1
|
Kouhestani SD, Khalili S, Razi A, Aghili M, Moghadam MF. Ectopic expression of miR-34a/-328 sensitizes breast cancer stem cells to gamma rays/doxorubicin by BCL2/ABCG2 targeting. Mol Biol Rep 2025; 52:490. [PMID: 40402331 DOI: 10.1007/s11033-025-10581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE In the present study, we aim to identify novel molecular targets for sensitizing Breast cancer stem cells (BCSCs) to common antitumor treatments. MicroRNAs (miRNAs) play key roles in pivotal cellular processes. Therefore, modulating the expression of these miRNAs may lead to increased sensitivity of BCSCs to current treatments or overcome their therapeutic resistance. Due to their pivotal roles in the regulation of apoptosis (via BCL2) and chemoresistance (via ABCG2) and their differential expression in BCSCs (compared to non-BCSCs), miR-34a and miR-328 were selected for analysis. METHODS BCSCs were propagated and characterized. Then, the expression levels of miRNAs, which are associated with treatment resistance (miR-21, -34a, -328, -128, -200c, Let-7i), were quantified in BCSCs and non-BCSCs before and after treatment with doxorubicin (DOX) and radiation. BCSCs were subsequently transduced with recombinant lentiviruses that contained miR-34a or miR-328 to sensitize these cells to DOX- and radio-treatment, respectively. The effects of miR-34a or miR-328 overexpression on apoptosis induction after irradiation or DOX treatment were assessed by flow cytometry analysis. RESULTS Ectopic expression of miR-34a or miR-328 in BCSCs, respectively, decreased the BCL2 and ABCG2 expression levels compared to untreated cells. Furthermore, overexpression of miR-34a or miR-328 in BCSCs led to increased susceptibility to apoptosis induced by radiation or DOX treatment, respectively. CONCLUSION It could be concluded that miR-34a or miR-328 could effectively increase radiation- or DOX-induced cell apoptosis by negatively regulating Bcl-2 or ABCG2 expression levels in BCSCs, respectively. Hence, ectopic expression of these miRNAs could sensitize BCSCs to irradiation and DOX treatment.
Collapse
Affiliation(s)
- Somayeh Dehghan Kouhestani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Abdolah Razi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Mehdi Aghili
- Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
2
|
Shen Z, Zhang J, Jing X, Tao E. Construction and Identification of Inflammation-Related TF-mRNA-miRNA Coexpression Network and Immune Infiltration in Parkinson's Disease. PARKINSON'S DISEASE 2025; 2025:2323585. [PMID: 40370709 PMCID: PMC12077966 DOI: 10.1155/padi/2323585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
Background: Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Inflammation, marked by the infiltration of inflammatory mediators and the proliferation of inflammatory cells, is closely linked to PD. This study aims to identify and validate inflammation-related biomarkers in PD and construct a TF-mRNA-miRNA coexpression network through bioinformatics analysis. Methods: The PD-associated dataset GSE7621 and inflammation-related genes were downloaded from the GEO Database and GeneCards platform to obtain inflammation-related differential expression genes (IRDEGs). The key IRDEGs were generated by PPI network analysis. The gene expression levels of the key IRDEGs were validated by blood samples from PD patients using QPCR analysis. We utilized the ENCODE, hTFtarget, CHEA, miRWALK, and miRDB databases to obtain upstream and downstream molecular network models for constructing the TF-mRNA-miRNA interaction network of the key IRDEGs. Finally, based on CIBERSORT algorithm, the associations between IRDEs and immune cell infiltration were investigated. Results: A total of four key IRDEGs (CXCR4, LEP, SLC18A2, and TAC1) were screened and validated. Through biological function analysis, key-related pathways and coexpression networks of PD were identified. These genes may be closely related to the onset of PD. Additionally, we found that increased CD4 T-cell infiltration might be associated with the occurrence of PD. Conclusions: We identified four potential inflammation-related treatment target and constructed a TF-mRNA-miRNA regulatory network. This information provides an initial basis for understanding the complex PD regulatory mechanisms.
