thakur J, Godad A. Deciphering the role of neuropeptides as biomarkers for early diagnosis of Parkinson's disease. Life Sci 2025; 363:123376. [PMID: 39793854 DOI: 10.1016/j.lfs.2025.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Parkinson's disease (PD) is a neurological condition and is characterized by both motor and non-motor symptoms. Early diagnosis is essential for effective therapy and management; nevertheless, present diagnostic methods are frequently insufficient and primarily rely on clinical symptoms that appear later in the disease. Neuropeptides, such as alpha-synuclein (α-syn), Substance P (SP), neurotensin (Nts), Neuropeptide Y (NPY), and somatostatin (SST), exhibit significant potential as biomarkers for the early identification of Parkinson's disease (PD). The pathophysiology of Parkinson's disease is closely associated with the dysregulation of these neuropeptides, which are essential in many neurophysiological processes. Advancements in detection technologies, including the Enzyme-Linked Immunosorbent Assay (ELISA), have rendered it possible to precisely and sensitively quantify neuropeptides in a variety of bodily fluids, including blood, saliva, tears, urine, and cerebrospinal fluid (CSF). Studies show that PD patients have different amounts of neuropeptides in their biological fluids. These differences are correlated with the severity of the disease and help to distinguish PD patients apart from individuals with other neurodegenerative conditions. Despite being less investigated, Nts and SST are also involved in neuroprotection and dopaminergic transmission, they too hold significant characteristics as diagnostic biomarkers. This article highlights the possible use of neuropeptides as PD diagnostic biomarkers. Integrating neuropeptide biomarkers into normal diagnostic processes can substantially enhance early diagnosis. This enables early therapeutic interventions and improves outcomes for individuals with PD.
Collapse
Affiliation(s)
- Jhanvi Thakur
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
10
|
Azarfarin M, Moradikor N, Salatin S, Sarailoo M, Dadkhah M. Stress-related neurodegenerative diseases: Molecular mechanisms implicated in neurodegeneration and therapeutic strategies. PROGRESS IN BRAIN RESEARCH 2025; 291:253-288. [PMID: 40222783 DOI: 10.1016/bs.pbr.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Chronic stress is a striking cause of major neurodegenerative diseases disorders (NDDs). These diseases share several common mechanisms regarding to disease pathology, in spite of they have various properties and clinical manifestations. NDDs are defined by progressive cognitive decline, and stress contribute to the promotion and progression of disease. In addition, various pathways such as production of reactive oxygen species (ROS), mitochondrial dysfunction, and neurodegeneration are the main crucial hallmarks to develop common NDDs, resulting in neuronal cell death. Although the exact mechanisms of NDDs are underexplored, the potential neuroprotective critical role of such therapies in neuronal loss the treatment of NDDs are not clear. In this regard, researchers investigate the neuroprotective effects of targeting underlying cascade to introduce a promising therapeutic option to NDDs. Herein, we provide an overview of the role of non-pharmacological treatments against oxidative stress, mitochondrial symbiosis, and neuroinflammation in NDDs, mainly discussing the music, diet, and exercise effects of targeting pathways.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Sara Salatin
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sarailoo
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Neuroscience Research Group, Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Sitko AA, Frank MM, Romero GE, Hunt M, Goodrich LV. Lateral olivocochlear neurons modulate cochlear responses to noise exposure. Proc Natl Acad Sci U S A 2025; 122:e2404558122. [PMID: 39854232 PMCID: PMC11789013 DOI: 10.1073/pnas.2404558122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/04/2024] [Indexed: 01/26/2025] Open
Abstract
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium. One population of OCNs, the lateral olivocochlear (LOC) neurons, target spiral ganglion neurons (SGNs), the primary sensory neurons of the ear. LOCs alter their transmitter expression for days to weeks in response to noise exposure (NE), suggesting that they could tune SGN excitability over long time periods in response to auditory experience. To examine how LOCs affect auditory function after NE, we characterized OCN transcriptional profiles and found transient LOC-specific gene expression changes after NE, including upregulation of multiple neuropeptide-encoding genes. Next, by generating intersectional mouse lines that selectively target LOCs, we chemogenetically ablated LOCs and assayed auditory responses at baseline and after NE. Compared to controls, mice with reduced LOC innervation showed greater NE-induced functional deficits 1 d later and had worse auditory function after a 2-wk recovery period. The number of remaining presynaptic puncta at the SGN synapse with inner hair cells did not differ between control and LOC-ablated animals, suggesting that the primary role of LOCs after NE is likely not to protect but instead to compensate, ensuring that SGN function is enhanced during periods of need.
Collapse
Affiliation(s)
- Austen A. Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | | | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
12
|
Singh A, Shim P, Naeem S, Rahman S, Lutfy K. Pituitary adenylyl cyclase-activating polypeptide modulates the stress response: the involvement of different brain areas and microglia. Front Psychiatry 2025; 15:1495598. [PMID: 39931196 PMCID: PMC11807976 DOI: 10.3389/fpsyt.2024.1495598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025] Open
Abstract
Stress is necessary for survival. However, chronic unnecessary stress exposure leads to cardiovascular, gastrointestinal and neuropsychiatric disorders. Thus, understanding the mechanisms involved in the initiation and maintenance of the stress response is essential since it may reveal the underpinning pathophysiology of these disorders and may aid in the development of medication to treat stress-mediated diseases. Pituitary adenylyl cyclase activating polypeptide (PACAP) and its receptors (PAC1, VPAC1 and VPAC2) are expressed in the hypothalamus and other brain areas as well as in the adrenal gland. Previous research has shown that this peptide/receptor system serves as a modulator of the stress response. In addition to modulating the stress response, this system may also be connected to its emerging role as neuroprotective against hypoxia, ischemia, and neurodegeneration. This article aims to review the literature regarding the role of PACAP and its receptors in the stress response, the involvement of different brain regions and microglia in PACAP-mediated modulation of the stress response, and the long-term adaptation to stress recognizable clinically as survival with resilience while manifested in anxiety, depression and other neurobehavioral disorders.
