1
|
Zhou YD, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Bozicevich A, Juengel B, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. Mucosal Immunol 2025:S1933-0219(25)00050-9. [PMID: 40398680 DOI: 10.1016/j.mucimm.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/21/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The REG/Reg gene locus encodes a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in humans and mice, the pancreas and gut differed in REG/Reg isoform levels and preferences, with the duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, in pancreatic ductal adenocarcinoma and pancreatitis models, only inducible Reg members were upregulated in the pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG/Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
Affiliation(s)
- Yixuan D Zhou
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Macy R Komnick
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Grace Liu
- The College, University of Chicago, Chicago, IL, USA
| | - Elida Nieves-Ortiz
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Kelsey Meador
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Aliia Fatkhullina
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Asha Bozicevich
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Braden Juengel
- The Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Paulina M Naydenkov
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Johnathan Kent
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | | | | | - Piotr Witkowski
- The Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Daria Esterházy
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Zhai J, Li Y, Liu J, Dai C. Neuroimmune interactions: The bridge between inflammatory bowel disease and the gut microbiota. Clin Transl Med 2025; 15:e70329. [PMID: 40400119 PMCID: PMC12095209 DOI: 10.1002/ctm2.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND The multidimensional regulatory mechanism of the gut-brain-immune axis in the context of inflammatory bowel disease (IBD) has garnered significant attention, particularly regarding how intestinal microbiota finely regulates immune responses through immune cells and sensory neurons. MAIN BODY Metabolites produced by intestinal microbiota influence the phenotype switching of immune cells via complex signalling pathways, thereby modulating their anti-inflammatory and pro-inflammatory functions during intestinal inflammation. Furthermore, sensory neurons exhibit heightened sensitivity to microbial-derived signals, which is essential for preserving intestinal balance and controlling pathological inflammation by integrating peripheral environmental signals with local immune responses. The dynamic equilibrium between immune cells and the neuroimmunoregulation mediated by sensory neurons collectively sustains immune homeostasis within the intestine. However, this coordination mechanism is markedly disrupted under the pathological conditions associated with IBD. CONCLUSION An in-depth exploration of the interactions among immune cells, gut microbiota and sensory neurons may yield significant insights into the pathological mechanisms underlying IBD and guide the creation of new treatment approaches. KEY POINTS The gut microbiota regulates the gut-brain-immune axis, modulating neuroimmune interactions in IBD. Microbiota-derived metabolites influence immune cells, thereby affecting neurons. Neurons secrete mediators, enabling bidirectional neuroimmune communication essential for intestinal homeostasis. Disruptions contribute to IBD, offering therapeutic targets.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of GastroenterologyFirst Affiliated Hospital, China Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Yingjie Li
- Department of GastroenterologyFirst Affiliated Hospital, Jinzhou Medical UniversityJinzhou CityLiaoning ProvinceChina
| | - Jiameng Liu
- Department of GastroenterologyFirst Affiliated Hospital, China Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Cong Dai
- Department of GastroenterologyFirst Affiliated Hospital, China Medical UniversityShenyang CityLiaoning ProvinceChina
| |
Collapse
|
3
|
Leveque E, Joulia R, Battut L, Laurent C, Valitutti S, Cénac N, Dietrich G, Espinosa E. Mast Cells Promote Inflammatory Th17 Cells and Impair Treg Cells Through an IL-1β and PGE 2 Axis. J Inflamm Res 2025; 18:5851-5865. [PMID: 40331159 PMCID: PMC12050418 DOI: 10.2147/jir.s509931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose CD4+ effector T cells (Teffs) play a key role in immune responses by infiltrating the sites of inflammation and modulating local leukocyte activity. In turn resident immune cells shape their response. This study aimed to investigate the influence of mast cells (MCs) on Teff biological responses. Methods This study examined human MC-Teff interactions, focusing on how MCs shape Teff responses. Flow cytometry, qRT-PCR, and cytokine assays were used to analyze the impact of primary human MCs on the Teff phenotype and function. MC-Teff crosstalk within Crohn's disease patient tissues was assessed using confocal microscopy and advanced image analysis. Results MCs promoted the differentiation of Th17 cells, particularly the inflammatory Th17.1 subset, that secretes IFN-γ and GM-CSF. This differentiation was driven by the PGE2 and IL-1β axis. Additionally, MCs disrupted the phenotype and impaired the suppressive function of regulatory T cells (Tregs) through PGE2, skewing the Th17/Treg balance. The analysis of biopsies from patients with Crohn's disease indicated that this MC/Teff crosstalk may play a role in the pathogenesis of auto-inflammatory processes. Conclusion MCs influence CD4+ T cell responses by fostering pro-inflammatory Th17 differentiation while impairing Treg function. This interaction underpins a Th17/Treg imbalance, which is significant in auto-inflammatory diseases such as Crohn's disease, positioning MCs as critical drivers of disease pathogenesis.
Collapse
Affiliation(s)
- Edouard Leveque
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, F-31000, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Régis Joulia
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Louise Battut
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| | - Camille Laurent
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, F-31000, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- CHU Toulouse, Department of Pathology, Institut Universitaire du Cancer - Oncopole de Toulouse, Toulouse, F-31000, France
| | - Salvatore Valitutti
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, F-31000, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- CHU Toulouse, Department of Pathology, Institut Universitaire du Cancer - Oncopole de Toulouse, Toulouse, F-31000, France
| | - Nicolas Cénac
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| | - Gilles Dietrich
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| | - Eric Espinosa
- Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
- Institut de Recherche en Santé Digestive (IRSD), INSERM U1220, INRA, INP-ENVT, Toulouse, F-31024, France
| |
Collapse
|
4
|
García-Domínguez M. The Role of IL-23 in the Development of Inflammatory Diseases. BIOLOGY 2025; 14:347. [PMID: 40282212 PMCID: PMC12025033 DOI: 10.3390/biology14040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Interleukin-23 is crucial in the initiation and progression of certain inflammatory disorders. As a key cytokine, IL-23 is involved in the differentiation and activation of Th17 cells, which play a role in a broad spectrum of inflammatory diseases. This review examines the molecular mechanisms through which IL-23 contributes to the pathogenesis of conditions including psoriasis, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. By elucidating the significant role of IL-23 in inflammation, this review underscores its importance as a therapeutic target for managing inflammatory conditions, with particular emphasis on current and emerging biologic treatments.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
5
|
Cherrier M, Teo TH, Corrêa RO, Picard M, Couesnon A, Lebreton C, Carbone F, Masson C, Schnupf P, Cerf-Bensussan N, Gaboriau-Routhiau V. Hematopoietic MyD88 orchestrates the control of gut colonization by segmented filamentous bacteria. Mucosal Immunol 2025:S1933-0219(25)00028-5. [PMID: 40090466 DOI: 10.1016/j.mucimm.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Host-microbiota cooperation is critical for successful intestinal homeostasis. The commensal segmented filamentous bacteria (SFB) are crucial for orchestrating the post-natal maturation of the host gut immune system and establishing a healthy state of physiological inflammation, which largely depends on their intimate attachment to the ileal mucosa. However, the signaling pathways used by SFB to induce gut immune responses and how such responses ultimately control SFB colonization remain controversial. Using gnotobiotic approaches, we showed that SFB load is controlled by complex interactions involving the gut microbiota and the host immune system. Therefore, to clearly determine the role of host immune responses induced by SFB in directly controlling their growth, immunodeficient mice monocolonized with SFB were used. Here, we show that in the absence of a complex microbiota, the humoral immune response is dispensable to control SFB growth in the jejunum and ileum, shortly and later after colonization. In contrast, MyD88 signaling in myeloid cells is critical for licensing interleukin (IL)-22 production by type 3 innate lymphoid cells (ILC3) and CD4+ T cells, which ultimately limits SFB expansion. Thus, by revisiting the hierarchy of immune mechanisms that directly control SFB growth, our results emphasize the necessary and sufficient role of a hematopoietic MyD88/IL-22 axis.
