1
|
Chu C, Huang Y, Cao L, Ji S, Zhu B, Shen Q. Role of macrophages in peritoneal dialysis-associated peritoneal fibrosis. Ren Fail 2025; 47:2474203. [PMID: 40044628 PMCID: PMC11884102 DOI: 10.1080/0886022x.2025.2474203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Peritoneal dialysis (PD) can be used as renal replacement therapy when chronic kidney disease (CKD) progresses to end-stage renal disease. However, peritoneal fibrosis (PF) is a major cause of PD failure. Studies have demonstrated that PD fluid contains a significantly larger numbers of macrophages compared with the healthy individuals. During PD, macrophages can secrete cytokines to keep peritoneal tissue in sustained low-grade inflammation, and participate in the regulation of fibrosis-related signaling pathways, such as NF-κB, TGF-β/Smad, IL4/STAT6, and PI3K/AKT. A series of basic pathological changes occurs in peritoneal tissues, including epithelial mesenchymal transformation, overgeneration of neovasculature, and abnormal deposition of extracellular matrix. This review focuses on the role of macrophages in promoting PF during PD, summarizes the targets of macrophage-related inhibition of fibrosis, and provides new ideas for clinical research on delaying PF, maintaining the function and integrity of peritoneum, prolonging duration of PD as a renal replacement modality, and achieving longer survival in CKD patients.
Collapse
Affiliation(s)
- Chenling Chu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Huang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Public Health and Preventive Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luxi Cao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuiyu Ji
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Quanquan Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| |
Collapse
|
2
|
Wei YS, Tsai SY, Lin SL, Chen YT, Tsai PS. Methylglyoxal-Stimulated Mesothelial Cells Prompted Fibroblast-to-Proto-Myofibroblast Transition. Int J Mol Sci 2025; 26:813. [PMID: 39859527 PMCID: PMC11766140 DOI: 10.3390/ijms26020813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.e., methylglyoxal (MGO)) that appeared during the heating and storage of the dialysate are considered to be key components to initiating PF, but how GDPs lead to the activation of myofibroblast in fibrotic peritoneum has not yet been fully elucidated. In this study, mesothelial cell line (MeT-5A) and fibroblast cell line (MRC-5) were used to investigate the transcriptomic and proteomic changes to unveil the underlying mechanism of MGO-induced PF. Our transcriptomic data from the MGO-stimulated mesothelial cells showed upregulation of genes involved in pro-inflammatory, apoptotic, and fibrotic pathways. While no phenotypic changes were noted on fibroblasts after direct MGO, supernatant from MGO-stimulated mesothelial cells promoted fibroblasts to change into proto-myofibroblasts, activated fibroblasts in the first stage toward myofibroblasts. In conclusion, this study showed that MGO-stimulated mesothelial cells promoted fibroblast-to-proto-myofibroblast transition; however, additional involvement of other factors or cells (e.g., macrophages) may be needed to complete the transformation into myofibroblasts.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Shuei-Liong Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
3
|
Diao X, Zhan C, Ye H, Wu H, Yi C, Lin J, Mao H, Chen W, Yang X. Single-cell transcriptomic reveals the peritoneal microenvironmental change in long-term peritoneal dialysis patients with ultrafiltration failure. iScience 2024; 27:111383. [PMID: 39687014 PMCID: PMC11647153 DOI: 10.1016/j.isci.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
The microenvironmental changes in peritoneal dialysis effluent (PDE) after long-term vintage (LV) of PD in patients with ultrafiltration failure (LV_UF) are unclear. Single-cell sequencing revealed that peritoneal neutrophils were elevated in LV_UF patients, while MRC1-macrophage subcluster decreased compared with PD patients with short vintage (SV) and LV without ultrafiltration failure (LV_NOT_UF). Compared with the LV_NOT_UF group, the upregulated differentially expressed genes (DEGs) of monocytes/macrophages in the LV_UF group were involved in inflammatory response and EMT progress. LV_UF patients had a higher proportion of epithelial-like mesothelial cells (E-MCs), which were characterized by autophagy activation, inflammation, and upregulation of neutrophil- and autophagy-related DEGs compared to the LV_NOT_UF group. Additionally, mesenchymal-like MCs and AQP1 expression were reduced in the LV_UF group compared with the other groups. Both neutrophils and monocytes/macrophages interacted with MCs. Our study provides insights into the roles of peritoneal mesothelial cells and inflammatory cells in PD patients with UF.
