1
|
Fan H, Lü D, Lu Z, Li H, Qi Z, Sun S, Guan D, Long M, Gao M, Liu S. TRPML1 ion channel promotes HepaRG cell differentiation under simulated microgravity conditions. NPJ Microgravity 2025; 11:9. [PMID: 40089547 PMCID: PMC11910645 DOI: 10.1038/s41526-025-00461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/17/2025] [Indexed: 03/17/2025] Open
Abstract
Stem cell differentiation must be regulated by intricate and complex interactions between cells and their surrounding environment, ensuring normal organ and tissue morphology such as the liver1. Though it is well acknowledged that microgravity provides necessary mechanical force signals for cell fate2, how microgravity affects growth, differentiation, and communication is still largely unknown due to the lack of real experimental scenarios and reproducibility tools. Here, Rotating Flat Chamber (RFC) was used to simulate ground-based microgravity effects to study how microgravity effects affect the differentiation of HepaRG (hepatic progenitor cells) cells. Unexpectedly, the results show that RFC conditions could promote HepaRG cell differentiation which exhibited increased expression of Alpha-fetoprotein (AFP), albumin (ALB), and Recombinant Cytokeratin 18 (CK18). Through screening a series of mechanical receptors, the ion channel TRPML1 was critical for promoting the differentiation effect under RFC conditions. Once TRPML1 was activated by stimulated microgravity effects, the concentration of lysosomal calcium ions was increased to activate the Wnt/β-catenin signaling pathway, which finally led to enhanced cell differentiation of HepaRG cells. In addition, the cytoskeleton was remodeled under RFC conditions to influence the expression of PI (3,5) P2, which is the best-known activator of TRPML1. In summary, our findings have established a mechanism by which simulated microgravity promotes the differentiation of HepaRG cells through the TRPML1 signaling pathway, which provides a potential target for the regulation of hepatic stem/progenitor cell differentiation and embryonic liver development under real microgravity conditions.
Collapse
Affiliation(s)
- Huancai Fan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Dongyuan Lü
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Lu
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Hangyu Li
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zijuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Shujin Sun
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Dongshi Guan
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China.
- University of Chinese Academy of Sciences, Beijing, P.R. China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| |
Collapse
|
2
|
Abdelfattah F, Schulz H, Wehland M, Corydon TJ, Sahana J, Kraus A, Krüger M, González-Torres LF, Cortés-Sánchez JL, Wise PM, Mushunuri A, Hemmersbach R, Liemersdorf C, Infanger M, Grimm D. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:10014. [PMID: 39337501 PMCID: PMC11431953 DOI: 10.3390/ijms251810014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Ashwini Mushunuri
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Ruth Hemmersbach
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
3
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
4
|
Han Y, Barasa P, Zeger L, Salomonsson SB, Zanotti F, Egli M, Zavan B, Trentini M, Florin G, Vaerneus A, Aldskogius H, Fredriksson R, Kozlova EN. Effects of microgravity on neural crest stem cells. Front Neurosci 2024; 18:1379076. [PMID: 38660221 PMCID: PMC11041629 DOI: 10.3389/fnins.2024.1379076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Exposure to microgravity (μg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to μg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to μg and 1 g conditions provided by an onboard centrifuge. BCs exposed to μg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in μg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between μg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC μg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to μg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after μg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from μg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.
Collapse
Affiliation(s)
- Yilin Han
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Povilas Barasa
- Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Lukas Zeger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara B. Salomonsson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcel Egli
- Space Biology Group, School of Engineering and Architecture, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Håkan Aldskogius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Elena N. Kozlova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Majumder N, Ghosh S. 3D biofabrication and space: A 'far-fetched dream' or a 'forthcoming reality'? Biotechnol Adv 2023; 69:108273. [PMID: 37863444 DOI: 10.1016/j.biotechadv.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The long duration space missions across the Low Earth Orbit (LEO) often expose the voyagers to an abrupt zero gravity influence. The severe extraterrestrial cosmic radiation directly causes a plethora of moderate to chronic healthcare crises. The only feasible solution to manage critical injuries on board is surgical interventions or immediate return to Earth. This led the group of space medicine practitioners to adopt principles from tissue engineering and develop human tissue equivalents as an immediate regenerative therapy on board. The current review explicitly demonstrates the constructive application of different tissue-engineered equivalents matured under the available ground-based microgravity simulation facilities. Further, it elucidates how augmenting the superiority of biomaterial-based 3D bioprinting technology can enhance their clinical applicability. Additionally, the regulatory role of weightlessness condition on the underlying cellular signaling pathways governing tissue morphogenesis has been critically discussed. This information will provide future directions on how 3D biofabrication can be used as a plausible tool for healing on-flight chronic health emergencies. Thus, in our review, we aimed to precisely debate whether 3D biofabrication is deployed to cater to on-flight healthcare anomalies or space-like conditions are being utilized for generating 3D bioprinted human tissue constructs for efficient drug screening and regenerative therapy.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
7
|