Collapse
Affiliation(s)
- Marie Cherrier
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France
| | - Teck Hui Teo
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France; A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore
| | - Renan Oliveira Corrêa
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France
| | - Marion Picard
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France
| | - Aurélie Couesnon
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France
| | - Corinne Lebreton
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France
| | - Francesco Carbone
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Labtech Single-Cell@Imagine, 75015 Paris, France
| | - Cécile Masson
- Université Paris Cité, Imagine Institute, Structure Fédérative de Recherche Necker, Bioinformatics Core Facility, 75015 Paris, France
| | - Pamela Schnupf
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France
| | - Valérie Gaboriau-Routhiau
- Université Paris Cité, Imagine Institute, INSERM UMR1163, Laboratory of Intestinal Immunity, 75015 Paris, France; Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Lu X, Xv Y, Hu W, Sun B, Hu H. Targeting CD4+ T cells through gut microbiota: therapeutic potential of traditional Chinese medicine in inflammatory bowel disease. Front Cell Infect Microbiol 2025; 15:1557331. [PMID: 40099014 PMCID: PMC11911530 DOI: 10.3389/fcimb.2025.1557331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune disease characterized by chronic relapsing inflammation of the intestinal tract. Gut microbiota (GM) and CD4+T cells are important in the development of IBD. A lot of studies have shown that GM and their metabolites like short-chain fatty acids, bile acids and tryptophan can be involved in the differentiation of CD4+T cells through various mechanisms, which in turn regulate the immune homeostasis of the IBD patients. Therefore, regulating CD4+T cells through GM may be a potential therapeutic direction for the treatment of IBD. Many studies have shown that Traditional Chinese Medicine (TCM) formulas and some herbal extracts can affect CD4+T cell differentiation by regulating GM and its metabolites. In this review, we mainly focus on the role of GM and their metabolites in regulating the differentiation of CD4+T cells and their correlation with IBD. We also summarize the current research progress on the regulation of this process by TCM.
Collapse
Affiliation(s)
- Xingyao Lu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichuan Xv
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boyun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Jiao X, Li Y, Hu Y, Yan R, Fu T, Liu J, Li Z. Antibiotic-Induced dysbiosis of the ocular microbiome affects corneal circadian rhythmic activity in mice. Mucosal Immunol 2025:S1933-0219(25)00010-8. [PMID: 39920996 DOI: 10.1016/j.mucimm.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
The ocular surface microbiota plays a critical role in maintaining corneal homeostasis, but its disruption and subsequent effects on corneal functions remain poorly understood. This study investigates how antibiotic-induced microbial depletion affects the corneal circadian transcriptome in C57BL/6J mice. Dysbiosis was induced using a topical antibiotic cocktail, and RNA sequencing was employed to analyze gene expression across eight time points over 24 h. Antibiotic treatment disrupted corneal circadian rhythms, eliminating rhythmicity in 1,812 genes and introducing rhythmicity in 1,928 previously arrhythmic genes. Furthermore, epithelial adhesion was impaired, inflammation was elevated, and neural sensitivity was reduced. More than 50 % of ocular microbial genera exhibited daily oscillations, with six genera showing significant correlations with corneal rhythmic transcripts. Additionally, the administration of TLR agonists restored circadian gene expression patterns, with partial recovery of corneal barrier function and immune homeostasis, further highlighting the potential of microbiota-targeted therapies in treating ocular surface disorders. These findings underscore the critical role of the ocular microbiota in regulating corneal health and suggest that restoring microbial balance via TLR activation may offer new therapeutic avenues for eye diseases.
Collapse
Affiliation(s)
- Xinwei Jiao
- Department of Pathology, Medical School, Jinan University, Guangzhou, China; International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Hu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Chang Y, Liu Y, Zou Y, Ye RD. Recent Advances in Studies of Serum Amyloid A: Implications in Inflammation, Immunity and Tumor Metastasis. Int J Mol Sci 2025; 26:987. [PMID: 39940756 PMCID: PMC11817213 DOI: 10.3390/ijms26030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Research on serum amyloid A (SAA) has seen major advancement in recent years with combined approaches of structural analysis and genetically altered mice. Initially identified as an acute-phase reactant, SAA is now recognized as a major player in host defense, inflammation, lipid metabolism and tumor metastasis. SAA binding and the neutralization of LPS attenuate sepsis in mouse models. SAA also displays immunomodulatory functions in Th17 differentiation and macrophage polarization, contributing to a pro-metastatic tumor microenvironment. In spite of the progress, the regulatory mechanisms for these diverse functions of SAA remain unclear. This review provides a brief summary of recent advances in SAA research on immunity, inflammation, tumor microenvironment and in vivo models.