Collapse
Affiliation(s)
- Xiangwen Diao
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Cuixia Zhan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Chunyan Yi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Jianxiong Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| |
Collapse
|
4
|
Wang Y, Zhang Y, Ma M, Zhuang X, Lu Y, Miao L, Lu X, Cui Y, Cui W. Mechanisms underlying the involvement of peritoneal macrophages in the pathogenesis and novel therapeutic strategies for dialysis-induced peritoneal fibrosis. Front Immunol 2024; 15:1507265. [PMID: 39749340 PMCID: PMC11693514 DOI: 10.3389/fimmu.2024.1507265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality. The causes and mechanisms underlying peritoneal fibrosis in patients undergoing peritoneal dialysis remain unknown, with no definitive treatment available. However, abnormal activation of the immune system appears to be involved in altering the structure of the peritoneum and promoting fibrotic changes. Macrophage infiltration and polarization are key contributors to pathological injury within the peritoneum, showing a strong correlation with the epithelial-to-mesenchymal transition of mesothelial cells and driving the process of fibrosis. This article discusses the role and mechanisms underlying macrophage activation-induced peritoneal fibrosis resulting from PD by analyzing relevant literature from the past decade and provides an overview of recent therapeutic approaches targeting macrophages to treat this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingchun Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| |
Collapse
|
5
|
Chen YW, Wu MY, Huang NJ, Wu MS, Hsu YH, Liao CT, Chen CH. Therapeutic Potential of Oligo-Fucoidan in Mitigating Peritoneal Dialysis-Associated Fibrosis. Mar Drugs 2024; 22:529. [PMID: 39728104 DOI: 10.3390/md22120529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis. High-glucose PD solution (Dianeal 4.25%, Baxter) increased protein expression of mesothelial-mesenchymal transition (MMT) markers, such as N-cadherin and α-SMA in MeT-5A cells, whereas it decreased catalase expression and stimulated the production of reactive oxygen species (ROS). Furthermore, macrophage influx and increased serum pro-inflammatory cytokines, such as IL-1β, MCP-1, and TNF-α, were observed in the PD mouse model. Interestingly, we discovered that oligo-fucoidan, an oligosaccharide extract from brown seaweed, successfully prevented PD-associated peritoneal thickening and fibrosis through antioxidant effect, downregulation of MMT markers, and attenuation of peritoneal and systemic inflammation. Hence, oligo-fucoidan has the potential to be developed into a novel preventive strategy for PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Nai-Jen Huang
- Department of Internal Medicine, Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Mai-Szu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Ho Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
6
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
7
|
Shan Y, Yu M, Dai H, Zhu X, Wang F, You Y, Cao H, Sheng L, Zhao J, Tang L, Shi J, Sheng M. The role of macrophage-derived Exosomes in reversing peritoneal fibrosis: Insights from Astragaloside IV. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155683. [PMID: 38701543 DOI: 10.1016/j.phymed.2024.155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/β-catenin signaling pathway. CONCLUSION AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.
Collapse
Affiliation(s)
- Yun Shan
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Manshu Yu
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Huibo Dai
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolin Zhu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Funing Wang
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongqing You
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Cao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Sheng
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junyi Zhao
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Tang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Shi
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meixiao Sheng
- Department of nephrology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,.
| |
Collapse
|
8
|
You L, Zhang B, Zhang F, Wang J. Pathogenic spectrum and risk factors of peritoneal dialysis-associated peritonitis: a single-center retrospective study. BMC Infect Dis 2024; 24:440. [PMID: 38658811 PMCID: PMC11044422 DOI: 10.1186/s12879-024-09334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The present study aimed to explore the pathogenic spectrum and risk factors of peritoneal dialysis-associated peritonitis (Peritoneal dialysis associated peritonitis, PDAP) in Yongzhou, Hunan, China. The clinical and epidemiological data on regular peritoneal dialysis (Peritoneal dialysis, PD) between January 2016 and December 2020 in Yongzhou were collected for retrospective analysis. The related factors of peritonitis were evaluated by single-factor analysis, while risk factors of refractory PDAP were evaluated by multivariate logistic regression analysis.172/331 172 (51.9%) patients developed peritonitis. The risk factors of PDAP in PD patients included high C-reactive protein (C-reactive protein, CRP), low albumin(Albumin, ALB), low hemoglobin (Hemoglobin, Hb), low educational level (junior high school or lower), preference of spicy food, irregular diet, low annual household income, unfavorable fluid exchange conditions, unstable employment (including working as a farmer), and unfavorable humidity conditions (P < 0.05). 63/172 (36.6%) PDAP patients were intractable cases with a pathogenic bacteria positive rate of 74.60% in the peritoneal dialysate cultures, and 109/172 patients were non-intractable cases with a pathogenic bacteria positive rate of 53.21%. Gram-positive bacteria (G+) were detected in most of the dialysate cultures, with Staphylococcus epidermidis (S. epidermidis) as the most common type, while Escherichia coli (E. coli) was the most common Gram-negative bacteria (G-). Gram-positive bacteria were sensitive to vancomycin and linezolid, while G- bacteria were sensitive to imipenem and amikacin. Lifestyle, educational level, and environmental factors are the major contributors to PDAP in PD patients. Fungal and multi-bacterial infections are the major causes of death; PD is stopped for such patients.