Collapse
Affiliation(s)
- Anika Singh
- College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Paul Shim
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Sadaf Naeem
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
13
|
Sigorski D, Sejda A, Abualsaud N, Krawczyk E, Izycka-Swieszewska E, Kitlinska J. Neuropeptide Y in cancer-biological functions and potential clinical implications. Cancer Metastasis Rev 2025; 44:21. [PMID: 39760953 PMCID: PMC11703900 DOI: 10.1007/s10555-024-10237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter widely distributed in the peripheral and central nervous system, affecting many physiological functions. Consequently, dysregulation of the NPY system contributes to numerous pathological disorders, including stress, obesity, and cancer. The pleiotropic functions of NPY in humans are mediated by G protein-coupled receptors (Y1R, Y2R, Y5R), which activate several signaling pathways and thereby regulate cell growth, differentiation, apoptosis, proliferation, angiogenesis, and metabolism. These activities of NPY are highly relevant to tumor biology and known hallmarks of cancer, including sustained proliferative potential, resisting cell death, angiogenesis, invasion, and metastases. In this comprehensive review, we describe the cellular functions of NPY and discuss its role in cancer pathobiology, as well as provide the current state of knowledge pertaining to NPY and its receptors in various cancer types. Moreover, we focus on potential clinical applications targeting the NPY system, such as its role as a prognostic and predictive factor, as well as its utility in cancer diagnostics, imaging, and treatment. Altogether, growing evidence supports the significant role of the NPY system in tumor pathobiology and implicates its potential therapeutic and diagnostic value in modern oncology.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology and Forensic Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Nouran Abualsaud
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
- Department of Pathomorphology, Copernicus Hospital, Gdansk, Poland
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, BSB 231A, 3900 Reservoir Rd., NW, Washington, DC, 20057, USA.
| |
Collapse
|
14
|
Amanatidou D, Eleftheriou P, Petrou A, Geronikaki A, Lialiaris T. Τhiazolidine-4-One Derivatives with Variable Modes of Inhibitory Action Against DPP4, a Drug Target with Multiple Activities and Established Role in Diabetes Mellitus Type II. Pharmaceuticals (Basel) 2025; 18:52. [PMID: 39861115 PMCID: PMC11768251 DOI: 10.3390/ph18010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent binding capacity are available, undesired side effects exist partly attributed to drug kinetics, and research for finding novel, potent, and safer compounds continues. Despite the research, a low number of uncompetitive and non-competitive inhibitors, which could be of worth for pharmaceutical and mechanism studies, was mentioned. Methods: In the present study sixteen 3-(benzo[d]thiazol-2-yl)-2-aryl thiazolidin-4-ones were selected for evaluation, based on structural characteristics and docking analysis and were tested in vitro for DPP4 inhibitory action using H-Gly-Pro-amidomethyl coumarin substrate. Their mode of inhibition was also in vitro explored. Results: Twelve compounds exhibited IC50 values at the nM range with the best showing IC50 = 12 ± 0.5 nM, better than sitagliptin. Most compounds exhibited a competitive mode of inhibition. Inhibition modes of uncompetitive, non-competitive, and mixed type were also identified. Docking analysis was in accordance with the in vitro results, with a linear correlation of logIC50 with a Probability of Binding Factor(PF) derived using docking analysis to a specific target box and to the whole enzyme. According to the docking results, two probable sites of binding for uncompetitive inhibitors were highlighted in the wider area of the active site and in the propeller loop. Conclusions: Potent inhibitors with IC50 at the nM range and competitive, non-competitive, uncompetitive, and mixed modes of action, one better than sitagliptin, were found. Docking analysis was used to estimate probable sites and ways of binding. However, crystallographic or NMR studies are needed to elucidate the exact way of binding especially for uncompetitive and non-competitive inhibitors.
Collapse
Affiliation(s)
- Dionysia Amanatidou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.G.)
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.G.)
| | - Theodoros Lialiaris
- School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
15
|
Malluru N, Abdullah Y, Hackshaw KV. Early diagnostics of fibromyalgia: an overview of the challenges and opportunities. Expert Rev Mol Diagn 2025; 25:21-31. [PMID: 39800917 DOI: 10.1080/14737159.2025.2450793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/05/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Fibromyalgia is a common pain disorder with features of widespread musculoskeletal pain, fatigue, disrupted sleep, cognitive dysfunction, autonomic dysfunction, and mood disorders. Despite its high prevalence and significant impact on quality of life, the diagnosis and management of fibromyalgia remain challenging. Advancements in classification and diagnostics in broad areas have improved our understanding and treatment approach for this condition. We culminate with a discussion of future directions for research into early diagnostics in fibromyalgia. AREAS COVERED This perspective examines the current landscape of fibromyalgia biomarker discovery, highlighting challenges that must be addressed and opportunities that are presented as the field evolves. EXPERT OPINION Advances in fibromyalgia diagnostics provide an opportunity to dramatically reduce the cost burden placed on health resources for fibromyalgia once we have discovered a reliable reproducible biomarker that is widely accepted among practitioners and patients. Promising results in a number of fields may lead to point of care technologies that will be applicable in the office or bedside without the need for transport to specialized centers. Future research should focus on integrating these various diagnostic approaches to develop a comprehensive, multi-modal diagnostic tool for fibromyalgia.
Collapse
Affiliation(s)
- Natalie Malluru
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Youssef Abdullah
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Kevin V Hackshaw
- Chief of Rheumatology, Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, Austin, TX, USA
| |
Collapse
|
16
|
Aerathupalathu
Janardhanan J, She JW, Yu HH. Easy-to-Engineer Flexible Nanoelectrode Sensor from an Inexpensive Overhead Projector Sheet for Sweat Neuropeptide-Y Detection. ACS APPLIED BIO MATERIALS 2024; 7:8423-8433. [PMID: 39548983 PMCID: PMC11653399 DOI: 10.1021/acsabm.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
In this paper, we report an inexpensive and easy-to-engineer flexible nanobiosensor electrode platform by exploring a nonconductive overhead projector (OHP) sheet for sweat Neuropeptide-Y (NPY) detection, a potential biomarker for stress, cardiovascular regulation, appetite, etc. We converted a nonconductive OHP sheet into a conductive nanobiosensor electrode platform with a hybrid polymerization method, which consists of interfacial polymerization of pyrrole and a template-free electropolymerization technique to decorate the electrode platform with poly(EDOT-COOH-co-EDOT-EG3) nanotubes. The selection of poly(EDOT-COOH) features an easy conjugation of NPY antibody (NPY-Ab) through EDC/Sulfo-NHS coupling chemistry, while poly(EDOT-EG3) is best known to reduce nonspecific binding of biomolecules. The antibody conjugation on the polymer surface was characterized by a quartz crystal microbalance, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and chronoamperometry techniques. The OHP nanosensor platform exhibited the successful detection of NPY analyte through a chronoamperometry method in phosphate-buffered saline with a wide range of concentrations from 1 pg/mL to 1 μg/mL with a limit of detection of 0.68 pg/mL having good linearity (R2 = 0.9841). The sensor platform exhibited excellent stability, reproducibility, repeatability, and a shelf-life of 13 days. Furthermore, the sensor showed superior selectivity to a 100 pg/mL NPY analyte among other interfering compounds such as tumor necrosis factor α, cortisol, and Interleukin-6. The clinical practicality of the sensor was confirmed through the detection of 100 pg/mL NPY spiked artificial perspiration, highlighting the possibility of integrating the sensor platform to wearable healthcare applications.
