1
|
Pierre F, Baillez A, Dewitte A, Rolandelli A, Sebbane F. Proteins of the SubB family provide multiple mechanisms of serum resistance in Yersinia pestis. Emerg Microbes Infect 2025; 14:2493926. [PMID: 40237516 PMCID: PMC12064104 DOI: 10.1080/22221751.2025.2493926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The serum complement system is a cornerstone element of the innate immune response. Bacterial resistance to this system is a multifaceted process involving various proteins and molecular mechanisms. Here, we report several genes required for the growth of Yersinia pestis in serum. Among them, we found that ypo0337 encodes an outer-membrane-associated lectin that recruits factor H, C4BP and hemopexin, conferring resistance to the serum complement system. YPO0337 displays high sequence similarity with the SubB subunit of the AB5 toxin from Escherichia coli, as well as other SubB-like proteins, and subB from E. coli restores the ability of Y. pestis Δypo0337 mutant to resist to serum complement. Altogether, the data suggest that at least two members of the SubB protein family function as virulence factors, conferring resistance to serum complement through a unique mode of action.
Collapse
Affiliation(s)
- François Pierre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Baillez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Amélie Dewitte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Agustin Rolandelli
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Xu Y, Zhang H, Jiao X, Zhang Y, Yin G, Wang C, Du Z, Liang M, Gao X, Gu Z, Jiang Y, Du B, Bi X. Dysregulations of C1QA, C1QB, C1QC and C5AR1 as candidate biomarkers of vascular dementia. NPJ AGING 2025; 11:42. [PMID: 40414977 DOI: 10.1038/s41514-025-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/22/2025] [Indexed: 05/27/2025]
Abstract
Vascular dementia (VaD) is the second most common cause of dementia. Few bioinformatic analysis has been done to explore its biomarkers. This study aimed to excavate potential biomarkers for VaD using bioinformatic analysis and validate them at both animal and patient levels. Based on microarray data of GSE122063, bioinformatic analysis revealed 502 DEGs in the frontal and 674 DEGs in the temporal cortex of VaD patients. Afterward, the hub genes between two regions, including C1QA, C1QB, C1QC, and C5AR1, were dugout. Interestingly, compared with sham mice or controls, the above four complements were highly expressed in the cortices of VaD animals and in the peripheral serum of VaD patients. Moreover, receiver operating characteristic curve analysis conformed to good diagnostic powers of these complements, with C1QB having the most prominent capacity (AUC = 0.799, 95%CI 0.722-0.875). That means the complements, especially subunits of C1Q, might be used as specific early VaD diagnostic biomarkers.
Collapse
Affiliation(s)
- Yawen Xu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, PR China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xuehao Jiao
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ge Yin
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, PR China
| | - Zengkan Du
- Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai, PR China
| | - Meng Liang
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xin Gao
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yan Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China.
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Disease, Fudan University, Shanghai, PR China.
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
3
|
Raavi, Koehler AN, Vegas AJ. At The Interface: Small-Molecule Inhibitors of Soluble Cytokines. Chem Rev 2025; 125:4528-4568. [PMID: 40233276 DOI: 10.1021/acs.chemrev.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytokines are crucial regulators of the immune system that orchestrate interactions between cells and, when dysregulated, contribute to the progression of chronic inflammation, cancer, and autoimmunity. Numerous biologic-based clinical agents, mostly monoclonal antibodies, have validated cytokines as important clinical targets and are now part of the standard of care for a number of diseases. These agents, while impactful, still suffer from limitations including a lack of oral bioavailability, high cost of production, and immunogenicity. Small-molecule cytokine inhibitors are attractive alternatives that can address these limitations. Although targeting cytokine-cytokine receptor complexes with small molecules has been a challenging research endeavor, multiple small-molecule inhibitors have now been identified, with a number of them undergoing clinical evaluation. In this review, we highlight the recent advancements in the discovery and development of small-molecule inhibitors targeting soluble cytokines. The strategies for identifying these novel ligands as well as the structural and mechanistic insights into their activity represent important milestones in tackling these challenging and clinically important protein-protein interactions.
Collapse
Affiliation(s)
- Raavi
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo J Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Abe S, Takata H, Shimizu T, Kawaguchi Y, Fukuda S, Yamamoto H, Ando H, Ishida T. Impact of pre-existing anti-polyethylene glycol (PEG) IgM on biodistribution and humoral response of intramuscularly administered PEGylated mRNA loaded lipid nanoparticle. J Control Release 2025; 383:113821. [PMID: 40339658 DOI: 10.1016/j.jconrel.2025.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/02/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
With the approval of mRNA vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), lipid nanoparticles (LNP) have emerged as a powerful tool for nucleic acid delivery. Modification of LNP with polyethylene glycol (PEG)-lipids contributes to their in vitro and in vivo stability by reducing aggregation of the particles. Despite the general acknowledgement of the low immunogenicity of PEG, there are numerous reports of the occurrence of anti-PEG antibodies in the blood of healthy individuals. Furthermore, there are reports that pre-existing anti-PEG IgM antibodies attenuated the efficacy of PEG-modified drugs administered systemically. Skeletal muscles, the administration site for mRNA vaccines, are highly vascularized by a network of blood vessels to provide them with nutrients and oxygen. Since skeletal muscles can contain circulating anti-PEG antibodies or the administered mRNA-LNP extravasate into bloodstream, the purpose of this study was to evaluate the effects of pre-existing anti-PEG IgM on the protein translation, biodistribution, and humoral responses to mRNA-loaded LNP (mRNA-LNP) administered intramuscularly (i.m.) in mice. We found that the presence of anti-PEG IgM in blood has only a minor effect on the translation and distribution of mRNA-LNP in the localized muscle area where the mRNA-LNP were administered. Circulating anti-PEG IgM did not increase the total accumulation of mRNA-LNP in the liver, but did markedly diminish its protein translation because the mRNA-LNP were delivered primarily to Kupffer cells rather than to hepatocytes. Binding of anti-PEG IgM to mRNA-LNP, and subsequent complement activation, suppressed mRNA translation loaded in LNP in the liver. Repeated intramuscular injections of SARS-CoV-2 Spike protein mRNA-LNP elicited a robust immune response. Our results indicate that the presence of circulating anti-PEG IgM does not interfere with the efficiency of mRNA vaccines administered i.m. in mice. We can speculate that non-specific translation of mRNA vaccines in somatic cells may be inhibited in vivo by circulating anti-PEG IgM, reducing adverse effects such as hepatitis and myocarditis that are caused by immune responses against translated antigen proteins.
Collapse
Affiliation(s)
- Shunji Abe
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505 Tokushima, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Shoichiro Fukuda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Yamamoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505 Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505 Tokushima, Japan.
| |
Collapse
|
5
|
Thomas SA, Lajoie S. Complement's involvement in allergic Th2 immunity: a cross-barrier perspective. J Clin Invest 2025; 135:e188352. [PMID: 40309766 PMCID: PMC12043088 DOI: 10.1172/jci188352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Type 2 (Th2) allergic diseases are chronic conditions characterized by a Th2-polarized immune response to allergens. These diseases can be categorized by affected barrier sites: skin (atopic dermatitis, allergic contact dermatitis), gut (food allergy), and respiratory tract (e.g., asthma, chronic rhinosinusitis). The global prevalence of Th2 allergic diseases has increased the need for a deeper understanding of their pathophysiology. Several associations have been identified between genetic variants in the genes encoding components of the complement system and allergic disease. Moreover, levels of several complement proteins are elevated in patients with allergy. Experimental evidence demonstrates that the complement system plays a critical role in the development of these diseases across barrier sites. While site-specific differences exist in the complement components involved, key pathways, particularly C3 and C5, are prominent across the skin, gut, and lung.
Collapse
Affiliation(s)
- Sarah A. Thomas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephane Lajoie
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Kamla CE, Meersch-Dini M, Palma LMP. Kidney Injury Following Cardiac Surgery: A Review of Our Current Understanding. Am J Cardiovasc Drugs 2025; 25:337-348. [PMID: 39799538 PMCID: PMC12014718 DOI: 10.1007/s40256-024-00715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 01/15/2025]
Abstract
Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI. Several mechanisms are involved in the development of CSA-AKI; injury is primarily thought to result from an amplification loop of inflammation and cell death, with complement and immune system activation, cardiopulmonary bypass, and ischemia-reperfusion injury all contributing to pathogenesis. At present there are no effective, targeted pharmacological therapies for the prevention or treatment of CSA-AKI, although several preclinical trials have shown promise, and clinical trials are under way. Progress in the understanding of the complex pathophysiology of CSA-AKI is needed to improve the development of successful strategies for its prevention, management, and treatment. In this review, we outline our current understanding of CSA-AKI development and management strategies and discuss potential future therapeutic targets under investigation.