Zhou JQ, Wan HY, Wang ZX, Jiang N. Stimulating factors for regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells. World J Stem Cells 2023; 15:369-384. [PMID: 37342227 PMCID: PMC10277964 DOI: 10.4252/wjsc.v15.i5.369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs), distributed in many tissues in the human body, are multipotent cells capable of differentiating in specific directions. It is usually considered that the differentiation process of MSCs depends on specialized external stimulating factors, including cell signaling pathways, cytokines, and other physical stimuli. Recent findings have revealed other underrated roles in the differentiation process of MSCs, such as material morphology and exosomes. Although relevant achievements have substantially advanced the applicability of MSCs, some of these regulatory mechanisms still need to be better understood. Moreover, limitations such as long-term survival in vivo hinder the clinical application of MSCs therapy. This review article summarizes current knowledge regarding the differentiation patterns of MSCs under specific stimulating factors.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hao-Yang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zi-Xuan Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
8
|
Wang W, Di Nisio E, Licursi V, Cacci E, Lupo G, Kokaia Z, Galanti S, Degan P, D’Angelo S, Castagnola P, Tavella S, Negri R. Simulated Microgravity Modulates Focal Adhesion Gene Expression in Human Neural Stem Progenitor Cells. Life (Basel) 2022; 12:life12111827. [PMID: 36362982 PMCID: PMC9699612 DOI: 10.3390/life12111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
We analyzed the morphology and the transcriptomic changes of human neural stem progenitor cells (hNSPCs) grown on laminin in adherent culture conditions and subjected to simulated microgravity for different times in a random positioning machine apparatus. Low-cell-density cultures exposed to simulated microgravity for 24 h showed cell aggregate formation and significant modulation of several genes involved in focal adhesion, cytoskeleton regulation, and cell cycle control. These effects were much more limited in hNSPCs cultured at high density in the same conditions. We also found that some of the genes modulated upon exposure to simulated microgravity showed similar changes in hNSPCs grown without laminin in non-adherent culture conditions under normal gravity. These results suggest that reduced gravity counteracts the interactions of cells with the extracellular matrix, inducing morphological and transcriptional changes that can be observed in low-density cultures.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnologies “C. Darwin”, Sapienza University, 00185 Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Zaal Kokaia
- Lund Stem Cell Center, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Sergio Galanti
- Excise, Custom and Monopolies Agency, ADM, 00153 Rome, Italy
| | - Paolo Degan
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara D’Angelo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnologies “C. Darwin”, Sapienza University, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Marfia G, Navone SE, Guarnaccia L, Campanella R, Locatelli M, Miozzo M, Perelli P, Della Morte G, Catamo L, Tondo P, Campanella C, Lucertini M, Ciniglio Appiani G, Landolfi A, Garzia E. Space flight and central nervous system: Friends or enemies? Challenges and opportunities for neuroscience and neuro-oncology. J Neurosci Res 2022; 100:1649-1663. [PMID: 35678198 PMCID: PMC9544848 DOI: 10.1002/jnr.25066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Space environment provides many challenges to pilots, astronauts, and space scientists, which are constantly subjected to unique conditions, including microgravity, radiations, hypoxic condition, absence of the day and night cycle, etc. These stressful stimuli have the potential to affect many human physiological systems, triggering physical and biological adaptive changes to re‐establish the homeostatic state. A particular concern regards the risks for the effects of spaceflight on the central nervous system (CNS), as several lines of evidence reported a great impact on neuroplasticity, cognitive functions, neurovestibular system, short‐term memory, cephalic fluid shift, reduction in motor function, and psychological disturbances, especially during long‐term missions. Aside these potential detrimental effects, the other side of the coin reflects the potential benefit of applicating space‐related conditions on Earth‐based life sciences, as cancer research. Here, we focused on examining the effect of real and simulated microgravity on CNS functions, both in humans and in cellular models, browsing the different techniques to experience or mime microgravity on‐ground. Increasing evidence demonstrate that cancer cells, and brain cancer cells in particular, are negatively affected by microgravity, in terms of alteration in cell morphology, proliferation, invasion, migration, and apoptosis, representing an advancing novel side of space‐based investigations. Overall, deeper understandings about the mechanisms by which space environment influences CNS and tumor biology may be promisingly translated into many clinical fields, ranging from aerospace medicine to neuroscience and oncology, representing an enormous pool of knowledge for the implementation of countermeasures and therapeutic applications.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Monica Miozzo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - Pietro Perelli
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Rome, Italy
| | - Giulio Della Morte
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Leonardo Catamo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Pietro Tondo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Carmelo Campanella
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Roma, Italy
| | | | | | | | - Emanuele Garzia
- Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
10
|
Zou Y, Yin Y, Xiao Z, Zhao Y, Han J, Chen B, Xu B, Cui Y, Ma X, Dai J. Transplantation of collagen sponge-based three-dimensional neural stem cells cultured in a RCCS facilitates locomotor functional recovery in spinal cord injury animals. Biomater Sci 2022; 10:915-924. [PMID: 35044381 DOI: 10.1039/d1bm01744f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies have indicated that microgravity induces various changes in the cellular functions of neural stem cells (NSCs), and the use of microgravity to culture tissue engineered seed cells for the treatment of nervous system diseases has drawn increasing attention. The goal of this study was to verify the efficacy of collagen sponge-based 3-dimensional (3D) NSCs cultured in a rotary cell culture system (RCCS) in treating spinal cord injury (SCI). The Basso-Beattie-Bresnahan score, inclined plane test, and electrophysiology results all indicated that 3D cultured NSCs cultured in a RCCS had better therapeutic effects than those cultured in a traditional cell culture environment, suggesting that the microgravity provided by the RCCS could enhance the therapeutic effect of 3D cultured NSCs. Our study indicates the feasibility of combining the RCCS with collagen sponge-based 3D cell culture for producing tissue engineered seed cells for the treatment of SCI. This novel and effective method shows promise for application in cell-based therapy for SCI in the future.