Collapse
Affiliation(s)
- Jayakrishnan Aerathupalathu
Janardhanan
- Smart
Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei
City 115201, Taiwan
- Taiwan
International Graduate Program (TIGP), Sustainable Chemical Science
and Technology, Academia Sinica, Taipei City 115201, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Wei She
- Smart
Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei
City 115201, Taiwan
- Taiwan
International Graduate Program (TIGP), Nano Science and Technology
Program, Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiao-hua Yu
- Smart
Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei
City 115201, Taiwan
- Taiwan
International Graduate Program (TIGP), Sustainable Chemical Science
and Technology, Academia Sinica, Taipei City 115201, Taiwan
| |
Collapse
|
17
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
18
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
19
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
20
|
Gilani M, Abak N, Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine. Pharmacol Biochem Behav 2024; 245:173897. [PMID: 39424200 DOI: 10.1016/j.pbb.2024.173897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Mood and anxiety disorders are complex psychiatric conditions shaped by the multifactorial interplay of genetic, epigenetic, and neuropeptide factors. This review aims to elucidate the intricate interactions among these factors and their potential in advancing personalized medicine. We examine the genetic underpinnings, emphasizing key heritability studies and specific gene associations. The role of epigenetics is discussed, focusing on how environmental factors can modify gene expression and contribute to these disorders. Neuropeptides, including substance P, CRF, AVP, NPY, galanin, and kisspeptin, are evaluated for their involvement in mood regulation and their potential as therapeutic targets. Additionally, we address the emerging role of the gut microbiome in modulating neuropeptide activity and its connection to mood disorders. This review integrates findings from genetic, epigenetic, and neuropeptide research, offering a comprehensive overview of their collective impact on mood and anxiety disorders. By highlighting novel insights and potential clinical applications, we underscore the importance of a multi-omics approach in developing personalized treatment strategies. Future research directions are proposed to address existing knowledge gaps and translate these findings into clinical practice. Our review provides a fresh perspective on the pathophysiology of mood and anxiety disorders, paving the way for more effective and individualized therapies.
Collapse
Affiliation(s)
- Maryam Gilani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
22
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
23
|
Shapovalova K, Zorkina Y, Abramova O, Andryushchenko A, Chekhonin V, Kostyuk G. The Role of Neuropeptide Y in the Pathogenesis of Alzheimer's Disease: Diagnostic Significance and Neuroprotective Functions. Neurol Int 2024; 16:1318-1331. [PMID: 39585059 PMCID: PMC11587103 DOI: 10.3390/neurolint16060100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background. Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been suggested that the factors that cause pathologic changes and lead to the development of AD may also include changes in certain neuropeptides. The implication of the neuropeptide (NPY) in the pathogenesis of AD and its potential therapeutic role is possible due to the following properties: involvement in adult neurogenesis, regulatory effects on the immune system, the inhibition of potential-dependent Ca2+ channels, and the reduction in glutamate excitotoxicity. The aim of our review was to summarize recent data on the role of NPY in AD development and to explore its potential as a biomarker and a possible therapeutic target. Materials and methods. We performed a systematic review of studies, for which we search using the keywords "Alzheimer's disease and neuropeptide Y", "Alzheimer's disease and NPY", "AD and NPY", "Neuropeptide Y and Neurodegenerative disease". Nineteen articles were included in the review. Results. The NPY levels in cerebrospinal fluid and plasma have been found to be reduced or unchanged in AD patients; however, these findings need to be confirmed in more recent studies. Data obtained in transgenic animal models support the role of NPY in AD pathogenesis. The neuroprotective effects of NPY have been demonstrated in vitro and in vivo in AD models. Conclusion. The findings may open new possibilities for using NPY as a diagnostic marker to detect AD at earlier stages of the disease or as a potential therapeutic target due to its neuroprotective properties.
Collapse
Affiliation(s)
- Ksenia Shapovalova
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Per. 23, 119034 Moscow, Russia;
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Per. 23, 119034 Moscow, Russia;
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Per. 23, 119034 Moscow, Russia;
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (K.S.); (O.A.); (A.A.); (G.K.)
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry and Psychosomatics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
24
|
Xing L, Chen B, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Qin D. The role of neuropeptides in cutaneous wound healing: a focus on mechanisms and neuropeptide-derived treatments. Front Bioeng Biotechnol 2024; 12:1494865. [PMID: 39539691 PMCID: PMC11557334 DOI: 10.3389/fbioe.2024.1494865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of cutaneous nerves, neuropeptides, and specific receptors richly innervates the skin and influences a variety of physiological and pathological processes. The sensory and autonomic nerve fibers secrete a variety of neuropeptides that are essential to the different phases of wound healing. In addition to initiating a neurogenic inflammatory response in the early stages of healing, neuropeptides also control wound healing by influencing immune cells, repair cells, and the growth factor network. However, the precise mechanism by which they accomplish these roles in the context of cutaneous wound healing is still unknown. Investigating the mechanisms of action of neuropeptides in wound healing and potential therapeutic applications is therefore urgently necessary. The present review discusses the process of wound healing, types of neuropeptides, potential mechanisms underlying the role of neuropeptides in cutaneous wound healing, as well as some neuropeptide-derived treatment strategies, such as hydrogels, new dressings, electro stimulation, and skin-derived precursors. Future in-depth mechanistic studies of neuropeptides in cutaneous wound healing may provide opportunities to develop therapeutic technologies that harness the roles of neuropeptides in the wound healing process.
Collapse
Affiliation(s)
- Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bing Chen
- School of Medicine, Kunming University, Kunming, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
25
|
Gallo M, Ferrari E, Giovati L, Pertinhez TA, Artesani L, Conti S, Ciociola T. The Variability of the Salivary Antimicrobial Peptide Profile: Impact of Lifestyle. Int J Mol Sci 2024; 25:11501. [PMID: 39519054 PMCID: PMC11547034 DOI: 10.3390/ijms252111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Saliva is crucial in maintaining oral health; its composition reflects the body's physiological and diseased state. Among salivary components, antimicrobial peptides (AMPs) stand out for their broad antimicrobial activities and role in modulating the oral microbiota and innate immune response. Local and systemic diseases can affect the levels of AMPs in saliva, making them attractive biomarkers. However, the large variability in their concentrations hampers their use in diagnostics. Knowledge of the various factors influencing the profile of salivary AMPs is essential for their use as biomarkers. Here, we examine how lifestyle factors such as physical activity, dietary supplementation, tobacco smoking, and psychological stress impact salivary AMP levels. By understanding these sources of variability, we can take a step forward in using AMPs for diagnostics and prognostics and develop new tailored and preventative approaches.