Collapse
Affiliation(s)
- Linshuang You
- Department of Nephropathy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Baoguo Zhang
- Department of Nephropathy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Fan Zhang
- Department of Nephropathy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Jianwen Wang
- Department of Nephropathy, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, 410013, China.
- Department of Critical Kidney Disease Research Center, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
9
|
Sheng L, Shan Y, Dai H, Yu M, Sun J, Huang L, Wang F, Sheng M. Intercellular communication in peritoneal dialysis. Front Physiol 2024; 15:1331976. [PMID: 38390449 PMCID: PMC10882094 DOI: 10.3389/fphys.2024.1331976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Hirano A, Kadoya H, Yamanouchi Y, Kishi S, Sasaki T, Kashihara N. IL-1β may be an indicator of peritoneal deterioration after healing of peritoneal dialysis-associated peritonitis. BMC Nephrol 2023; 24:374. [PMID: 38114999 PMCID: PMC10731768 DOI: 10.1186/s12882-023-03431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is an essential lifesaving treatment for end-stage renal disease. However, PD therapy is limited by peritoneal inflammation, which leads to peritoneal membrane failure because of progressive peritoneal deterioration. Peritonitis is the most common complication in patients undergoing PD. Thus, elucidating the mechanism of chronic peritoneal inflammation after PD-associated peritonitis is an urgent issue for patients undergoing PD. This first case report suggests that an increased interleukin-1β (IL-1β) expression in the peritoneal dialysate after healing of peritonitis can contribute to peritoneal deterioration. CASE PRESENTATION A 64-year-old woman was diagnosed with diabetes mellitus 10 years ago and had been started on PD for end-stage renal disease. One day, the patient developed PD-associated acute peritonitis and was admitted to our hospital for treatment. Thus, treatment with antimicrobial agents was initiated for PD-associated peritonitis. Dialysate turbidity gradually disappeared after treatment with antimicrobial agents, and the number of cells in the PD fluid decreased. After 2 weeks of antimicrobial therapy, peritonitis was clinically cured, and the patient was discharged. Thereafter, the patient did not develop peritonitis; however, residual renal function tended to decline, and peritoneal function also decreased in a relatively short period. We evaluated pro-inflammatory cytokine levels before and after PD-associated peritonitis; interestingly, the levels of IL-1β remained high in the PD fluid, even after remission of bacterial peritonitis. In addition, it correlated with decreased peritoneal function. CONCLUSIONS This case suggests that inflammasome-derived pro-inflammatory cytokines may contribute to chronic inflammation-induced peritoneal deterioration after PD-related peritonitis is cured.
Collapse
Affiliation(s)
- Akira Hirano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.
| | - Yu Yamanouchi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
11
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
12
|
Huang W, Xia D, Bi W, Lai X, Yu B, Chen W. Advances in stem cell therapy for peritoneal fibrosis: from mechanisms to therapeutics. Stem Cell Res Ther 2023; 14:293. [PMID: 37817212 PMCID: PMC10566108 DOI: 10.1186/s13287-023-03520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal fibrosis (PF) is a pathophysiological condition caused by a variety of pathogenic factors. The most important features of PF are mesothelial-mesenchymal transition and accumulation of activated (myo-)fibroblasts, which hinder effective treatment; thus, it is critical to identify other practical approaches. Recently, stem cell (SC) therapy has been indicated to be a potential strategy for this disease. Increasing evidence suggests that many kinds of SCs alleviate PF mainly by differentiating into mesothelial cells; secreting cytokines and extracellular vesicles; or modulating immune cells, particularly macrophages. However, there are relatively few articles summarizing research in this direction. In this review, we summarize the risk factors for PF and discuss the therapeutic roles of SCs from different sources. In addition, we outline effective approaches and potential mechanisms of SC therapy for PF. We hope that our review of articles in this area will provide further inspiration for research on the use of SCs in PF treatment.