Collapse
Affiliation(s)
- Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| | - Yi Cui
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Xu Ma
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China.
| |
Collapse
|
11
|
Cheng Y, Zhou Y, Lv W, Luo Q, Song G. Simulated Microgravity Inhibits Rodent Dermal Fibroblastic Differentiation of Mesenchymal Stem Cells by Suppressing ERK/β-Catenin Signaling Pathway. Int J Mol Sci 2021; 22:ijms221910702. [PMID: 34639043 PMCID: PMC8509498 DOI: 10.3390/ijms221910702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Studies have shown that bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into dermal fibroblasts to participate in skin-repairing. However, at present, little is known about how microgravity affects dermal fibroblastic differentiation of BMSCs in space. The aim of this study was to investigate the effect of simulated microgravity (SMG) on the differentiation of BMSCs into dermal fibroblasts and the related molecular mechanism. Here, using a 2D-clinostat device to simulate microgravity, we found that SMG inhibited the differentiation and suppressed the Wnt/β-catenin signaling and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2). After upregulating the Wnt/β-catenin signaling with lithium chloride (LiCl) treatment, we found that the effect of the differentiation was restored. Moreover, the Wnt/β-catenin signaling was upregulated when phosphorylation of ERK1/2 was activated with tert-Butylhydroquinone (tBHQ) treatment. Taken together, our findings suggest that SMG inhibits dermal fibroblastic differentiation of BMSCs by suppressing ERK/β-catenin signaling pathway, inferring that ERK/β-catenin signaling pathway may act as a potential intervention target for repairing skin injury under microgravity conditions.
Collapse
Affiliation(s)
| | | | | | - Qing Luo
- Correspondence: (Q.L.); (G.S.); Tel.: +86-23-6510-2507 (Q.L. & G.S.)
| | - Guanbin Song
- Correspondence: (Q.L.); (G.S.); Tel.: +86-23-6510-2507 (Q.L. & G.S.)
| |
Collapse
|
12
|
Gupta D, Hossain KMZ, Roe M, Smith EF, Ahmed I, Sottile V, Grant DM. Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS APPLIED BIO MATERIALS 2021; 4:5987-6004. [DOI: 10.1021/acsabm.1c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dhanak Gupta
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Kazi M. Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Martin Roe
- Nanoscale & Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Emily F. Smith
- Nanoscale & Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - David M. Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
13
|
Han Y, Zeger L, Tripathi R, Egli M, Ille F, Lockowandt C, Florin G, Atic E, Redwan IN, Fredriksson R, Kozlova EN. Molecular genetic analysis of neural stem cells after space flight and simulated microgravity on earth. Biotechnol Bioeng 2021; 118:3832-3846. [PMID: 34125436 DOI: 10.1002/bit.27858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Understanding how stem cells adapt to space flight conditions is fundamental for human space missions and extraterrestrial settlement. We analyzed gene expression in boundary cap neural crest stem cells (BCs), which are attractive for regenerative medicine by their ability to promote proliferation and survival of cocultured and co-implanted cells. BCs were launched to space (space exposed cells) (SEC), onboard sounding rocket MASER 14 as free-floating neurospheres or in a bioprinted scaffold. For comparison, BCs were placed in a random positioning machine (RPM) to simulate microgravity on earth (RPM cells) or were cultured under control conditions in the laboratory. Using next-generation RNA sequencing and data post-processing, we discovered that SEC upregulated genes related to proliferation and survival, whereas RPM cells upregulated genes associated with differentiation and inflammation. Thus, (i) space flight provides unique conditions with distinctly different effects on the properties of BC compared to earth controls, and (ii) the space flight exposure induces postflight properties that reinforce the utility of BC for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Yilin Han
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Lukas Zeger
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Rekha Tripathi
- Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden
| | - Marcel Egli
- Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland
| | - Fabian Ille
- Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland
| | | | - Gunnar Florin
- Swedish Space Corporation, Science Service Division, Solna, Sweden
| | | | | | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden
| | - Elena N Kozlova
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Abstract
Due to the ability to differentiate into variety of cell types, mesenchymal stem cells (MSCs) hold promise as source in cell-based therapy for treating injured tissue and degenerative diseases. The potential use of MSCs to replace or repair damaged tissues may depend on the efficient differentiation protocols to derive specialized cells without any negative side effects. Identification of appropriate cues that support the lineage-specific differentiation of stem cells is critical for tissue healing and cellular therapy. Recently, a number of stimuli have been utilized to direct the differentiation of stem cells. Biochemical stimuli such as small molecule, growth factor and miRNA have been traditionally used to regulate the fate of stem cells. In recent years, many studies have reported that biophysical stimuli including cyclic mechanical strain, fluid shear stress, microgravity, electrical stimulation, matrix stiffness and topography can also be sensed by stem cells through mechanical receptors, thus affecting the stem cell behaviors including their differentiation potential. In this paper, we review all the most recent literature on the application of biochemical and biophysical cues on regulating MSC differentiation. An extensive literature search was done using electronic database (Medline/Pubmed). Although there are still some challenges that need to be taken into consideration before translating these methods into clinics, biochemical and biophysical stimulation appears to be an attractive method to manipulate the lineage commitment of MSCs.
Collapse
|
15
|
Microgravity, Stem Cells, and Cancer: A New Hope for Cancer Treatment. Stem Cells Int 2021; 2021:5566872. [PMID: 34007284 PMCID: PMC8102114 DOI: 10.1155/2021/5566872] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Humans are integrated with the environment where they live. Gravitational force plays an important role in shaping the universe, lives, and even cellular biological processes. Research in the last 40 years has shown how exposure to microgravity changes biological processes. Microgravity has been shown to have significant effects on cellular proliferation, invasion, apoptosis, migration, and gene expression, specifically in tumor cells, and these effects may also exist in stem and cancer stem cells. It has also been shown that microgravity changes the effects of chemotherapeutic drugs. Although studies have been carried out in a simulated microgravity environment in cell culture lines, there are few animal experiments or true microgravity studies. Cancer remains one of the most significant problems worldwide. Despite advances in medical science, no definitive strategies have been found for the prevention of cancer formation or to inform treatment. Thus, the microgravity environment is a potential new therapeutic strategy for future cancer treatment. This review will focus on current knowledge on the impact of the microgravity environment on cancer cells, stem cells, and the biological behavior of cancer stem cells.