Collapse
Affiliation(s)
- Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Thelma A. Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Lorenza Artesani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
26
|
Narain P, Petković A, Šušić M, Haniffa S, Anwar M, Arnoux M, Drou N, Antonio-Saldi G, Chaudhury D. Nighttime-specific differential gene expression in suprachiasmatic nucleus and habenula is associated with resilience to chronic social stress. Transl Psychiatry 2024; 14:407. [PMID: 39358331 PMCID: PMC11447250 DOI: 10.1038/s41398-024-03100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular mechanisms that link stress and biological rhythms still remain unclear. The habenula (Hb) is a key brain region involved in regulating diverse types of emotion-related behaviours while the suprachiasmatic nucleus (SCN) is the body's central clock. To investigate the effects of chronic social stress on transcription patterns, we performed gene expression analysis in the Hb and SCN of stress-naïve and stress-exposed mice. Our analysis revealed a large number of differentially expressed genes and enrichment of synaptic and cell signalling pathways between resilient and stress-naïve mice at zeitgeber 16 (ZT16) in both the Hb and SCN. This transcriptomic signature was nighttime-specific and observed only in stress-resilient mice. In contrast, there were relatively few differences between the stress-susceptible and stress-naïve groups across time points. Our results reinforce the functional link between circadian gene expression patterns and differential responses to stress, thereby highlighting the importance of temporal expression patterns in homoeostatic stress responses.
Collapse
Affiliation(s)
- Priyam Narain
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Aleksa Petković
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marko Šušić
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Salma Haniffa
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mariam Anwar
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Dipesh Chaudhury
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
27
|
Gobbi C, Sánchez-Marín L, Flores-López M, Medina-Vera D, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Sex-dependent effects of acute stress and alcohol exposure during adolescence on mRNA expression of brain signaling systems involved in reward and stress responses in young adult rats. Biol Sex Differ 2024; 15:75. [PMID: 39327618 PMCID: PMC11426001 DOI: 10.1186/s13293-024-00649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Adolescent stress and alcohol exposure increase the risk of maladaptive behaviors and mental disorders in adulthood, with distinct sex-specific differences. Understanding the mechanisms underlying these early events is crucial for developing targeted prevention and treatment strategies. METHODS Male and female Wistar rats were exposed to acute restraint stress and intermittent alcohol during adolescence. We assessed lasting effects on plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, and mRNA expression of genes related to corticotropin releasing hormone (CRH), neuropeptide Y (NPY), corticoid, opioid, and arginine vasopressin systems in the amygdala and hypothalamus. RESULTS The main findings are as follows: (1) blood alcohol concentrations (BAC) increased after the final alcohol administration, but stressed males had lower BAC than non-stressed males; (2) Males gained significantly more weight than females; (3) Stressed females showed higher ACTH levels than non-stressed females, with no changes in males; (4) Stress increased CORT levels in males, while stressed, alcohol-treated females had lower CORT levels than non-stressed females; (5) CRH: Females had lower Crhr1 levels in the amygdala, while alcohol reduced Crhr2 levels in males but not females. Significant interactions among sex, stress, and alcohol were found in the hypothalamus, with distinct patterns between sexes; (6) NPY: In the amygdala, stress reduced Npy and Npy1r levels in males but increased them in females. Alcohol decreased Npy2r levels in males, with varied effects in females. Similar sex-specific patterns were observed in the hypothalamus; (7) Corticoid system: Stress and alcohol had complex, sex-dependent effects on Pomc, Nr3c1, and Nr3c2 in both brain regions; (8) Opioid receptors: Stress and alcohol blunted the elevated expression of Oprm1, Oprd1, and Oprk1 in the amygdala of males and the hypothalamus of females; (8) Vasopressin: Stress and alcohol interacted significantly to affect Avp and Avpr1a expression in the amygdala, with stronger effects in females. In the hypothalamus, alcohol increased Avp levels in females. CONCLUSIONS This study demonstrates that adolescent acute stress and alcohol exposure induce lasting, sex-specific alterations in systems involved in reward and stress responses. These findings emphasize the importance of considering sex differences in the prevention and management of HPA dysfunction and psychiatric disorders.
Collapse
Grants
- PI19/00886, PI20/01399, PI22/00427 and PI22/01833 Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovación and European Regional Development Funds-European Union (ERDF-EU)
- PI19/00886, PI20/01399, PI22/00427 and PI22/01833 Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovación and European Regional Development Funds-European Union (ERDF-EU)
- PI19/00886, PI20/01399, PI22/00427 and PI22/01833 Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia e Innovación and European Regional Development Funds-European Union (ERDF-EU)
- PT20-00101 Plataforma de biobanco y biomodelos animales y 3D de Málaga
- PT20-00101 Plataforma de biobanco y biomodelos animales y 3D de Málaga
- RD21/0009/0003 Programa RICORS RIAPAD
- RD21/0009/0003 Programa RICORS RIAPAD
- PNSD 2022/020 Ministerio de Sanidad, Delegación de Gobierno para el Plan Nacional sobre Drogas
Collapse
Affiliation(s)
- Carlotta Gobbi
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, 29010, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain.
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, 29010, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain.
- Unidad de Gestión Clínica de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| |
Collapse
|
28
|
Zhang Y, Shen J, Xie F, Liu Z, Yin F, Cheng M, Wang L, Cai M, Herzog H, Wu P, Zhang Z, Zhan C, Liu T. Feedforward inhibition of stress by brainstem neuropeptide Y neurons. Nat Commun 2024; 15:7603. [PMID: 39217143 PMCID: PMC11365948 DOI: 10.1038/s41467-024-51956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPYDRN/vlPAG neurons are rapidly activated by various stressful stimuli. Inhibiting these neurons exacerbated hypophagic and anxiety responses during stress, while activation significantly ameliorates acute stress-induced hypophagia and anxiety levels and transmits positive valence. Furthermore, NPYDRN/vlPAG neurons exert differential but synergic anxiolytic effects via inhibitory projections to the paraventricular thalamic nucleus (PVT) and the lateral hypothalamic area (LH). Together, our findings reveal a feedforward inhibition neural mechanism underlying stress resistance and suggest NPYDRN/vlPAG neurons as a potential therapeutic target for stress-related disorders.
Collapse
Grants
- the National Key R&D Program of China (2019YFA0801900, 2018YFA0800300), the National Natural Science Foundation of China (9235730017, 92249302, 32150610475, 31971074), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202001), Faculty Resources Project of College of Life Sciences, Inner Mongolia University (2022-102)
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, the National Natural Science Foundation of China (32171144) and Shanghai Pujiang Program (22PJD007).