Collapse
Affiliation(s)
- Yixin Chang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuanrui Zou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518000, China
| |
Collapse
|
9
|
Medina-Rodriguez EM, Han D, Zeltzer SE, Moraskie Alvarez-Tabío MP, O'Connor G, Daunert S, Beurel E. Stress-induced VIPergic activation mediates microbiota/Th17cell-dependent depressive-like behaviors. Brain Behav Immun 2025; 123:739-751. [PMID: 39419356 DOI: 10.1016/j.bbi.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic stress often has deleterious effects leading to the development of psychiatric diseases. The gut-brain axis represents a novel avenue for stress research. The negative effects of stress on the gut physiology have been well-described, whereas the pathways whereby stress controls microbial composition to modulate behaviors remains mainly unknown. We discovered that vasoactive intestinal peptide (VIP) activation promoted stress-induced microbial changes leading to increased infiltration of T helper (Th) 17 cells and microglial activation in the hippocampus and depressive-like behaviors, uncovering a close crosstalk between intestinal VIPergic release and the gut microbiota during stress and providing a new interaction between the nervous system and the gut microbiome after stress. Neutralization of the signature cytokine of Th17 cells, interleukin (IL)-17A, was sufficient to block depressive-like behaviors, reduce neuronal VIPergic activation and microglia activation induced by VIPergic activation after stress, opening new potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Dongmei Han
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Shanie E Zeltzer
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Michael P Moraskie Alvarez-Tabío
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
10
|
Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, Yu H, Yang B, Yang H. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. Front Immunol 2024; 15:1430356. [PMID: 39717782 PMCID: PMC11663840 DOI: 10.3389/fimmu.2024.1430356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS. This link has been extensively researched in conditions such as diabetic nephropathy and immunoglobulin A (IgA) nephropathy. Thus, dysbiosis of the gut microbiota is seen as a crucial contributing factor in NS; however, there is a lack of comprehensive reviews that elucidate the changes in the gut microbiota across different NS conditions and that describe its mechanistic role in the disease. Moreover, serving as an innate regulator of the gut microbiota, traditional Chinese medicine (TCM) has the potential to exert a profound impact on the expression of inflammation-promoting agents, decreasing the levels of endotoxins and uremic toxins. In addition, it strengthens the stability of the intestinal barrier while controlling the metabolic function of the body through its efficient modulation of the gut microbiota. This intricate process yields far-reaching consequences for NS.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianhao Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huimin Liang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Traditional Chinese Hospital of Xiamen, Xiamen, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
11
|
Rodriguez-Marino N, Royer CJ, Rivera-Rodriguez DE, Seto E, Gracien I, Jones RM, Scharer CD, Gracz AD, Cervantes-Barragan L. Dietary fiber promotes antigen presentation on intestinal epithelial cells and development of small intestinal CD4 +CD8αα + intraepithelial T cells. Mucosal Immunol 2024; 17:1301-1313. [PMID: 39244090 PMCID: PMC11742265 DOI: 10.1016/j.mucimm.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.
Collapse
Affiliation(s)
- Naomi Rodriguez-Marino
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Charlotte J Royer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Current affiliation. Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States; Division of Infectious Diseases, Department of Medicine, , Emory University School of Medicine, Atlanta, GA, United States
| | - Emma Seto
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Isabelle Gracien
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, , Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
12
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Nguyen HH, Talbot J, Li D, Raghavan V, Littman DR. Modulating intestinal neuroimmune VIPergic signaling attenuates the reduction in ILC3-derived IL-22 and hepatic steatosis in MASLD. Hepatol Commun 2024; 8:e0528. [PMID: 39761015 PMCID: PMC11495769 DOI: 10.1097/hc9.0000000000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine. Given the described hepatoprotective role of IL-22, we hypothesize that modulation of this neuroimmune circuit could potentially be an innovative approach for the control of liver steatosis. METHODS We used a model of diet-induced MASLD by exposing mice to a high-fat diet (HFD) for 16 weeks, when the development of liver steatosis was first observed in our animals. We characterized IL-22 production by intestinal ILC3 at this dietary endpoint. We then evaluated whether communication between VIP-neurons and ILC3 affected IL-22 production and MASLD development by exposing mice with a conditional genetic deletion of Vipr2 in ILC3 (Rorc(t)CreVipr2fl/fl) to the HFD. We also performed intermittent global inhibition of VIP-neurons using a chemogenetic inhibitory approach (VipIres-CrehM4DiLSL) in HFD-fed mice. RESULTS Production of IL-22 by intestinal ILC3 is reduced in steatotic mice that were exposed to an HFD for 16 weeks. Targeted deletion of VIP receptor 2 in ILC3 resulted in higher production of IL-22 in ILC3 and was associated with a significant reduction in liver steatosis in mice under HFD. Global inhibition of VIP-producing neurons also resulted in a significant reduction in liver steatosis. CONCLUSIONS Modulating VIPergic neuroimmune signaling can ameliorate the development of hepatic steatosis induced by a surplus of fat ingestion in the diet. This neuroimmune pathway should be further investigated as a potential therapeutic avenue in MASLD.
Collapse
Affiliation(s)
- Henry H. Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
- Department of Medicine and Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jhimmy Talbot
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Dayi Li
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Varsha Raghavan
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Dan R. Littman
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
14
|
Zhou Y, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619139. [PMID: 39484594 PMCID: PMC11526982 DOI: 10.1101/2024.10.18.619139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The REG / Reg gene locus encodes for a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in human and mouse, pancreas and gut differed in REG / Reg isoform levels and preferences, with duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, also in models of pancreatic-ductal adenocarcinoma and pancreatitis, only inducible Reg members were upregulated in pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG / Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
|
15
|
Li M, Qu R, Li P, Mo X, Liu J, Dong B, Liu L, Xu ZZ. Epimedium polysaccharides mitigates Porphyromonas gingivalis-exacerbated intestinal inflammation by suppressing the Th17 pathway and modulating the gut microbiota. Int J Biol Macromol 2024; 278:134203. [PMID: 39098669 DOI: 10.1016/j.ijbiomac.2024.134203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
This study aimed to investigate the potential alleviating effect of Epimedium polysaccharide (EP) on intestinal inflammation aggravated by Porphyromonas gingivalis (Pg). P. gingivalis, an oral pathogen, may play a role in intestinal inflammation, highlighting the necessity to explore substances capable of inhibiting its pathogenicity. Initially, in vitro screening experiments utilizing co-culturing and quantitative polymerase chain reaction revealed that EP significantly inhibited the growth of P. gingivalis and the levels of virulence genes, including Kgp and RgpA. Subsequent mouse experiments demonstrated that EP notably ameliorated Pg-aggravated weight loss, disease activity index, histopathological lesions, and disruption of intestinal barrier integrity, evidenced by a reduction in tight junction protein levels. Flow cytometry analysis further illustrated that EP attenuated Pg-induced Th17 differentiation and Th17-related cytokines, such as IL-17 and IL-6. Additionally, 16S rRNA amplicon sequencing analysis elucidated that EP significantly mitigated Pg-induced gut microbiota dysbiosis, enriching potentially beneficial microbes, including Akkermansia and Bifidobacterium. The metabolomic analysis provided further insight, indicating that EP intervention altered the accumulation of relevant intestinal metabolites and exhibited correlations with disease indicators. In conclusion, our research suggested that EP holds promise as a prospective therapeutic agent for alleviating P. gingivalis-aggravated intestinal inflammation.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Ru Qu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Ping Li
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xuan Mo
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Juan Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Biao Dong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Liting Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
16
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
17
|
Sardar P, Almeida A, Pedicord VA. Integrating functional metagenomics to decipher microbiome-immune interactions. Immunol Cell Biol 2024; 102:680-691. [PMID: 38952337 DOI: 10.1111/imcb.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.
