1
|
Cao L, Shao M, Gu Y, Jia D, Lu W, Liang C, Liu X, Pan Z, Zhang Y, Hu J, Peng P. Calceolarioside B targets MMP12 in the tumor microenvironment to inhibit M2 macrophage polarization and suppress hepatocellular carcinoma progression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156805. [PMID: 40347889 DOI: 10.1016/j.phymed.2025.156805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are crucial in hepatocellular carcinoma (HCC) progression and prognosis, making them promising immunotherapy targets. In traditional Chinese medicine (TCM), qi stagnation and blood stasis are linked to the HCC tumor microenvironment (TME), but few studies explore the effects of related TCM herbs on the TME. Calceolarioside B, a key phenylethanoid glycoside in Akebiae Fructus, has not been well studied for its pharmacological activities or molecular targets, and its role in HCC remains unclear. PURPOSE This study aimed to investigate the effects of Calceolarioside B on TAMs in HCC and clarify its potential targets and regulatory mechanisms. METHODS Murine intrahepatic transplantation HCC models and macrophage-HCC cell co-culture systems were used to investigate the effects of Calceolarioside B on M2-like TAMs polarization and infiltration, and tumor growth. Cellular thermal shift assay, small molecular pull-down assay and surface plasmon resonance were utilized to identify the potential targets regulating M2-like TAMs. Single-cell RNA sequencing and TCGA dataset analyses clarified the differential expression, prognosis, and TAMs association of the potential targets in HCC. RESULTS Calceolarioside B reduces M2-like TAMs polarization and infiltration in the TME by binding to and inhibiting matrix metallopeptidase-12 (MMP12) form both macrophages and HCC cells, thereby preventing immunosuppressive effects. Public database analysis revealed that MMP12 overexpression promoted macrophage infiltration, with MMP12+ macrophages preferentially aggregating in primary and metastatic HCC tumors. CONCLUSION Calceolarioside B is identified as a novel MMP12 inhibitor modulating TAMs in the TME, offering a potential TAM-targeting strategy for HCC therapy.
Collapse
Affiliation(s)
- Linna Cao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Miaomiao Shao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifei Gu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Dongwei Jia
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenli Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Liang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaomei Liu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhiqiang Pan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yiwei Zhang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jinquan Hu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Peike Peng
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhou T, Chen G, Cao J, Ji H, Zou G, Liang H. METTL14 facilitates the process of sexual reversal via m6A RNA methylation in Pelodiscus sinensis. Genomics 2025; 117:111030. [PMID: 40081543 DOI: 10.1016/j.ygeno.2025.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis, P. sinensis) demonstrates noteworthy sexual dimorphism, where the males grow more rapidly and significantly larger than females under equivalent conditions. Estradiol (E2) administration can catalyze transformation from male to pseudo-female (PF), during which m6A RNA methylation undergoes considerable alterations. Nevertheless, the function of m6A methylation, specifically, the methyltransferase 14, N6-adenosine-methyltransferase non-catalytic subunit gene (METTL14) during this sex reversal process remains unclear. Within this study, we characterized the METTL14 gene, which was predominantly expressed within the ovary and demonstrated notable expression in PF individuals. Interference of METTL14 results in altered expression of methylation-related genes, yielding elevated RSPO1 expression and diminished AMH expression. Administration of E2 and METTL14-RNAi elicits 7994 differentially expressed genes (DEGs) during sexual differentiation, and KEGG enrichment analysis highlighted that METTL14 profoundly affects embryonic development through pathways including steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and Glycolysis/Gluconeogenesis. Gene set enrichment analysis (GSEA) indicated that METTL14-RNAi triggers reduced expression of steroid hormone biosynthesis and ovarian steroidogenesis pathways while increasing the PPAR signaling pathway. In conclusion, METTL14-RNAi results in significant up-regulation of RSPO1 and down-regulation of AMH, inducing substantial alterations in pathways associated with hormone and metabolism. These findings propose that METTL14 may play a facilitating role during E2-induced sex reversal in P. sinensis, offering a novel avenue for further exploration into all-male breeding.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Jizeng Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Huizi Ji
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China.
| |
Collapse
|
3
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Song H, Chen L, Pan X, Shen Y, Ye M, Wang G, Cui C, Zhou Q, Tseng Y, Gong Z, Zhong B, Cui H, Mo S, Zheng J, Jin B, Zheng W, Luo F, Liu J. Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell 2025; 43:503-518.e10. [PMID: 40068600 DOI: 10.1016/j.ccell.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
STING is an important DNA sensing machinery in initiating immune response, yet therapies targeting STING have shown poor outcomes in clinical trials. Here, we reveal that STING signaling induces PD-L1hi tumor monocytes (Tu.Mons) that dominate the resistance against STING agonist therapy. Cell-intrinsic PD-L1, induced by the STING-IRF3-IFN-I axis, is identified as the driving factor for protumoral PD-L1hi Tu.Mons. Notably, TLR2-activated Tu.Mons resist STING-induced upregulation of cell-intrinsic PD-L1 and the associated protumoral functions. Mechanistically, TLR2 stimulation remodels STING signaling by facilitating STING and TRAF6 interaction, which suppresses the IRF3-IFN-I response and enhances NF-κB activation. Moreover, we demonstrate that combining STING agonists with TLR2 agonist pretreatment significantly improves antitumor efficacy in murine syngeneic and humanized models. Our findings uncover a protumoral aspect of STING activation mediated by cell-intrinsic PD-L1 and propose a promising strategy to boost antitumor immunity by fine-tuning STING signaling outputs.
Collapse
Affiliation(s)
- Huan Song
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Chen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuru Shen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Maolin Ye
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guohong Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Qi Zhou
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheng Gong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Zhong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haoshu Cui
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaocong Mo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiayue Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bryan Jin
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Wang AYL, Aviña AE, Liu YY, Chang YC, Kao HK. Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases. Antioxidants (Basel) 2025; 14:183. [PMID: 40002370 PMCID: PMC11851694 DOI: 10.3390/antiox14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1's emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Bannister ME, Chatterjee DA, Shetty S, Patten DA. The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci 2024; 25:13167. [PMID: 39684877 DOI: 10.3390/ijms252313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenvironment that promotes tumour progression and metastasis. In this setting, macrophages make up a major immune component of the HCC tumour microenvironment, and in this review, we focus on their contribution to HCC development and progression. Tumour-associated macrophages (TAMs) are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can be induced by factors that are found within the tumour microenvironment, such as growth factors, cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-specific immune responses. We discuss the potential for targeting TAMs therapeutically either by altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking advantage of their infiltrative properties from the circulation into tumour tissue.
Collapse
Affiliation(s)
- Megan E Bannister
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| | - Devnandan A Chatterjee
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
9
|
Zhan L, Luo S, Wang H, Wang J, Pan X, Lin Y, Jin B, Liang Y, Peng C. Nicotine-Induced Transient Activation of Monocytes Facilitates Immunosuppressive Macrophage Polarization that Restrains T Helper 17 Cell Expansion. Inflammation 2024:10.1007/s10753-024-02191-3. [PMID: 39604662 DOI: 10.1007/s10753-024-02191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Macrophages in smoking environment exhibit a distinct immunosuppressive phenotype, but the mechanisms that allow nicotine to "educate" macrophages are incompletely understood. Here, we identified that nicotine transiently activates and subsequently deactivates monocytes, leading to reduced anti-infective capability of macrophages. This deactivation results in a suppression of IL-17-producing cell expansion through decreased IL-1β production. Mechanistically, nicotine induces the expression of IRAK-M in macrophages, which inhibits NF-κB signaling and restrains NLRP3 inflammasome-mediated IL-1β production. Moreover, the induction of IRAK-M by nicotine is mediated through α7 nAChR binding, which activates downstream STAT3 and AKT signaling pathways. Targeting the interaction between nicotine and α7 nAChR can decrease IRAK-M expression and restore LPS-mediated NLRP3 inflammasome-driven IL-1β production. Collectively, these findings elucidate how nicotine modulates macrophage function through complex signaling mechanisms, ultimately impacting their anti-infective responses and inflammatory processes.