- the STI2030-Major Projects (2021ZD0203900),the National Natural Science Foundation of China (32271063, 31822026, 31500860), Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYPY20220018)
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Jiayi Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiwei Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Mingxiu Cheng
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Liang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meiting Cai
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ping Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Cheng Zhan
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
29
|
Ojha RK, Dongre S, Singh P, Srivastava RK. Late maternal separation provides resilience to chronic variable stress-induced anxiety- and depressive-like behaviours in male but not female mice. World J Biol Psychiatry 2024; 25:393-407. [PMID: 39155532 DOI: 10.1080/15622975.2024.2390411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maternal separation can have long-lasting effects on an individual's susceptibility to stress later in life. Maternal separation during the postnatal period is a commonly used paradigm in rodents to investigate the effects of early life stress on neurobehavioural changes and stress responsiveness. However, maternal separation during stress hyporesponsive and responsive periods of postnatal development may differ in its effects on stress resilience. Therefore, we hypothesised that late maternal separation (LMS) from postnatal day 10 to 21 in mice may have different effect on resilience than early maternal separation during the first week of postnatal life. Our results suggested that male LMS mice are more resilient to chronic variable stress (CVS)-induced anxiety and depressive-like behaviour as confirmed by the open field, light-dark field, elevated plus maze, sucrose preference and tail suspension tests. In contrast, female LMS mice were equally resilient as non-LMS female mice. We found increased expression of NPY, NPY1R, NPY2R, NPFFR1, and NPFFR2 in the hypothalamus of male LMS mice whereas the opposite effect was observed in the hippocampus. LMS in male and female mice did not affect circulating corticosterone levels in response to psychological or physiological stressors. Thus, LMS renders male mice resilient to CVS-induced neurobehavioural disorders in adulthood.
Collapse
Affiliation(s)
- Rajesh Kumar Ojha
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Shweta Dongre
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Padmasana Singh
- Department of Zoology, University of Allahabad, Prayagraj, India
| | | |
Collapse
|
30
|
Lafferty RA, Flatt PR, Irwin N. NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management? Peptides 2024; 179:171256. [PMID: 38825012 DOI: 10.1016/j.peptides.2024.171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
31
|
Yamaguchi M, Noda-Asano S, Inoue R, Himeno T, Motegi M, Hayami T, Nakai-Shimoda H, Kono A, Sasajima S, Miura-Yura E, Morishita Y, Kondo M, Tsunekawa S, Kato Y, Kato K, Naruse K, Nakamura J, Kamiya H. Dipeptidyl Peptidase (DPP)-4 Inhibitors and Pituitary Adenylate Cyclase-Activating Polypeptide, a DPP-4 Substrate, Extend Neurite Outgrowth of Mouse Dorsal Root Ganglia Neurons: A Promising Approach in Diabetic Polyneuropathy Treatment. Int J Mol Sci 2024; 25:8881. [PMID: 39201570 PMCID: PMC11354620 DOI: 10.3390/ijms25168881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Individuals suffering from diabetic polyneuropathy (DPN) experience debilitating symptoms such as pain, paranesthesia, and sensory disturbances, prompting a quest for effective treatments. Dipeptidyl-peptidase (DPP)-4 inhibitors, recognized for their potential in ameliorating DPN, have sparked interest, yet the precise mechanism underlying their neurotrophic impact on the peripheral nerve system (PNS) remains elusive. Our study delves into the neurotrophic effects of DPP-4 inhibitors, including Diprotin A, linagliptin, and sitagliptin, alongside pituitary adenylate cyclase-activating polypeptide (PACAP), Neuropeptide Y (NPY), and Stromal cell-derived factor (SDF)-1a-known DPP-4 substrates with neurotrophic properties. Utilizing primary culture dorsal root ganglia (DRG) neurons, we meticulously evaluated neurite outgrowth in response to these agents. Remarkably, all DPP-4 inhibitors and PACAP demonstrated a significant elongation of neurite length in DRG neurons (PACAP 0.1 μM: 2221 ± 466 μm, control: 1379 ± 420, p < 0.0001), underscoring their potential in nerve regeneration. Conversely, NPY and SDF-1a failed to induce neurite elongation, accentuating the unique neurotrophic properties of DPP-4 inhibition and PACAP. Our findings suggest that the upregulation of PACAP, facilitated by DPP-4 inhibition, plays a pivotal role in promoting neurite elongation within the PNS, presenting a promising avenue for the development of novel DPN therapies with enhanced neurodegenerative capabilities.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Saeko Noda-Asano
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Rieko Inoue
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
- Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Mikio Motegi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Tomohide Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Hiromi Nakai-Shimoda
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Ayumi Kono
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Sachiko Sasajima
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Koichi Kato
- Department of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan
| | - Keiko Naruse
- Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya 464-0821, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
- Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| |
Collapse
|
32
|
Zhang J, Xie Y, Wang X, Kang Y, Wang C, Xie Q, Dong X, Tian Y, Huang D. The single-cell atlas of the epididymis in mice reveals the changes in epididymis function before and after sexual maturity. Front Cell Dev Biol 2024; 12:1440914. [PMID: 39161591 PMCID: PMC11330779 DOI: 10.3389/fcell.2024.1440914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: The epididymis is important for sperm transport, maturation, and storage. Methods: The head and tail of the epididymis of 5-week-old and 10-week-old C57 BL/6J male mice were used for single-cell sequencing. Results: 10 cell types including main, basal, and narrow/clear cells are identified. Next, we performed cell subgroup analysis, functional enrichment analysis, and differentiation potential prediction on principal cells, clear cells, and basal cells. Our study indicates that the principal cells are significantly involved in sperm maturation, as well as in antiviral and anti-tumor immune responses. Clear cells are likely to play a crucial role in safeguarding sperm and maintaining epididymal pH levels. Basal cells are implicated in the regulation of inflammatory and stress responses. The composition and functions of the various cell types within the epididymis undergo significant changes before and after sexual maturity. Furthermore, pseudo-temporal analysis elucidates the protective and supportive roles of epididymal cells in sperm maturation during sexual maturation. Discussion: This study offers a theoretical framework and forecasts for the investigation of epididymal sperm maturation and epididymal immunity.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Xie
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children’s Hospital, Qingdao Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yafei Kang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuxiong Wang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinying Xie
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Dong
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghong Tian
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghui Huang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
33
|
Silveira MA, Herrera YN, Beebe NL, Schofield BR, Roberts MT. Lineage-tracing reveals an expanded population of NPY neurons in the inferior colliculus. J Neurophysiol 2024; 132:573-588. [PMID: 38988288 PMCID: PMC11427056 DOI: 10.1152/jn.00131.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Growing evidence suggests that neuropeptide signaling shapes auditory computations. We previously showed that neuropeptide Y (NPY) is expressed in the inferior colliculus (IC) by a population of GABAergic stellate neurons and that NPY regulates the strength of local excitatory circuits in the IC. NPY neurons were initially characterized using the NPY-hrGFP mouse, in which humanized renilla green fluorescent protein (hrGFP) expression indicates NPY expression at the time of assay, i.e., an expression-tracking approach. However, studies in other brain regions have shown that NPY expression can vary based on several factors, suggesting that the NPY-hrGFP mouse might miss NPY neurons not expressing NPY on the experiment date. Here, we hypothesized that neurons with the ability to express NPY represent a larger population of IC GABAergic neurons than previously reported. To test this hypothesis, we used a lineage-tracing approach to irreversibly tag neurons that expressed NPY at any point prior to the experiment date. We then compared the physiological and anatomical features of neurons labeled with this lineage-tracing approach to our prior data set, revealing a larger population of NPY neurons than previously found. In addition, we used optogenetics to test the local connectivity of NPY neurons and found that NPY neurons provide inhibitory synaptic input to other neurons in the ipsilateral IC. Together, our data expand the definition of NPY neurons in the IC, suggest that NPY expression might be dynamically regulated in the IC, and provide functional evidence that NPY neurons form local inhibitory circuits in the IC.NEW & NOTEWORTHY Across brain regions, neuropeptide Y (NPY) expression is dynamic and influenced by extrinsic and intrinsic factors. We previously showed that NPY is expressed by a class of inhibitory neurons in the auditory midbrain. Here, we find that this neuron class also includes neurons that previously expressed NPY, suggesting that NPY expression is dynamically regulated in the auditory midbrain. We also provide functional evidence that NPY neurons contribute to local inhibitory circuits in the auditory midbrain.