Collapse
Affiliation(s)
| | - Melanie Meersch-Dini
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
7
|
Laffer B, Ohms M, Kenno S, Tsui P, Ehlers-Jeske E, Song W, Song WC, Köhl J. Therapeutic targeting of alternative pathway and C5 but not C5a protects from disease development in a preclinical model of autoimmune blistering dermatosis. Front Immunol 2025; 16:1560468. [PMID: 40370446 PMCID: PMC12076022 DOI: 10.3389/fimmu.2025.1560468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Epidermolysis Bullosa Acquisita (EBA) is an autoimmune blistering dermatosis characterized by autoantibodies (AAbs) against type VII collagen (COL7) located at the dermal epidermal junction (DEJ). Local complement activation drives C5a generation associated with neutrophil recruitment and activation resulting in skin lesions and inflammation. Here we tested the impact of C5a/C5adesArg, C5 or combined C5 and alternative pathway (AP) targeting on disease development and skin inflammation in a preclinical mouse model mimicking the effector phase of EBA. Methods C57BL/6 mice were treated subcutaneously with purified rabbit anti-mouse-COL7 IgG in the presence of IgG1 mAbs directed against murine C5a/C5adesArg (M031), C5 (mBB5.1), a bifunctional protein comprising mBB5.1 fused to an active fragment of the AP inhibitor factor H (M014) or an IgG1 isotype control mAb. Formation of skin lesions was evaluated 12 days every other day. On day 12, DEJ separation, IgG AAb and C3b deposition and neutrophil infiltration was assessed. Results Isotype IgG1-treated mice developed first skin lesions on day 4 peaking on day 12. Prophylactic treatment with either M031 or M014 markedly reduced the development of skin lesions, the dermal/epidermal separation and neutrophil recruitment. Surprisingly, C5 or combined AP/C5 inhibition by M014 but not C5a/C5adesArg-targeting by M031 reduced the development of skin lesions and dermal/epidermal separation in the setting of therapeutic treatment. IgG and C3b deposition was not affected by either treatment. Importantly, direct comparison of isolated C5 targeting by mBB5.1 vs. combined AP/C5 inhibition by M014 revealed that M014 reduced the development of skin lesions earlier and more pronounced than mBB5.1. Discussion Our findings identify combined C5/AP targeting as a novel therapeutic option for autoimmune blistering dermatoses.
Collapse
Affiliation(s)
- Björn Laffer
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Mareike Ohms
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ping Tsui
- Kira Pharmaceuticals, Research and Development, Cambridge, MA, United States
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Wenru Song
- Kira Pharmaceuticals, Research and Development, Cambridge, MA, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Zhang X, Ma S, Naz SI, Soderblom EJ, Aliferis C, Kraus VB. Plasma extracellular vesicles carry immune system-related peptides that predict human longevity. GeroScience 2025; 47:1455-1469. [PMID: 39695065 PMCID: PMC11979029 DOI: 10.1007/s11357-024-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in aging. In this National Institutes on Aging-funded study, we sought to identify circulating extracellular vesicle (EV) biomarkers indicative of longevity. The plasma EV proteome of 48 older adults (mean age 77.2 ± 1.7 years [range 72-80]; 50% female, 50% Black, 50% < 2-year survival, 50% ≥ 10-year survival) was analyzed by high-resolution mass spectrometry and flow cytometry. The ability of EV peptides to predict longevity was evaluated in discovery (n = 32) and validation (n = 16) datasets with areas under receiver operating characteristic curves (AUCs). Longevity-associated large EV (LEV) plasma subpopulations were mainly related to immune cells (HLA-ABC+, CD9+, and CD31+) and muscle cells (MCAD+ and RyR2+). Of 7960 identified plasma EV peptides (519 proteins), 46.4% were related to the immune system and 10.1% to muscle. Compared with short-lived older adults, 756 EV peptides (131 proteins) had a higher abundance, and 130 EV peptides (78 proteins) had a lower abundance in long-lived adults. Among longevity-associated peptides, 437 (58 proteins) were immune system related, and 12 (2 proteins) were muscle related. Using just three to five plasma EV peptides (mainly complement components C2-C6), we achieved high predictive accuracy for longevity (AUC range 0.91-1 in a hold-out validation dataset). Our findings suggest that immune cells produce longevity-associated plasma EVs and elucidate fundamental mechanisms regulating aging and longevity. EV longevity predictors suggest there may be merit in targeting complement pathways to extend lifespan, for instance, with any one of the multiple complement inhibitors currently available or in clinical development.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
9
|
Dreher L, Kuehl MB, Wenzel UO, Kylies D. Aortic aneurysm and dissection: complement and precision medicine in aortic disease. Am J Physiol Heart Circ Physiol 2025; 328:H814-H829. [PMID: 40019851 DOI: 10.1152/ajpheart.00853.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Aortic disease encompasses life-threatening conditions such as aortic aneurysm and dissection, which are associated with high prevalence, morbidity, and mortality. The complement system, a key component of innate immunity, not only defends against pathogens but also maintains tissue homeostasis. Recent discoveries have expanded its role beyond immunity, linking complement dysregulation to numerous diseases and positioning it as a target for pharmacotherapy. Complement-based treatments for precision medicine are emerging, with several pharmaceuticals either already approved or under investigation. In aortic disease, complement activation and dysregulation have unveiled novel mechanisms and clinical implications. Human and experimental studies suggest that all three complement pathways contribute to disease pathophysiology. The complement system induces direct cellular damage via the membrane attack complex, as well as matrix-metalloproteinase (MMP)-associated tissue damage by promoting MMP-2 and MMP-9 expression. The anaphylatoxins C3a and C5a exacerbate disease by recruiting immune cells and triggering proinflammatory responses. Examples include neutrophil extracellular trap formation and cytokine release by polymorphonuclear neutrophils. These findings highlight the complement system as a promising novel diagnostic and therapeutic target in aortic disease with potential for individualized treatment. However, gaps remain, emphasizing the need for standardized multisite preclinical studies to improve reproducibility and translation. Biomarker studies must also be validated across diverse patient cohorts for clinical applicability. This review examines current knowledge regarding complement in aortic disease, aiming to evaluate its potential for innovative diagnostic and personalized treatment strategies.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| | - Malte B Kuehl
- Department of Clinical Medicine - The Department of Pathology, Aarhus University, Aarhus, Denmark
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| |
Collapse
|
10
|
Bendapudi PK, Losman JA. How I diagnose and treat acute infection-associated purpura fulminans. Blood 2025; 145:1358-1368. [PMID: 39786416 DOI: 10.1182/blood.2024025078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Purpura fulminans (PF) is a rare but devastating complication of sepsis characterized by a highly thrombotic subtype of disseminated intravascular coagulation (DIC). A medical emergency, PF often requires the involvement of consultant hematologists to assist with diagnosis and management of patients who are in a highly dynamic and deteriorating clinical situation. Patients who survive past the first 24 to 72 hours often die from complications of unchecked thrombosis rather than shock, and survivors are usually left with severe scarring and tissue loss. Despite these challenging features, PF is a pathophysiologically distinct, homogeneous, and highly predictable form of sepsis-associated DIC for which poor outcomes are not a foregone conclusion. The fundamental pathologic lesion in PF is a failure of the anticoagulant protein C pathway, which leads to uncontrolled microvascular clotting and inadequate protein C-mediated cytoprotective effects, which are vital for survival in sepsis. Herein, we review the clinical features and diagnosis of PF. Drawing from existing clinical literature and recent advances in our understanding of the pathophysiology of PF, we describe rationally designed treatment approaches for this disorder, including repletion of natural circulating anticoagulants, use of therapeutic anticoagulation, and ways to optimize transfusion support, and we outline specific interventions that we would recommend avoiding.