Collapse
Affiliation(s)
- Lei Zhan
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Siwei Luo
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Han Wang
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Junxia Wang
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Xiaowei Pan
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Yun Lin
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Baofeng Jin
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Yaoxing Liang
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China
| | - Chen Peng
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Wang J, He Y, Hu F, Hu C, Sun Y, Yang K, Yang S. Metabolic Reprogramming of Immune Cells in the Tumor Microenvironment. Int J Mol Sci 2024; 25:12223. [PMID: 39596288 PMCID: PMC11594648 DOI: 10.3390/ijms252212223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic reprogramming of immune cells within the tumor microenvironment (TME) plays a pivotal role in shaping tumor progression and responses to therapy. The intricate interplay between tumor cells and immune cells within this ecosystem influences their metabolic landscapes, thereby modulating the immune evasion tactics employed by tumors and the efficacy of immunotherapeutic interventions. This review delves into the metabolic reprogramming that occurs in tumor cells and a spectrum of immune cells, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs), within the TME. The metabolic shifts in these cell types span alterations in glucose, lipid, and amino acid metabolism. Such metabolic reconfigurations can profoundly influence immune cell function and the mechanisms by which tumors evade immune surveillance. Gaining a comprehensive understanding of the metabolic reprogramming of immune cells in the TME is essential for devising novel cancer therapeutic strategies. By targeting the metabolic states of immune cells, it is possible to augment their anti-tumor activities, presenting new opportunities for immunotherapeutic approaches. These strategies hold promise for enhancing treatment outcomes and circumventing the emergence of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| |
Collapse
|
11
|
Xiang X, Wang K, Zhang H, Mou H, Shi Z, Tao Y, Song H, Lian Z, Wang S, Lu D, Wei X, Xie H, Zheng S, Wang J, Xu X. Blocking CX3CR1+ Tumor-Associated Macrophages Enhances the Efficacy of Anti-PD1 Therapy in Hepatocellular Carcinoma. Cancer Immunol Res 2024; 12:1603-1620. [PMID: 39115356 DOI: 10.1158/2326-6066.cir-23-0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
The efficacy of immune checkpoint inhibitors in the treatment of hepatocellular carcinoma (HCC) remains limited, highlighting the need for further investigation into the mechanisms underlying treatment resistance. Accumulating evidence indicates that tumor-associated macrophages (TAM) within the tumor microenvironment demonstrate a key role in immune evasion and treatment resistance. This study explored the role of TAMs in the HCC tumor microenvironment. Our findings reveal that TAMs expressing CX3C motif chemokine receptor 1 (CX3CR1) induced T-cell exhaustion through IL27 secretion in orthotopic models of HCC following treatment with anti-PD1. Moreover, we identified prostaglandin E2 (PGE2), released by immune-attacked tumor cells, as a key regulator of TAM transition to a CX3CR1+ phenotype. To augment the therapeutic response to anti-PD1 therapy, we propose targeting CX3CR1+ TAMs in addition to anti-PD1 therapy. Our study contributes to the understanding of the role of TAMs in cancer immunotherapy and highlights potential clinical implications for HCC treatment. The combination of targeting CX3CR1+ TAMs with anti-PD1 therapy holds promise for enhancing the efficacy of immunotherapeutic interventions in patients with HCC.
Collapse
Affiliation(s)
- Xiaonan Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hui Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Haibo Mou
- Department of Medical Oncology, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Zhixiong Shi
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoye Tao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hongliang Song
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Haiyang Xie
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Jiang D, Huang A, Zhu BX, Gong J, Ruan YH, Liu XC, Zheng L, Wu Y. Targeting CD93 on monocytes revitalizes antitumor immunity by enhancing the function and infiltration of CD8 + T cells. J Immunother Cancer 2024; 12:e010148. [PMID: 39448202 PMCID: PMC11499807 DOI: 10.1136/jitc-2024-010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Limited activation and infiltration of CD8+ T cells are major challenges facing T cell-based immunotherapy for most solid tumors, of which the mechanism is multilayered and not yet fully understood. METHODS Levels of CD93 expression on monocytes from paired non-tumor, peritumor and tumor tissues of human hepatocellular carcinoma (HCC) were evaluated. The underlying mechanisms mediating effects of CD93+ monocytes on the inhibition and tumor exclusion of CD8+ T cells were studied through both in vitro and in vivo experiments. RESULTS In this study, we found that monocytes in the peritumoral tissues of HCC significantly increased levels of CD93 expression, and these CD93+ monocytes collocated with CD8+ T cells, whose density was much higher in peritumor than intratumor areas. In vitro experiments showed that glycolytic switch mediated tumor-induced CD93 upregulation in monocytes via the Erk signaling pathway. CD93 on the one hand could enhance PD-L1 expression through the AKT-GSK3β axis, while on the other hand inducing monocytes to produce versican, a type of matrix component which interacted with hyaluronan and collagens to inhibit CD8+ T cell migration. Consistently, levels of CD93+ monocytes positively correlated with the density of peritumoral CD8+ T cells while negatively correlated with that of intratumoral CD8+ T cells. Targeting CD93 on monocytes not only increased the infiltration and activation of CD8+ T cells but also enhanced tumor sensitivity to anti-PD-1 treatment in mice in vivo. CONCLUSION This study identified an important mechanism contributing to the activation and limited infiltration of CD8+ T cells in solid tumors, and CD93+ monocytes might represent a plausible immunotherapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiqi Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bai-Xi Zhu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangling Gong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Hao Ruan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Wang Y, Chen W, Qiao S, Zou H, Yu XJ, Yang Y, Li Z, Wang J, Chen MS, Xu J, Zheng L. Lipid droplet accumulation mediates macrophage survival and Treg recruitment via the CCL20/CCR6 axis in human hepatocellular carcinoma. Cell Mol Immunol 2024; 21:1120-1130. [PMID: 38942796 PMCID: PMC11443046 DOI: 10.1038/s41423-024-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Metabolic changes play a crucial role in determining the status and function of macrophages, but how lipid reprogramming in macrophages contributes to tumor progression is not yet fully understood. Here, we investigated the phenotype, contribution, and regulatory mechanisms of lipid droplet (LD)-laden macrophages (LLMs) in hepatocellular carcinoma (HCC). Enriched LLMs were found in tumor tissues and were associated with disease progression in HCC patients. The LLMs displayed immunosuppressive phenotypes (with extensive expression of TREM2, PD-L1, CD206, and CD163) and attenuated the antitumor activities of CD8+ T cells. Mechanistically, tumor-induced reshuffling of cellular lipids and TNFα-mediated uptake of tumoral fatty acids contribute to the generation of triglycerides and LDs in macrophages. LDs prolong LLM survival and promote CCL20 secretion, which further recruits CCR6+ Tregs to HCC tissue. Inhibiting LLM formation by targeting DGAT1 and DGAT2, which catalyze the synthesis of triglycerides, significantly reduced Treg recruitment, and delayed tumor growth in a mouse hepatic tumor model. Our results reveal the suppressive phenotypes and mechanisms of LLM enrichment in HCC and suggest the therapeutic potential of targeting LLMs for HCC patients.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shuang Qiao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hao Zou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanyan Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Min-Shan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
14
|
Wang X, Zhang S, Xue D, Neculai D, Zhang J. Metabolic reprogramming of macrophages in cancer therapy. Trends Endocrinol Metab 2024:S1043-2760(24)00244-3. [PMID: 39304355 DOI: 10.1016/j.tem.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cancer presents a significant global public health challenge. Within the tumor microenvironment (TME), macrophages are the most abundant immune cell population. Tumor-associated macrophages (TAMs) undergo metabolic reprogramming through influence of the TME; thus, by manipulating key metabolic pathways such as glucose, lipid, or amino acid metabolism, it may be possible to shift TAMs towards an antitumor state, enhancing the immune response against tumors. Here, we highlight the metabolic reprogramming of macrophages as a potential approach for cancer immunotherapy. We explore the major pathways involved in the metabolic reprogramming of TAMs and offer new and valuable insights on the current technologies utilized for TAM reprogramming, including genome editing, antibodies, small molecules, nanoparticles and other in situ editing strategies.