Collapse
Affiliation(s)
- Zhuzhen Shen
- The Eighth Affiliated Hospital of Sun Yat-Sen University Neurology Department, Shenzhen, Guangdong, China
| | - Jieli Zhang
- The Eighth Affiliated Hospital of Sun Yat-Sen University Neurology Department, Shenzhen, Guangdong, China
| | - Xiuna Jing
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Enxiang Tao
- The Eighth Affiliated Hospital of Sun Yat-Sen University Neurology Department, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Souto EP, Gong P, Landua JD, Rajaram Srinivasan R, Ganesan A, Dobrolecki LE, Purdy SC, Pan X, Zeosky M, Chung A, Yi SS, Ford HL, Lewis MT. Lineage Tracing and Single-Cell RNA Sequencing Reveal a Common Transcriptional State in Breast Cancer Tumor-Initiating Cells Characterized by IFN/STAT1 Activity. Cancer Res 2025; 85:1390-1409. [PMID: 40230213 PMCID: PMC11997551 DOI: 10.1158/0008-5472.can-23-4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 01/31/2025] [Indexed: 04/16/2025]
Abstract
A tumor cell subpopulation of tumor-initiating cells (TIC) or "cancer stem cells" is associated with therapeutic resistance, as well as both local and distant recurrences. Signal transducer and activator of transcription (STAT) activity is elevated in TICs in claudin-low models of human triple-negative breast cancer, which enables enrichment of TICs using a STAT-responsive reporter. Lineage tracing of TICs as they undergo cell state changes could enable a better understanding of the molecular phenotypes of TIC and uncover strategies to selectively target TICs. In this study, we developed a STAT-responsive lineage-tracing system and used it in conjunction with the original reporter to enrich for cells with enhanced mammosphere-forming potential. This approach was able to detect TICs in some, but not all, basal-like triple-negative breast cancer xenograft models, indicating that STAT signaling has both TIC-related and TIC-independent functions. Single-cell RNA sequencing (RNA-seq) of reporter-tagged xenografts and clinical samples identified a common IFN/STAT1-associated transcriptional state in TICs that was previously linked to inflammation and macrophage differentiation. Surprisingly, most of the identified genes were not present in previously published TIC signatures derived using bulk RNA-seq. Finally, bone marrow stromal cell antigen-2 was identified as a cell surface marker of this state that functionally regulated TIC frequency. These results suggest that TICs may exploit the IFN/STAT1 signaling axis to promote their activity and that targeting this pathway may help eliminate TICs. Significance: Coupling single-cell transcriptomics with tumor-initiating cell enrichment identified IFN response gene expression not previously reported in bulk RNA-sequencing-derived signatures and proposed IFN/STAT1 signaling as a candidate therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Eric P. Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ping Gong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - John D. Landua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | | | - Abhinaya Ganesan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Stephen C. Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, Colorado
- Pharmacology Graduate Program, UC-AMC, Aurora, Colorado
- University of Colorado Cancer Center, UC-AMC, Aurora, Colorado
| | - Xingxin Pan
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
| | - Michael Zeosky
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
| | - Anna Chung
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
| | - S. Stephen Yi
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, Colorado
- Pharmacology Graduate Program, UC-AMC, Aurora, Colorado
- University of Colorado Cancer Center, UC-AMC, Aurora, Colorado
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Radiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Hong Y, He J, Deng D, Liu Q, Zu X, Shen Y. Targeting kinases that regulate programmed cell death: a new therapeutic strategy for breast cancer. J Transl Med 2025; 23:439. [PMID: 40229646 PMCID: PMC11995514 DOI: 10.1186/s12967-025-06367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Breast cancer is one of the most prevalent malignant tumors among women and ranks as the second leading cause of cancer-related deaths in females, primarily due to delays in diagnosis and shortcomings in treatment strategies. Consequently, there is a pressing need to identify reliable therapeutic targets and strategies. In recent years, the identification of effective biomarkers-particularly novel molecular therapeutic targets-has become a focal point in breast cancer research, aimed at predicting disease aggressiveness and monitoring treatment responses. Simultaneously, advancements in understanding the molecular mechanisms underlying cellular programmed death have opened new avenues for targeting kinase-regulated programmed cell death as a viable therapeutic strategy. This review summarizes the latest research progress regarding kinase-regulated programmed death (including apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis) in breast cancer treatment. It covers the key kinases involved in this mechanism, their roles in the onset and progression of breast cancer, and strategies for modulating these kinases through pharmacological interventions.