Collapse
|
16
|
Abstract
The impact of spaceflight on the immune system has been investigated extensively during spaceflight missions and in model experiments conducted on Earth. Data suggest that the spaceflight environment may affect the development of acquired immunity, and immune responses. Herein we summarize and discuss the influence of the spaceflight environment on acquired immunity. Bone marrow and the thymus, two major primary lymphoid organs, are evidently affected by gravitational change during spaceflight. Changes in the microenvironments of these organs impair lymphopoiesis, and thereby may indirectly impinge on acquired immunity. Acquired immune responses may also be disturbed by gravitational fluctuation, stressors, and space radiation both directly and in a stress hormone-dependent manner. These changes may affect acquired immune responses to pathogens, allergens, and tumors.
Collapse
|
17
|
Treatment with Minocycline Suppresses Microglia Activation and Reverses Neural Stem Cells Loss after Simulated Microgravity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7348745. [PMID: 32382569 PMCID: PMC7196960 DOI: 10.1155/2020/7348745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/20/2023]
Abstract
The present study aimed to investigate the effect of microglia on simulated microgravity-induced hippocampal neurogenesis reduction and the possible mechanism underlying. Adult rats were treated with tail suspension for different times and the changes of neural stem cells (NSCs) were examined by immunohistochemistry. Then, minocycline was used to inhibit the activation of microglia, and the numbers of microglia and NSCs were detected after microgravity. Additionally, liquid protein chip analysis was applied to detect proinflammatory factors in hippocampus in order to find out the cytokines responsible for microglia activation after microgravity. The results revealed that microgravity increased the numbers of Iba1+ cells and decreased the numbers of BrdU+ and DCX+ cells in hippocampus but did not affect the ratio of NeuN+/BrdU+ cells to the total number of BrdU+ cells. After treated with minocycline, activated microglia were suppressed and the reduction of NSCs induced by microgravity recovered. Besides, compared with the control, higher concentrations of INF-γ and TNF-α were detected in the rats treated with microgravity. Our study provides the first evidence that microglia-mediated inflammation plays an important part in microgravity-induced neurogenesis reduction in hippocampus, and INF-γ and TNF-α secreted by microglia might be the key factors in this process.
Collapse
|
18
|
Stem Cell Culture Under Simulated Microgravity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:105-132. [PMID: 32424490 DOI: 10.1007/5584_2020_539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Challenging environment of space causes several pivotal alterations in living systems, especially due to microgravity. The possibility of simulating microgravity by ground-based systems provides research opportunities that may lead to the understanding of in vitro biological effects of microgravity by eliminating the challenges inherent to spaceflight experiments. Stem cells are one of the most prominent cell types, due to their self-renewal and differentiation capabilities. Research on stem cells under simulated microgravity has generated many important findings, enlightening the impact of microgravity on molecular and cellular processes of stem cells with varying potencies. Simulation techniques including clinostat, random positioning machine, rotating wall vessel and magnetic levitation-based systems have improved our knowledge on the effects of microgravity on morphology, migration, proliferation and differentiation of stem cells. Clarification of the mechanisms underlying such changes offers exciting potential for various applications such as identification of putative therapeutic targets to modulate stem cell function and stem cell based regenerative medicine.
Collapse
|
19
|
Imura T, Otsuka T, Kawahara Y, Yuge L. "Microgravity" as a unique and useful stem cell culture environment for cell-based therapy. Regen Ther 2019; 12:2-5. [PMID: 31890760 PMCID: PMC6933149 DOI: 10.1016/j.reth.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Cell-based therapy using mesenchymal stem cells or pluripotent stem cells such as induced pluripotent stem cells has seen dramatic progress in recent years. Part of cell-based therapy are already covered by public medical insurance. Recently, researchers have attempted to improve therapeutic effects toward various diseases by cell transplantation. Culture environment is considered to be one of the most important factors affecting therapeutic effects, in particular factors such as physical stimuli, because cells have the potential to adapt to their surrounding environment. In this review, we provide an overview of the research on the effects of gravity alteration on cell kinetics such as proliferation or differentiation and on potential therapeutic effects, and we also summarize the remarkable possibilities of the use of microgravity culture in cell-based therapy for various diseases.
Collapse
Affiliation(s)
- Takeshi Imura
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| |
Collapse
|
20
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Ebnerasuly F, Hajebrahimi Z, Tabaie SM, Darbouy M. Simulated Microgravity Condition Alters the Gene Expression of some ECM and Adhesion Molecules in Adipose Derived Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:146-157. [PMID: 31565646 PMCID: PMC6744620 DOI: 10.22088/ijmcm.bums.7.3.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/27/2018] [Indexed: 01/05/2023]
Abstract
Adipose- derived stem cells (ADSCs) are widely used for tissue engineering and regenerative medicine. The beneficial effects of ADSCs on wound healing have already been reported. Remodeling of extracellular matrix (ECM) is the most important physiological event during wound healing. ECM is sensitive to mechanical stresses and the expression of its components can be therefore influenced. The aim of this study was to investigate the effect of simulated microgravity on gene expression of some ECM and adhesion molecules in human ADSCs. After isolation and characterization of ADSCs, cells were exposed to simulated microgravity for 1, 3 and 7 days. Real-time PCR, fluorescence immunocytochemistry, and MTT assay were performed to evaluate the alterations of integrin subunit beta 1 (ITGB1), collagen type 3 (ColIII), matrix metalloproteinase-1 (MMP1), CD44, fibrillin (FBN1), vimentin (VIM) genes, and ColIII protein levels as well as cells viability. Microgravity simulation increased the expression of ITGB1, ColIII, MMP1, and CD44 and declined the expression of FBN1 and VIM genes. ColIII protein levels also increased. There were no significant changes in the viability of cells cultured in microgravity. Since the high expression of ECM components is known as one of the fibroblast markers, our data suggest that pretreatment of ADSCs by simulated microgravity may increase their differentiation capacity towards fibroblastic cells. Microgravity had not adversely affected the viability of ADSCs, and it is likely to be used alone or in combination with biochemical inducers for cell manipulation.