Collapse
Affiliation(s)
- Pavan K Bendapudi
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Julie-Aurore Losman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
11
|
Ovcinnikovs V, Dijkman K, Zom GG, Beurskens FJ, Trouw LA. Enhancing complement activation by therapeutic anti-tumor antibodies: Mechanisms, strategies, and engineering approaches. Semin Immunol 2025; 77:101922. [PMID: 39742715 DOI: 10.1016/j.smim.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
The complement system plays an integral role in both innate and adaptive immune responses. Beyond its protective function against infections, complement is also known to influence tumor immunity, where its activation can either promote tumor progression or mediate tumor cell destruction, depending on the context. One such context can be provided by antibodies, with their inherent capacity to activate the classical complement pathway. In recent years, our understanding of the mechanisms governing complement activation by IgG and IgM antibodies has expanded significantly. At the same time, preclinical and clinical studies on antibodies such as rituximab, ofatumumab, and daratumumab have provided evidence for the role of complement in therapeutic success, encouraging strategies to further enhance its activity. In this review we examine the main determinants of antibody-mediated complement activation, highlighting the importance of antibody subclass, affinity, valency, and geometry of antigen engagement. We summarize the evidence for complement involvement in anti-tumor activity and challenges of accurately estimating the extent of its contribution to therapeutic efficacy. Furthermore, we explore several engineering approaches designed to enhance complement activation, including increased Fc oligomerization and C1q affinity, bispecific C1q-recruiting antibodies, IgG subclass chimeras, as well as antibody and paratope combinations. Strategies targeting membrane-bound complement regulatory proteins to overcome tumor-associated complement inhibition are also discussed as a method to boost therapeutic efficacy. Finally, we highlight the potential of complement-dependent cellular cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP) as effector mechanisms that warrant deeper investigation. By integrating advances in antibody and complement biology with insights from efforts to enhance complement activation in therapeutic antibodies, this review aims to provide a comprehensive framework of antibody design and engineering strategies that optimize complement activity for improved anti-tumor efficacy.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
12
|
Bor G, Jin W, Douka D, Borthwick NJ, Liu X, Jansman MMT, Hosta-Rigau L. In vitro and in vivo investigations of hemoglobin-loaded PEGylated ZIF-8 nanoparticles as oxygen carriers for emergency transfusion. BIOMATERIALS ADVANCES 2025; 168:214118. [PMID: 39580988 DOI: 10.1016/j.bioadv.2024.214118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
The limitations of traditional blood supply systems, particularly where ideal storage is unfeasible, challenge the efficacy of transfusion medicine, especially in emergencies and battlefield scenarios. This study investigates a novel hemoglobin-based oxygen carrier (HBOC) using a dual-coating approach with metal phenolic networks (MPNs) and polyethylene glycol (PEG). Utilizing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for their porosity and biocompatibility, the addition of MPN and PEG coatings enhances biocompatibility and stabilizes encapsulated hemoglobin (Hb). This reduces Hb release and minimizes interactions with the coagulation cascade, as evidenced by stable prothrombin and activated partial thromboplastin times. Complement activation studies showed slight increases in C5a levels, indicating low potential for severe immune reactions. In vivo evaluations demonstrated that both MPN-coated and PEGylated Hb-loaded ZIF-8 NPs have enhanced circulation times, with significantly longer half-lives than free Hb. However, PEGylation did not offer additional benefits over MPN coating alone, possibly due to suboptimal PEG density or shielding. Biodistribution studies indicated similar accumulation patterns in the liver and kidneys for both NP types, suggesting common clearance pathways. These findings suggest our PEGylated Hb-loaded ZIF-8 NPs as promising alternatives to traditional transfusions. Future research will assess their efficacy in resuscitation from hemorrhagic shock to validate their clinical application.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Neil Jean Borthwick
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Leticia Hosta-Rigau
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
13
|
Li ZH, Sun ZJ, Tang SCW, Zhao MH, Chen M, Chang DY. Finerenone Alleviates Over-Activation of Complement C5a-C5aR1 Axis of Macrophages by Regulating G Protein Subunit Alpha i2 to Improve Diabetic Nephropathy. Cells 2025; 14:337. [PMID: 40072066 PMCID: PMC11898422 DOI: 10.3390/cells14050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Diabetic nephropathy (DN), one of the most common complications of diabetes mellitus (DM), accounts for a major cause of chronic kidney disease (CKD) worldwide, with a complicated pathogenesis and limited effective strategies nowadays. The mineralocorticoid receptor (MR) is a classical ligand-activated nuclear transcription factor. It is expressed in the renal intrinsic and immune cells, especially macrophages. Over-activation of the MR was observed in patients with DN and was associated with DN prognosis. The renoprotective role of a new generation of non-steroidal selective mineralocorticoid receptor antagonist (MRA), finerenone, has been confirmed in DM and CKD patients. However, the mechanism by which finerenone improves renal inflammation in DN has yet to be completely understood. It was found in this research that the oral administration of finerenone attenuated the kidney injuries in established DN in db/db mice, and particularly improved the pathological changes in the renal tubulointerstitia. Specifically, finerenone inhibited the over-activation of the MR in macrophages, thereby reducing the expression of G protein subunit alpha i2 (GNAI2, Gnαi2), a key downstream component of the C5aR1 pathway. Animal experiments demonstrated that C5aR1 knockout alleviated renal injuries, confirming the critical pathogenic role of C5aR1 in DN. Moreover, finerenone mitigated inflammatory and chemotaxis responses by downregulating Gnαi2 in macrophages. These effects were reflected by reduced expressions of the pro-inflammatory chemokines CXCL15 and CCL2, the regulation of macrophage polarization and improvements in apoptosis. This study intends to understand the protective role of finerenone in DN, which is conducive to revealing the pathophysiological mechanism of DN and further optimizing the treatment of DN patients.
Collapse
Affiliation(s)
- Zi-Han Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
| | - Zi-Jun Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China;
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
14
|
Rashid M, Nair S, Poojari PG, Belle VS, Kunhikatta V, Vaz DA, Shanbhag V, Chandran VP, Chitrapady S, Thunga G. Role of C5aR2 in prognosis of patients with acute respiratory distress syndrome through negative modulation of C5a: A prospective observational study. Heliyon 2025; 11:e42146. [PMID: 39916845 PMCID: PMC11795793 DOI: 10.1016/j.heliyon.2025.e42146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Objective Diverse inflammatory pathology is involved in acute respiratory distress syndrome (ARDS). This study aimed to assess the role of complement component fragment 5a (C5a) receptor 2 (C5aR2) in prognosis of patients with ARDS. Methods A total of 64 adult patients diagnosed with ARDS were prospectively recruited to the study over a period of one year after obtaining the informed consent. The serum C5a and C5aR2were determined using ELISA Kit sandwich method. Area under receiver operating characteristic (AUROC) was used to analyse the prognostic performance of C5a, C5R2, and C5a/C5R2 ratio using MedCalc. The relationship of these biomarkers with the parameters of poor prognosis (non-recovery, hospitalization, ventilation and ICU admission) was analysed through regression using SPSSv20. Results The mean age of the included participants was 49.17 (SD:14.81) years. C5a/C5aR2 ratio had better discrimination (AUC: 0.707 vs 0.699 vs 0.511) and higher specificity (78.1 vs 71.9 vs 3.1) than C5R2 and C5a in predicting the poor prognosis among ARDS patients. The increased level of C5aR2 (OR: 0.225; p = 0.009) was significantly associated with better recovery and the high C5a/C5aR2 ratio (OR: 3.281; p = 0.036) was significantly associated with non-recovery in moderate to severe patients. Additionally, steroid treatment significantly associated with better recovery in patients with a high C5a/C5aR2 ratio (OR: 0.104; p = 0.007). Conclusion The current evidence indicates that a higher levels of C5aR2 significantly associated with better recovery, whereas high levels of C5a/C5aR2 significantly associated to poor prognosis in moderate to severe ARDS patients. However, adequately powered studies are required to confirm these findings in future.
Collapse
Affiliation(s)
- Muhammed Rashid
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Sreedharan Nair
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Pooja Gopal Poojari
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Vijetha Shenoy Belle
- Department of Biochemistry, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Vijayanarayana Kunhikatta
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Daniel A. Vaz
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Vishal Shanbhag
- Department of Critical Care Medicine, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Viji Pulikkel Chandran
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Shravya Chitrapady
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Girish Thunga
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
- Centre for Toxicovigilance and Drug Safety, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| |
Collapse
|
15
|
Ma J, Yiu WH, Tang SCW. Complement anaphylatoxins: Potential therapeutic target for diabetic kidney disease. Diabet Med 2025; 42:e15427. [PMID: 39189098 PMCID: PMC11733663 DOI: 10.1111/dme.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diabetic kidney disease (DKD) is the most common cause of kidney failure, characterized by chronic inflammation and fibrosis. The complement system is increasingly implicated in the development and progression of diabetic nephropathy. The important complement anaphylatoxins C3a and C5a are key mediators of the innate immune system, which regulates cellular inflammation, oxidative stress, mitochondrial homeostasis and tissue fibrosis. This review summarizes the involvement of anaphylatoxins in the pathogenesis of diabetic kidney disease, highlights their important roles in the pathophysiologic changes of glomerulopathy, tubulointerstitial damage and immune cell infiltration, and discusses the modulatory effects of new anti-diabetic drugs acting on the complement system. Based on available clinical data and findings from the preclinical studies of complement blockade, anaphylatoxin-targeted therapeutics may become a promising approach for patients with DKD in the future.