Collapse
Affiliation(s)
- Weiyan Huang
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendi Bi
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
13
|
Kadoya H, Hirano A, Umeno R, Kajimoto E, Iwakura T, Kondo M, Wada Y, Kidokoro K, Kishi S, Nagasu H, Sasaki T, Taniguchi S, Takahashi M, Kashihara N. Activation of the inflammasome drives peritoneal deterioration in a mouse model of peritoneal fibrosis. FASEB J 2023; 37:e23129. [PMID: 37606578 DOI: 10.1096/fj.202201777rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
During peritoneal dialysis (PD), the peritoneum is exposed to a bioincompatible dialysate, deteriorating the tissue and limiting the long-term effectiveness of PD. Peritoneal fibrosis is triggered by chronic inflammation induced by a variety of stimuli, including peritonitis. Exposure to PD fluid alters peritoneal macrophages phenotype. Inflammasome activation triggers chronic inflammation. First, it was determined whether inflammasome activation causes peritoneal deterioration. In the in vivo experiments, the increased expression of the inflammasome components, caspase-1 activity, and concomitant overproduction of IL-1β and IL-18 were observed in a mouse model of peritoneal fibrosis. ASC-positive and F4/80-positive cells colocalized in the subperitoneal mesothelial cell layer. These macrophages expressed high CD44 levels indicating that the CD44-positive macrophages contribute to developing peritoneal deterioration. Furthermore, intravital imaging of the peritoneal microvasculature demonstrated that the circulating CD44-positive leukocytes may contribute to peritoneal fibrosis. Bone marrow transplantation in ASC-deficient mice suppressed inflammasome activation, thereby attenuating peritoneal fibrosis in a high glucose-based PD solution-injected mouse model. Our results suggest inflammasome activation in CD44-positive macrophages may be involved in developing peritoneal fibrosis. The inflammasome-derived pro-inflammatory cytokines might therefore serve as new biomarkers for developing encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Akira Hirano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Reina Umeno
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Eriko Kajimoto
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Tsukasa Iwakura
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Megumi Kondo
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihisa Wada
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Shun'ichiro Taniguchi
- Advanced Cancer Medicine for Gynecologic Cancer, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
14
|
Suryantoro SD, Thaha M, Sutanto H, Firdausa S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J Clin Med 2023; 12:4401. [PMID: 37445436 DOI: 10.3390/jcm12134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peritoneal fibrosis is the final process of progressive changes in the peritoneal membrane due to chronic inflammation and infection. It is one of the main causes of discontinuation of peritoneal dialysis (PD), apart from peritonitis and cardiovascular complications. Over time, morphological changes occur in the peritoneal membranes of patients who use PD. Of those are mesothelial-to-mesenchymal transition (MMT), neoangiogenesis, sub-mesothelial fibrosis, and hyalinizing vasculopathy. Several key molecules are involved in the complex pathophysiology of peritoneal fibrosis, including advanced glycosylation end products (AGEs), transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF). This narrative review will first discuss the physiology of the peritoneum and PD. Next, the multifaceted pathophysiology of peritoneal fibrosis, including the effects of hyperglycemia and diabetes mellitus on the peritoneal membrane, and the promising biomarkers of peritoneal fibrosis will be reviewed. Finally, the current and future management of peritoneal fibrosis will be discussed, including the potential benefits of new-generation glucose-lowering medications to prevent or slow down the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Satriyo Dwi Suryantoro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Mochammad Thaha
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Sarah Firdausa
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
15
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
16
|
Zhu Y, Zhang X, Yang K, Shao Y, Gu R, Liu X, Liu H, Liu Y, Zhou Y. Macrophage-derived apoptotic vesicles regulate fate commitment of mesenchymal stem cells via miR155. Stem Cell Res Ther 2022; 13:323. [PMID: 35842708 PMCID: PMC9288680 DOI: 10.1186/s13287-022-03004-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In tissue engineering, mesenchymal stem cells (MSCs) are common seed cells because of abundant sources, strong proliferation ability and immunomodulatory function. Numerous researches have demonstrated that MSC-macrophage crosstalk played a key role in the tissue engineering. Macrophages could regulate the differentiation of MSCs via different molecular mechanisms, including extracellular vesicles. Apoptotic macrophages could generate large amounts of apoptotic vesicles (apoVs). ApoVs are rich in proteins, RNA (microRNAs, mRNAs, ncRNAs, etc.) and lipids, and are a key intercellular communication mediator that can exert different regulatory effects on recipient cells. MiRNAs account for about half of the total RNAs of extracellular vesicles, and play important roles in biological processes such as cell proliferation and differentiation, whereas the functions of macrophage-derived apoVs remain largely unknown. There was no research to clarify the role of macrophage-derived apoVs in MSC fate choices. In this study, we aimed to characterize macrophage-derived apoVs, and investigate the roles of macrophage-derived apoVs in the fate commitment of MSCs. METHODS We characterized macrophage-derived apoVs, and investigated their role in MSC osteogenesis and adipogenesis in vitro and in vivo. Furthermore, we performed microRNA loss- and gain-of-function experiments and western blot to determine the molecular mechanism. RESULTS Macrophages could produce a large number of apoVs after apoptosis. MSCs could uptake apoVs. Then, we found that macrophage-derived apoVs inhibited osteogenesis and promoted adipogenesis of MSCs in vitro and in vivo. In mechanism, apoVs were enriched for microRNA155 (miR155), and apoVs regulated osteogenesis and adipogenesis of MSCs by delivering miR155. Besides, miR155 regulated osteogenesis and adipogenesis of MSCs cultured with macrophage-derived apoVs via the SMAD2 signaling pathway. CONCLUSIONS Macrophage-derived apoVs could regulate the osteogenesis and adipogenesis of MSCs through delivering miR155, which provided novel insights for MSC-mediated tissue engineering.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China. .,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China. .,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
17
|
Jia Y, Zhang X, Yang W, Lin C, Tao B, Deng Z, Gao P, Yang Y, Cai K. A pH-responsiveness injectable hyaluronic acid hydrogel towards regulation of inflammation and remodeling of extracellular matrix for diabetic wound. J Mater Chem B 2022; 10:2875-2888. [DOI: 10.1039/d2tb00064d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes is a universal disease in the world. A critical mediator of proper wound healing is the production, assembly, and remodeling of the ECM by fibroblasts, but in the wound...