Collapse
Affiliation(s)
- Farid Ebnerasuly
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Zahra Hajebrahimi
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Seyed Mehdi Tabaie
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Mojtaba Darbouy
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
22
|
Acharya A, Brungs S, Henry M, Rotshteyn T, Singh Yaduvanshi N, Wegener L, Jentzsch S, Hescheler J, Hemmersbach R, Boeuf H, Sachinidis A. Modulation of Differentiation Processes in Murine Embryonic Stem Cells Exposed to Parabolic Flight-Induced Acute Hypergravity and Microgravity. Stem Cells Dev 2018; 27:838-847. [PMID: 29630478 PMCID: PMC5995265 DOI: 10.1089/scd.2017.0294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 12/26/2022] Open
Abstract
Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.
Collapse
Affiliation(s)
- Aviseka Acharya
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Sonja Brungs
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Margit Henry
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Tamara Rotshteyn
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Nirmala Singh Yaduvanshi
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Lucia Wegener
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Simon Jentzsch
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Jürgen Hescheler
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Cologne, Germany
| | - Helene Boeuf
- INSERM-U1026, BioTis, University of Bordeaux, Bordeaux, France
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Cui Y, Han J, Xiao Z, Qi Y, Zhao Y, Chen B, Fang Y, Liu S, Wu X, Dai J. Systematic Analysis of mRNA and miRNA Expression of 3D-Cultured Neural Stem Cells (NSCs) in Spaceflight. Front Cell Neurosci 2018; 11:434. [PMID: 29375320 PMCID: PMC5768636 DOI: 10.3389/fncel.2017.00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Recently, with the development of the space program there are growing concerns about the influence of spaceflight on tissue engineering. The purpose of this study was thus to determine the variations of neural stem cells (NSCs) during spaceflight. RNA-Sequencing (RNA-Seq) based transcriptomic profiling of NSCs identified many differentially expressed mRNAs and miRNAs between space and earth groups. Subsequently, those genes with differential expression were subjected to bioinformatic evaluation using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and miRNA-mRNA network analyses. The results showed that NSCs maintain greater stemness ability during spaceflight although the growth rate of NSCs was slowed down. Furthermore, the results indicated that NSCs tended to differentiate into neuron in outer space conditions. Detailed genomic analyses of NSCs during spaceflight will help us to elucidate the molecular mechanisms behind their differentiation and proliferation when they are in outer space.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | - Jin Han
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiduo Qi
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sumei Liu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Wu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Ebnerasuly F, Hajebrahimi Z, Tabaie SM, Darbouy M. Effect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:241-251. [PMID: 29845076 DOI: 10.15171/ijb.1747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 06/14/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this study was investigate the simulated microgravity effect on differentiation of Adipose Derived Stem Cells (ADSCs) to fibroblasts. Materials and Methods: To fibroblast differentiation 100 ng.mL-1 of connective tissue growth factor (CTGF), and for simulation microgravity, 2D clinostat was used. After isolation the human ADSCs from adipose, cells were passaged, and at passages 3 they were used for characterization and subsequent steps. After 7 days of CTGF and simulated microgravity treatment, proliferation, and differentiation were analyzed collectively by MTT assay, quantitative PCR analyses, and Immunocytochemistry staining. Results: MTT assay revealed that CTGF stimulate the proliferation but simulated microgravity didn't have statistically significant effect on cell proliferation. In RNA level the expression of these genes are investigated: collagen type I (COLI), elastin (ELA), collagen type III (ColIII), Matrix Metalloproteinases I(MMP1), Fibronectin 1 (FN1), CD44, Fibroblast Specific protein (FSP-1), Integrin Subunit Beta 1 (ITGB1), Vimentin (VIM) and Fibrillin (FBN). We found that expression of ELN, FN1, FSP1, COL1A1, ITGB1, MMP1 and COL3A1 in both condition, and VIM and FBN1 just in differentiation medium in normal gravity increased. In protein level the expression of COL III and ELN in simulated microgravity increased. Conclusions: These findings collectively demonstrate that the simulated microgravity condition alters the marker fibroblast gene expression in fibroblast differentiation process.
Collapse
Affiliation(s)
- Farid Ebnerasuly
- Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Zahra Hajebrahimi
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Seyed Mehdi Tabaie
- Medical Laser Research Center, Iranian Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mojtaba Darbouy
- Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
25
|
Xue L, Li Y, Chen J. Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol Med Rep 2017; 15:3011-3018. [PMID: 28339035 PMCID: PMC5428749 DOI: 10.3892/mmr.2017.6357] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/09/2017] [Indexed: 02/07/2023] Open
Abstract
Previous evidence has suggested that physical microenvironments and mechanical stresses, independent of soluble factors, influence mesenchymal stem cell (MSC) fate. In the present study, simulated microgravity (SMG) was demonstrated to regulate the differentiation of mesenchymal stem cells. This may be a novel strategy for tissue engineering and regenerative medicine. Rat MSCs were cultured for 72 h or 10 days in either normal gravity or a clinostat to model microgravity, followed with culture in diverse differential media. A short period of stimulation (72 h) promoted MSCs to undergo endothelial, neuronal and adipogenic differentiation. In comparison, extended microgravity (10 days) promoted MSCs to differentiate into osteoblasts. A short period of exposure to SMG significantly decreased ras homolog family member A (RhoA) activity. However, RhoA activity significantly increased following prolonged exposure to SMG. When RhoA activity was inhibited, the effects of prolonged exposure to SMG were reversed. These results demonstrated that the duration of SMG regulates the differentiation fate of MSCs via the RhoA‑associated pathway.