Collapse
Affiliation(s)
- Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| |
Collapse
|
16
|
Behnke V, Wolf A, Hector M, Langmann T. C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39775695 PMCID: PMC11717133 DOI: 10.1167/iovs.66.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice. Methods Bright white light with an intensity of 10,000 lux was applied for 30 minutes to complement component 3a receptor 1 (C3ar1) or complement component 5a receptor 1 (C5ar1) KO and wildtype (WT) mice. Analyses of transcriptome changes and migration activity of Iba1+ cells as well as retinal thickness were performed 4 days after light exposure. Results Full body KO mice of either C3aR1 or C5aR1 were tested, but none led to mitigated migration of Iba1+ cells to the subretinal space or decreased expression of complement factors after light damage compared to WT mice. However, a partial rescue of retinal thickness was shown in C3aR1 KO mice, which was mirrored by significant less membrane attack complex (MAC) occurrence in the outer retina. Conclusions We conclude that deletion of the anaphylatoxin receptor C3aR1 cannot modulate mononuclear phagocytes but diminishes retinal degeneration through interference with the complement pathway and thus decreased MAC assembling. C3aR1-targeted therapy may be considered for patients with dry AMD.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Disease Models, Animal
- Retinal Degeneration/metabolism
- Retinal Degeneration/etiology
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Light/adverse effects
- Mice, Inbred C57BL
- Microglia/metabolism
- Microglia/pathology
- Retina/metabolism
- Retina/pathology
- Retina/radiation effects
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/genetics
- Calcium-Binding Proteins
- Microfilament Proteins
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| |
Collapse
|
17
|
Han Y, Diao J, Wang X, Zhang S, Yuan L, Ping Y, Zhang Y, Luo H. Single-Cell RNA Sequencing Reveals That C5AR1 in Follicle Monocyte Cells Could Predict the Development of POI. J Inflamm Res 2024; 17:11221-11234. [PMID: 39717665 PMCID: PMC11664250 DOI: 10.2147/jir.s490996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose To investigate the follicle microenvironments of women with premature ovarian insufficiency (POI), with normal ovarian reserve function, and who are older (age >40 years) and to identify potential therapeutic targets. Patients and Methods In total, 9 women who underwent in vitro fertilization(IVF) or intracytoplasmic sperm injection(ICSI) were included in this study. The first punctured follicle of each patient was used. Single-cell RNA sequencing was subsequently performed to explore the characteristics of the follicle microenvironments of women with POI, with a normal ovarian reserve and who were older. Results In total, 87,323 cells were isolated and grouped into six clusters: T cells, B cells, neutrophils, basophils, mononuclear phagocytes (MPs), and granulosa cells. The study demonstrated that the POI samples had a smaller component ratio of MPs than did the other samples. The correlation between MPs and granulosa cells may lead to the development of POI. We found that the gene that was simultaneously downregulated in the POI group compared with the normal and older age groups was HLA-DRB5. Moreover, we observed that HLA-DRB5 was expressed mainly in monocytes. The temporal differentiation trajectory revealed that different monocytes play important roles in the beginning and end stages of differentiation. The C5AR1 gene is highly expressed in monocytes. Conclusion Our findings revealed that the interaction between monocytes and granulocytes may contribute to the development of POI. We found that POI lacked HLA-DRB5 expression and had impaired antigen processing and presentation activities. To a certain extent, C5AR1 could be used to predict the development of POI.
Collapse
Affiliation(s)
- Ying Han
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Junrong Diao
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Xinyan Wang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Shuai Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Lina Yuan
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Yaqiong Ping
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Haining Luo
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| |
Collapse
|
18
|
Mathew Thomas V, Sayegh N, Chigarira B, Gebrael G, Tripathi N, Nussenzveig R, Jo Y, Dal E, Galarza Fortuna G, Li H, Sahu KK, Srivastava A, Maughan BL, Agarwal N, Swami U. Differences in Tumor Gene Expression Profiles Between De Novo Metastatic Castration-sensitive Prostate Cancer and Metastatic Relapse After Prior Localized Therapy. Eur Urol Oncol 2024; 7:1462-1468. [PMID: 38735779 DOI: 10.1016/j.euo.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND OBJECTIVE It has been reported that patients with de novo metastatic castration-sensitive prostate cancer (dn-mCSPC) have worse prognosis and outcomes than those whose cancer relapses after prior local therapy (PLT-mCSPC). Our aim was to interrogate and validate underlying differences in tumor gene expression profiles between dn-mCSPC and PLT-mCSPC. METHODS The inclusion criteria were histologically confirmed prostate adenocarcinoma and the availability of RNA sequencing data for treatment-naïve primary prostate tissue. RNA sequencing was performed by Tempus or Caris Life Sciences, both of which have Clinical Laboratory Improvement Amendments certification. The Tempus cohort was used for interrogation, while the Caris cohort was used for validation. Differential gene expression analysis between the cohorts was conducted using the DEseq2 pipeline. The resulting gene expression profiles were further analyzed using Gene Set Enrichment software to identify pathways with enrichment in each cohort. KEY FINDINGS AND LIMITATIONS Overall, 128 patients were eligible, of whom 78 were in the Tempus cohort (dn-mCSPC 37, PLT-mCSPC 41) and 50 were in the Caris cohort (dn-mCSPC 30, PLT-mCSPC 20). Tumor tissues from patients with dn-mCSPC had higher expression of genes associated with inflammation pathways, while tissues from patients with PLT-mCSPC had higher expression of genes involved in oxidative phosphorylation, fatty acid metabolism, and androgen response pathways. CONCLUSIONS AND CLINICAL IMPLICATIONS Our study revealed upregulation of distinct genomic pathways in dn-mCSPC in comparison to PLT-mCSPC. These hypothesis-generating data could guide personalized therapy for men with prostate cancer and explain different survival outcomes for dn-mCSPC and PLT-mCSPC. PATIENT SUMMARY We measured gene expression levels in tumors from patients with metastatic castration-sensitive prostate cancer. In patients with metastatic disease at first diagnosis, inflammatory pathways were upregulated. In patients whose metastasis occurred on relapse after treatment, androgen response pathways were upregulated. These findings could help in personalizing therapy for prostate cancer and explaining differences in survival.
Collapse
Affiliation(s)
- Vinay Mathew Thomas
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beverly Chigarira
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nishita Tripathi
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, Detroit Medical Center Sinai Grace Hospital, Detroit, MI, USA
| | - Roberto Nussenzveig
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; DDx Foundation, Lehi, UT, USA
| | - Yeonjung Jo
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Emre Dal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Haoran Li
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, Westwood, KS, USA
| | - Kamal Kant Sahu
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ayana Srivastava
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin L Maughan
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Chow TG, Muzaffar AF, Alvarez-Arango S. Non-IgE-mediated drug-induced hypersensitivity reactions in pediatrics. Curr Opin Pediatr 2024; 36:674-683. [PMID: 39254665 PMCID: PMC11560661 DOI: 10.1097/mop.0000000000001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW Despite their prevalence and potential severity, non-IgE-mediated drug-induced hypersensitivity reactions (DHRs) are under-researched and poorly defined, particularly in children. Presentations range from mild cutaneous reactions to severe systemic diseases, with pathophysiological mechanisms and reliable diagnostic markers not well established. The lack of validated tests often leads to permanent drug restrictions, reliance on second-line drugs, and increased costs. Focusing on recent advancements and areas needing further research, this review aims to enhance children's recognition, diagnosis, and management of non-IgE-mediated DHRs. RECENT FINDINGS Recent studies have enhanced the understanding of immediate and delayed non-IgE-mediated drug reactions. Key findings include the Mas-related G protein-coupled receptor X2 in mast cells and the identification of HLA alleles linked to severe cutaneous adverse reactions, such as Stevens-Johnson syndrome and toxic epidermal necrolysis. Improved diagnostic techniques, including skin testing, show promise in identifying immediate and delayed non-IgE DHRs. Additionally, research highlights the impact of cofactors, drug metabolites, and co-infections on these DHRs and explores potential biomarkers for predicting reaction severity. SUMMARY Non-IgE-mediated DHRs are a significant cause of morbidity and treatment changes in pediatric patients. Recent research underscores their clinical presentations and mechanisms, paving the way for more precise diagnostic and therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Timothy G Chow
- Division of Allergy and Immunology, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anum F Muzaffar
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Santiago Alvarez-Arango
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Hopkins Bayview Circle, 5501, MD, 21224, Baltimore, USA
| |
Collapse
|
20
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 PMCID: PMC11641342 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Priyanka K. Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA;
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
21
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
22
|
Aymerich N, Schlotheuber LJ, Bucheli OTM, Portmann K, Baudry J, Eyer K. Antibody density on bacteria regulates C1q recruitment by monoclonal IgG but not IgM. Eur J Immunol 2024; 54:e2451228. [PMID: 39233515 DOI: 10.1002/eji.202451228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Antibodies that trigger the complement system play a pivotal role in the immune defense against pathogenic bacteria and offer potential therapeutic avenues for combating antibiotic-resistant bacterial infections, a rising global concern. To gain a deeper understanding of the key parameters regulating complement activation by monoclonal antibodies, we developed a novel bioassay for quantifying classical complement activation at the monoclonal antibody level, and employed this assay to characterize rare complement-activating antibacterial antibodies on the single-antibody level in postimmunization murine antibody repertoires. We characterized monoclonal antibodies from various antibody isotypes against specific pathogenic bacteria (Bordetella pertussis and Neisseria meningitidis) to broaden the scope of our findings. We demonstrated activation of the classical pathway by individual IgM- and IgG-secreting cells, that is, monoclonal IgM and IgG2a/2b/3 subclasses. Additionally, we could observe different epitope density requirements for efficient C1q binding depending on antibody isotype, which is in agreement with previously proposed molecular mechanisms. In short, we found that antibody density most crucially regulated C1q recruitment by monoclonal IgG isotypes, but not IgM isotypes. This study provides additional insights into important parameters for classical complement initiation by monoclonal antibodies, a knowledge that might inform antibody screening and vaccination efforts.