Collapse
|
18
|
Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW. Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 2021; 13:1762-1782. [PMID: 34909122 PMCID: PMC8641021 DOI: 10.4252/wjsc.v13.i11.1762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute muscle injuries are one of the most common injuries in sports. Severely injured muscles are prone to re-injury due to fibrotic scar formation caused by prolonged inflammation. How to regulate inflammation and suppress fibrosis is the focus of promoting muscle healing. Recent studies have found that myoblasts and macrophages play important roles in the inflammatory phase following muscle injury; however, the crosstalk between these two types of cells in the inflammatory environment, particularly the exosome-related mechanisms, had not been well studied. AIM To evaluate the effects of exosomes from inflammatory C2C12 myoblasts (IF-C2C12-Exos) on macrophage polarization and myoblast proliferation/differentiation. METHODS A model of inflammation was established in vitro by lipopolysaccharide stimulation of myoblasts. C2C12-Exos were isolated and purified from the supernatant of myoblasts by gradient centrifugation. Multiple methods were used to identify the exosomes. Gradient concentrations of IF-C2C12-Exos were added to normal macrophages and myoblasts. PKH67 fluorescence tracing was used to identify the interaction between exosomes and cells. Microscopic morphology, Giemsa stain, and immunofluorescence were carried out for histological analysis. Additionally, ELISA assays, flow cytometry, and western blot were conducted to analyze molecular changes. Moreover, myogenic proliferation was assessed by the BrdU test, scratch assay, and CCK-8 assay. RESULTS We found that the PKH-67-marked C2C12-Exos can be endocytosed by both macrophages and myoblasts. IF-C2C12-Exos induced M1 macrophage polarization and suppressed the M2 phenotype in vitro. In addition, these exosomes also stimulated the inflammatory reactions of macrophages. Furthermore, we demonstrated that IF-C2C12-Exos disrupted the balance of myoblast proliferation/differentiation, leading to enhanced proliferation and suppressed fibrogenic/myogenic differentiation. CONCLUSION IF-C2C12-Exos can induce M1 polarization, resulting in a sustained and aggravated inflammatory environment that impairs myoblast differentiation, and leads to enhanced myogenic proliferation. These results demonstrate why prolonged inflammation occurs after acute muscle injury and provide a new target for the regulation of muscle regeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ya-Ying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin-Rong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bei-Jie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji-Wu Chen
- Department of Sports Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Sutherland TE, Shaw TN, Lennon R, Herrick SE, Rückerl D. Ongoing Exposure to Peritoneal Dialysis Fluid Alters Resident Peritoneal Macrophage Phenotype and Activation Propensity. Front Immunol 2021; 12:715209. [PMID: 34386014 PMCID: PMC8353194 DOI: 10.3389/fimmu.2021.715209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peritoneal dialysis (PD) is a more continuous alternative to haemodialysis, for patients with chronic kidney disease, with considerable initial benefits for survival, patient independence and healthcare costs. However, long-term PD is associated with significant pathology, negating the positive effects over haemodialysis. Importantly, peritonitis and activation of macrophages is closely associated with disease progression and treatment failure. However, recent advances in macrophage biology suggest opposite functions for macrophages of different cellular origins. While monocyte-derived macrophages promote disease progression in some models of fibrosis, tissue resident macrophages have rather been associated with protective roles. Thus, we aimed to identify the relative contribution of tissue resident macrophages to PD induced inflammation in mice. Unexpectedly, we found an incremental loss of homeostatic characteristics, anti-inflammatory and efferocytic functionality in peritoneal resident macrophages, accompanied by enhanced inflammatory responses to external stimuli. Moreover, presence of glucose degradation products within the dialysis fluid led to markedly enhanced inflammation and almost complete disappearance of tissue resident cells. Thus, alterations in tissue resident macrophages may render long-term PD patients sensitive to developing peritonitis and consequently fibrosis/sclerosis.