Collapse
Affiliation(s)
- Yun Hong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Dan Deng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qinyue Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| |
Collapse
|
5
|
Attia YM, Tadros SA, Fahim SA, Badr DM. Role of noncoding RNA as a pacemaker in cancer stem cell regulation: a review article. J Egypt Natl Canc Inst 2025; 37:9. [PMID: 40122959 DOI: 10.1186/s43046-025-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Accumulated evidence supported the crucial role of a tiny population of cells within the tumor called cancer stem cells (CSCs) in cancer origination, and proliferation. Additionally, these cells are distinguished by their self-renewal, differentiation, and therapeutic resistance capabilities. Interestingly, many studies recorded dysregulation of different types of noncoding RNAs, such as microRNA (miRNA) and long non-coding RNA (LncRNA), in cancer cells as well as CSCs. Moreover, several studies also supported the regulation of the transcription factors and signaling pathways required for CSC progression by these noncoding RNAs. However, the exact biological functions of all these noncoding RNAs are not well understood yet. These findings are of great interest, implying usage of noncoding RNA as therapeutic tool to target these cells. In this review, we provide an insight into how noncoding RNAs regulate CSCs and how this correlation is manipulated to develop new therapies to eradicate cancer cells successfully.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123october University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Doaa M Badr
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
6
|
Zhu Q, Hu L, Cui C, Zang M, Dong H, Ma J. Decoding Hairpin Structure Stability in Lin28-Mediated Repression. Biochemistry 2025; 64:1276-1284. [PMID: 40020242 DOI: 10.1021/acs.biochem.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The Lin28 protein is well known for its role in inhibiting the biogenesis of microRNAs (miRNAs) that belong to the let-7 family. The Lin28 and let-7 axes are associated with several types of cancers. It is imperative to understand the underlying mechanism to treat these cancers in a more efficient way. In this study, we employed all-atom molecular dynamics simulation as a research tool to investigate the interaction formed between Lin28 and the precursor element of let-7d, one of the 12 members of the let-7 family. By constructing systems of an intact sequence length of preE-let-7d, our simulations suggest that both the loop region of the hairpin structure and the GGAG sequence can form stable interactions with the cold shock domain (CSD) and zinc knuckle domain (ZKD) regions of the protein, respectively. The system, by deleting the nucleotides GGAG at the 3' terminal, indicates that the loop region is more responsible for its ability in bypassing the binding and repression of Lin28. Additionally, using let-7c-2, which can bypass Lin28 regulation, as a template, we constructed systems with mutated loop region sequences in miRNAs and tested their stabilities. Our simulation results coincide well with experimental observations. Based on both simulation results and statistical analysis from two databases, we hypothesized that two factors, namely, the interaction between terminal nucleotides and the ring tension originating from the middle nucleotides, can significantly influence their stabilities. Systems combining strong and weak terminal interactions with large and small ring tensions were recruited to validate our hypothesis. Our findings offer a new perspective and shed light on strategies for designing sequences to regulate the interactions formed between proteins and hairpin structures.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Limu Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chang Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Zang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), & Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Sueoka S, Kai A, Kobayashi Y, Ito M, Sasada S, Emi A, Gotoh N, Arihiro K, Nakayama K, Okada M, Kadoya T. Diversity of ER-positive and HER2-negative breast cancer stem cells attained using selective culture techniques. Sci Rep 2025; 15:8257. [PMID: 40064935 PMCID: PMC11894160 DOI: 10.1038/s41598-025-90689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer stem cells are a promising therapeutic target in cancer. We explored breast cancer stem cell diversity and establish a methodology for selectively culturing breast cancer stem cells. We collected breast cancer tissues from surgical samples of treatment-naïve patients with estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Following isolation, cells were subjected to spheroid culture on non-adherent plates. Of the 57 cases, successful culture was achieved in 48 cases, among which the average ratio of CD44+/CD24- breast cancer cells increased from 13.8% in primary tumors to 61.6% in spheroids. A modest number of spheroid cells successfully engrafted in mice and subsequently re-differentiated within the murine environment, confirming their stemness. ER expression in spheroid cells exhibited negative conversion in 52.1% of cases. The proportion of Twist-, Snail-, and Vimentin-positive cells increased from 43.8%, 12.9%, and 7.7-75.0%, 58.1%, and 37.7%, respectively. ER-positive, HER2-negative breast cancer stem cells were classified into two groups using DNA microarrays. Gene Ontology analysis unveiled higher expression of immune response-related genes in one group and protein binding-associated genes in the other. We demonstrated stable and selective culture of breast cancer stem cells from patient-derived breast cancer tissue using spheroid cultures.