Collapse
Affiliation(s)
- Nathan Aymerich
- Laboratoire Colloïdes et Matériaux Divisés (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, Paris, France
| | - Luca J Schlotheuber
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Olivia T M Bucheli
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Kevin Portmann
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, Paris, France
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
24
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
25
|
Dreher L, Bode M, Ehnert N, Meyer-Schwesinger C, Wiech T, Köhl J, Huber TB, Freiwald T, Herrnstadt GR, Wenzel UO. Role of the Anaphylatoxin Receptor C5aR2 in Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Am J Hypertens 2024; 37:810-825. [PMID: 38934290 DOI: 10.1093/ajh/hpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKROUND Complement activation may facilitate hypertension through its effects on immune responses. The anaphylatoxin C5a, a major inflammatory effector, binds to the C5a receptors 1 and 2 (C5aR1, C5aR2). We have recently shown that C5aR1-/- mice have reduced hypertensive renal injury. The role of C5aR2 in hypertension is unknown. METHODS For examination of C5aR2 expression on infiltrating and resident renal cells a tandem dye Tomato-C5aR2 knock-in reporter mouse was used. Human C5aR2 expression was analyzed in a single-cell RNAseq data set from the kidneys of hypertensive patients. Finally, we examined the effect of angiotensin II-induced hypertension in C5aR2-deficient mice. RESULTS Flow cytometric analysis of leukocytes isolated from kidneys of the reporter mice showed that dendritic cells are the major C5aR2-expressing population (34%) followed by monocyte/macrophages (30%) and neutrophils (14%). Using confocal microscopy C5aR2 was not detected in resident renal or cardiac cells. In the human kidney, C5aR2 was also mainly found in monocytes, macrophages, and dendritic cells with a significantly higher expression in hypertension (P < 0.05). Unilateral nephrectomy was performed followed by infusion of Ang II (0.75 ng/g/min) and a high salt diet in wildtype (n = 18) and C5aR2-deficient mice (n = 14). Blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation), and cardiac injury (cardiac fibrosis, heart weight, gene expression) did not differ between hypertensive wildtype and C5aR2-/- mice. CONCLUSIONS In summary, C5aR2 is mainly expressed in myeloid cells in the kidney in mice and humans but its deficiency has no effect on Ang II-induced hypertensive injury.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolas Ehnert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Section of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck., Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tilo Freiwald
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Yue L, Li J, Yao M, Song S, Zhang X, Wang Y. Cutting edge of immune response and immunosuppressants in allogeneic and xenogeneic islet transplantation. Front Immunol 2024; 15:1455691. [PMID: 39346923 PMCID: PMC11427288 DOI: 10.3389/fimmu.2024.1455691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
As an effective treatment for diabetes, islet transplantation has garnered significant attention and research in recent years. However, immune rejection and the toxicity of immunosuppressive drugs remain critical factors influencing the success of islet transplantation. While immunosuppressants are essential in reducing immune rejection reactions and can significantly improve the survival rate of islet transplants, improper use of these drugs can markedly increase mortality rates following transplantation. Additionally, the current availability of islet organ donations fails to meet the demand for organ transplants, making xenotransplantation a crucial method for addressing organ shortages. This review will cover the following three aspects: 1) the immune responses occurring during allogeneic islet transplantation, including three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence; 2) commonly used immunosuppressants in allogeneic islet transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus), mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late immune responses in xenogeneic islet transplantation and the immune effects of triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus) on xenotransplantation.
Collapse
Affiliation(s)
- Liting Yue
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Yao
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Xiaoqin Zhang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
27
|
Yang T, Li J, Cheng X, Lu Q, Farooq Z, Fu Y, Lv S, Nan W, Yu B, Duan J, Zhang Y, Fu Y, Jiang H, McCormick PJ, Li Y, Zhang J. Structural analysis of the human C5a-C5aR1 complex using cryo-electron microscopy. J Struct Biol 2024; 216:108117. [PMID: 39153560 DOI: 10.1016/j.jsb.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The complement system is a complex network of proteins that plays a crucial role in the innate immune response. One important component of this system is the C5a-C5aR1 complex, which is critical in the recruitment and activation of immune cells. In-depth investigation of the activation mechanism as well as biased signaling of the C5a-C5aR1 system will facilitate the elucidation of C5a-mediated pathophysiology. In this study, we determined the structure of C5a-C5aR1-Gi complex at a high resolution of 3 Å using cryo-electron microscopy (Cryo-EM). Our results revealed the binding site of C5a, which consists of a polar recognition region on the extracellular side and an amphipathic pocket within the transmembrane domain. Furthermore, we found that C5a binding induces conformational changes of C5aR1, which subsequently leads to the activation of G protein signaling pathways. Notably, a key residue (M265) located on transmembrane helix 6 (TM6) was identified to play a crucial role in regulating the recruitment of β-arrestin driven by C5a. This study provides more information about the structure and function of the human C5a-C5aR1 complex, which is essential for the proper functioning of the complement system. The findings of this study can also provide a foundation for the design of new pharmaceuticals targeting this receptor with bias or specificity.
Collapse
Affiliation(s)
- Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jian Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qiuyuan Lu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zara Farooq
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Boming Yu
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, UK.
| | - Yanyan Li
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
28
|
Danzig CJ, Khanani AM, Loewenstein A. C5 inhibitor avacincaptad pegol treatment for geographic atrophy: A comprehensive review. Immunotherapy 2024; 16:779-790. [PMID: 39073397 PMCID: PMC11457614 DOI: 10.1080/1750743x.2024.2368342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Geographic atrophy (GA) remains a leading cause of central vision loss with no known cure. Until recently, there were no approved treatments for GA, often resulting in poor quality of life for affected patients. GA is characterized by atrophic lesions on the retina that may eventually threaten the fovea. Emerging treatments have demonstrated the ability to reduce the rate of lesion growth, potentially preserving visual function. Avacincaptad pegol (ACP; Astellas Pharma Inc), a complement component 5 inhibitor, is an FDA-approved treatment for GA that has been evaluated in numerous clinical trials. Here we review the current clinical trial landscape of ACP, including critical post hoc analyses that suggest ACP may reduce the risk of severe loss among patients with GA.
Collapse
Affiliation(s)
- Carl J Danzig
- Rand Eye Institute, Deerfield Beach, FL 33064, USA
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Arshad M Khanani
- Sierra Eye Associates, Reno, NV 89502, USA
- The University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Anat Loewenstein
- Division of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
29
|
Lujan E, Zhang I, Garon AC, Liu F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses 2024; 16:1171. [PMID: 39066333 PMCID: PMC11281448 DOI: 10.3390/v16071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The complement system is an evolutionarily ancient component of innate immunity that serves as an important first line of defense against pathogens, including viruses. In response to infection, the complement system can be activated by three distinct yet converging pathways (classical, lectin, and alternative) capable of engaging multiple antiviral host responses to confront acute, chronic, and recurrent viral infections. Complement can exert profound antiviral effects via multiple mechanisms including the induction of inflammation and chemotaxis to sites of infection, neutralization/opsonization of viruses and virally infected cells, and it can even shape adaptive immune responses. With millions of years of co-evolution and the ability to establish life-long infections, herpesviruses have evolved unique mechanisms to counter complement-mediated antiviral defenses, thus enabling their survival and replication within humans. This review aims to comprehensively summarize how human herpesviruses engage with the complement system and highlight our understanding of the role of complement in human cytomegalovirus (HCMV) infection, immunity, and viral replication. Herein we describe the novel and unorthodox roles of complement proteins beyond their roles in innate immunity and discuss gaps in knowledge and future directions of complement and HCMV research.
Collapse
Affiliation(s)
- Eduardo Lujan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Andrea Canto Garon
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Liu H, Jiang M, Chen Z, Li C, Yin X, Zhang X, Wu M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis 2024; 16:1452-1470. [PMID: 39012667 PMCID: PMC12096917 DOI: 10.14336/ad.2024.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Stroke is a serious disease that can lead to local neurological dysfunction and cause great harm to the patient's health due to blood cerebral circulation disorder. Synaptic pruning is critical for the normal development of the human brain, which makes the synaptic circuit completer and more efficient by removing redundant synapses. The complement system is considered a key player in synaptic loss and cognitive impairment in neurodegenerative disease. After stroke, the complement system is over-activated and complement proteins can be labeled on synapses. Microglia and astrocytes can recognize and engulf synapses through corresponding complement receptors. Complement-mediated excessive synaptic pruning can cause post-stroke cognitive impairment (PSCI) and secondary brain damage. This review summarizes the latest progress of complement-mediated synaptic pruning after stroke and the potential mechanisms. Targeting complement-mediated synaptic pruning may be essential for exploring therapeutic strategies for secondary brain injury (SBI) and neurological dysfunction after stroke.