Collapse
Affiliation(s)
- Puspendu Sardar
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexandre Almeida
- Department of Veterinary Medicine, University of Cambridge School of Biological Sciences, Cambridge, UK
| | - Virginia A Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
18
|
Wang W, Li N, Guo X. The crosstalk between ILC3s and adaptive immunity in diseases. FEBS J 2024; 291:3965-3977. [PMID: 37994218 DOI: 10.1111/febs.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s), the innate counterpart of Th17 cells, are enriched in the mucosal area and lymphoid tissues. ILC3s interact with a variety of cells through their effector molecules and play an important role in the host defense against a spectrum of infections. Recent studies suggest that the extensive crosstalk between ILC3s and adaptive immune cells, especially T cells, is essential for maintaining tissue homeostasis. Here we discuss recent advances in the crosstalk between ILC3s and adaptive immune responses in multiple tissues and diseases. Understanding how ILC3s engage with adaptive immune cells will enhance our comprehension of diseases and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
20
|
Araujo LP, Edwards M, Irie K, Huang Y, Kawano Y, Tran A, De Michele S, Bhagat G, Wang HH, Ivanov II. Context-dependent role of group 3 innate lymphoid cells in mucosal protection. Sci Immunol 2024; 9:eade7530. [PMID: 39151019 PMCID: PMC11586228 DOI: 10.1126/sciimmunol.ade7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 07/22/2024] [Indexed: 08/18/2024]
Abstract
How group 3 innate lymphoid cells (ILC3s) regulate mucosal protection in the presence of T cells remains poorly understood. Here, we examined ILC3 function in intestinal immunity using ILC3-deficient mice that maintain endogenous T cells, T helper 17 (TH17) cells, and secondary lymphoid organs. ILC3s were dispensable for generation of TH17 and TH22 cell responses to commensal and pathogenic bacteria, and absence of ILC3s did not affect IL-22 production by CD4 T cells before or during infection. However, despite the presence of IL-22-producing T cells, ILC3s and ILC3-derived IL-22 were required for maintaining homeostatic functions of the intestinal epithelium. T cell-sufficient, ILC3-deficient mice were capable of pathogen clearance and survived infection with a low dose of Citrobacter rodentium. However, ILC3s promoted pathogen tolerance at early time points of infection by activating tissue-protective immune pathways. Consequently, ILC3s were indispensable for survival after high-dose infection. Our results demonstrate a context-dependent role for ILC3s in immune-sufficient animals and provide a blueprint for uncoupling of ILC3 and TH17 cell functions.
Collapse
Affiliation(s)
- Leandro P. Araujo
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Madeline Edwards
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Koichiro Irie
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yiming Huang
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yoshinaga Kawano
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Alexander Tran
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Simona De Michele
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Harris H. Wang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
22
|
Najar TA, Hao Y, Hao Y, Romero-Meza G, Dolynuk A, Littman DR. Microbiota-induced plastic T cells enhance immune control of antigen-sharing tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607605. [PMID: 39185202 PMCID: PMC11343098 DOI: 10.1101/2024.08.12.607605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Therapies that harness the immune system to target and eliminate tumor cells have revolutionized cancer care. Immune checkpoint blockade (ICB), which boosts the anti-tumor immune response by inhibiting negative regulators of T cell activation1-3, is remarkably successful in a subset of cancer patients, yet a significant proportion do not respond to treatment, emphasizing the need to understand factors influencing the therapeutic efficacy of ICB4-9. The gut microbiota, consisting of trillions of microorganisms residing in the gastrointestinal tract, has emerged as a critical determinant of immune function and response to cancer immunotherapy, with multiple studies demonstrating association of microbiota composition with clinical response10-16. However, a mechanistic understanding of how gut commensal bacteria influence the efficacy of ICB remains elusive. Here we utilized a gut commensal microorganism, segmented filamentous bacteria (SFB), which induces an antigen-specific Th17 cell effector program17, to investigate how colonization with it affects the efficacy of ICB in restraining distal growth of tumors sharing antigen with SFB. We find that anti-PD-1 treatment effectively inhibits the growth of implanted SFB antigen-expressing melanoma only if mice are colonized with SFB. Through T cell receptor clonal lineage tracing, fate mapping, and peptide-MHC tetramer staining, we identify tumor-associated SFB-specific Th1-like cells derived from the homeostatic Th17 cells induced by SFB colonization in the small intestine lamina propria. These gut-educated ex-Th17 cells produce high levels of the pro-inflammatory cytokines IFN-γ and TNF-α, and promote expansion and effector functions of CD8+ tumor-infiltrating cytotoxic lymphocytes, thereby controlling tumor growth. A better understanding of how distinct intestinal commensal microbes can promote T cell plasticity-dependent responses against antigen-sharing tumors may allow for the design of novel cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Tariq A. Najar
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Division of Advanced Research Technologies, New York, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- New York Genome Center, New York, NY 10013, USA
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Alexandra Dolynuk
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Dan R. Littman
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| |
Collapse
|
23
|
Beneke V, Grieger KM, Hartwig C, Müller J, Sohn K, Blaudszun AR, Hilger N, Schaudien D, Fricke S, Braun A, Sewald K, Hesse C. Homeostatic T helper 17 cell responses triggered by complex microbiota are maintained in ex vivo intestinal tissue slices. Eur J Immunol 2024; 54:e2350946. [PMID: 38763899 DOI: 10.1002/eji.202350946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Segmented filamentous bacteria (SFB) are members of the commensal intestinal microbiome. They are known to contribute to the postnatal maturation of the gut immune system, but also to augment inflammatory conditions in chronic diseases such as Crohn's disease. Living primary tissue slices are ultrathin multicellular sections of the intestine and provide a unique opportunity to analyze tissue-specific immune responses ex vivo. This study aimed to investigate whether supplementation of the gut flora with SFB promotes T helper 17 (Th17) cell responses in primary intestinal tissue slices ex vivo. Primary tissue slices were prepared from the small intestine of healthy Taconic mice with SFB-positive and SFB-negative microbiomes and stimulated with anti-CD3/CD28 or Concanavalin A. SFB-positive and -negative mice exhibited distinct microbiome compositions and Th17 cell frequencies in the intestine and complex microbiota including SFB induced up to 15-fold increase in Th17 cell-associated mediators, serum amyloid A (SAA), and immunoglobulin A (IgA) responses ex vivo. This phenotype could be transmitted by co-housing of mice. Our findings highlight that changes in the gut microbiome can be observed in primary intestinal tissue slices ex vivo. This makes the system very attractive for disease modeling and assessment of new therapies.