Collapse
Affiliation(s)
- Satoshi Sueoka
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Breast Center, Shimane University Hospital, Izumo, Japan
| | - Azusa Kai
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukino Kobayashi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Masaoki Ito
- Department of Surgery, Kindai University Hospital, Osakasayama, Japan
| | - Shinsuke Sasada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Emi
- Department of Breast Surgery, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koh Nakayama
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
- Department of Breast Center, Shimane University Hospital, Izumo, Japan.
| |
Collapse
|
8
|
Kumar A, Kishimoto K, Goel HL, Wisniewski CA, Li R, Pacheco B, Zhu LJ, Flavahan WA, Mercurio AM. Resistance to Radiation Enhances Metastasis by Altering RNA Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638943. [PMID: 40060410 PMCID: PMC11888214 DOI: 10.1101/2025.02.19.638943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cellular programs that mediate therapy resistance are often important drivers of metastasis, a phenomenon that needs to be understood better to improve screening and treatment options for cancer patients. Although this issue has been studied extensively for chemotherapy, less is known about a causal link between resistance to radiation therapy and metastasis. We investigated this problem in triple-negative breast cancer (TNBC) and established that radiation resistant tumor cells have enhanced metastatic capacity, especially to bone. Resistance to radiation increases the expression of integrin β3 (ITGβ3), which promotes enhanced migration and invasion. Bioinformatic analysis and subsequent experimentation revealed an enrichment of RNA metabolism pathways that stabilize ITGβ3 transcripts. Specifically, the RNA binding protein heterogenous nuclear ribonucleoprotein L (HNRNPL), whose expression is regulated by Nrf2, mediates the formation of circular RNAs (circRNAs) that function as competing endogenous RNAs (ceRNAs) for the family of let-7 microRNAs that target ITGβ3. Collectively, our findings identify a novel mechanism of radiation-induced metastasis that is driven by alterations in RNA metabolism.
Collapse
Affiliation(s)
- Ayush Kumar
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Kensei Kishimoto
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Hira Lal Goel
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Christi A Wisniewski
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Rui Li
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brendan Pacheco
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Lihua Julie Zhu
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - William A Flavahan
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Arthur M Mercurio
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
9
|
Li Y, Guo Z, Li P, Guo J, Wang H, Pan W, Wu F, Li J, Zhou J, Ma Z. Tanshinone T1/T2A inhibits non-small cell lung cancer through Lin28B-let-7-BORA/MYC regulatory network. Gene 2025; 935:149058. [PMID: 39481768 DOI: 10.1016/j.gene.2024.149058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Tanshinones are a group of compounds in Salvia miltiorrhiza. Although the effects of tanshinone I (T1) and tanshinone IIA (T2A) are widely concerned, the mechanisms of T1 and T2A in lung cancer is rarely studied. EXPERIMENTAL PROCEDURE Xenograft tumor growth was performed to detect the role of T1/T2A in vivo. Next-generation sequencing of miRNA expression profiles in T1/T2A-treated A549 cells showed that T1/T2A upregulated the expression of the let-7 family. Then, let-7a-5p and its downstream target gene BORA were identified as the research objects in this paper. Mechanistically, we examined the interplay between miR-let-7 and BORA through the dual-luciferase reporter assay. Finally, the potential regulatory role of T1/T2A on Lin28B and MYC was explored. RESULTS This study found that the let-7 family was significantly up-regulated via "Next-generation" sequencing (NGS) in the T1/T2A-treated A549 cell line, while BORA was downregulated. BORA was confirmed as a direct target of let-7. LncRNA MYCLo-5 was up-regulated after treatment with tanshinones. Knockdown of MYCLo-5 promoted the cell cycle and proliferation of non-small cell lung cancer (NSCLC) cells. CONCLUSIONS This study explored the effects of tanshinone T1 and T2A on NSCLC in vitro and in vivo, revealing the T1/T2A-let-7/BORA/MYCLo-5 regulatory pathway, which provided new insights for lung cancer treatment.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Huimin Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingjing Li
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, China.