Collapse
Affiliation(s)
- Xudong Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaolong Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Hematology, Hangzhou, 310058, China; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
15
|
Fernandes Q, Ansari AW, Makni-Maalej K, Merhi M, Dermime S, Ahmad A, Uddin S. Interleukin 10: Bridging the chasms in the immune landscape of multiple myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:199-222. [PMID: 39939076 DOI: 10.1016/bs.ircmb.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Multiple myeloma (MM) is a complex hematologic malignancy characterized by the abnormal proliferation of plasma cells in the bone marrow, leading to significant clinical challenges and a high burden of morbidity and mortality. Interleukin 10 (IL-10), a cytokine with potent anti-inflammatory properties, has emerged as a critical player in the pathobiology of MM. This work delves into the multifaceted role of IL-10 in MM, exploring its contributions to tumor growth, immune evasion, and drug resistance. Here, we examine IL-10's interactions with various immune cells within the bone marrow microenvironment and its potential as a circulatory biomarker for MM. Furthermore, we particularly lay emphasis on the prognostic and diagnostic implications of IL-10 levels in MM patients and evaluate the therapeutic prospects of targeting IL-10 in MM treatment regimens. By synthesizing current research, this review aims to enhance the understanding of IL-10 as a circulatory biomarker in MM and to highlight novel avenues for therapeutic intervention, thereby translating to improved clinical outcomes for MM patient.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul W Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Karama Makni-Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health Sciences, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Research Center, Qatar University, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
16
|
Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y, Zhang X, Ji R, Li C, Gu J, Zhang X. Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer 2024; 23:198. [PMID: 39272149 PMCID: PMC11396805 DOI: 10.1186/s12943-024-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor cells remodel the phenotype and function of tumor microenvironment (TME) cells to favor tumor progression. Previous studies have shown that neutrophils in TME are polarized to N2 tumor-associated neutrophils (TANs) by tumor derived factors, thus promoting tumor growth and metastasis, angiogenesis, therapy resistance, and immunosuppression. Exosomes act as critical intercellular messengers in human health and diseases including cancer. So far, the biological roles of exosomes from N2 TANs in gastric cancer have not been well characterized. Herein, we represented the first report that exosomes from N2 TANs promoted gastric cancer metastasis in vitro and in vivo. We found that exosomes from N2 TANs transferred miR-4745-5p/3911 to gastric cancer cells to downregulate SLIT2 (slit guidance ligand 2) gene expression. Adenovirus-mediated overexpression of SLIT2 reversed the promotion of gastric cancer metastasis by N2 TANs derived exosomes. We further revealed that gastric cancer cells induced glucose metabolic reprogramming in neutrophils through exosomal HMGB1 (high mobility group protein B1)/NF-κB pathway, which mediated neutrophil N2 polarization and miR-4745-5p/3911 upregulation. We further employed ddPCR (droplet digital PCR) to detect the expression of miR-4745-5p/3911 in N2 TANs exosomes from human serum samples and found their increased levels in gastric cancer patients compared to healthy controls and benign gastric disease patients. Conclusively, our results indicate that N2 TANs facilitate cancer metastasis via regulation of SLIT2 in gastric cancer cells by exosomal miR-4745-5p/3911, which provides a new insight into the roles of TME cells derived exosomes in gastric cancer metastasis and offers a potential biomarker for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Kunshan Biomedical Big Data Innovation Application Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Cheng Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chong Li
- Kunshan Biomedical Big Data Innovation Application Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
17
|
Lu S, Zhao R, Han Y, Shao S, Ji Y, Zhang J, Pan H, Sun J, Feng Y. Identification of PFKFB3 as a key factor in the development of colorectal cancer and immunotherapy resistance. Clin Exp Med 2024; 24:219. [PMID: 39261380 PMCID: PMC11390783 DOI: 10.1007/s10238-024-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Resistance to immunotherapy poses a significant challenge in the treatment of colorectal cancer (CRC), and the underlying mechanisms are not fully understood. Recent studies have implicated PFKFB3, a crucial glycolytic enzyme, in shaping the tumor microenvironment in CRC. Our study aimed to systematically study the role of PFKFB3 in CRC. Bioinformatic analysis revealed that PFKFB3 expression is notably elevated in CRC tissues compared to normal counterparts. In vivo experiments confirmed that suppressing PFKFB3 reduces the tumorigenesis of CRC. We identified multiple cancer-associated pathways positively correlated with high expression of PFKFB3, such as epithelial-mesenchymal transition (EMT), hypoxia, KRAS signaling, angiogenesis, PI3K/AKT/mTOR, Hedgehog, and Notch pathways. Additionally, PFKFB3 exhibited significant correlations with various immune-related pathways, including complement, IL-2/STAT5, IL-6/JAK/STAT3, IFN-α/IFN-γ, TGF-β, and TNF-α/NF-κB, as well as several immunosuppressive cell markers found in regulatory T cells (CCR8, TGFB1, STAT5B, FOXP3), M2 macrophages (CD163, VSIG4, MS4A4A), T cell exhaustion markers (CTLA-4, PDCD1, LAG3), and PD-L1. Intriguingly, increased PFKFB3 expression was observed in PD-L1 blockade-resistant patients and was associated with shorter overall survival. In a nutshell, PFKFB3 plays an important role in CRC tumorigenesis and resistance to immunotherapy. Targeting PFKFB3 inhibits tumor formation and enhances the efficacy of immunotherapy. Our findings underscore the functions of PFKFB3 in CRC, shedding light on both cancer-related and immunosuppressive pathways.
Collapse
Affiliation(s)
- Si Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Han
- Department of Colorectal Surgery and Oncology, College of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shengpeng Shao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaming Ji
- Department of Pathology, First Central Hospital of Baoding, Baoding, China
| | - Jinku Zhang
- Department of Pathology, First Central Hospital of Baoding, Baoding, China.
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiachun Sun
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, Li G, Zhou Y, Zhou Y, Chen W, Liu Q, Mao H. The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int 2024; 106:226-240. [PMID: 38789037 DOI: 10.1016/j.kint.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Persistently elevated glycolysis in kidney has been demonstrated to promote chronic kidney disease (CKD). However, the underlying mechanism remains largely unclear. Here, we observed that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key glycolytic enzyme, was remarkably induced in kidney proximal tubular cells (PTCs) following ischemia-reperfusion injury (IRI) in mice, as well as in multiple etiologies of patients with CKD. PFKFB3 expression was positively correlated with the severity of kidney fibrosis. Moreover, patients with CKD and mice exhibited increased urinary lactate/creatine levels and kidney lactate, respectively. PTC-specific deletion of PFKFB3 significantly reduced kidney lactate levels, mitigated inflammation and fibrosis, and preserved kidney function in the IRI mouse model. Similar protective effects were observed in mice with heterozygous deficiency of PFKFB3 or those treated with a PFKFB3 inhibitor. Mechanistically, lactate derived from PFKFB3-mediated tubular glycolytic reprogramming markedly enhanced histone lactylation, particularly H4K12la, which was enriched at the promoter of NF-κB signaling genes like Ikbkb, Rela, and Relb, activating their transcription and facilitating the inflammatory response. Further, PTC-specific deletion of PFKFB3 inhibited the activation of IKKβ, I κ B α, and p65 in the IRI kidneys. Moreover, increased H4K12la levels were positively correlated with kidney inflammation and fibrosis in patients with CKD. These findings suggest that tubular PFKFB3 may play a dual role in enhancing NF-κB signaling by promoting both H4K12la-mediated gene transcription and its activation. Thus, targeting the PFKFB3-mediated NF-κB signaling pathway in kidney tubular cells could be a novel strategy for CKD therapy.