Collapse
Affiliation(s)
- Tara E. Sutherland
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Tovah N. Shaw
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah E. Herrick
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Liu F, Yu C, Qin H, Zhang S, Fang L, Wang Y, Wang J, Cui B, Hu S, Liu N, Zhuang S. Nintedanib attenuates peritoneal fibrosis by inhibiting mesothelial-to-mesenchymal transition, inflammation and angiogenesis. J Cell Mol Med 2021; 25:6103-6114. [PMID: 33949772 PMCID: PMC8256343 DOI: 10.1111/jcmm.16518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nintedanib, an Food and Drug Administration (FDA) approved multiple tyrosine kinase inhibitor, exhibits an anti-fibrotic effect in lung and kidneys. Its effect on peritoneal fibrosis remains unexplored. In this study, we found that nintedanib administration lessened chlorhexidine gluconate (CG)-induced peritoneal fibrosis and reduced collagen I and fibronectin expression. This coincided with suppressed phosphorylation of platelet-derived growth factor receptor, fibroblast growth factor receptors, vascular endothelial growth factor receptor and Src family kinase. Mechanistically, nintedanib inhibited injury-induced mesothelial-to-mesenchymal transition (MMT), as demonstrated by decreased expression of α-smooth muscle antigen and vimentin and preserved expression of E-cadherin in the CG-injured peritoneum and cultured human peritoneal mesothelial cells exposed to transforming growth factor-β1. Nintedanib also suppressed expression of Snail and Twist, two transcription factors associated with MMT in vivo and in vitro. Moreover, nintedanib treatment inhibited expression of several cytokines/chemokines, including tumour necrosis factor-α, interleukin-1β and interleukin-6, monocyte chemoattractant protein-1 and prevented infiltration of macrophages to the injured peritoneum. Finally, nintedanib reduced CG-induced peritoneal vascularization. These data suggest that nintedanib may attenuate peritoneal fibrosis by inhibiting MMT, inflammation, and angiogenesis and have therapeutic potential for the prevention and treatment of peritoneal fibrosis in patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Feng Liu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chao Yu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huan Qin
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shenglei Zhang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Lu Fang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yi Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jun Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Binbin Cui
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Susie Hu
- Department of MedicineRhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| | - Na Liu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shougang Zhuang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of MedicineRhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| |
Collapse
|
21
|
Hepatocyte growth factor ameliorates methylglyoxal-induced peritoneal inflammation and fibrosis in mouse model. Clin Exp Nephrol 2021; 25:935-943. [PMID: 33909175 DOI: 10.1007/s10157-021-02067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/21/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Peritoneal dialysis (PD) is essential for patients with end-stage renal disease. Peritoneal fibrosis (PF) is a complex inflammatory, fibrogenic process. No effective treatments are available to prevent these processes. Hepatocyte growth factor (HGF) possesses anti-inflammatory and anti-fibrotic properties. The aim of this study was to analyze whether HGF suppresses MGO-induced peritoneal inflammation and fibrosis in a mouse model. METHODS PF was induced by intraperitoneal (IP) injections of MGO for 14 days. C57/BL/6 mice were divided into three groups: Sham group (only vehicle); Sham + MGO group (PF induced by MGO); and HGF + MGO group (PF mice treated with recombinant human-HGF). PF was assessed from tissue samples by Masson's trichrome staining. Inflammation and fibrosis-associated factors were assessed by immunohistochemistry and quantitative real-time PCR. RESULTS MGO-injected mice showed significant thickening of the submesothelial compact zone with PF. Treatment with HGF significantly reduced PM thickness and suppressed the expression of collagen I and III and α-SMA. Expression of profibrotic and proinflammatory cytokines (TGF-β, TNF-α, IL-1β) was reduced by HGF treatment. The number of macrophages, and M1 and M2 macrophage-related markers, such as CD86, CD206, and CD163, was reduced in HGF + MGO mice. CONCLUSION HGF attenuates MGO-induced PF in mice. Furthermore, HGF treatment reduces myofibroblast and macrophage infiltration, and attenuates the upregulated expression of proinflammatory and profibrotic genes in peritoneal tissues. HGF might be an effective approach to prevent the development of PF in patients undergoing PD.