Collapse
Affiliation(s)
- Hongying Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China.
| | - Chuan Li
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China.
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| | - Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| |
Collapse
|
31
|
Froehlich F, Landerholm K, Neeb J, Meß AK, Seiler DL, Tilburgs T, Karsten CM. Emerging role of C5aR2: novel insights into the regulation of uterine immune cells during pregnancy. Front Immunol 2024; 15:1411315. [PMID: 38979410 PMCID: PMC11229525 DOI: 10.3389/fimmu.2024.1411315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.
Collapse
Affiliation(s)
- Fenna Froehlich
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Konstanze Landerholm
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Johanna Neeb
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Ann-Kathrin Meß
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Luebeck, Germany
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
32
|
Khan H, Abu-Raisi M, Feasson M, Shaikh F, Saposnik G, Mamdani M, Qadura M. Current Prognostic Biomarkers for Abdominal Aortic Aneurysm: A Comprehensive Scoping Review of the Literature. Biomolecules 2024; 14:661. [PMID: 38927064 PMCID: PMC11201473 DOI: 10.3390/biom14060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive dilatation of the aorta that can lead to aortic rupture. The pathophysiology of the disease is not well characterized but is known to be caused by the general breakdown of the extracellular matrix within the aortic wall. In this comprehensive literature review, all current research on proteins that have been investigated for their potential prognostic capabilities in patients with AAA was included. A total of 45 proteins were found to be potential prognostic biomarkers for AAA, predicting incidence of AAA, AAA rupture, AAA growth, endoleak, and post-surgical mortality. The 45 proteins fell into the following seven general categories based on their primary function: (1) cardiovascular health, (2) hemostasis, (3) transport proteins, (4) inflammation and immunity, (5) kidney function, (6) cellular structure, (7) and hormones and growth factors. This is the most up-to-date literature review on current prognostic markers for AAA and their functions. This review outlines the wide pathophysiological processes that are implicated in AAA disease progression.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Mohamed Abu-Raisi
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Manon Feasson
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
33
|
Perry AS, Farber-Eger E, Gonzales T, Tanaka T, Robbins JM, Murthy VL, Stolze LK, Zhao S, Huang S, Colangelo LA, Deng S, Hou L, Lloyd-Jones DM, Walker KA, Ferrucci L, Watts EL, Barber JL, Rao P, Mi MY, Gabriel KP, Hornikel B, Sidney S, Houstis N, Lewis GD, Liu GY, Thyagarajan B, Khan SS, Choi B, Washko G, Kalhan R, Wareham N, Bouchard C, Sarzynski MA, Gerszten RE, Brage S, Wells QS, Nayor M, Shah RV. Proteomic analysis of cardiorespiratory fitness for prediction of mortality and multisystem disease risks. Nat Med 2024; 30:1711-1721. [PMID: 38834850 PMCID: PMC11186767 DOI: 10.1038/s41591-024-03039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Gonzales
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Toshiko Tanaka
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeremy M Robbins
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shuliang Deng
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keenan A Walker
- Multimodal Imaging of Neurodegenerative Disease (MIND) Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jacob L Barber
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Prashant Rao
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Y Mi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelley Pettee Gabriel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjoern Hornikel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas Houstis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gabrielle Y Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, MN, USA
| | - Sadiya S Khan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina Columbia, Columbia, SC, USA
| | - Robert E Gerszten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
34
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Aoki YI, Taguchi K, Anzawa H, Kawashima J, Ishida N, Otsuki A, Hasegawa A, Baird L, Suzuki T, Motoike IN, Ohneda K, Kumada K, Katsuoka F, Kinoshita K, Yamamoto M. Whole blood transcriptome analysis for age- and gender-specific gene expression profiling in Japanese individuals. J Biochem 2024; 175:611-627. [PMID: 38268329 PMCID: PMC11756699 DOI: 10.1093/jb/mvae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Whole blood transcriptome analysis is a valuable approachin medical research, primarily due to the ease of sample collection and the richness of the information obtained. Since the expression profile of individual genes in the analysis is influenced by medical traits and demographic attributes such as age and gender, there has been a growing demand for a comprehensive database for blood transcriptome analysis. Here, we performed whole blood RNA sequencing (RNA-seq) analysis on 576 participants stratified by age (20-30s and 60-70s) and gender from cohorts of the Tohoku Medical Megabank (TMM). A part of female segment included pregnant women. We did not exclude the globin gene family in our RNA-seq study, which enabled us to identify instances of hereditary persistence of fetal hemoglobin based on the HBG1 and HBG2 expression information. Comparing stratified populations allowed us to identify groups of genes associated with age-related changes and gender differences. We also found that the immune response status, particularly measured by neutrophil-to-lymphocyte ratio (NLR), strongly influences the diversity of individual gene expression profiles in whole blood transcriptome analysis. This stratification has resulted in a data set that will be highly beneficial for future whole blood transcriptome analysis in the Japanese population.
Collapse
Affiliation(s)
- Yu-ichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
| | - Keiko Taguchi
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Hayato Anzawa
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
| | - Junko Kawashima
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Noriko Ishida
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Atsushi Hasegawa
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Liam Baird
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Takafumi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
| | - Kinuko Ohneda
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| |
Collapse
|
37
|
Lian X, Cheng Y, Kang H. New insights of acylation stimulating protein in modulating the pathological progression of metabolic syndromes. Int Immunopharmacol 2024; 132:112018. [PMID: 38588630 DOI: 10.1016/j.intimp.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.
Collapse
Affiliation(s)
- Xi Lian
- Department of Anesthesia Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
38
|
Alvarez-Arango S, Kumar M, Chow TG, Sabato V. Non-IgE-Mediated Immediate Drug-Induced Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1109-1119. [PMID: 38423288 PMCID: PMC11081849 DOI: 10.1016/j.jaip.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Immediate drug-induced hypersensitivity reactions (IDHSRs) have conventionally been attributed to an immunoglobulin E (IgE)-mediated mechanism. Nevertheless, it has now been acknowledged that IDHSRs can also occur independently of IgE involvement. Non-IgE-mediated IDHSRs encompass the activation of effector cells, both mast cell-dependent and -independent and the initiation of inflammatory pathways through immunogenic and nonimmunogenic mechanisms. The IDHSRs involve inflammatory mediators beyond histamine, including the platelet-activating factor, which activates multiple cell types, including smooth muscle, endothelium, and MC, and evidence supports its importance in IgE-mediated reactions in humans. Clinically, distinguishing IgE from non-IgE mechanisms is crucial for future treatment strategies, including drug(s) restriction, readministration approaches, and pretreatment considerations. However, this presents significant challenges because certain drugs can trigger both mechanisms, and their presentations can appear similarly, ranging from mild to life-threatening symptoms. Thus, history alone is often inadequate for differentiation, and skin tests lack a standardized approach. Moreover, drug-specific IgE immunoassays have favorable specificity but low sensitivity, and the usefulness of the basophil activation test remains debatable. Lastly, no biomarker reliably differentiates between both mechanisms. Whereas non-IgE-mediated mechanisms likely predominate in IDHSRs, reclassifying most drug-related IDHSRs as non-IgE-mediated, with suggested prevention through dose administration adjustments, is premature and risky. Therefore, continued research and validated diagnostic tests are crucial to improving our capacity to distinguish between these mechanisms, ultimately enhancing patient care.
Collapse
Affiliation(s)
- Santiago Alvarez-Arango
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Mukesh Kumar
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR
| | - Timothy G Chow
- Division of Allergy and Immunology, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, Antwerp University Hospital, University Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
Dhilip A, Parameswari RP. Deciphering the Involvement of Chronic Inflammation in Osteoarthritis: Evaluation of Complement 3 and Cathepsin D in Osteoarthritic Patients-A Retrospective Case Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1321-S1325. [PMID: 38882875 PMCID: PMC11174188 DOI: 10.4103/jpbs.jpbs_539_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 06/18/2024] Open
Abstract
Background and Aim Osteoarthritis (OA) stands as the prevailing degenerative joint condition, and although it is widely observed, its precise causes are not fully understood. The main focus of the study was to assess the role of Complement C3 and Cathepsin D in the development of knee osteoarthritis (OA), which is the most prevalent degenerative joint disease. Materials and Methods The study was carried out in 20 patients with knee OA and 20 healthy control group. OA knee (Grade II/III, Radiological Kellgren and Lawrence (K/L) classification), aged between 40 and 65 years were able to walk with a painful knee. The study also included healthy age-matched controls. The concentration of Complement C3 and Cathepsin D in serum was determined. Results The results of the present study demonstrated significantly (P < 0.001) higher concentrations of C3 and Cathepsin D in OA patients in comparison to that of the healthy aged matched control group. Conclusions The analysis showed that inflammatory markers, Complement C3 as well as Cathepsin D may be used as diagnostic markers of knee OA. The observations suggest that the activation of the complement system mainly affects processes within the joints, while C3 appears to play a central role in generating a systemic inflammatory response.