Collapse
Affiliation(s)
- Yating Wang
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Hongyu Li
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Simin Jiang
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Dongying Fu
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xiaohui Lu
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Miaoqing Lu
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China; Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Dan Luo
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Kefei Wu
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yiping Xu
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Guanglan Li
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| | - Qinghua Liu
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| | - Haiping Mao
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| |
Collapse
|
19
|
Li X, Zhou L, Xu X, Liu X, Wu W, Feng Q, Tang Z. Metabolic reprogramming in hepatocellular carcinoma: a bibliometric and visualized study from 2011 to 2023. Front Pharmacol 2024; 15:1392241. [PMID: 39086383 PMCID: PMC11289777 DOI: 10.3389/fphar.2024.1392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aims Metabolic reprogramming has been found to be a typical feature of tumors. Hepatocellular carcinoma (HCC), a cancer with high morbidity and mortality, has been extensively studied for its metabolic reprogramming-related mechanisms. Our study aims to identify the hotspots and frontiers of metabolic reprogramming research in HCC and to provide guidance for future scientific research and decision-making in HCC metabolism. Methods Relevant studies on the metabolic reprogramming of HCC were derived from the Web of Science Core Collection (WoSCC) database up until November 2023. The bibliometrix tools in R were used for scientometric analysis and visualization. Results From 2011 to 2023, a total of 575 publications were obtained from WoSCC that met the established criteria. These publications involved 3,904 researchers and 948 organizations in 37 countries, with an average annual growth rate of 39.11% in research. These studies were published in 233 journals, with Cancers (n = 29) ranking first, followed by Frontiers in Oncology (n = 20) and International Journal of Molecular Sciences (n = 19). The top ten journals accounted for 26% of the 575 studies. The most prolific authors were Wang J (n = 14), Li Y (n = 12), and Liu J (n = 12). The country with the most publications is China, followed by the United States, Italy, and France. Fudan University had the largest percentage of research results with 15.48% (n = 89). Ally A's paper in Cell has the most citations. A total of 1,204 keywords were analyzed, with the trend themes such as "glycolysis," "tumor microenvironment," "Warburg effect," "mitochondria," "hypoxia ," etc. Co-occurrence network and cluster analysis revealed the relationships between keywords, authors, publications, and journals. Moreover, the close collaboration between countries in this field was elucidated. Conclusion This bibliometric and visual analysis delves into studies related to metabolic reprogramming in HCC between 2012 and 2023, elucidating the characteristics of research in this field, which has gradually moved away from single glycolipid metabolism studies to the integration of overall metabolism in the body, pointing out the trend of research topics, and the dynamics of the interaction between the tumor microenvironment and metabolic reprogramming will be the future direction of research, which provides blueprints and inspirations for HCC prevention and treatment programs to the researchers in this field. Systematic Review Registration: [https://www.bibliometrix.org].
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Tang
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
20
|
Jia W, Wu Q, Shen M, Yu X, An S, Zhao L, Huang G, Liu J. PFKFB3 regulates breast cancer tumorigenesis and Fulvestrant sensitivity by affecting ERα stability. Cell Signal 2024; 119:111184. [PMID: 38640982 DOI: 10.1016/j.cellsig.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.
Collapse
Affiliation(s)
- Wenzhi Jia
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Clinical Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai, China.
| |
Collapse
|
21
|
Dai L, Fan G, Xie T, Li L, Tang L, Chen H, Shi Y, Han X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark Res 2024; 12:58. [PMID: 38840205 PMCID: PMC11155084 DOI: 10.1186/s40364-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is crucial for developing personalized therapies. METHODS This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified. RESULTS High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077-2.995, p = 0.025 and HR = 2.631, 95% CI: 1.207-5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL. CONCLUSIONS This study underscores the significance of glycolysis in tumor progression and modulation of the immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers and therapeutic targets in DLBCL.
Collapse
Affiliation(s)
- Liyuan Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
22
|
Teng Y, Xu J, Wang Y, Wen N, Ye H, Li B. Combining a glycolysis‑related prognostic model based on scRNA‑Seq with experimental verification identifies ZFP41 as a potential prognostic biomarker for HCC. Mol Med Rep 2024; 29:78. [PMID: 38516783 PMCID: PMC10975023 DOI: 10.3892/mmr.2024.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis‑related cell clusters from single‑cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis‑related prognostic model divided patients with HCC into high‑ and low‑risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high‑risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis‑related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.
Collapse
Affiliation(s)
- Yu Teng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaoqun Wang
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ningyuan Wen
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui Ye
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bei Li
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Jin D, Qian L, Chen J, Yu Z, Dong J. Prognostic impact of CD68+ tumor-associated macrophages in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2024; 103:e37834. [PMID: 38640338 PMCID: PMC11029977 DOI: 10.1097/md.0000000000037834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Evidence from clinical research suggests that the tumor-associated macrophages (TAMs) were associated with prognosis in hepatocellular carcinoma (HCC). The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of CD68 + TAMs in HCC. METHODS This study conducted a systematic search in Pubmed, Embase, the Cochrane Library and China National Knowledge Internet from inception of the databases to November 2023. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. The Newcastle-Ottawa Scale was used to evaluate the risk of prejudice. RESULTS We analyzed 4362 HCC patients. The present research indicated that the expression levels Of CD68 + TAMs were significantly associated with overall survival (OS) (HR = 1.55, 95% CI: 1.30-1.84) and disease-free survival (DFS) (HR = 1.44, 95% CI: 1.17-1.78). Subgroup analysis based on cutoff values showed that the "Median" subgroup showed a pooled HR of 1.66 with a 95% CI ranging from 1.32 to 2.08, which was slightly higher than the "Others" subgroup that exhibited a pooled HR of 1.40 and a 95% CI of 1.07 to 1.84. The "PT" subgroup had the highest pooled HR of 1.68 (95% CI: 1.19-2.37), indicating a worse OS compared to the "IT" (pooled HR: 1.50, 95% CI: 1.13-2.01) and "Mix" (pooled HR: 1.52, 95% CI: 1.03-2.26) subgroups. Moreover, in the sample size-based analysis, studies with more than 100 samples (>100) exhibited a higher pooled HR of 1.57 (95% CI: 1.28 to 1.93) compared to studies with fewer than 100 samples (<100), which had a pooled HR of 1.45 (95% CI: 1.00-2.10). CONCLUSIONS The analysis suggests that CD68 + TAMs were significantly associated with unfavorable OS and DFS in HCC patients, and may be served as a promising prognostic biomarker in HCC. However, more large-scale trials are needed to study the clinical value of TAMs in HCC.
Collapse
Affiliation(s)
- Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Liyong Qian
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jiayao Chen
- Department of Laboratory, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Ze Yu
- Laboratory of Cell Biology and Molecular Biology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jinliang Dong
- Department of Hepatobiliary Surgery, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| |
Collapse
|
24
|
Chen DP, Wang JC, Liu ZY, Li PL, Chan KW, Wu XN, Yao WDX, Yao T, Kuang DM, Wei Y. miRNome targeting NF-κB signaling orchestrates macrophage-triggered cancer metastasis and recurrence. Mol Ther 2024; 32:1110-1124. [PMID: 38341612 PMCID: PMC11163221 DOI: 10.1016/j.ymthe.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/14/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.