Collapse
|
22
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
23
|
Integrating metabolomics and network pharmacology to explore Rhizoma Coptidis extracts against sepsis-associated acute kidney injury. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122525. [PMID: 33454441 DOI: 10.1016/j.jchromb.2021.122525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022]
Abstract
Sepsis remains the most common cause of acute kidney injury (AKI) in critically ill patients, increasing the risk of in-hospital and long-term death. Rhizoma Coptidis (RC), a classical traditional Chinese herb, exhibits anti-inflammatory and antioxidant properties in various diseases including sepsis. This study aimed to investigate the protective effects of RC extracts (RCE) against sepsis-associated acute kidney injury (SA-AKI) and explore the underlying mechanisms with metabolomics-based network pharmacology. The results showed that RCE improved renal function and histological injury and decreased reactive oxygen species (ROS) production in SA-AKI. Using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS), 25 differential metabolites were identified that had a close connection with the pathological processes of SA-AKI and the effects of RCE. Afterward, a compound-metabolite-target-disease network was constructed and 17 overlapping target proteins of the components of RCE, the differential metabolites, and the disease-related genes were discovered. Among these overlapping target proteins, RCE increased the nuclear translocation of nuclear factor-erythroid 2-related factor-2 (Nrf2), the protein expression of heme oxygenase-1 (HO-1), the mRNA expression of peroxisome proliferator activated receptor α (PPARα) and reduced nitric oxide synthase 2 (NOS2) activity. In addition, molecular docking revealed that both berberine and quercetin could bond with NOS2 and PPARα, respectively. Therefore, RCE demonstrated protective effects for SA-AKI through the regulation of metabolism and different signaling pathways.
Collapse
|
24
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
25
|
Yin C, Zhang J, Shen M, Gu Z, Li Y, Xue W, Shi J, Huang W. Matrix Metallopeptidase 14: A Candidate Prognostic Biomarker for Diffuse Large B-Cell Lymphoma. Front Oncol 2020; 10:1520. [PMID: 32974187 PMCID: PMC7473157 DOI: 10.3389/fonc.2020.01520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background Matrix metallopeptidase 14 (MMP14) is an important gene in the regulation of T-cell function. However, the correlation between MMP14 expression, prognosis, and immune cell infiltration in diffuse large B-cell lymphoma (DLBCL) remains unclear. Methods We investigated the influence of MMP14 on clinical prognosis using data obtained from three Gene Expression Omnibus (GEO) database sets (GSE98588, GSE10846, and GSE4475). The expression of MMP14 was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA). The correlation between MMP14 and immune cell infiltration was investigated using the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Tumor Immune Estimation Resource (TIMER) tools. In addition, the correlation between MMP14 expression and immune gene markers was analyzed by TIMER and GEPIA. Results MMP14 expression positively correlated with favorable progression-free survival (PFS; GSE98588, P = 0.02) and overall survival (OS; GSE98588, P = 0.003; GSE10846, P = 5.517e-05; and GSE4475, P = 9.85e-04). Moreover, MMP14 expression was higher in DLBCL tumors than in normal tissues. Regarding clinical characteristics, high MMP14 expression was found to be correlated with race. MMP14 expression was also correlated with immune cell infiltration and had a remarkable correlation with various immune marker sets. It was found that M0 macrophages were the immune cells most related to survival, decreasing with the increase in Ann Arbor clinical stage. The results especially showed that MMP14 was a prognostic biomarker and related to the macrophages M0. Conclusion The results suggest that MMP14 is a novel prognostic molecular marker for DLBCL and is related to the immune cell infiltration, especially related to the macrophages M0. Our study provides insights for understanding the potential roles of MMP14 in tumor immunology and its suitability as a prognosis biomarker in DLBCL.