Collapse
Affiliation(s)
- Ashita Dhilip
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai, Tamil Nadu, India
| | - R P Parameswari
- Department of Pharmacology, Centre for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Bendapudi PK, Nazeen S, Ryu J, Söylemez O, Robbins A, Rouaisnel B, O’Neil JK, Pokhriyal R, Yang M, Colling M, Pasko B, Bouzinier M, Tomczak L, Collier L, Barrios D, Ram S, Toth-Petroczy A, Krier J, Fieg E, Dzik WH, Hudspeth JC, Pozdnyakova O, Nardi V, Knight J, Maas R, Sunyaev S, Losman JA. Low-frequency inherited complement receptor variants are associated with purpura fulminans. Blood 2024; 143:1032-1044. [PMID: 38096369 PMCID: PMC10950473 DOI: 10.1182/blood.2023021231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024] Open
Abstract
ABSTRACT Extreme disease phenotypes can provide key insights into the pathophysiology of common conditions, but studying such cases is challenging due to their rarity and the limited statistical power of existing methods. Herein, we used a novel approach to pathway-based mutational burden testing, the rare variant trend test (RVTT), to investigate genetic risk factors for an extreme form of sepsis-induced coagulopathy, infectious purpura fulminans (PF). In addition to prospective patient sample collection, we electronically screened over 10.4 million medical records from 4 large hospital systems and identified historical cases of PF for which archived specimens were available to perform germline whole-exome sequencing. We found a significantly increased burden of low-frequency, putatively function-altering variants in the complement system in patients with PF compared with unselected patients with sepsis (P = .01). A multivariable logistic regression analysis found that the number of complement system variants per patient was independently associated with PF after controlling for age, sex, and disease acuity (P = .01). Functional characterization of PF-associated variants in the immunomodulatory complement receptors CR3 and CR4 revealed that they result in partial or complete loss of anti-inflammatory CR3 function and/or gain of proinflammatory CR4 function. Taken together, these findings suggest that inherited defects in CR3 and CR4 predispose to the maladaptive hyperinflammation that characterizes severe sepsis with coagulopathy.
Collapse
Affiliation(s)
- Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sumaiya Nazeen
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Justine Ryu
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Onuralp Söylemez
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Alissa Robbins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Betty Rouaisnel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jillian K. O’Neil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruchika Pokhriyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Meaghan Colling
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bryce Pasko
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Michael Bouzinier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Lindsay Tomczak
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lindsay Collier
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - David Barrios
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - Agnes Toth-Petroczy
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joel Krier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Elizabeth Fieg
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Walter H. Dzik
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - James C. Hudspeth
- Department of Medicine, Boston Medical Center, Boston, MA
- Boston University School of Medicine, Boston, MA
| | - Olga Pozdnyakova
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Valentina Nardi
- Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT
| | - Richard Maas
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shamil Sunyaev
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Julie-Aurore Losman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
41
|
Reinehr S, Wulf J, Theile J, Schulte KK, Peters M, Fuchshofer R, Dick HB, Joachim SC. In a novel autoimmune and high-pressure glaucoma model a complex immune response is induced. Front Immunol 2024; 15:1296178. [PMID: 38515755 PMCID: PMC10955086 DOI: 10.3389/fimmu.2024.1296178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background The neurodegenerative processes leading to glaucoma are complex. In addition to elevated intraocular pressure (IOP), an involvement of immunological mechanisms is most likely. In the new multifactorial glaucoma model, a combination of high IOP and optic nerve antigen (ONA) immunization leads to an enhanced loss of retinal ganglion cells accompanied by a higher number of microglia/macrophages in the inner retina. Here, we aimed to evaluate the immune response in this new model, especially the complement activation and the number of T-cells, for the first time. Further, the microglia/macrophage response was examined in more detail. Methods Six-week-old wildtype (WT+ONA) and βB1-connective tissue growth factor high-pressure mice (CTGF+ONA) were immunized with 1 mg ONA. A wildtype control (WT) and a CTGF group (CTGF) received NaCl instead. Six weeks after immunization, retinae from all four groups were processed for immunohistology, RT-qPCR, and flow cytometry, while serum was used for microarray analyses. Results We noticed elevated numbers of C1q+ cells (classical complement pathway) in CTGF and CTGF+ONA retinae as well as an upregulation of C1qa, C1qb, and C1qc mRNA levels in these groups. While the complement C3 was only increased in CTGF and CTGF+ONA retinae, enhanced numbers of the terminal membrane attack complex were noted in all three glaucoma groups. Flow cytometry and RT-qPCR analyses revealed an enhancement of different microglia/macrophages markers, including CD11b, especially in CTGF and CTGF+ONA retinae. Interestingly, increased retinal mRNA as well as serum levels of the tumor necrosis factor α were found throughout the different glaucoma groups. Lastly, more T-cells could be observed in the ganglion cell layer of the new CTGF+ONA model. Conclusion These results emphasize an involvement of the complement system, microglia/macrophages, and T-cells in glaucomatous disease. Moreover, in the new multifactorial glaucoma model, increased IOP in combination with autoimmune processes seem to enforce an additional T-cell response, leading to a more persistent pathology. Hence, this new model mimics the pathomechanisms occurring in human glaucoma more accurately and could therefore be a helpful tool to find new therapeutic approaches for patients in the future.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Julien Wulf
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Janine Theile
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Kim K. Schulte
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Regensburg, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
42
|
Rezvani R, Shadmand Foumani Moghadam MR, Cianflone K. Acylation stimulating protein/C3adesArg in the metabolic states: role of adipocyte dysfunction in obesity complications. J Physiol 2024; 602:773-790. [PMID: 38305477 DOI: 10.1113/jp285127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024] Open
Abstract
Adipose tissue, as an endocrine organ, secretes several adipocyte-derived hormones named 'adipokines' that are implicated in regulating energy haemostasis. Substantial evidence shows that white adipose tissue-derived adipokines mediate the link between obesity-related exogenous factors (like diet and lifestyle) and various biological events (such as pre- and postmenopausal status) that have obesity consequences (cardiometabolic disorders). One of the critical aetiological factors for obesity-related diseases is the dysfunction of adipokine pathways. Acylation-stimulating protein (ASP) is an adipokine that stimulates triglyceride synthesis and storage in adipose tissue by enhancing glucose and fatty acid uptake. ASP acts via its receptor C5L2. The primary objective of this review is to address the existing gap in the literature regarding ASP by investigating its diverse responses and receptor interactions across multiple determinants of obesity. These determinants include diet composition, metabolic disorders, organ involvement, sex and sex hormone levels. Furthermore, this article explores the broader paradigm shift from solely focusing on adipose tissue mass, which contributes to obesity, to considering the broader implications of adipose tissue function. Additionally, we raise a critical question concerning the clinical relevance of the insights gained from this review, both in terms of potential therapeutic interventions targeting ASP and in the context of preventing obesity-related conditions, highlighting the potential of the ASP-C5L2 interaction as a pharmacological target. In conclusion, these findings validate that obesity is a low-grade inflammatory status with multiorgan involvement and sex differences, demonstrating dynamic interactions between immune and metabolic response determinants.
Collapse
Affiliation(s)
- Reza Rezvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
43
|
Kanbay M, Copur S, Yilmaz ZY, Baydar DE, Bilge I, Susal C, Kocak B, Ortiz A. The role of anticomplement therapy in the management of the kidney allograft. Clin Transplant 2024; 38:e15277. [PMID: 38485664 DOI: 10.1111/ctr.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
As the number of patients living with kidney failure grows, the need also grows for kidney transplantation, the gold standard kidney replacement therapy that provides a survival advantage. This may result in an increased rate of transplantation from HLA-mismatched donors that increases the rate of antibody-mediated rejection (AMR), which already is the leading cause of allograft failure. Plasmapheresis, intravenous immunoglobulin therapy, anti-CD20 therapies (i.e., rituximab), bortezomib and splenectomy have been used over the years to treat AMR as well as to prevent AMR in high-risk sensitized kidney transplant recipients. Eculizumab and ravulizumab are monoclonal antibodies targeting the C5 protein of the complement pathway and part of the expanding field of anticomplement therapies, which is not limited to kidney transplant recipients, and also includes complement-mediated microangiopathic hemolytic anemia, paroxysmal nocturnal hemoglobinuria, and ANCA-vasculitis. In this narrative review, we summarize the current knowledge concerning the pathophysiological background and use of anti-C5 strategies (eculizumab and ravulizumab) and C1-esterase inhibitor in AMR, either to prevent AMR in high-risk desensitized patients or to treat AMR as first-line or rescue therapy and also to treat de novo thrombotic microangiopathy in kidney transplant recipients.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Zeynep Y Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dilek Ertoy Baydar
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ilmay Bilge
- Department of Pediatrics, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Caner Susal
- Transplant Immunology Research Center of Excellence, Koc University Hospital, Istanbul, Turkey
| | - Burak Kocak
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
44
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Karhuvaara O, Vilén L, Nuutila J, Putus T, Atosuo J. Indoor microbial exposure increases complement component C3a and C-reactive protein concentrations in serum. Heliyon 2024; 10:e24104. [PMID: 38293363 PMCID: PMC10827445 DOI: 10.1016/j.heliyon.2024.e24104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Indoor exposure to microbial growth, caused by moisture damage, has been an established health risk for several decades. It is likely that a damp indoor environment contains biological pollutants that trigger both the innate and adaptive branches of the immune system. In this study, we investigated the association between moisture damage related microbial exposure and serum C3a, C5a and CRP concentrations in Finnish adults. Serum C3a and CRP concentrations were elevated in individuals exposed to moisture damage and microbial growth in an indoor air environment. The elevated concentrations may be due to environmental factors present in moisture-damaged buildings. Complement activation and the resulting proinflammatory cleavage products may be a driving factor in inflammatory responses following exposure to indoor moisture damage and related microbial growth.