Collapse
Affiliation(s)
- Dong-Ping Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jun-Cheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zheng-Yu Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pei-Lin Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ka-Wo Chan
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiang-Ning Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wu-De-Xin Yao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Wang Y, Li Z, Chen W, Wang J, Huang Z, Yu XJ, Zhang YJ, Zheng L, Xu J. C/EBPα mediates the maturation and antitumor functions of macrophages in human hepatocellular carcinoma. Cancer Lett 2024; 585:216638. [PMID: 38266805 DOI: 10.1016/j.canlet.2024.216638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1β-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhijie Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
27
|
Jiang G, Hong J, Sun L, Wei H, Gong W, Wang S, Zhu J. Glycolysis regulation in tumor-associated macrophages: Its role in tumor development and cancer treatment. Int J Cancer 2024; 154:412-424. [PMID: 37688376 DOI: 10.1002/ijc.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Tumor-associated macrophages constitute the main cell population in the tumor microenvironment and play a crucial role in regulating the microenvironment composition. Emerging evidence has revealed that the metabolic profile determines the tumor-associated macrophage phenotype. Tumor-associated macrophage function is highly dependent on glucose metabolism, with glycolysis being the major metabolic pathway. Recent reports have demonstrated diversity in glucose flux of tumor-associated macrophages and complex substance communication with cancer cells. However, how the glucose flux in tumor-associated macrophages connects with glycolysis to influence tumor progression and the tumor microenvironment is still obscure. Moreover, while the development of single-cell sequencing technology allows a clearer and more accurate classification of tumor-associated macrophages, the metabolic profiles of tumor-associated macrophages from the perspective of single-cell omics has not been well summarized. Here, we review the current state of knowledge on glucose metabolism in tumor-associated macrophages and summarize the metabolic profiles of different tumor-associated macrophage subtypes from the perspective of single-cell omics. Additionally, we describe the current strategies targeting glycolysis in tumor-associated macrophages for cancer therapy.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Lu Sun
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Haibin Wei
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Wangang Gong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Shu Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jianqing Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| |
Collapse
|
28
|
Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17:6. [PMID: 38297372 PMCID: PMC10832230 DOI: 10.1186/s13045-024-01527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
The liver is essential for metabolic homeostasis. The onset of liver cancer is often accompanied by dysregulated liver function, leading to metabolic rearrangements. Overwhelming evidence has illustrated that dysregulated cellular metabolism can, in turn, promote anabolic growth and tumor propagation in a hostile microenvironment. In addition to supporting continuous tumor growth and survival, disrupted metabolic process also creates obstacles for the anticancer immune response and restrains durable clinical remission following immunotherapy. In this review, we elucidate the metabolic communication between liver cancer cells and their surrounding immune cells and discuss how metabolic reprogramming of liver cancer impacts the immune microenvironment and the efficacy of anticancer immunotherapy. We also describe the crucial role of the gut-liver axis in remodeling the metabolic crosstalk of immune surveillance and escape, highlighting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jian Lin
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Becht R, Kiełbowski K, Wasilewicz MP. New Opportunities in the Systemic Treatment of Hepatocellular Carcinoma-Today and Tomorrow. Int J Mol Sci 2024; 25:1456. [PMID: 38338736 PMCID: PMC10855889 DOI: 10.3390/ijms25031456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Liver cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease represent major risk factors of HCC. Multiple different treatment options are available, depending on the Barcelona Clinic Liver Cancer (BCLC) algorithm. Systemic treatment is reserved for certain patients in stages B and C, who will not benefit from regional treatment methods. In the last fifteen years, the arsenal of available therapeutics has largely expanded, which improved treatment outcomes. Nevertheless, not all patients respond to these agents and novel combinations and drugs are needed. In this review, we aim to summarize the pathway of trials investigating the safety and efficacy of targeted therapeutics and immunotherapies since the introduction of sorafenib. Furthermore, we discuss the current evidence regarding resistance mechanisms and potential novel targets in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Michał P. Wasilewicz
- Liver Unit, Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
30
|
Cheng H, Zheng Y. Advances in macrophage and T cell metabolic reprogramming and immunotherapy in the tumor microenvironment. PeerJ 2024; 12:e16825. [PMID: 38239299 PMCID: PMC10795528 DOI: 10.7717/peerj.16825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Macrophages and T cells in the tumor microenvironment (TME) play an important role in tumorigenesis and progression. However, TME is also characterized by metabolic reprogramming, which may affect macrophage and metabolic activity of T cells and promote tumor escape. Immunotherapy is an approach to fight tumors by stimulating the immune system in the host, but requires support and modulation of cellular metabolism. In this process, the metabolic roles of macrophages and T cells become increasingly important, and their metabolic status and interactions play a critical role in the success of immunotherapy. Therefore, understanding the metabolic state of T cells and macrophages in the TME and the impact of metabolic reprogramming on tumor therapy will help optimize subsequent immunotherapy strategies.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Chagovets V, Starodubtseva N, Tokareva A, Novoselova A, Patysheva M, Larionova I, Prostakishina E, Rakina M, Kazakova A, Topolnitskiy E, Shefer N, Kzhyshkowska J, Frankevich V, Sukhikh G. Specific changes in amino acid profiles in monocytes of patients with breast, lung, colorectal and ovarian cancers. Front Immunol 2024; 14:1332043. [PMID: 38259478 PMCID: PMC10800720 DOI: 10.3389/fimmu.2023.1332043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Immunometabolism is essential factor of tumor progression, and tumor-associated macrophages are characterized by substantial changes in their metabolic status. In this study for the first time, we applied targeted amino acid LC-MS/MS analysis to compare amino acid metabolism of circulating monocytes isolated from patients with breast, ovarian, lung, and colorectal cancer. Methods Monocyte metabolomics was analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/ MS) analysis of amino acid extracts. The targeted analysis of 26 amino acids was conducted by LCMS/MS on an Agilent 6460 triple quadrupole mass spectrometer equipped with an electrospray ionization source and an Agilent 1260 II liquid chromatograph. Results Comparison of monocytes of cancer patients with monocytes of healthy control individuals demonstrated that in breast cancer most pronounced changes were identified for tryptophan (AUC = 0.76); for ovarian cancer, aminobutyric acid was significantly elevated (AUC= 1.00); for lung cancer significant changes we indented for citrulline (AUC = 0.70). In order to identify key amino acids that are characteristic for monocytes in specific cancer types, we compared each individual cancer with other 3 types of cancer. We found, that aspartic acid and citrulline are specific for monocytes of patients with colorectal cancer (p<0.001, FC = 1.40 and p=0.003, FC = 1.42 respectively). Citrulline, sarcosine and glutamic acid are ovarian cancer-specific amino acids (p = 0.003, FC = 0.78, p = 0.003, FC = 0.62, p = 0.02, FC = 0.78 respectively). Glutamine, methionine and phenylalanine (p = 0.048, FC = 1.39. p = 0.03, FC = 1.27 and p = 0.02, FC = 1.41) are lung cancer-specific amino acids. Ornithine in monocytes demonstrated strong positive correlation (r = 0.63) with lymph node metastasis incidence in breast cancer patients. Methyl histidine and cysteine in monocytes had strong negative correlation with lymph node metastasis in ovarian cancer patients (r = -0.95 and r = -0.95 respectively). Arginine, citrulline and ornithine have strong negative correlation with tumor size (r = -0.78, citrulline) and lymph node metastasis (r = -0.63 for arginine and r = -0.66 for ornithine). Discussion These alterations in monocyte amino acid metabolism can reflect the reaction of systemic innate immunity on the growing tumor. Our data indicate that this metabolic programming is cancer specific and can be inhibiting cancer progression. Cancer-specific differences in citrulline, as molecular link between metabolic pathways and epigenetic programing, provide new option for the development and validation of anti-cancer therapies using inhibitors of enzymes catalyzing citrullination.
Collapse
Affiliation(s)
- Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Chemical Physics, The Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Marina Patysheva
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Elizaveta Prostakishina
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Kazakova
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Evgenii Topolnitskiy
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Nikolay Shefer
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg–Hessen, Mannheim, Germany
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, Tomsk, Russia
| | - Gennadiy Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
32
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Qi YQ, Xiong F, Chen YJ. The correlation between tumor-associated macrophages and the prognosis of east Asian hepatocellular carcinoma patients: A systematic review and meta-analysis. Pathol Res Pract 2023; 252:154919. [PMID: 37939428 DOI: 10.1016/j.prp.2023.154919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Previous related studies have found that the levels of tumor-associated macrophages (TAMs) were correlated with prognoses in hepatocellular carcinoma. However, the prognostic value of TAMs for East Asian HCC patients remains inconclusive. METHODS Our objectives were to systematically review the performance and explore the prognostic and clinical value of TAMs in patients with HCC. A total of 23 relevant studies of 4389 patients were included into our meta-analysis. And the work has been reported in line with PRISMA guidelines. RESULTS The results demonstrated that increased expression level of peritumoral infiltrated CD68+ macrophages had a poor prognostic value on overall survival (OS), disease free survival (DFS) and recurrence-free survival (RFS). However, there was no correlation between disease-free survival (DFS) and the abundance of CD68+ TAMs both in intratumoral regions. Additionally, low density of CD169+, high density of CD206, and high density of CD204+ TAMs had a worse prognostic value on OS while the CD163+ TAMs had no diagnostic value on OS. The densities of CD68+ TAMs exhibited significantly correlation with AFP level and vascular invasion. The levels of CD169+ TAMs showed apparent relation to vascular invasion and TNM stages. CONCLUSION These findings indicate that TAMs may accomplish as significant prognostic biomarkers for East Asian HCC patients. However, further researches should be performed to estimate the clinical value of TAMs in HCC.