Collapse
Affiliation(s)
- Li Xue
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710014, P.R. China
| | - Yaohui Li
- Department of Pneumology, Traditional Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi 710014, P.R. China
| | - Jun Chen
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi 710014, P.R. China
| |
Collapse
|
26
|
Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev 2016; 25:1172-93. [PMID: 27269634 DOI: 10.1089/scd.2016.0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Shing-Chen Lin
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Guo-Hau Gou
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan
| | - Kun-Lun Huang
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Yung-Fu Wu
- 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Shih-Yu Lee
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| |
Collapse
|
27
|
Potential role of N-benzylcinnamide in inducing neuronal differentiation from human amniotic fluid mesenchymal stem cells. Neurosci Lett 2016; 610:6-12. [DOI: 10.1016/j.neulet.2015.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023]
|
28
|
Luna C, Yew AG, Hsieh AH. Effects of angular frequency during clinorotation on mesenchymal stem cell morphology and migration. NPJ Microgravity 2015; 1:15007. [PMID: 28725712 PMCID: PMC5515506 DOI: 10.1038/npjmgrav.2015.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/15/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
AIMS To determine the short-term effects of simulated microgravity on mesenchymal stem cell behaviors-as a function of clinorotation speed-using time-lapse microscopy. BACKGROUND Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). METHODS We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 h in a recently developed lab-on-chip-based clinostat system. Time-lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time-lapse light microscopy of cells in NGF (100 ng/ml) gradients. RESULTS Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (P<0.005), though average cell area at 30 rpm after 8 h became statistically similar to control (P=0.794). Cells at 75 rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers, clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility. CONCLUSIONS These results indicate that hMSCs respond to clinorotation by adopting more rounded, less-spread morphologies. The angular frequency-dependence suggests that a cell's ability to sense the changing gravity vector is governed by the rate of perturbation. For migration studies, cells cultured in clinorotated chemotaxis chambers were generally less motile and exhibited retraction instead of migration.
Collapse
Affiliation(s)
- Carlos Luna
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alvin G Yew
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Orthopaedics, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
29
|
Zhang C, Li L, Chen J, Wang J. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation. Cell Biol Int 2015; 39:647-56. [PMID: 25712570 DOI: 10.1002/cbin.10452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022]
Abstract
With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells.
Collapse
Affiliation(s)
- Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jianling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
30
|
Hypergravity stimulation enhances PC12 neuron-like cell differentiation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:748121. [PMID: 25785273 PMCID: PMC4345237 DOI: 10.1155/2015/748121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/08/2015] [Accepted: 01/27/2015] [Indexed: 01/12/2023]
Abstract
Altered gravity is a strong physical cue able to elicit different cellular responses, representing a largely uninvestigated opportunity for tissue engineering/regenerative medicine applications. Our recent studies have shown that both proliferation and differentiation of C2C12 skeletal muscle cells can be enhanced by hypergravity treatment; given these results, PC12 neuron-like cells were chosen to test the hypothesis that hypergravity stimulation might also affect the behavior of neuronal cells, in particular promoting an enhanced differentiated phenotype. PC12 cells were thus cultured under differentiating conditions for either 12 h or 72 h before being stimulated with different values of hypergravity (50 g and 150 g). Effects of hypergravity were evaluated at transcriptional level 1 h and 48 h after the stimulation, and at protein level 48 h from hypergravity exposure, to assess its influence on neurite development over increasing differentiation times. PC12 differentiation resulted strongly affected by the hypergravity treatments; in particular, neurite length was significantly enhanced after exposure to high acceleration values. The achieved results suggest that hypergravity might induce a faster and higher neuronal differentiation and encourage further investigations on the potential of hypergravity in the preparation of cellular constructs for regenerative medicine and tissue engineering purposes.
Collapse
|
31
|
Naumenko VS, Kulikov AV, Kondaurova EM, Tsybko AS, Kulikova EA, Krasnov IB, Shenkman BS, Sychev VN, Bazhenova EY, Sinyakova NA, Popova NK. Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions. Neuroscience 2015; 284:730-736. [PMID: 25451288 DOI: 10.1016/j.neuroscience.2014.10.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 01/24/2023]
Abstract
Mice of C57BL/6J strain were exposed to 1-month spaceflight on Russian biosatellite Bion-M1 to determine the effect of long-term actual spaceflight on the expression of genes involved in the processes of neurogenesis and apoptosis. Specifically, we focused on the genes encoding proapoptotic factor BAX, antiapoptotic factor BCL-XL, brain-derived neurotrophic factor (BDNF) and BDNF receptors TrkB and p75. Spaceflight reduced the expression of the antiapoptotic BCL-XL gene in the striatum and hypothalamus, but increased it in the hippocampus. To estimate environmental stress contribution into spaceflight effects we analyzed spaceflight-responsive genes in mice housed for 1 month on Earth in the same shuttle cabins that were used for spaceflight, and in mice of the laboratory control group. It was shown that 1-month shuttle cabin housing decreased BCL-XL gene expression in the striatum but failed to alter BCL-XL mRNA levels in the hippocampus or hypothalamus. Spaceflight failed to alter the expression of the proapoptotic BAX gene in all investigated brain structures, although the insignificant increase of the BAX mRNA level in the hippocampus of spaceflight mice was found. At the same time, shuttle cabin housing produced insignificant decrease in BAX gene expression in the hippocampus. In contrast to the BCL-XL gene, genes encoding BAX, BDNF as well as TrkB and p75 receptors did not respond to 30-day spaceflight. Thus, long-term spaceflight (1) did not affect the expression of genes encoding BDNF as well as TrkB and p75 receptors, (2) produced dysregulation in genetic control of the neuronal apoptosis, (3) implicated BCL-XL as the risk factor for spaceflight-induced behavioral abnormalities.