Collapse
Affiliation(s)
- Marina A Silveira
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Neuroscience, Development and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Yoani N Herrera
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Michael T Roberts
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
34
|
Oluwagbenga EM, Bergman M, Ajuwon KM, Fraley GS. Sex differences in intestinal morphology and increase in diencephalic neuropeptide Y gene expression in female but not male Pekin ducks exposed to chronic heat stress. J Neuroendocrinol 2024:e13424. [PMID: 38960698 DOI: 10.1111/jne.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
The impact of heat stress (HS) on production is intricately linked with feed intake. We investigated the effects of HS on intestines and diencephalic genes in Pekin ducks. One hundred and sixty adult ducks were allocated to two treatment rooms. The control room was maintained at 22°C and the HS room at 35°C for the first 10 h of the day then reduced to 29.5°C. After 3 weeks, 10 hens and 5 drakes were euthanized from each room and jejunum and ileum collected for histology. Brains were collected for gene expression analysis using qRT-PCR. Intestinal morphology data were analyzed with two-way ANOVA and diencephalic gene data were analyzed with Kruskal-Wallis test. There was an increase in villi width in the ileum (p = .0136) and jejunum (p = .0019) of HS hens compared to controls. HS drakes showed a higher crypt depth (CD) in the jejunum (p = .0198) compared to controls. There was an increase in crypt goblet cells (GC) count in the ileum (p = .0169) of HS drakes compared to HS hens. There was higher villi GC count (p = .07) in the jejunum of HS drakes compared to controls. There was an increase in the crypt GC density (p = .0054) in the ileum, not jejunum, of HS drakes compared to HS hens. Further, there were no differences in the proopiomelanocortin gene expression in either sex but there was an increase in the expression of neuropeptide Y (NPY) gene in HS hens (p = .031) only and a decrease in the corticotropin releasing hormone gene in the HS drakes (p = .037) compared to controls. These data show that there are sex differences in the effect of HS on gut morphology while the upregulation in NPY gene may suggest a role in mediating response to chronic HS.
Collapse
Affiliation(s)
- E M Oluwagbenga
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - M Bergman
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - K M Ajuwon
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
35
|
Shablii T. Pathomorphological characteristics of heat stress in the experiment. J Obstet Gynaecol Res 2024; 50:1229-1241. [PMID: 38757465 DOI: 10.1111/jog.15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
AIM The purpose of this research was to explore some morphological, physiological, and biochemical changes in female and fetal Wistar rats under heat stress. METHODS The experiment involved 30 animals, including two experimental groups (pregnant and nonpregnant females) kept under heat stress at 32°C and one control group consisting of healthy individuals kept in standard vivarium conditions. After dissection, fixation, dehydration, and primary processing, tissue samples were embedded in a mixture of paraffin and lanolin to obtain material for sections. Sections were made using a freezing and angular microtome and stained with hematoxylin and fuchsine solutions. Changes in morphology were assessed by microscopy using a Leitz DIAPLAN system. RESULTS As a result of heat stress, an increase in linear cell size, capillary network area, and adrenal mass was observed; adipocytes lost lipid vacuoles; prismatic thyroid cells were replaced by flat cells; hypothyroidism; an increase in the number of osteocyte lacunae; and increased osteoclast activity in bone tissue; interstitial and intracellular oedema and caryopycnosis of ventricular cardiomyocytes; reduction in the diameter of skeletal muscle fibers and replacement of tissue with collagen fibers; water loss in the structure of myofibrils; destructive local changes, hyperchromatosis and caryopycnosis of the hippocampus. CONCLUSIONS The data obtained allows predicting the possible consequences of prolonged overheating of tissues of other vertebrates and the human body.
Collapse
Affiliation(s)
- Tetiana Shablii
- Department of Obstetrics and Gynecology, Odessa National Medical University, Odesa, Ukraine
| |
Collapse
|
36
|
Zheng JY, Zhu J, Wang Y, Tian ZZ. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:445-458. [PMID: 38955651 DOI: 10.1016/j.joim.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a critical component of the neuroendocrine system, playing a central role in regulating the body's stress response and modulating various physiological processes. Dysregulation of HPA axis function disrupts the neuroendocrine equilibrium, resulting in impaired physiological functions. Acupuncture is recognized as a non-pharmacological type of therapy which has been confirmed to play an important role in modulating the HPA axis and thus favorably targets diseases with abnormal activation of the HPA axis. With numerous studies reporting the promising efficacy of acupuncture for neuroendocrine disorders, a comprehensive review in terms of the underlying molecular mechanism for acupuncture, especially in regulating the HPA axis, is currently in need. This review fills the need and summarizes recent breakthroughs, from the basic principles and the pathological changes of HPA axis dysfunction, to the molecular mechanisms by which acupuncture regulates the HPA axis. These mechanisms include the modulation of multiple neurotransmitters and their receptors, neuropeptides and their receptors, and microRNAs in the paraventricular nucleus, hippocampus, amygdala and pituitary gland, which alleviate the hyperfunctioning of the HPA axis. This review comprehensively summarizes the mechanism of acupuncture in regulating HPA axis dysfunction for the first time, providing new targets and prospects for further exploration of acupuncture. Please cite this article as: Zheng JY, Zhu J, Wang Y, Tian ZZ. Effects of acupuncture on hypothalamic-pituitary-adrenal axis: Current status and future perspectives. J Integr Med. 2024; 22(4): 446-459.