Collapse
Affiliation(s)
- Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.,Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| | - Junyan Zhang
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.,Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| | - Ming Shen
- Translational Medicine Laboratory, Chinese PLA General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Wanguo Xue
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.,Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.,Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China.,Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
| | - Wenrong Huang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
27
|
Balzer MS, Helmke A, Ackermann M, Casper J, Dong L, Hiss M, Kiyan Y, Rong S, Timrott K, von Vietinghoff S, Wang L, Haller H, Shushakova N. Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha. Nephrol Dial Transplant 2020; 34:947-960. [PMID: 30247663 DOI: 10.1093/ndt/gfy282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)-induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. METHODS In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. RESULTS We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ-/- MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ-/- animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ-/- mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. CONCLUSIONS PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Alexandra Helmke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Martina Ackermann
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Phenos, Hannover, Germany
| | - Janis Casper
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Lei Dong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Marcus Hiss
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Timrott
- Department for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | | | - Le Wang
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology, Tongji Medical College, Wuhan, China
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Phenos, Hannover, Germany
| |
Collapse
|
28
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
29
|
Zhang XW, Wang L, Ding H. Long noncoding RNA AK089579 inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by competitively binding to microRNA-296-3p via DOK2 in peritoneal fibrosis. FASEB J 2019; 33:5112-5125. [PMID: 30652956 DOI: 10.1096/fj.201801111rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peritoneal fibrosis (PF) represents a well-recognized complication associated with continuous ambulatory peritoneal dialysis therapy, characterized by a reversible epithelial-to-mesenchymal transition (EMT) at the early stage. The aim of the current study was to investigate the effects linked with the long noncoding RNA (lncRNA) AK089579 on the EMT of peritoneal mesothelial cells (PMCs) as well as the associated regulatory mechanisms of AK089579 downstream of tyrosine kinase 2 (DOK2) and microRNA-296-3p (miR-296-3p). Enrichment analysis, gene intersection association analysis, and a gene-gene intersection network were initially constructed to ascertain whether AK089579 regulated the expression of DOK2 through the mediation of miR-296-3p via the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in PF. After the PF mouse model had been constructed, the expression of the proteins associated with the JAK2/STAT3 signaling pathway and EMT and PMC migration and invasion were all determined accordingly. Based on the obtained results, AK089579 was determined to function as a competing endogenous RNA for miR-296-3p while acting to up-regulate the expression of DOK2, which is a target gene of miR-296-3p. AK089579 was detected to confer an inhibitory effect on the activation of the JAK2/STAT3 signaling pathway, whereby the migration and invasion of PMCs among the mice models were suppressed. Meanwhile, up-regulated miR-296-3p and down-regulated DOK2 produced contrasting effects when compared with the aforementioned findings. Treatment with wp10066, a JAK2/STAS3 signaling pathway inhibitor, was shown to reverse the effects exerted by up-regulated miR-296-3p. Taken together, the central findings of the current study present evidence highlighting the capability of the lncRNA AK089579 to bind competitively to miR-296-3p and indirectly enhance the expression of DOK2, which in turn suppresses the activation of the JAK2/STAT3 signaling pathway, whereby the EMT, migration, and invasion of PMCs was inhibited in PF.-Zhang, X. W., Wang, L., Ding, H. Long noncoding RNA AK089579 inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by competitively binding to microRNA-296-3p via DOK2 in peritoneal fibrosis.
Collapse
Affiliation(s)
- Xiu Wei Zhang
- Department of Pathology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China; and
| | - Lei Wang
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Shoulders H, Garner KH, Singla DK. Macrophage depletion by clodronate attenuates bone morphogenetic protein-7 induced M2 macrophage differentiation and improved systolic blood velocity in atherosclerosis. Transl Res 2019; 203:1-14. [PMID: 30107156 PMCID: PMC6314201 DOI: 10.1016/j.trsl.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic protein-7 (BMP-7) affects the presence of macrophage subtypes in vitro and in vivo at an early stage of atherosclerosis (ATH); however, it remains unknown whether BMP-7 treatment affects the development and progression of ATH at a mid-stage of the disease. We therefore performed a Day 28 (D28) study to examine BMP-7's potential to affect monocyte differentiation. Atherosclerosis was developed in ApoE KO mice, and these animals were treated with intravenous injections of BMP-7 and/or liposomal clodronate (LC). BMP-7 significantly (P < 0.05) lowers plaque formation following induction of atherosclerosis. However, upon macrophage depletion, BMP-7 fails to significantly alter plaque progression suggesting a direct role of BMP-7 on macrophages. Immunohistochemical staining of carotid arteries was performed to determine BMP-7's effect on pro-inflammatory M1 inducible nitric oxide synthase and anti-inflammatory M2 (cluster of differentiation [CD]206, Arginase-1) macrophages, and monocytes ( CD14). BMP-7 significantly reduced pro-inflammatory M1 macrophages and increased anti-inflammatory M2 macrophages at D28, while BMP-7 showed no effect on M2 macrophage differentiation in animals treated with LC. Enzyme-linked immunosorbent assay data showed significant reduction in proinflammatory cytokines (Interleukin-6 [IL-6]), monocyte chemoattractant protein-1, and tumor necrosis factor-α) and a significant increase in anti-inflammatory cytokine (IL-10) in BMP-7 treated mice (P < 0.05).Western blot analysis of arterial tissue confirms a significant increase in pro-survival kinases extracellular-signal regulated kinase and SMAD and a reduction in pro-inflammatory kinases p38 and c-Jun N-terminal kinase in BMP-7 treated mice (P < 0.05). Overall, this study suggests that clodronate treatment inhibits BMP-7 induced differentiation of monocytes into M2 macrophages and improved systolic blood velocity.
Collapse
Affiliation(s)
- Heidi Shoulders
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Kaley H Garner
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida.
| |
Collapse
|