Collapse
Affiliation(s)
- V S Naumenko
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia.
| | - A V Kulikov
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| | - E M Kondaurova
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| | - A S Tsybko
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| | - E A Kulikova
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| | - I B Krasnov
- Institute of Biomedical Problems, Khoroshevskoe Street, 76a, 123007 Moscow, Russia
| | - B S Shenkman
- Institute of Biomedical Problems, Khoroshevskoe Street, 76a, 123007 Moscow, Russia
| | - V N Sychev
- Institute of Biomedical Problems, Khoroshevskoe Street, 76a, 123007 Moscow, Russia
| | - E Y Bazhenova
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| | - N A Sinyakova
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| | - N K Popova
- Institute of Cytology and Genetics, Lavrentyeva Avenue, 10, 633090 Novosibirsk, Russia
| |
Collapse
|
32
|
Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine 2015; 10:433-45. [PMID: 25609955 PMCID: PMC4294648 DOI: 10.2147/ijn.s76329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs). Materials and methods In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting. Results Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial increment of NP uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in the enhancement of the osteogenic differentiation of MSCs. Conclusion The obtained results could become useful in the design of new approaches in bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.
Collapse
Affiliation(s)
- Antonella Rocca
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Veronica Rocca
- Università di Pisa, Dipartimento di Ingegneria dell'Informazione, Pisa, Italy, Noordwijk, the Netherlands
| | - Stefania Moscato
- Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy
| | - Giuseppe de Vito
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy ; Scuola Normale Superiore, NEST, Pisa, Italy
| | - Vincenzo Piazza
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Thu Jennifer Ngo-Anh
- Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| |
Collapse
|
33
|
Luo H, Zhu B, Zhang Y, Jin Y. Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Eng Part A 2014; 21:267-76. [PMID: 25088840 DOI: 10.1089/ten.tea.2013.0565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mesenchymal stem cells (MSCs) seeded in a 3D scaffold often present characteristics of low proliferation and migration, which affect the microstructure of tissue-engineered nerves (TENs) and impair the therapeutic effects of nerve defects. By promoting MSC differentiation and mass/nutrient transport, rotary cell culture systems (RCCSs) display potential for advancing the construction of MSC-based TENs. Thus, in this study, we attempted to construct a TEN composed of adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve graft (ANG) utilizing an RCCS. Compared to TENs prepared in a static 3D approach, MTT and cell count results displayed an increased number of ADSCs for TENs in an RCCS. The similarity in cell cycle states and high rates of apoptosis in the static 3D culture demonstrated that the higher proliferation in the RCCS was not due to microgravity regulation but a result of preferential mass/nutrient transport. Quantitative PCR and ELISA indicated that the RCCS promoted the expression of ADSC neural differentiation-associated genes compared to the static 3D culture. Furthermore, this difference was eliminated by adding the Notch1 signaling pathway inhibitor DAPT to the 3D static culture. TEM, axon immunostaining, and retrograde labeling analysis after sciatic nerve transplantation indicated that the TENs prepared in the RCCS exhibited more regenerative characteristics for repairing peripheral nerves than those prepared in a static 3D approach. Therefore, these findings suggest that the RCCS can modulate the construction, morphology, and function of engineered nerves as a promising alternative for nerve regeneration.
Collapse
Affiliation(s)
- Hailang Luo
- 1 Research and Development Center for Tissue Engineering, Fourth Military Medical University , Xi'an, China
| | | | | | | |
Collapse
|
34
|
Liu X, Li D, Jiang D, Fang Y. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells. Neural Regen Res 2014; 8:2086-92. [PMID: 25206517 PMCID: PMC4146069 DOI: 10.3969/j.issn.1673-5374.2013.22.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fibroblast growth factor. Results confirmed that cell morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtubule-associated protein-2 expression and acetylcholine levels increased following induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyltransferase expression was high following inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differentiation of umbilical cord mesenchymal stem cells into motor neuron-like cells. Simultaneously, umbilical cord mesenchymal stem cells could secrete acetylcholine.
Collapse
Affiliation(s)
- Xueyuan Liu
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Dehua Li
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Dong Jiang
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Yan Fang
- Department of Anatomy, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
35
|
Lung cancer stem cell lose their stemness default state after exposure to microgravity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470253. [PMID: 25276790 PMCID: PMC4170742 DOI: 10.1155/2014/470253] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/14/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
Microgravity influences cell differentiation by modifying the morphogenetic field in which stem cells are embedded. Preliminary data showed indeed that stem cells are committed to selective differentiation when exposed to real or simulated microgravity. Our study provides evidence that a similar event occurs when cancer stem cells (CSCs) are cultured in microgravity. In the same time, a significant increase in apoptosis was recorded: those data point out that microgravity rescues CSCs from their relative quiescent state, inducing CSCs to lose their stemness features, as documented by the decrease in ALDH and the downregulation of both Nanog and Oct-4 genes. Those traits were stably acquired and preserved by CSCs when cells were placed again on a 1 g field. Studies conducted in microgravity on CSCs may improve our understanding of the fundamental role exerted by biophysical forces in cancer cell growth and function.
Collapse
|
36
|
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:928507. [PMID: 25110709 PMCID: PMC4119729 DOI: 10.1155/2014/928507] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning
machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.