Collapse
Affiliation(s)
- Jia-Yuan Zheng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Zhu
- Department of Human Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhan-Zhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Institute of Acupuncture Research, Academy of Integrative Medicine, Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Dodt S, Widdershooven NV, Dreisow ML, Weiher L, Steuernagel L, Wunderlich FT, Brüning JC, Fenselau H. NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation. Nat Commun 2024; 15:5439. [PMID: 38937485 PMCID: PMC11211344 DOI: 10.1038/s41467-024-49766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
Collapse
Affiliation(s)
- Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Noah V Widdershooven
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Lisa Weiher
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
| |
Collapse
|
38
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
40
|
Zhang J, He Y, Yin Z, Li R, Zhang X, Wang Y, Wang H. Circulating neuropeptide Y as a biomarker in postoperative atrial fibrillation cases administered off-pump coronary bypass Graft surgery. Heliyon 2024; 10:e31251. [PMID: 38803941 PMCID: PMC11129009 DOI: 10.1016/j.heliyon.2024.e31251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background and aims Postoperative atrial fibrillation (POAF) is considered the most prevalent irregular heart rhythm after heart surgery. The cardiac autonomic nervous system significantly affects POAF, and neuropeptide Y (NPY), an abundant neuropeptide in the cardiovascular system, is involved in this autonomic regulation. The current work aimed to examine the potential association of NPY with POAF in individuals administered isolated off-pump coronary artery bypass grafting. Methods From January 1 to May 31, 2020, we examined consecutive cases administered successful isolated off-pump coronary artery bypass grafting with no previously diagnosed atrial fibrillation (AF). Clinical characteristics and plasma samples were collected before surgery. NPY was quantified by enzyme-linked immunosorbent assay (ELISA) in peripheral blood, and POAF cases were identified through a 7-day Holter monitoring. Results Among 120 cases with no previously diagnosed AF, 33 (27.5 %) developed POAF during hospitalization. Median NPY levels were markedly elevated in the POAF group in comparison with the sinus rhythm group (31.72 vs. 27.95, P = 0.014). Multivariable logistic regression analysis revealed age (OR = 1.135, 95%CI 1.054-1.223; P = 0.001), left atrial size (OR = 1.136, 95%CI 1.004-1.285; P = 0.043), and NPY levels in peripheral blood (OR = 1.055, 95%CI 1.002-1.111; p = 0.041) independently predicted POAF. Additionally, NPY levels were positively correlated with high-frequency (HF) (r = 0.2774, P = 0.0022) and low-frequency (LF) (r = 0.2095, P = 0.0217) components of heart rate variability. Conclusion In summary, this study demonstrates an association between elevated NPY levels in peripheral blood before surgery and POAF occurrence.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
| | - Yuanchen He
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
- Postgraduate Training Base of Northern Theater Command General Hospital,Dalian Medical University, No. 9, Lvshun western south Road, LvShunKou District, Dalian, Liaoning 116044, China
| | - Zongtao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
| | - Rui Li
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
- Postgraduate Training Base of Northern Theater Command General Hospital,China Medical University, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
| | - Xiaohui Zhang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
- Postgraduate Training Base of Northern Theater Command General Hospital,China Medical University, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
| | - Yang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning,110016 China
| |
Collapse
|
41
|
Fernández-Vega L, Meléndez-Rodríguez DE, Ospina-Alejandro M, Casanova K, Vázquez Y, Cunci L. Development of a Neuropeptide Y-Sensitive Implantable Microelectrode for Continuous Measurements. ACS Sens 2024; 9:2645-2652. [PMID: 38709872 PMCID: PMC11127761 DOI: 10.1021/acssensors.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.
Collapse
Affiliation(s)
- Lauren Fernández-Vega
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | | | - Mónica Ospina-Alejandro
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Karina Casanova
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Yolimar Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| |
Collapse
|
42
|
Abdelkawy YS, Elharoun M, Sheta E, Abdel-Raheem IT, Nematalla HA. Liraglutide and Naringenin relieve depressive symptoms in mice by enhancing Neurogenesis and reducing inflammation. Eur J Pharmacol 2024; 971:176525. [PMID: 38561101 DOI: 10.1016/j.ejphar.2024.176525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.
Collapse
Affiliation(s)
- Yara S Abdelkawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Mona Elharoun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ihab Talat Abdel-Raheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt.
| |
Collapse
|
43
|
Chiavaroli A, Di Simone SC, Acquaviva A, Nilofar N, Libero ML, Brunetti L, Recinella L, Leone S, Orlando G, Zengin G, Di Vito M, Menghini L, Ferrante C. Neuromodulatory Effects Induced by the Association of Moringa oleifera Lam., Tribulus terrestris L., Rhodiola rosea Lam., and Undaria pinnatidifida Extracts in the Hypothalamus. Chem Biodivers 2024; 21:e202302075. [PMID: 38527165 DOI: 10.1002/cbdv.202302075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The present study investigated the role of a commercial formulation constituted by herbal extracts from Rhodiola rosea, Undaria pinnatifida, Tribulus terrestris, and Moringa oleifera. The formulation was analysed for determining the content in total phenols and flavonoids and scavenging/reducing properties. The formulation was also tested on isolated mouse hypothalamus in order to investigate effects on serotonin, dopamine, neuropeptide Y (NPY), and orexin A. The gene expression of gonadrotopin releasing hormone (GnRH) was also assayed. The formulation was able to reduce dopamine and serotonin turnover, and this could be related, albeit partially, to the capability of different phytochemicals, among which hyperoside and catechin to inhibit monoaminooxidases activity. In parallel, the formulation was effective in reducing the gene expression of NPY and orexin-A and to improve the gene expression of GnRH. In this context, the increased GnRH gene expression induced by the formulation may contribute not only to improve the resistance towards the stress related to ageing, but also to prevent the reduction of libido that could be related with a stimulation of the serotoninergic pathway. According to the in silico analysis, hyperoside could play a pivotal role in modulating the gene expression of GnRH. Regarding NPY and orexin A gene expression, no direct interactions between the formulation phytochemicals and these neuropeptides were anticipated; thus, suggesting that the pattern of gene expression observed following exposure of the hypothalamus to the formulation may be secondary to inhibitory effects of dopamine and serotonin turnover. Concluding, the present study demonstrated the efficacy of the formulation in exerting neuromodulatory effects at the hypothalamic level; thus, suggesting the potential to contrast stress and fatigue.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Nilofar Nilofar
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Maura Di Vito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A., Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
44
|
Al-Zoubi RM, Abu-Hijleh H, Zarour A, Zakaria ZZ, Yassin A, Al-Ansari AA, Al-Asmakh M, Bawadi H. Zebrafish Model in Illuminating the Complexities of Post-Traumatic Stress Disorders: A Unique Research Tool. Int J Mol Sci 2024; 25:4895. [PMID: 38732113 PMCID: PMC11084870 DOI: 10.3390/ijms25094895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychological condition that may develop in certain individuals following exposure to life-threatening or traumatic events. Distressing symptoms, including flashbacks, are characterized by disrupted stress responses, fear, anxiety, avoidance tendencies, and disturbances in sleep patterns. The enduring effects of PTSD can profoundly impact personal and familial relationships, as well as social, medical, and financial stability. The prevalence of PTSD varies among different populations and is influenced by the nature of the traumatic event. Recently, zebrafish have emerged as a valuable model organism in studying various conditions and disorders. Zebrafish display robust behavioral patterns that can be effectively quantified using advanced video-tracking tools. Due to their relatively simple nervous system compared to humans, zebrafish are particularly well suited for behavioral investigations. These unique characteristics make zebrafish an appealing model for exploring the underlying molecular and genetic mechanisms that govern behavior, thus offering a powerful comparative platform for gaining deeper insights into PTSD. This review article aims to provide updates on the pathophysiology of PTSD and the genetic responses associated with psychological stress. Additionally, it highlights the significance of zebrafish behavior as a valuable tool for comprehending PTSD better. By leveraging zebrafish as a model organism, researchers can potentially uncover novel therapeutic interventions for the treatment of PTSD and contribute to a more comprehensive understanding of this complex condition.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Haya Abu-Hijleh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| | - Ahmad Zarour
- Department of Surgery, Acute Care Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Zain Z. Zakaria
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Center of Medicine and Health Sciences, Dresden International University, 01069 Dresden, Germany
| | - Abdulla A. Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
| | - Maha Al-Asmakh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| |
Collapse
|
45
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
46
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
47
|
Beltran-Casanueva R, Hernández-García A, Serrano-Castro PJ, Sánchez-Pérez JA, Barbancho-Fernández MA, García-Casares N, Fuxe K, Borroto-Escuela DO, Narváez M. Long-term enhancements in antidepressant efficacy and neurogenesis: Effects of intranasal co-administration of neuropeptide Y 1 receptor (NPY1R) and galanin receptor 2 (GALR2) agonists in the ventral hippocampus. FASEB J 2024; 38:e23595. [PMID: 38572811 DOI: 10.1096/fj.202400087r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.