Collapse
Affiliation(s)
- Yong-Qiang Qi
- Department of Biliary-pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Xiong
- Department of Biliary-pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yong-Jun Chen
- Department of Biliary-pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
34
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
35
|
Li Z, Wang Y, Xing R, Zeng H, Yu XJ, Zhang YJ, Xu J, Zheng L. Cholesterol Efflux Drives the Generation of Immunosuppressive Macrophages to Promote the Progression of Human Hepatocellular Carcinoma. Cancer Immunol Res 2023; 11:1400-1413. [PMID: 37467346 DOI: 10.1158/2326-6066.cir-22-0907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Cholesterol is often enriched in tumor microenvironment (TME); however, its impact on disease progression varies in different tissues and cells. Monocytes/macrophages (Mφ) are major components and regulators of the TME and play pivotal roles in tumor progression and therapeutic responses. We aimed to investigate the profile, effects, and regulatory mechanisms of Mφ cholesterol metabolism in the context of human hepatocellular carcinoma (HCC). Here, we found that patients with high serum levels of cholesterol had shorter survival times and lower response rates to anti-PD-1 treatment. However, the cholesterol content in tumor-infiltrating monocytes/Mφ was significantly lower than that in their counterparts in paired nontumor tissues. The expression of the cholesterol efflux transporter, ABCA1, was upregulated in tumor monocytes/Mφ, and ABCA1 upregulation positively associated with decreased cellular cholesterol content and increased serum cholesterol levels. Mechanistically, autocrine cytokines from tumor-treated monocytes increased LXRα and ABCA1 expression, which led to the generation of immature and immunosuppressive Mφ. Although exogenous cholesterol alone had little direct effect on Mφ, it did act synergistically with tumor-derived factors to promote ABCA1 expression in Mφ with more immunosuppressive features. Moreover, high numbers of ABCA1+ Mφ in HCC tumors associated with reduced CD8+ T-cell infiltration and predicted poor clinical outcome for patients. Our results revealed that dysregulated cholesterol homeostasis, due to the collaborative effects of tumors and exogenous cholesterol, drives the generation of immunosuppressive Mφ. The selective modulation of cholesterol metabolism in Mφ may represent a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui Xing
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huilan Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
36
|
Sun Y, Jiang G, Wu Q, Ye L, Li B. The role of tumor-associated macrophages in the progression, prognosis and treatment of endometrial cancer. Front Oncol 2023; 13:1213347. [PMID: 37810971 PMCID: PMC10556650 DOI: 10.3389/fonc.2023.1213347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main immune cells in the tumor microenvironment (TME) of endometrial cancer (EC). TAMs recruitment and polarization in EC is regulated by the TME of EC, culminating in a predominantly M2-like macrophage infiltration. TAMs promote lymphatic angiogenesis through cytokine secretion, aid immune escape of EC cells by synergizing with other immune cells, and contribute to the development of EC through secretion of exosomes so as to promoting EC development. EC is a hormone- and metabolism-dependent cancer, and TAMs promote EC through interactions on estrogen receptor (ER) and metabolic factors such as the metabolism of glucose, lipids, and amino acids. In addition, we have explored the predictive significance of some TAM-related indicators for EC prognosis, and TAMs show remarkable promise as a target for EC immunotherapy.
Collapse
Affiliation(s)
- Yihan Sun
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Genyi Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianhua Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Lei Ye
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Tan S, Wang Z, Li N, Guo X, Zhang Y, Ma H, Peng X, Zhao Y, Li C, Gao L, Li T, Liang X, Ma C. Transcription factor Zhx2 is a checkpoint that programs macrophage polarization and antitumor response. Cell Death Differ 2023; 30:2104-2119. [PMID: 37582865 PMCID: PMC10482862 DOI: 10.1038/s41418-023-01202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Macrophages are usually educated to tumor-associated macrophages (TAMs) in cancer with pro-tumor functions by tumor microenvironment (TME) and TAM reprogramming has been proposed as a potential tumor immunotherapy strategy. We recently demonstrated the critical role of Zinc-fingers and homeoboxes 2 (Zhx2) in macrophages' metabolic programming. However, whether Zhx2 is responsible for macrophage polarization and TAMs reprogramming is largely unknown. Here, we show that Zhx2 controls macrophage polarization under the inflammatory stimulus and TME. Myeloid-specific deletion of Zhx2 suppresses LPS-induced proinflammatory polarization but promotes IL-4 and TME-induced anti-inflammatory and pro-tumoral phenotypes in murine liver tumor models. Factors in TME, especially lactate, markedly decrease the expression of Zhx2 in TAMs, leading to the switch of TAMs to pro-tumor phenotype and consequent cancer progression. Notably, reduced ZHX2 expression in TAM correlates with poor survival of HCC patients. Mechanistic studies reveal that Zhx2 associates with NF-κB p65 and binds to the Irf1 promoter, leading to transcriptional activation of Irf1 in macrophages. Zhx2 functions in maintaining macrophage polarization by regulating Irf1 transcription, which may be a potential target for macrophage-based cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital, Shandong University (Qingdao), Qingdao, China
| | - Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Hongxin Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Ying Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
38
|
Liu N, Yan M, Tao Q, Wu J, Chen J, Chen X, Peng C. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer 2023; 11:e007146. [PMID: 37678921 PMCID: PMC10496672 DOI: 10.1136/jitc-2023-007146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND anti-Programmed Death-1 (anti-PD-1) immunotherapy has shown promising manifestation in improving the survival rate of patients with advanced melanoma, with its efficacy closely linked to Programmed cell death-Ligand 1 (PD-L1) expression. However, low clinical efficacy and drug resistance remain major challenges. Although the metabolic alterations from tricarboxylic acid (TCA) cycle to glycolysis is a hallmark in cancer cells, accumulating evidence demonstrating TCA cycle plays critical roles in both tumorigenesis and treatment. METHODS The plasma levels of metabolites in patients with melanoma were measured by nuclear magnetic resonance (NMR) spectroscopy. The effect of pyruvate dehydrogenase subunit 1 (PDHA1) and oxoglutarate dehydrogenase (OGDH) on immunotherapy was performed by B16F10 tumor-bearing mice. Flow cytometry analyzed the immune microenvironment. RNA sequencing analyzed the global transcriptome alterations in CPI613-treated melanoma cells. The regulation of PD-L1 and glycolysis by PDHA1/OGDH-ATF3 signaling were confirmed by Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, dual-luciferase reporter gene, Chromatin immunoprecipitation (ChIP)-quantitative PCR and Seahorse assay. The relationship between PDHA1/OGDH-ATF3-glycolysis and the efficacy of melanoma anti-PD-1 immunotherapy was verified in the clinical database and single-cell RNA-seq (ScRNA-Seq). RESULTS In our study, the results showed that significant alterations in metabolites associated with glycolysis and the TCA cycle in plasma of patients with melanoma through NMR technique, and then, PDHA1 and OGDH, key enzymes for regulation TCA cycle, were remarkable raised in melanoma and negatively related to anti-PD-1 efficacy through clinical database analysis as well as ScRNA-Seq. Inhibition of PDHA1 and OGDH by either shRNA or pharmacological inhibitor by CPI613 dramatically attenuated melanoma progression as well as improved the therapeutic efficacy of anti-PD-1 against melanoma. Most importantly, suppression of TCA cycle remarkably raises PD-L1 expression and glycolysis flux through AMPK-CREB-ATF3 signaling. CONCLUSIONS Taken together, our results demonstrated the role of TCA cycle in immune checkpoint blockade and provided a novel combination strategy for anti-PD-1 immunotherapy in melanoma treatment.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Yuan Y, Wu D, Li J, Huang D, Zhao Y, Gao T, Zhuang Z, Cui Y, Zheng DY, Tang Y. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma. Front Pharmacol 2023; 14:1217400. [PMID: 37663266 PMCID: PMC10470150 DOI: 10.3389/fphar.2023.1217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.