Collapse
|
37
|
Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL. Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci 2014; 11:979-87. [PMID: 25076843 PMCID: PMC4115236 DOI: 10.7150/ijms.9139] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023] Open
Abstract
The healing process of the skin is a dynamic procedure mediated through a complex feedback of growth factors secreted by a variety of cells types. Despite the most recent advances in wound healing management and surgical procedures, these techniques still fail up to 50%, so cellular therapies involving mesenchymal stem cells (MSCs) are nowadays a promising treatment of skin ulcers which are a cause of high morbidity. The MSCs modulate the inflammatory local response and induce cell replacing, by a paracrine mode of action, being an important cell therapy for the impaired wound healing. The local application of human MSCs (hMSCs) isolated from the umbilical cord Wharton's jelly together with a poly(vinyl alcohol) hydrogel (PVA) membrane, was tested to promote wound healing in two dogs that were referred for clinical examination at UPVET Hospital, showing non-healing large skin lesions by the standard treatments. The wounds were infiltrated with 1000 cells/µl hMSCs in a total volume of 100 µl per cm(2) of lesion area. A PVA membrane was applied to completely cover the wound to prevent its dehydration. Both animals after the treatment demonstrated a significant progress in skin regeneration with decreased extent of ulcerated areas confirmed by histological analysis. The use of Wharton's jelly MSCs associated with a PVA membrane showed promising clinical results for future application in the treatment of chronic wounds in companion animals and humans.
Collapse
Affiliation(s)
- Jorge Ribeiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| | - Tiago Pereira
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Irina Amorim
- 3. Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 4. Instituto Português de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Rita Caseiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Maria A Lopes
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Lima
- 7. LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Andrea Gartner
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paulo J Bártolo
- 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Jorge Manuel Rodrigues
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 8. Hospital de S. João, Universidade do Porto (UP), Porto, Portugal. ; 9. Departmento de Dentistria, Universidade Fernando Pessoa (UFP), Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Ana Colette Mauricio
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Ana Lúcia Luís
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| |
Collapse
|
38
|
Wang L, Lu M. Regulation and direction of umbilical cord blood mesenchymal stem cells to adopt neuronal fate. Int J Neurosci 2013; 124:149-59. [PMID: 23879374 DOI: 10.3109/00207454.2013.828055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Umbilical cord blood mesenchymal stem cells (UCB-MSCs) transplantation is becoming a promising and attractive cell-based treatment modality for repairing the damaged central nervous system due to its advantages of low immunogenicity, wide range of sources, and less ethical controversy. One of the limitations of this approach is that the proportion of neurons differentiated from UCB-MSCs still remains at low level. Thus, to induce UCB-MSCs to differentiate into neuron-like cells with a higher proportion is one of the key technologies of regenerative medicine and tissue engineering. Many induction protocols with remarkably higher differentiation rate to neurons have been reported. However, each protocol has its pros and cons and whether the neurons differentiated from UCB-MSCs under a certain protocol has normal nerve function remains controversial. Therefore, to guarantee the success of future clinical applications of UCB-MSCs, more investigations should be performed to improve the induction method and differentiation efficiency.
Collapse
Affiliation(s)
- Lei Wang
- 1Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA) , Changsha, Hunan , China
| | | |
Collapse
|
39
|
The simulated microgravity enhances multipotential differentiation capacity of bone marrow mesenchymal stem cells. Cytotechnology 2013; 66:119-31. [PMID: 23579245 DOI: 10.1007/s10616-013-9544-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/03/2013] [Indexed: 01/22/2023] Open
Abstract
Multi-differentiation capability is an essential characteristic of bone marrow mesenchymal stem cells (BMSCs). Method on obtaining higher-quality stem cells with an improved differentiation potential has gained significant attention for the treatment of clinical diseases and developmental biology. In our study, we investigated the multipotential differentiation capacity of BMSCs under simulated microgravity (SMG) condition. F-actin staining found that cytoskeleton took on a time-dependent change under SMG condition, which caused spindle to round morphological change of the cultured cells. Quantitative PCR and Western Blotting showed the pluripotency marker OCT4 was up-regulated in the SMG condition especially after SMG of 72 h, which we observed would be the most appropriate SMG duration for enhancing pluripotency of BMSCs. After dividing BMSCs into normal gravity (NG) group and SMG group, we induced them respectively in endothelium oriented, adipogenic and neuronal induction media. Immunostaining and Western Blotting found that endothelium oriented differentiated BMSCs expressed higher VWF and CD31 in the SMG group than in the NG group. The neuron-like cells derived from BMSCs in the SMG group also expressed higher level of MAP2 and NF-H. Furthermore, the quantity of induced adipocytes increased in the SMG group compared to the NG group shown by Oil Red O staining, The expression of PPARγ2 increased significantly under SMG condition. Therefore, we demonstrated that SMG could promote BMSCs to differentiate into many kinds of cells and predicted that enhanced multi-potential differentiation capacity response in BMSCs following SMG might be relevant to the changes of cytoskeleton and the stem cell marker OCT4.
Collapse
|
40
|
Zhang X, Nan Y, Wang H, Chen J, Wang N, Xie J, Ma J, Wang Z. Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften 2012; 100:125-33. [DOI: 10.1007/s00114-012-1002-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 12/12/2022]
|
41
|
Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012; 2012:342968. [PMID: 22754575 PMCID: PMC3382267 DOI: 10.1155/2012/342968] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) communicate with other cells in the human body and appear to "home" to areas of injury in response to signals of cellular damage, known as homing signals. This review of the state of current research on homing of MSCs suggests that favorable cellular conditions and the in vivo environment facilitate and are required for the migration of MSCs to the site of insult or injury in vivo. We review the current understanding of MSC migration and discuss strategies for enhancing both the environmental and cellular conditions that give rise to effective homing of MSCs. This may allow MSCs to quickly find and migrate to injured tissues, where they may best exert clinical benefits resulting from improved homing and the presence of increased numbers of MSCs.
Collapse
|