| | - Jinrong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center Harvard Medical School, USA.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
10
|
Shao Y, Du Y, Chen Z, Xiang L, Tu S, Feng Y, Hou Y, Kou X, Ai H. Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression. Stem Cell Res Ther 2025; 16:12. [PMID: 39849541 PMCID: PMC11755832 DOI: 10.1186/s13287-025-04132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth. METHODS MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue. This included gingiva-derived MSCs (GMSCs), OSCC adjacent noncancerous tissues-derived MSCs (OSCCN-MSCs), and OSCC-MSCs. The adipogenic and osteogenic differentiation capabilities of these cells were evaluated using Oil Red O and Alizarin Red S staining, respectively. OSCC cells were then co-cultured with either OSCC-MSCs or GMSCs to assess the impact on OSCC cell proliferation and migration. Subcutaneous xenograft experiments were conducted in BALB/c-nu mice to further investigate the effects in vivo. Additionally, immunohistochemical staining was performed on clinical samples to determine the expression levels of fatty acid synthase (FASN) and the proliferation marker Ki67. RESULTS OSCC-MSCs exhibited enhanced adipogenic differentiation and reduced osteogenic differentiation compared to GMSCs. OSCC-MSCs significantly increased the proliferation and migration of OSCC cells relative to GMSCs and promoted tumor growth in mouse xenografts. Lipid droplet accumulation in the stroma was significantly more pronounced in OSCC + OSCC-MSCs xenografts compared to OSCC + GMSCs xenografts. Free fatty acids (FFAs) levels were elevated in OSCC tissues compared to normal gingival tissues. Moreover, OSCC-MSCs consistently secreted higher levels of FFAs in condition medium than GMSCs. Knockdown of FASN in OSCC-MSCs reduced their adipogenic potential and inhibited their ability to promote OSCC cell proliferation and migration. Clinical sample analysis confirmed higher FASN expression in OSCC stroma, correlating with larger tumor size and increased Ki67 expression in cancer tissues, and was associated with poorer overall survival. CONCLUSIONS OSCC-MSCs promoted OSCC proliferation and migration by upregulating FASN expression and facilitating FFAs secretion. Our results provide new insight into the mechanism of OSCC progression and suggest that the FASN of OSCC-MSCs may be potential targets of OSCC in the future.
Collapse
Affiliation(s)
- Yiting Shao
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shaoqin Tu
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
11
|
Rodríguez Silva J, Monsalves-Álvarez M, Sepúlveda C, Donoso-Barraza C, Troncoso R, Hirsch S. Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell. Mol Cell Biochem 2025; 480:505-519. [PMID: 38536555 DOI: 10.1007/s11010-024-04987-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 01/03/2025]
Abstract
Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.