Collapse
Affiliation(s)
- Valerie Beneke
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| | - Klaudia M Grieger
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| | - Christina Hartwig
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Jan Müller
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
- Center of Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Member of the Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Kai Sohn
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - André-René Blaudszun
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadja Hilger
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dirk Schaudien
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Stephan Fricke
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Armin Braun
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Institute for Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| | - Christina Hesse
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| |
Collapse
|
24
|
Liu X, Li S, Wang L, Ma K. Microecological regulation in HCC therapy: Gut microbiome enhances ICI treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167230. [PMID: 38734322 DOI: 10.1016/j.bbadis.2024.167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The exploration of the complex mechanisms of cancer immunotherapy is rapidly evolving worldwide, and our focus is on the interaction of hepatocellular carcinoma (HCC) with immune checkpoint inhibitors (ICIs), particularly as it relates to the regulatory role of the gut microbiome. An important basis for the induction of immune responses in HCC is the presence of specific anti-tumor cells that can be activated and reinforced by ICIs, which is why the application of ICIs results in sustained tumor response rates in the majority of HCC patients. However, mechanisms of acquired resistance to immunotherapy in unresectable HCC result in no long-term benefit for some patients. The significant heterogeneity of inter-individual differences in the gut microbiome in response to treatment with ICIs makes it possible to target modulation of specific gut microbes to assist in augmenting checkpoint blockade therapies in HCC. This review focuses on the complex relationship between the gut microbiome, host immunity, and HCC, and emphasizes that manipulating the gut microbiome to improve response rates to cancer ICI therapy is a clinical strategy with unlimited potential.
Collapse
Affiliation(s)
- Xuliang Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
25
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
26
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
27
|
Verma S, Dufort MJ, Olsen TM, Kimmel S, Labuda JC, Scharffenberger S, McGuire AT, Harrison OJ. Antigen-level resolution of commensal-specific B cell responses can be enabled by phage display screening coupled with B cell tetramers. Immunity 2024; 57:1428-1441.e8. [PMID: 38723638 PMCID: PMC11168869 DOI: 10.1016/j.immuni.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.
Collapse
Affiliation(s)
- Sheenam Verma
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Samantha Kimmel
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jasmine C Labuda
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Sam Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
29
|
Yao Y, Shang W, Bao L, Peng Z, Wu C. Epithelial-immune cell crosstalk for intestinal barrier homeostasis. Eur J Immunol 2024; 54:e2350631. [PMID: 38556632 DOI: 10.1002/eji.202350631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The intestinal barrier is mainly formed by a monolayer of epithelial cells, which forms a physical barrier to protect the gut tissues from external insults and provides a microenvironment for commensal bacteria to colonize while ensuring immune tolerance. Moreover, various immune cells are known to significantly contribute to intestinal barrier function by either directly interacting with epithelial cells or by producing immune mediators. Fulfilling this function of the gut barrier for mucosal homeostasis requires not only the intrinsic regulation of intestinal epithelial cells (IECs) but also constant communication with immune cells and gut microbes. The reciprocal interactions between IECs and immune cells modulate mucosal barrier integrity. Dysregulation of barrier function could lead to dysbiosis, inflammation, and tumorigenesis. In this overview, we provide an update on the characteristics and functions of IECs, and how they integrate their functions with tissue immune cells and gut microbiota to establish gut homeostasis.
Collapse
Affiliation(s)
- Yikun Yao
- Shanghai Institute of Nutrition & Health, Chinese Academy of Science, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
31
|
Kim TS, Ikeuchi T, Theofilou VI, Williams DW, Greenwell-Wild T, June A, Adade EE, Li L, Abusleme L, Dutzan N, Yuan Y, Brenchley L, Bouladoux N, Sakamachi Y, Palmer RJ, Iglesias-Bartolome R, Trinchieri G, Garantziotis S, Belkaid Y, Valm AM, Diaz PI, Holland SM, Moutsopoulos NM. Epithelial-derived interleukin-23 promotes oral mucosal immunopathology. Immunity 2024; 57:859-875.e11. [PMID: 38513665 PMCID: PMC11058479 DOI: 10.1016/j.immuni.2024.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vasileios Ionas Theofilou
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Drake Winslow Williams
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Armond June
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Emmanuel E Adade
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Loreto Abusleme
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yosuke Sakamachi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert J Palmer
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex M Valm
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Wu W, Pan Y, Zheng T, Sun H, Li X, Zhu H, Wang Z, Zhou X. Limonin alleviates high-fat diet-induced dyslipidemia by regulating the intestinal barrier via the microbiota-related ILC3-IL22-IL22R pathway. Food Funct 2024; 15:2679-2692. [PMID: 38375746 DOI: 10.1039/d3fo04530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
High-fat diet (HFD)-induced dyslipidemia is frequently accompanied by gut microbiota dysbiosis and a compromised gut barrier. Enhancing the intestinal barrier function emerges as a potential therapeutic approach for dyslipidemia. The ILC3-IL22-IL22R pathway, which responds to dietary and microbial signals, has not only attracted attention for its crucial role in maintaining the intestinal barrier, but recent reports have also suggested its potential in regulating lipid metabolism. Limonin is derived from the Chinese herb Evodiae fructus, which has shown potential in ameliorating dysbiosis of serum lipids. However, its underlying mechanisms remain elusive. Consequently, targeting the ILC3-IL22-IL22R pathway to enhance intestinal barrier function holds promise as a therapeutic approach for dyslipidemia. In this study, male C57BL/6 mice were subjected to a 16-week HFD to induce dyslipidemia and concurrently administered oral limonin. We discovered that limonin supplementation dramatically reduced serum lipid profiles in HFD-fed mice, significantly curbing HFD-induced weight gain and epididymal fat accumulation. Ileal histopathological evaluation indicated limonin's ameliorative effects on HFD-induced intestinal barrier impairment. Limonin also moderated the intestinal microbiota dysbiosis, which is characterized by the elevation of Firmicutes in HFD mice, and notably amplified the abundance of probiotic Lactobacillus. In addition, supported by flow cytometry and other analyses, we observed that limonin upregulated the ILC3-IL22-IL22R pathway, enhancing phosphorylated STAT3 (pSTAT3) in intestinal epithelial cells (IECs), thereby reducing lipid transporter expression. In conclusion, our study revealed that limonin exerted a promising preventive effect against HFD-induced dyslipidemia by the mitigation of the intestinal barrier function and intestinal microbiota, and its mechanism was related to the upregulation of the ILC3-IL22-IL22R pathway.