Collapse
Affiliation(s)
- Outi Karhuvaara
- The Laboratory of Immunochemistry, Department of Biotechnology, Faculty of Science and Engineering, University of Turku, Turku, Finland
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Liisa Vilén
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jari Nuutila
- The Laboratory of Immunochemistry, Department of Biotechnology, Faculty of Science and Engineering, University of Turku, Turku, Finland
| | - Tuula Putus
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Janne Atosuo
- The Laboratory of Immunochemistry, Department of Biotechnology, Faculty of Science and Engineering, University of Turku, Turku, Finland
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Azubuike-Osu SO, Kuhs A, Götz P, Faro A, Preissner KT, Arnholdt C, Deindl E. Treatment with Cobra Venom Factor Decreases Ischemic Tissue Damage in Mice. Biomedicines 2024; 12:309. [PMID: 38397911 PMCID: PMC10886846 DOI: 10.3390/biomedicines12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tissue ischemia, caused by the blockage of blood vessels, can result in substantial damage and impaired tissue performance. Information regarding the functional contribution of the complement system in the context of ischemia and angiogenesis is lacking. To investigate the influence of complement activation and depletion upon femoral artery ligation (FAL), Cobra venom factor (CVF) (that functionally resembles C3b, the activated form of complement component C3) was applied in mice in comparison to control mice. Seven days after induction of muscle ischemia through FAL, gastrocnemius muscles of mice were excised and subjected to (immuno-)histological analyses. H&E and apoptotic cell staining (TUNEL) staining revealed a significant reduction in ischemic tissue damage in CVF-treated mice compared to controls. The control mice, however, exhibited a significantly higher capillary-to-muscle fiber ratio and a higher number of proliferating endothelial cells (CD31+/CD45-/BrdU+). The total number of leukocytes (CD45+) substantially decreased in CVF-treated mice versus control mice. Moreover, the CVF-treated group displayed a shift towards the M2-like anti-inflammatory and regenerative macrophage phenotype (CD68+/MRC1+). In conclusion, our findings suggest that treatment with CVF leads to reduced ischemic tissue damage along with decreased leukocyte recruitment but increased numbers of M2-like polarized macrophages, thereby enhancing tissue regeneration, repair, and healing.
Collapse
Affiliation(s)
- Sharon O. Azubuike-Osu
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany or (S.O.A.-O.); (A.K.); (P.G.); (A.F.); (C.A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University Ndufu Alike, Abakaliki 482131, Ebonyi, Nigeria
| | - Amelie Kuhs
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany or (S.O.A.-O.); (A.K.); (P.G.); (A.F.); (C.A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany or (S.O.A.-O.); (A.K.); (P.G.); (A.F.); (C.A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Faro
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany or (S.O.A.-O.); (A.K.); (P.G.); (A.F.); (C.A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Klaus T. Preissner
- Department of Cardiology, Kerckhoff-Heart Research Institute, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Christoph Arnholdt
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany or (S.O.A.-O.); (A.K.); (P.G.); (A.F.); (C.A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany or (S.O.A.-O.); (A.K.); (P.G.); (A.F.); (C.A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
47
|
Panebianco M, Ciccarese C, Strusi A, Beccia V, Carbone C, Agostini A, Piro G, Tortora G, Iacovelli R. The Role of the Complement in Clear Cell Renal Carcinoma (ccRCC)-What Future Prospects Are There for Its Use in Clinical Practice? Cancers (Basel) 2024; 16:490. [PMID: 38339243 PMCID: PMC10854780 DOI: 10.3390/cancers16030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.
Collapse
Affiliation(s)
- Martina Panebianco
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Chiara Ciccarese
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Alessandro Strusi
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Viria Beccia
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Roberto Iacovelli
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| |
Collapse
|
48
|
Laffer B, Lenders M, Ehlers-Jeske E, Heidenreich K, Brand E, Köhl J. Complement activation and cellular inflammation in Fabry disease patients despite enzyme replacement therapy. Front Immunol 2024; 15:1307558. [PMID: 38304433 PMCID: PMC10830671 DOI: 10.3389/fimmu.2024.1307558] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Defective α-galactosidase A (AGAL/GLA) due to missense or nonsense mutations in the GLA gene results in accumulation of the glycosphingolipids globotriaosylceramide (Gb3) and its deacylated derivate globotriaosylsphingosine (lyso-Gb3) in cells and body fluids. The aberrant glycosphingolipid metabolism leads to a progressive lysosomal storage disorder, i. e. Fabry disease (FD), characterized by chronic inflammation leading to multiorgan damage. Enzyme replacement therapy (ERT) with agalsidase-alfa or -beta is one of the main treatment options facilitating cellular Gb3 clearance. Proteome studies have shown changes in complement proteins during ERT. However, the direct activation of the complement system during FD has not been explored. Here, we demonstrate strong activation of the complement system in 17 classical male FD patients with either missense or nonsense mutations before and after ERT as evidenced by high C3a and C5a serum levels. In contrast to the strong reduction of lyso-Gb3 under ERT, C3a and C5a markedly increased in FD patients with nonsense mutations, most of whom developed anti-drug antibodies (ADA), whereas FD patients with missense mutations, which were ADA-negative, showed heterogenous C3a and C5a serum levels under treatment. In addition to the complement activation, we found increased IL-6, IL-10 and TGF-ß1 serum levels in FD patients. This increase was most prominent in patients with missense mutations under ERT, most of whom developed mild nephropathy with decreased estimated glomerular filtration rate. Together, our findings demonstrate strong complement activation in FD independent of ERT therapy, especially in males with nonsense mutations and the development of ADAs. In addition, our data suggest kidney cell-associated production of cytokines, which have a strong potential to drive renal damage. Thus, chronic inflammation as a driver of organ damage in FD seems to proceed despite ERT and may prove useful as a target to cope with progressive organ damage.
Collapse
Affiliation(s)
- Björn Laffer
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Malte Lenders
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Eva Brand
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
49
|
Zigdon M, Sawaed J, Zelik L, Binyamin D, Ben-Simon S, Asulin N, Levin R, Modilevsky S, Naama M, Telpaz S, Rubin E, Awad A, Sawaed W, Harshuk-Shabso S, Nuriel-Ohayon M, Krishnamohan M, Werbner M, Koren O, Winter SE, Apte RN, Voronov E, Bel S. Salmonella manipulates the host to drive pathogenicity via induction of interleukin 1β. PLoS Biol 2024; 22:e3002486. [PMID: 38236896 PMCID: PMC10826948 DOI: 10.1371/journal.pbio.3002486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
Acute gastrointestinal infection with intracellular pathogens like Salmonella Typhimurium triggers the release of the proinflammatory cytokine interleukin 1β (IL-1β). However, the role of IL-1β in intestinal defense against Salmonella remains unclear. Here, we show that IL-1β production is detrimental during Salmonella infection. Mice lacking IL-1β (IL-1β -/-) failed to recruit neutrophils to the gut during infection, which reduced tissue damage and prevented depletion of short-chain fatty acid (SCFA)-producing commensals. Changes in epithelial cell metabolism that typically support pathogen expansion, such as switching energy production from fatty acid oxidation to fermentation, were absent in infected IL-1β -/- mice which inhibited Salmonella expansion. Additionally, we found that IL-1β induces expression of complement anaphylatoxins and suppresses the complement-inactivator carboxypeptidase N (CPN1). Disrupting this process via IL-1β loss prevented mortality in Salmonella-infected IL-1β -/- mice. Finally, we found that IL-1β expression correlates with expression of the complement receptor in patients suffering from sepsis, but not uninfected patients and healthy individuals. Thus, Salmonella exploits IL-1β signaling to outcompete commensal microbes and establish gut colonization. Moreover, our findings identify the intersection of IL-1β signaling and the complement system as key host factors involved in controlling mortality during invasive Salmonellosis.
Collapse
Affiliation(s)
- Mor Zigdon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Jasmin Sawaed
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lilach Zelik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Binyamin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shira Ben-Simon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nofar Asulin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Maria Naama
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shahar Telpaz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Elad Rubin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Aya Awad
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Wisal Sawaed
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Werbner
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sebastian E. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis Health, Davis, California, United States of America
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shai Bel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
50
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|