Collapse
Affiliation(s)
- Juan Rodríguez Silva
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sandra Hirsch
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
13
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
14
|
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Med Oncol 2024; 41:265. [PMID: 39400677 DOI: 10.1007/s12032-024-02529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
MicroRNAs (miRNAs) are conserved non-protein-coding RNAs that are naturally present in organisms and can control gene expression by suppressing the translation of mRNA or causing the degradation of mRNA. MicroRNAs are highly concentrated in the PI3K/AKT pathway, and abnormal activation of the PI3K/AKT pathway plays a role in cancer progression. The AKT/PI3K pathway is critical for cellular functions and can be stimulated by cytokines and in normal situations. It is involved in regulating various intracellular signal transduction, including development, differentiation, transcriptional regulation, protein, and synthesis. There is a growing body of evidence indicating that miRNAs, which are abundant in exosomes released by different cells, can control cellular biological activities via modulating the PI3K/AKT pathway, hence influencing cancer progression and drug resistance. This article provides an overview of the latest research progress regarding the function and medical use of the PI3K/AKT pathway and exosomal miRNA/AKT/PI3K axis in the behaviors of cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, AL-Anbar Governorate, Ramadi, Iraq.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mohammad Y Alshahrani
- King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | | | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
15
|
Usul G, Kelten Talu EC, Yılmaz İ, Issın GN, Bektaş S, Can Trabulus D. The Association of Neuroendocrine Differentiation with MicroRNA 21 and MicroRNA let7f Expression and the Clinicopathological Parameters in Primary Invasive Breast Carcinomas with Neuroendocrine Features. Diagnostics (Basel) 2024; 14:2211. [PMID: 39410615 PMCID: PMC11475674 DOI: 10.3390/diagnostics14192211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
MiRNAs have been reported as biomarkers with diagnostic, prognostic, and predictive value for many different diseases. Therapeutic agents targeting some miRNAs are currently being developed. We aimed to compare BC-NEFs (carcinoma of the breast with neuroendocrine features) with IDC (invasive ductal carcinoma) cases without neuroendocrine features in terms of the level of miRNA expression known to show the oncogenic (miR-21) and tumor-suppressor effects (miR-let7f) and the clinicopathological features. A total of 29 patients with a diagnosis of BC-NEFs (15 cases with neuroendocrine differentiation >50% of the whole section of tumor and 14 cases with neuroendocrine differentiation 10-50% of the tumor) and 30 patients with a diagnosis of IDC (no neuroendocrine differentiation) were retrospectively re-evaluated. Expression levels of miR-21 and miR-let7f were determined by the qRT-PCR method in paraffin tissue blocks. MiR-21 expression was significantly higher in the IDC group than in the group with BC-NEFs. miR-let7f expression was significantly lower in the group with BC-NEFs compared to the IDC group. A high expression level of miR-21 was found to be associated with progesterone receptor (PR) negativity. Our findings show that the presence of NEFs in breast carcinomas makes a significant difference in the expression levels of the investigated oncogenic (miR-21) and tumor-suppressor (miR-let7f) miRNAs. These findings suggest that miRNAs may be a potential biomarker in BC-NEFs and would benefit from targeted therapy.
Collapse
Affiliation(s)
- Gamze Usul
- Department of Pathology, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
| | - Esra Canan Kelten Talu
- Department of Pathology, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
- Department of Molecular Pathology, Faculty of Medicine, Institute of Health Sciences, Dokuz Eylul University, İzmir 35410, Türkiye
| | - İsmail Yılmaz
- Department of Pathology, Sultan Abdülhamid Han Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Gizem Narlı Issın
- Mengücek Gazi Education and Research Hospital, Faculty of Medicine, Binali Yıldırım University, Erzincan 24180, Türkiye
| | - Sibel Bektaş
- Department of Pathology, Gaziosmanpaşa Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34255, Türkiye
| | - Didem Can Trabulus
- Department of General Surgery, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
| |
Collapse
|
16
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
17
|
Souto EP, Gong P, Landua JD, Srinivasan RR, Ganesan A, Dobrolecki LE, Purdy SC, Pan X, Zeosky M, Chung A, Yi SS, Ford HL, Lewis MT. The interferon/STAT1 signaling axis is a common feature of tumor-initiating cells in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557958. [PMID: 37745510 PMCID: PMC10515955 DOI: 10.1101/2023.09.15.557958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A tumor cell subpopulation of tumor-initiating cells (TIC), or "cancer stem cells", are associated with therapeutic resistance, as well as both local and distant recurrence. Enriched populations of TIC are identified by markers including aldehyde dehydrogenase (ALDH1) activity, the cell surface marker combination CD44 + /CD24 - , or fluorescent reporters for signaling pathways that regulate TIC function. We showed previously that S ignal T ransducer and A ctivator of T ranscription (STAT)-mediated transcription allows enrichment for TIC in claudin-low models of human triple-negative breast cancer using a STAT-responsive reporter. However, the molecular phenotypes of STAT TIC are not well understood, and there is no existing method to lineage-trace TIC as they undergo cell state changes. Using a new STAT-responsive lineage-tracing (LT) system in conjunction with our original reporter, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, basal-like triple-negative breast cancer (TNBC) xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNAseq) of reporter-tagged xenografts and clinical samples identified a common interferon (IFN)/STAT1-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Surprisingly, most of the genes we identified are not present in previously published TIC signatures derived using bulk RNA sequencing. Finally, we demonstrated that bone marrow stromal cell antigen 2 (BST2), is a cell surface marker of this state, and that it functionally regulates TIC frequency. These results suggest TIC may exploit the IFN/STAT1 signaling axis to promote their activity, and that targeting this pathway may help eliminate TIC. Significance TIC differentially express interferon response genes, which were not previously reported in bulk RNA sequencing-derived TIC signatures, highlighting the importance of coupling single-cell transcriptomics with enrichment to derive TIC signatures.