Collapse
Affiliation(s)
- Wangling Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tianyan Zheng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Haoyi Sun
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xia Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Haiyan Zhu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zheng Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
33
|
Li M, Kim YM, Koh JH, Park J, Kwon HM, Park JH, Jin J, Park Y, Kim D, Kim WU. Serum amyloid A expression in liver promotes synovial macrophage activation and chronic arthritis via NFAT5. J Clin Invest 2024; 134:e167835. [PMID: 38426494 PMCID: PMC10904059 DOI: 10.1172/jci167835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Nuclear factor of activated T-cells 5 (NFAT5), an osmo-sensitive transcription factor, can be activated by isotonic stimuli, such as infection. It remains unclear, however, whether NFAT5 is required for damage-associated molecular pattern-triggered (DAMP-triggered) inflammation and immunity. Here, we found that several DAMPs increased NFAT5 expression in macrophages. In particular, serum amyloid A (SAA), primarily generated by the liver, substantially upregulated NFAT5 expression and activity through TLR2/4-JNK signalling pathway. Moreover, the SAA-TLR2/4-NFAT5 axis promoted migration and chemotaxis of macrophages in an IL-6- and chemokine ligand 2-dependent (CCL2-dependent) manner in vitro. Intraarticular injection of SAA markedly accelerated macrophage infiltration and arthritis progression in mice. By contrast, genetic ablation of NFAT5 or TLR2/4 rescued the pathology induced by SAA, confirming the SAA-TLR2/4-NFAT5 axis in vivo. Myeloid-specific depletion of NFAT5 also attenuated SAA-accelerated arthritis. Of note, inflammatory arthritis in mice strikingly induced SAA overexpression in the liver. Conversely, forced overexpression of the SAA gene in the liver accelerated joint damage, indicating that the liver contributes to bolstering chronic inflammation at remote sites by secreting SAA. Collectively, this study underscores the importance of the SAA-TLR2/4-NFAT5 axis in innate immunity, suggesting that acute phase reactant SAA mediates mutual interactions between liver and joints and ultimately aggravates chronic arthritis by enhancing macrophage activation.
Collapse
Affiliation(s)
- Meiling Li
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Uijeoungbu St.Mary’s hospital, the Catholic University of Korea, Uijeoungbu, Republic of Korea
| | - Jihyun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H. Moo Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jong-Hwan Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jingchun Jin
- Department of Immunology of Yanbian University Hospital, Yanji, Jilin Province, China
- Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanji, Jilin Province, China
| | - Youngjae Park
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
34
|
Campbell E, Hesser LA, Berni Canani R, Carucci L, Paparo L, Patry RT, Nagler CR. A Lipopolysaccharide-Enriched Cow's Milk Allergy Microbiome Promotes a TLR4-Dependent Proinflammatory Intestinal Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:702-714. [PMID: 38169331 PMCID: PMC10872367 DOI: 10.4049/jimmunol.2300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
We have previously reported that the gut microbiota of healthy infants harbors allergy-protective bacteria taxa that are depleted in infants with cow's milk allergy (CMA). Few reports have investigated the role of the gut microbiota in promoting allergic responses. In this study we selected a CMA-associated microbiota with increased abundance of Gram-negative bacteria for analysis of its proinflammatory potential. LPS is the major component of the outer membrane of Gram-negative bacteria. Colonization of mice with a global or conditional mutation of the LPS receptor TLR4 with this CMA microbiota induced expression of serum amyloid A1 (Saa1) and other Th17-, B cell-, and Th2-associated genes in the ileal epithelium in a TLR4-dependent manner. In agreement with the gene expression data, mice colonized with the CMA microbiota have expanded populations of Th17 and regulatory T cells and elevated concentrations of fecal IgA. Importantly, we used both antibiotic-treated specific pathogen-free and germ-free rederived mice with a conditional mutation of TLR4 in the CD11c+ compartment to demonstrate that the induction of proinflammatory genes, fecal IgA, and Th17 cells is dependent on TLR4 signaling. Furthermore, metagenomic sequencing revealed that the CMA microbiota has an increased abundance of LPS biosynthesis genes. Taken together, our results show that a microbiota displaying a higher abundance of LPS genes is associated with TLR4-dependent proinflammatory gene expression and a mixed type 2/type 3 response in mice, which may be characteristic of a subset of infants with CMA.
Collapse
Affiliation(s)
- Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL. U.S.A
| | - Lauren A. Hesser
- Department of Pathology, The University of Chicago, Chicago, IL. U.S.A
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL. U.S.A
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutrition Lab at CEINGE Advanced Biotechnologies Research Center and Task Force for Microbiome Studies, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science and ImmunoNutrition Lab at CEINGE Advanced Biotechnologies Research Center and Task Force for Microbiome Studies, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science and ImmunoNutrition Lab at CEINGE Advanced Biotechnologies Research Center and Task Force for Microbiome Studies, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Robert T. Patry
- Department of Pathology, The University of Chicago, Chicago, IL. U.S.A
| | - Cathryn R. Nagler
- Department of Pathology, The University of Chicago, Chicago, IL. U.S.A
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL. U.S.A
| |
Collapse
|
35
|
Bai X, Fu R, Liu Y, Deng J, Fei Q, Duan Z, Zhu C, Fan D. Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis. J Pharm Anal 2024; 14:259-275. [PMID: 38464791 PMCID: PMC10921328 DOI: 10.1016/j.jpha.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Xue Bai
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
36
|
Dong X, Qi M, Cai C, Zhu Y, Li Y, Coulter S, Sun F, Liddle C, Uboha NV, Halberg R, Xu W, Marker P, Fu T. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight 2024; 9:e170428. [PMID: 38258906 PMCID: PMC10906220 DOI: 10.1172/jci.insight.170428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.
Collapse
Affiliation(s)
- Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Chunmiao Cai
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yu Zhu
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Yuwenbin Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sally Coulter
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fei Sun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - Richard Halberg
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Paul Marker
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Ma Y, Zhang X, Xuan B, Li D, Yin N, Ning L, Zhou YL, Yan Y, Tong T, Zhu X, Huang X, Hu M, Wang Z, Cui Z, Li H, Wang J, Fang JY, Liu R, Chen H, Hong J. Disruption of CerS6-mediated sphingolipid metabolism by FTO deficiency aggravates ulcerative colitis. Gut 2024; 73:268-281. [PMID: 37734910 DOI: 10.1136/gutjnl-2023-330009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND AND AIMS Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.
Collapse
Affiliation(s)
- Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Nan Yin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Lu Zhou
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Wang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huabin Li
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
39
|
Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, Březina J, Pacáková I, Šrůtková D, Ben-Nun O, Goldfarb Y, Šplíchalová I, Kolář M, Abramson J, Filipp D, Dobeš J. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J Exp Med 2024; 221:e20230194. [PMID: 37902602 PMCID: PMC10615894 DOI: 10.1084/jem.20230194] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.