Collapse
Affiliation(s)
- Rasiel Beltran-Casanueva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Aracelis Hernández-García
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Departamento de Docencia e Investigación, Universidad de Ciencias Médicas de Holguín, Hospital Pedíatrico Universitario Octavio de la Concepción de la Pedraja, Holguín, Cuba
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| |
Collapse
|
48
|
Zhao Q, Tominaga M, Toyama S, Komiya E, Tobita T, Morita M, Zuo Y, Honda K, Kamata Y, Takamori K. Effects of Psychological Stress on Spontaneous Itch and Mechanical Alloknesis of Atopic Dermatitis. Acta Derm Venereol 2024; 104:adv18685. [PMID: 38566405 PMCID: PMC11000660 DOI: 10.2340/actadv.v104.18685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, manifests as an intractable itch. Psychological stress has been suggested to play a role in the onset and worsening of AD symptoms. However, the pathophysiological relationships between psychological stressors and cutaneous manifestations remain unclear. To elucidate the mechanisms underlying the stress-related exacerbation of itch, we investigated the effects of water stress, restraint stress and repeated social defeat stress on itch-related scratching behaviour, mechanical alloknesis and dermatitis in male NC/Nga mice with AD-like symptoms induced by the repeated application of ointment containing Dermatophagoides farina body. NC/Nga mice with AD-like symptoms were subjected to water stress, restraint stress and repeated social defeat stress, and their scratching behaviour, sensitivity to mechanical stimuli (mechanical alloknesis) and severity of dermatitis were evaluated. Social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress showed slower improvements in or the exacerbation of AD-like symptoms, including dermatitis and itch. In the mechanical alloknesis assay, the mechanical alloknesis scores of social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress were significantly higher than those of non-exposed social defeat stress+ Dermatophagoides farina body- and social defeat stress-treated mice. These results suggest that psychological stress delays improvements in dermatitis by exacerbating itch hypersensitivity in AD.
Collapse
Affiliation(s)
- Qiaofeng Zhao
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Eriko Komiya
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Tomohiro Tobita
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Motoki Morita
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Ying Zuo
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kotaro Honda
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Yayoi Kamata
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine. Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan; Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan..
| |
Collapse
|
49
|
Peltier MR, Verplaetse TL, Altemus M, Zakiniaeiz Y, Ralevski EA, Mineur YS, Gueorguieva R, Picciotto MR, Cosgrove KP, Petrakis I, McKee SA. The role of neurosteroids in posttraumatic stress disorder and alcohol use disorder: A review of 10 years of clinical literature and treatment implications. Front Neuroendocrinol 2024; 73:101119. [PMID: 38184208 PMCID: PMC11185997 DOI: 10.1016/j.yfrne.2023.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Rates of alcohol use disorder (AUD) are increasing in men and women and there are high rates of concurrent posttraumatic stress disorder (PTSD) and AUD. AUD and PTSD synergistically increase symptomatology and negatively affect treatment outcomes; however, there are very limited pharmacological treatments for PTSD/AUD. Neurosteroids have been implicated in the underlying neurobiological mechanisms of both PTSD and AUD and may be a target for treatment development. This review details the past ten years of research on pregnenolone, progesterone, allopregnanolone, pregnanolone, estradiol, testosterone and dehydroepiandrosterone/dehydroepiandrosterone-sulfate (DHEA/DHEA-S) in the context of PTSD and AUD, including examination of trauma/alcohol-related variables, such as stress-reactivity. Emerging evidence that exogenous pregnenolone, progesterone, and allopregnanolone may be promising, novel interventions is also discussed. Specific emphasis is placed on examining the application of sex as a biological variable in this body of literature, given that women are more susceptible to both PTSD diagnoses and stress-related alcohol consumption.
Collapse
Affiliation(s)
- MacKenzie R Peltier
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA.
| | | | - Margaret Altemus
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA
| | - Yasmin Zakiniaeiz
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Elizabeth A Ralevski
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA
| | - Yann S Mineur
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Ralitza Gueorguieva
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Marina R Picciotto
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Kelly P Cosgrove
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA; Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Ismene Petrakis
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA
| | - Sherry A McKee
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| |
Collapse
|
50
|
Borroto-Escuela D, Serrano-Castro P, Sánchez-Pérez JA, Barbancho-Fernández MA, Fuxe K, Narváez M. Enhanced neuronal survival and BDNF elevation via long-term co-activation of galanin 2 (GALR2) and neuropeptide Y1 receptors (NPY1R): potential therapeutic targets for major depressive disorder. Expert Opin Ther Targets 2024; 28:295-308. [PMID: 38622072 DOI: 10.1080/14728222.2024.2342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Survival/drug effects
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Disease Models, Animal
- Neurons/drug effects
- Neurons/metabolism
- Peptides
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 2/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide
- Receptors, Neuropeptide Y/metabolism
- Receptors, Neuropeptide Y/antagonists & inhibitors
Collapse
Affiliation(s)
- Dasiel Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pedro Serrano-Castro
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| |
Collapse
|