Collapse
Affiliation(s)
- Yi Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dailin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianqi Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Cui
- Department of Psychiatry, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Da-Yong Zheng
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Xia S, Liang Y, Shen Y, Zhong W, Ma Y. MAT2A inhibits the ferroptosis in osteosarcoma progression regulated by miR-26b-5p. J Bone Oncol 2023; 41:100490. [PMID: 37457846 PMCID: PMC10339204 DOI: 10.1016/j.jbo.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumor. Ferroptosis, a form of regulated cell death, is a key tumor suppression mechanism. Although methionine adenosyltransferase II alpha (MAT2A) has been reported to inhibit several tumor cells, it is unclear whether inhibition of MAT2A in OS cells can reduce ferroptosis. CCK-8, flow cytometry, and Transwell assays were performed to evaluate cell viability, cell apoptosis/cycle, and cell migration, respectively. The levels of ferrous iron and glutathione (GSH) levels in cells were measured to evaluate the degree of cell ferroptosis. Western blot analysis was performed to detect protein levels of MAT2A, p-STAT3 (Ser727)/STAT3, and solute carrier family 7 member 11 (SLC7A11) in OS cells. MAT2A was significantly upregulated in OS specimens and high MAT2A expression was associated with a poorer prognosis in OS patients. shRNA targeting MAT2A significantly increased OS cell apoptosis, triggered cell cycle arrest in the G2 phase, and attenuated migration ability in vitro. MAT2A depletion dramatically inhibited tumor progression of OS in vivo. Overexpression of MAT2A rescued the tumor inhibition caused by miR-26b-5p. MAT2A knockdown promoted OS cell ferroptosis. miR-26b-5p/MAT2A regulates tumor malignant progression and OS cell ferroptosis by controlling p-STAT3 and SLC7A11 expressions. Taken together, our study displayed that miR-26b-5p/MAT2A triggers ferroptosis in OS cells by increasing intracellular ferrous iron levels and inhibiting the STAT3/SLC7A11 axis. Our results reveal a MAT2A-mediated ferroptosis defense mechanism used by OS cells and propose a potential ferroptosis-inducing strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Shuchi Xia
- Department of Dentistry, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yun Liang
- Department of Orthopedics, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yuqing Shen
- Department of Dentistry, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Wuxue Zhong
- Department of Orthopedics, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Yiqun Ma
- Department of Orthopedics, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol 2023; 16:80. [PMID: 37491279 PMCID: PMC10367370 DOI: 10.1186/s13045-023-01478-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Tumour-associated macrophages (TAMs) are crucial components of the tumour microenvironment and play a significant role in tumour development and drug resistance by creating an immunosuppressive microenvironment. Macrophages are essential components of both the innate and adaptive immune systems and contribute to pathogen resistance and the regulation of organism homeostasis. Macrophage function and polarization are closely linked to altered metabolism. Generally, M1 macrophages rely primarily on aerobic glycolysis, whereas M2 macrophages depend on oxidative metabolism. Metabolic studies have revealed that the metabolic signature of TAMs and metabolites in the tumour microenvironment regulate the function and polarization of TAMs. However, the precise effects of metabolic reprogramming on tumours and TAMs remain incompletely understood. In this review, we discuss the impact of metabolic pathways on macrophage function and polarization as well as potential strategies for reprogramming macrophage metabolism in cancer treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
42
|
Zhuang J, Qu Z, Chu J, Wang J, Wu Y, Fan Z, Song Y, Han S, Ru L, Zhao H. Single-cell transcriptome analysis reveals T population heterogeneity and functions in tumor microenvironment of colorectal cancer metastases. Heliyon 2023; 9:e17119. [PMID: 37539320 PMCID: PMC10394913 DOI: 10.1016/j.heliyon.2023.e17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 08/05/2023] Open
Abstract
Cell mediated immune escape, a microenvironment factor, induces tumorigenesis and metastasis. The purpose of this study was to display the characteristics of T cell populations in immune microenvironments for colorectal cancer (CRC) metastasis. Unsupervised cluster analysis was conducted to identify functionally distinct T cell clusters from 3,003 cells in peripheral blood and 4,656 cells in tissues. Subsequently, a total of 8 and 4 distinct T cell population clusters were identified from tumor tissue and peripheral blood, respectively. High levels of CD8+TEX, CD4+TRM, TH1-like T cells, CD8+TEM, tumor-Treg from tissues, and CD4+TN from peripheral blood are essential components of immune microenvironment for the prediction of CRC metastasis. Moreover, exhausted T cells are characterized by higher expression of multiple inhibitory receptors, including PDCD1 and LAG3. Some genes such as PFKFB3, GNLY, circDCUN1D4, TXNIP and NR4A2 in T cells of cluster were statistically different between CRC metastasis and non-metastasis. The ligand-receptor interactions identified between different cluster cells and metastases-related DEGs identified from each cluster revealed that the communications of cells, alterations of functions, and numbers of T subsets may contribute to the metastasis of CRC. The mutation frequency of KiAA1551, ATP8B4 and LNPEP in T cells from tissues and SOR1 from peripheral blood were higher in metastatic CRC than that in non-metastatic CRC. In conclusion, the discovery of differential genes in T cells may provide potential targets for immunotherapy of CRC metastasis and relevant insights into the clinical prediction and prognosis of CRC metastasis.
Collapse
Affiliation(s)
- Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Jingjing Wang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Zhiqing Fan
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Lixin Ru
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Hui Zhao
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| |
Collapse
|
43
|
Xu W, Weng J, Xu M, Zhou Q, Liu S, Hu Z, Ren N, Zhou C, Shen Y. Functions of Key Enzymes of Glycolytic Metabolism in Tumor Microenvironment. Cell Reprogram 2023; 25:91-98. [PMID: 37172278 DOI: 10.1089/cell.2023.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The tumor microenvironment (TME) plays a crucial role in tumor initiation, growth and metastasis. Metabolic enzymes involved in tumor glycolytic reprogramming, including hexokinase, pyruvate kinase, and lactate dehydrogenase, not only play key roles in tumorigenesis and maintaining tumor cell survival, but also take part in the modulation of the TME. Many studies have been devoted to the role of key glycolytic enzymes in the TME over the past decades. We summarize the studies on the role of glycolytic enzymes in the TME of these years and found that glycolytic enzymes remodel the TME primarily through regulating immune escape, angiogenesis, and affecting stromal cells and exosomes. Notably, abnormal tumor vascular system, peritumoral stromal cells, and tumor immunosuppressive microenvironment are important contributors to the failure of antitumor therapy. Therefore, we discuss the mechanisms of regulation by key glycolytic enzymes that may contribute to a promising biomarker for therapeutic intervention. We argue that targeting key glycolytic enzymes in combination with antiprogrammed cell death ligand 1 or antivascular endothelial growth factor could emerge as the more integrated and comprehensive antitumor treatment strategy.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, P.R. China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yinghao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
44
|
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y, Wang K. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol 2023; 14:1199631. [PMID: 37313405 PMCID: PMC10258331 DOI: 10.3389/fimmu.2023.1199631] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Unprecedented breakthroughs have been made in cancer immunotherapy in recent years. Particularly immune checkpoint inhibitors have fostered hope for patients with cancer. However, immunotherapy still exhibits certain limitations, such as a low response rate, limited efficacy in certain populations, and adverse events in certain tumors. Therefore, exploring strategies that can improve clinical response rates in patients is crucial. Tumor-associated macrophages (TAMs) are the predominant immune cells that infiltrate the tumor microenvironment and express a variety of immune checkpoints that impact immune functions. Mounting evidence indicates that immune checkpoints in TAMs are closely associated with the prognosis of patients with tumors receiving immunotherapy. This review centers on the regulatory mechanisms governing immune checkpoint expression in macrophages and strategies aimed at improving immune checkpoint therapies. Our review provides insights into potential therapeutic targets to improve the efficacy of immune checkpoint blockade and key clues to developing novel tumor immunotherapies.
Collapse
Affiliation(s)
- Shumin Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenyang Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lingge Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaji Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengshu Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Peng Xiao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
45
|
Zhao X, Zhang H, Han Y, Fang C, Liu J. Navigating the immunometabolic heterogeneity of B cells in murine hepatocellular carcinoma at single cell resolution. Int Immunopharmacol 2023; 120:110257. [PMID: 37182447 DOI: 10.1016/j.intimp.2023.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Induction of antitumor immunity is critical for the therapeutic efficacy of hepatocellular carcinoma (HCC) immunotherapy. The cellular metabolic state underpins the effector function of immune cells, yet our understanding of the phenotypic and metabolic heterogeneity of B cells within HCC microenvironment is poorly developed. Herein, we investigated the composition, distribution, phenotype, function and metabolic profiles of B-cell subsets in HCC and adjacent liver tissues from an orthotopic HCC mouse model using single-cell RNA sequencing (scRNA-seq). Our results identified six B-cell clusters, which can be classified into plasma cells and activated and exhausted B cells according to marker expression, functional and temporal distribution. Exhausted B cells exhibited low metabolic activities and impaired effector functions. Activated B and plasma cells showed higher metabolic activity than exhausted B cells, but there were clear differences in their metabolic profiles. In addition, we found that the effector function of exhausted B cells was further diminished in HCC tissues compared with adjacent liver tissues, but their metabolic activity was significantly enhanced. Collectively, we comprehensively characterized the metabolic profile and alterations in B-cell subsets in HCC, which contributes to the understanding of B-cell immunology in HCC and lays the foundation for exploring novel targets in HCC immunotherapy.