Collapse
Affiliation(s)
- Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Katarína Kováčová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Dobešová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Schierová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Březina
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pacáková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iva Šplíchalová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
40
|
Kim JS, Gupta R. Clinical Manifestations and Management of Fibrotic Pulmonary Sarcoidosis. J Clin Med 2023; 13:241. [PMID: 38202248 PMCID: PMC10780222 DOI: 10.3390/jcm13010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrotic pulmonary sarcoidosis represents a distinct and relatively uncommon manifestation within the spectrum of sarcoidosis and has substantial morbidity and mortality. Due to the scarcity of research focused on this specific disease subtype, our current understanding of pathogenesis and optimal management remains constrained. This knowledge gap underscores the need for further investigation into areas such as targeted therapies, lung transplantation, and quality of life of patients with fibrotic pulmonary sarcoidosis. The primary aim of this review is to discuss recent developments within the realm of fibrotic pulmonary sarcoidosis to foster a more comprehensive understanding of the underlying mechanisms, prognosis, and potential treatment modalities.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA 19140, USA
| | - Rohit Gupta
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, PA 19140, USA;
| |
Collapse
|
41
|
Brockmann L, Tran A, Huang Y, Edwards M, Ronda C, Wang HH, Ivanov II. Intestinal microbiota-specific Th17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity 2023; 56:2719-2735.e7. [PMID: 38039966 PMCID: PMC10964950 DOI: 10.1016/j.immuni.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
Commensal microbes induce cytokine-producing effector tissue-resident CD4+ T cells, but the function of these T cells in mucosal homeostasis is not well understood. Here, we report that commensal-specific intestinal Th17 cells possess an anti-inflammatory phenotype marked by expression of interleukin (IL)-10 and co-inhibitory receptors. The anti-inflammatory phenotype of gut-resident commensal-specific Th17 cells was driven by the transcription factor c-MAF. IL-10-producing commensal-specific Th17 cells were heterogeneous and derived from a TCF1+ gut-resident progenitor Th17 cell population. Th17 cells acquired IL-10 expression and anti-inflammatory phenotype in the small-intestinal lamina propria. IL-10 production by CD4+ T cells and IL-10 signaling in intestinal macrophages drove IL-10 expression by commensal-specific Th17 cells. Intestinal commensal-specific Th17 cells possessed immunoregulatory functions and curbed effector T cell activity in vitro and in vivo in an IL-10-dependent and c-MAF-dependent manner. Our results suggest that tissue-resident commensal-specific Th17 cells perform regulatory functions in mucosal homeostasis.
Collapse
Affiliation(s)
- Leonie Brockmann
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Alexander Tran
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yiming Huang
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Madeline Edwards
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carlotta Ronda
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Harris H Wang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ivaylo I Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
42
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|
43
|
Wang Q, Jia D, He J, Sun Y, Qian Y, Ge Q, Qi Y, Wang Q, Hu Y, Wang L, Fang Y, He H, Luo M, Feng L, Si J, Song Z, Wang L, Chen S. Lactobacillus Intestinalis Primes Epithelial Cells to Suppress Colitis-Related Th17 Response by Host-Microbe Retinoic Acid Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303457. [PMID: 37983567 PMCID: PMC10754072 DOI: 10.1002/advs.202303457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Gut microbiome is integral to the pathogenesis of ulcerative colitis. A novel probiotic Lactobacillus intestinalis (L. intestinalis) exerts a protective effect against dextran sodium sulfate-induced colitis in mice. Based on flow cytometry, colitis-associated Th17 cells are the target of L. intestinalis, which is supported by the lack of protective effects of L. intestinalis in T cell-null Rag1-/- mice or upon anti-IL-17-A antibody-treated mice. Although L. intestinalis exerts no direct effect on T cell differentiation, it decreases C/EBPA-driven gut epithelial SAA1 and SAA2 production, which in turn impairs Th17 cell differentiation. Cometabolism of L. intestinalis ALDH and host ALDH1A2 contributed to elevated biosynthesis of retinoic acid (RA), which accounts for the anti-colitis effect in RAR-α -mediated way. In a cohort of ulcerative colitis patients, it is observed that fecal abundance of L. intestinalis is negatively associated with the C/EBPA-SAA1/2-Th17 axis. Finally, L. intestinalis has a synergistic effect with mesalazine in alleviating murine colitis. In conclusion, L. intestinalis and associated metabolites, RA, have potential therapeutic effects for suppressing colonic inflammation by modulating the crosstalk between intestinal epithelia and immunity.
Collapse
Affiliation(s)
- Qi‐Wen Wang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Ding‐Jia‐Cheng Jia
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Jia‐Min He
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Yong Sun
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Yun Qian
- Department of Gastroenterology and HepatologyShenzhen University General HospitalShenzhenGuangdong518055China
| | - Qi‐Wei Ge
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
| | - Ya‐Dong Qi
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Qing‐Yi Wang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Ying‐Ying Hu
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Yan‐Fei Fang
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Hui‐Qin He
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Man Luo
- Department of NutritionSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Li‐Jun Feng
- Department of NutritionSir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Jian‐Min Si
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
- Institution of GastroenterologyZhejiang UniversityHangzhouZhejiang310058China
- Prevention and Treatment Research Center of Senescent DiseaseZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zhang‐Fa Song
- Department of Colorectal SurgerySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
| | - Liang‐Jing Wang
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058China
- Institution of GastroenterologyZhejiang UniversityHangzhouZhejiang310058China
- Prevention and Treatment Research Center of Senescent DiseaseZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Shu‐Jie Chen
- Department of GastroenterologySir Run Run Shaw HospitalZhejiang UniversityHangzhouZhejiang310058China
- Institution of GastroenterologyZhejiang UniversityHangzhouZhejiang310058China
- Prevention and Treatment Research Center of Senescent DiseaseZhejiang University School of MedicineHangzhouZhejiang310058China
| |
Collapse
|
44
|
Zhang Y, Hu L, Ren G, Zeng Y, Zhao X, Zhong C. Distinct regulatory machineries underlying divergent chromatin landscapes distinguish innate lymphoid cells from T helper cells. Front Immunol 2023; 14:1271879. [PMID: 38106414 PMCID: PMC10722145 DOI: 10.3389/fimmu.2023.1271879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Innate lymphoid cells (ILCs), as the innate counterpart of CD4+ T helper (Th) cells, play crucial roles in maintaining tissue homeostasis. While the ILC subsets and their corresponding Th subsets demonstrate significant similarities in core programming related to effector function and regulatory mechanisms, their principal distinctions, given their innate and adaptive lymphocyte nature, remain largely unknown. In this study, we have employed an integrative analysis of 294 bulk RNA-sequencing results across all ILC and Th subsets, using scRNA-seq algorithms. Consequently, we identify two genesets that predominantly differentiate ILCs from Th cells, as well as three genesets that distinguish various immune responses. Furthermore, through chromatin accessibility analysis, we find that the ILC geneset tends to rely on specific transcriptional regulation at promoter regions compared with the Th geneset. Additionally, we observe that ILCs and Th cells are under differential transcriptional regulation. For example, ILCs are under stronger regulation by multiple transcription factors, including RORα, GATA3, and NF-κB. Otherwise, Th cells are under stronger regulation by AP-1. Thus, our findings suggest that, despite the acknowledged similarities in effector functions between ILC subsets and corresponding Th subsets, the underlying regulatory machineries still exhibit substantial distinctions. These insights provide a comprehensive understanding of the unique roles played by each cell type during immune responses.
Collapse
Affiliation(s)
- Yime Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanyu Zeng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xingyu Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
45
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
46
|
Hernandez JE, Llorente C, Ma S, Miyamoto KT, Sinha S, Steele S, Xiao Z, Lai CJ, Zuniga EI, Ghosh P, Schnabl B, Huang WJM. The arginine methyltransferase PRMT5 promotes mucosal defense in the intestine. Life Sci Alliance 2023; 6:e202302026. [PMID: 37666668 PMCID: PMC10477432 DOI: 10.26508/lsa.202302026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
PRMT5 is a type II arginine methyltransferase abundantly expressed in the colonic epithelium. It is up-regulated in inflammatory bowel disease and colorectal cancer. However, its role in mucosal defense against enteric infection has not been studied. Here, we report that Prmt5 in the murine colon is up-regulated in response to Citrobacter rodentium infection. Pathogen clearance in mice with haploinsufficient expression of Prmt5 is significantly delayed compared with wildtype littermate controls. Transcriptomic analyses further reveal that PRMT5 regulates the expression of canonical crypt goblet cell genes involved in mucus production, assembly, and anti-microbial responses via methyltransferase activity-dependent and -independent mechanisms. Together, these findings uncover PRMT5 as a novel regulator of mucosal defense and a potential therapeutic target for treating intestinal diseases.
Collapse
Affiliation(s)
- Juan E Hernandez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kiana T Miyamoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Scarlet Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zihui Xiao
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ching-Jung Lai
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Elina I Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
White Z, Cabrera I, Kapustka I, Sano T. Microbiota as key factors in inflammatory bowel disease. Front Microbiol 2023; 14:1155388. [PMID: 37901813 PMCID: PMC10611514 DOI: 10.3389/fmicb.2023.1155388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by prolonged inflammation of the gastrointestinal tract, which is thought to occur due to dysregulation of the immune system allowing the host's cells to attack the GI tract and cause chronic inflammation. IBD can be caused by numerous factors such as genetics, gut microbiota, and environmental influences. In recent years, emphasis on commensal bacteria as a critical player in IBD has been at the forefront of new research. Each individual harbors a unique bacterial community that is influenced by diet, environment, and sanitary conditions. Importantly, it has been shown that there is a complex relationship among the microbiome, activation of the immune system, and autoimmune disorders. Studies have shown that not only does the microbiome possess pathogenic roles in the progression of IBD, but it can also play a protective role in mediating tissue damage. Therefore, to improve current IBD treatments, understanding not only the role of harmful bacteria but also the beneficial bacteria could lead to attractive new drug targets. Due to the considerable diversity of the microbiome, it has been challenging to characterize how particular microorganisms interact with the host and other microbiota. Fortunately, with the emergence of next-generation sequencing and the increased prevalence of germ-free animal models there has been significant advancement in microbiome studies. By utilizing human IBD studies and IBD mouse models focused on intraepithelial lymphocytes and innate lymphoid cells, this review will explore the multifaceted roles the microbiota plays in influencing the immune system in IBD.
Collapse
Affiliation(s)
| | | | | | - Teruyuki Sano
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
49
|
Liang B, Xing D. Unveiling the mystery of ILC3s: Their functions and interactions in mucosal immunity. Int Immunopharmacol 2023; 123:110772. [PMID: 37552906 DOI: 10.1016/j.intimp.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently discovered subset of immune cells that play a crucial role in preserving tissue health and combating infections. Among these, ILC3s are particularly vital in regulating mucosal immunity across multiple organs such as the gut, lungs, and skin. The purpose of this article is to present a comprehensive and detailed overview of current knowledge on ILC3s, with a specific emphasis on their intricate interactions with various components of the intestinal microenvironment. Recent research on the complex, bidirectional communication pathways between ILC3s and intestinal epithelial cells, stromal cells, immune cells, microbiota, their metabolites, and diet are highlighted. Furthermore, this review comprehensively examines the diverse functions of ILC3s, which include lymphoid tissue development, tissue repair, infection, inflammation, and metabolic diseases, as well as the effector molecules that facilitate these functions. Overall, this review provides valuable insights into the biological and functional aspects of ILC3s and underscores their potential for developing innovative therapies for immune-mediated disorders, while also acknowledging the remaining knowledge gaps and challenges that need to be addressed.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Yu J, Zhu H, Taheri S, Lee JY, Diamond DM, Kirstein C, Kindy MS. Serum amyloid A-dependent inflammasome activation and acute injury in a mouse model of experimental stroke. RESEARCH SQUARE 2023:rs.3.rs-3258406. [PMID: 37720021 PMCID: PMC10503850 DOI: 10.21203/rs.3.rs-3258406/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Serum amyloid A (SAA) proteins increase dramatically in the blood following inflammation. Recently, SAAs are increased in humans following stroke and in ischemic animal models. However, the impact of SAAs on whether this signal is critical in the ischemic brain remains unknown. Therefore, we investigated the role of SAA and SAA signaling in the ischemic brain. Wildtype and SAA deficient mice were exposed to middle cerebral artery occlusion and reperfusion, examined for the impact of infarct volumes, behavioral changes, inflammatory markers, TUNEL staining, and BBB changes. The underlying mechanisms were investigated using SAA deficient mice, transgenic mice and viral vectors. SAA levels were significantly increase following MCAo and mice deficient in SAAs showed reduced infarct volumes and improved behavioral outcomes. SAA deficient mice showed a reduction in TUNEL staining, inflammation and decreased glial activation. Mice lacking acute phase SAAs demonstrated a reduction in expression of the NLRP3 inflammasome and SAA/NLRP3 KO mice showed improvement. Restoration of SAA expression via SAA tg mice or adenoviral expression reestablished the detrimental effects of SAA. A reduction in BBB permeability was seen in the SAA KO mice and anti-SAA antibody treatment reduced the effects on ischemic injury. SAA signaling plays a critical role in regulating NLRP3-induced inflammation and glial activation in the ischemic brain. Blocking this signal will be a promising approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Jin Yu
- University of South Florida
| | | | | | | | | | | | | |
Collapse
|