Collapse
Affiliation(s)
- Xindong Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Huanran Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China; The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou City, Zhejiang Province 310003, China
| | - Yiru Han
- Department of Health Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Jingqi Liu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China.
| |
Collapse
|
46
|
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77:1773-1796. [PMID: 35989535 PMCID: PMC9941399 DOI: 10.1002/hep.32740] [Citation(s) in RCA: 290] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
The liver is the sixth most common site of primary cancer in humans and the fourth leading cause of cancer-related death in the world. Hepatocellular carcinoma (HCC) accounts for 90% of liver cancers. HCC is a prevalent disease with a progression that is modulated by the immune system. Half of the patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib, as a first-line therapy. In the last few years, immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy and have gained an increased interest in the treatment of HCC. In 2020, the combination of atezolizumab (anti-programmed death-ligand 1) and bevacizumab (anti-vascular endothelial growth factor) improved overall survival over sorafenib, resulting in Food and Drug Administration (FDA) approval as a first-line treatment for patients with advanced HCC. Despite these major advances, a better molecular and cellular characterization of the tumor microenvironment is still needed because it has a crucial role in the development and progression of HCC. Inflamed (hot) and noninflamed (cold) HCC tumors and genomic signatures have been associated with response to ICIs. However, there are no additional biomarkers to guide clinical decision-making. Other immune-targeting strategies, such as adoptive T-cell transfer, vaccination, and virotherapy, are currently under development. This review provides an overview on the HCC immune microenvironment, different cellular players, current available immunotherapies, and potential immunotherapy modalities.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
| | - Amaia Lujambio
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
- Graduate School of Biomedical Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
| |
Collapse
|
47
|
Zheng X, Chen X, Wu W. The Regulatory Axis of PD-L1 Isoform 2/TNF/T Cell Proliferation Is Required for the Canonical Immune-Suppressive Effects of PD-L1 Isoform 1 in Liver Cancer. Int J Mol Sci 2023; 24:ijms24076314. [PMID: 37047287 PMCID: PMC10094247 DOI: 10.3390/ijms24076314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the well-studied effects of the full-length membrane-locating isoform Iso1 of Programmed Cell Death Protein-Ligand 1 (PD-L1) on immunosuppression, little is known about another membrane-locating isoform, Iso2. While expressional and survival analysis of liver cancer patients indicated that Iso2 plays a tumor-suppressive role, our results also indicated that the tumor-promoting and immune-suppressive effects of Iso1 depended on the positive expression of Iso2. Through mediation analysis, we discovered several downstream genes or pathways of Iso2 and investigated their effects on the Iso1-regulating survival. Among all potential downstream immune factors, Iso2 was inclined to activate the proliferation of T cells by regulating chemokine activity and increasing CD3 levels by promoting TNF expression. Similar results were confirmed in the Mongolian liver cancer cohort, and the Iso2/TNF/T-cell axis was verified in several other cancers in the TCGA cohort. Finally, we demonstrated the promoting effects of Iso2 in terms of producing TNF and increasing T cells both in vitro and in vivo. Our findings illustrate that PD-L1 Iso2 can increase the number of T cells in the tumor microenvironment by elevating TNF levels, which is a necessary part of the tumor-suppressive effects of Iso1 in liver cancer.
Collapse
Affiliation(s)
- Xixi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou 225316, China
- Correspondence: (X.C.); (W.W.)
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Rugao Joint Research Institute of Longevity and Aging, Fudan University, Rugao 226599, China
- Correspondence: (X.C.); (W.W.)
| |
Collapse
|
48
|
Peng ZP, Liu XC, Ruan YH, Jiang D, Huang AQ, Ning WR, Jiang ZZ, Zheng L, Wu Y. Downregulation of phosphoserine phosphatase potentiates tumor immune environments to enhance immune checkpoint blockade therapy. J Immunother Cancer 2023; 11:jitc-2022-005986. [PMID: 36849198 PMCID: PMC9972416 DOI: 10.1136/jitc-2022-005986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Effects of immune checkpoint blockade (ICB) treatment in hepatocellular carcinoma (HCC) are limited. The current study explored the possibility of exploiting tumor metabolic switches to enhance HCC sensitivity to immune therapies. METHODS Levels of one-carbon (1C) metabolism and the expression of phosphoserine phosphatase (PSPH), an upstream enzyme of 1C pathway, were evaluated in paired non-tumor and tumor tissues from HCC. Underlying mechanisms mediating the role of PSPH in regulating the infiltration of monocytes/macrophages and CD8+ T lymphocytes were studied through both in vitro and in vivo experiments. RESULTS PSPH was significantly upregulated in tumor tissues of HCC and its levels were positively correlated with disease progression. PSPH knockdown inhibited tumor growth in immunocompetent mice, but not in those with macrophage or T lymphocyte deficiencies, indicating the pro-tumor effects of PSPH were dependent on both immune components. Mechanistically, PSPH facilitated monocytes/macrophages infiltration by inducing the production of C-C motif chemokine 2 (CCL2), while at the same time reduced CD8+ T lymphocytes recruitment through inhibiting the production of C-X-C Motif Chemokine 10 (CXCL10) in tumor necrosis factor alpha (TNF-α)-conditioned cancer cells. Glutathione and S-adenosyl-methionine were partially involved in regulating the production of CCL2 and CXCL10, respectively. shPSPH (short hairpin RNA) transfection of cancer cells enhanced tumor sensitivity to anti-programmed cell death protein 1 (PD-1) therapy in vivo, and interestingly, metformin could inhibit PSPH expression in cancer cells and mimic the effects of shPSPH in sensitizing tumors to anti-PD-1 treatment. CONCLUSIONS By tilting the immune balance towards a tumor-friendly composition, PSPH might be useful both as a marker in stratifying patients for ICB therapy, and as an attractive therapeutic target in the treatment of human HCC.
Collapse
Affiliation(s)
- Zhi-Peng Peng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Hao Ruan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ai-Qi Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wan-Ru Ning
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Zhou Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China .,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
49
|
Jeon SH, Lee YJ, Kim HD, Nam H, Ryoo BY, Park SH, Yoo C, Shin EC. Dynamic changes in peripheral blood monocytes early after anti-PD-1 therapy predict clinical outcomes in hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:371-384. [PMID: 35902399 PMCID: PMC9333050 DOI: 10.1007/s00262-022-03258-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/26/2023]
Abstract
Immune checkpoint inhibitors are effective for advanced hepatocellular carcinoma (HCC), but there remains a need for peripheral blood biomarkers to predict the clinical response. Here, we analyzed the peripheral blood of 45 patients with advanced HCC who underwent nivolumab. During treatment, frequency of classical monocytes (CD14+CD16-) was increased on day 7, and the fold increase in the frequency on day 7 over day 0 (cMonocyteD7/D0) was significantly higher in patients with durable clinical benefit (DCB) than in patients with non-DCB (NDB). When we analyzed transcriptomes of classical monocytes, CD274, gene encoding PD-L1, was upregulated in NDB patients compared to DCB patients at day 7. Notably, gene signature of suppressive tumor-associated macrophages, or IL4l1+PD-L1+IDO1+ macrophages, was enriched after treatment in NDB patients, but not in DCB patients. Accordingly, the fold increase in the frequency of PD-L1+ classical monocytes at day 7 over day 0 (cMonocyte-PDL1D7/D0) was higher in NDB patients than DCB patients. The combined biomarker cMonocyteD7/D0/cMonocyte-PDL1D7/D0 was termed the "monocyte index", which was significantly higher in DCB patients than NDB patients. Moreover, the monocyte index was an independent prognostic factor for survival. Overall, our results suggest that early changes of circulating classical monocytes, represented as a monocyte index, could predict clinical outcomes of advanced HCC patients undergoing anti-PD-1 therapy.
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Joon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Heejin Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
50
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|