Collapse
|
18
|
Tanabe S, Quader S, Cabral H, Perkins EJ, Yokozaki H, Sasaki H. Master Regulators of Causal Networks in Intestinal- and Diffuse-Type Gastric Cancer and the Relation to the RNA Virus Infection Pathway. Int J Mol Sci 2024; 25:8821. [PMID: 39201509 PMCID: PMC11354771 DOI: 10.3390/ijms25168821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Causal networks are important for understanding disease signaling alterations. To reveal the network pathways affected in the epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs), which are related to the poor prognosis of cancer, the molecular networks and gene expression in diffuse- and intestinal-type gastric cancer (GC) were analyzed. The network pathways in GC were analyzed using Ingenuity Pathway Analysis (IPA). The analysis of the probe sets in which the gene expression had significant differences between diffuse- and intestinal-type GC in RNA sequencing of the publicly available data identified 1099 causal networks in diffuse- and intestinal-type GC. Master regulators of the causal networks included lenvatinib, pyrotinib, histone deacetylase 1 (HDAC1), mir-196, and erb-b2 receptor tyrosine kinase 2 (ERBB2). The analysis of the HDAC1-interacting network identified the involvement of EMT regulation via the growth factors pathway, the coronavirus pathogenesis pathway, and vorinostat. The network had RNA-RNA interactions with microRNAs such as mir-10, mir-15, mir-17, mir-19, mir-21, mir-223, mir-25, mir-27, mir-29, and mir-34. The molecular networks revealed in the study may lead to identifying drug targets for GC.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroki Sasaki
- Department of Pharmacology and Therapeutics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
19
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Solovev YV, Evpak AS, Kudriaeva AA, Gabibov AG, Belogurov AA. Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data. DOKL BIOCHEM BIOPHYS 2024; 516:98-106. [PMID: 38539010 DOI: 10.1134/s1607672924700790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 05/26/2024]
Abstract
Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.
Collapse
Affiliation(s)
- Ya V Solovev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - A S Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow State University of Medicine and Dentistry, 127473, Moscow, Russia
| |
Collapse
|
22
|
Demir Cevizlidere B, Uysal O, Avci H, Gunes Bagis S, Semerci Sevimli T, Dincer M, Qomi Ekenel E, Kara SG, Soykan MN, Eker Sariboyaci A. Establishment, culture and characterization of gemcitabine hydrochloride‐resistant human non‐small cell lung carcinoma cell line derived cancer stem cells. Cell Biochem Funct 2024; 42. [DOI: 10.1002/cbf.4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 01/03/2025]
Abstract
AbstractDue to their high expression profile of multi‐drug resistance genes, cancer stem cells (CSCs) are the main source of drug resistance. The aim of this study was to establish a gemcitabine‐hydrochloride‐resistant (rt) human non‐small cell lung cancer (hNSCLC) cell line and their CSC line to be used as disease models in various cancer studies. In the first phase of study, a gemcitabine hydrochloride‐rt hNSCLC line cells was produced by making them rt through periodic exposure to gemcitabine hydrochloride. This acquired gemcitabine‐hydrochloride‐rt hNSCLC cell line was characterized for resistance. Subsequently, a CSC population with a CD326 + CD133 + CD44+ phenotypes was immunoselectively isolated from gemcitabine hydrochloride‐rt hNSCLCs purified from a single cell by colony forming technology. This rt CSC line was characterized for both resistance and stemness. Rt and non‐rt CSCs were analyzed and compared with each other in terms of immunophenotyping the expression profiles of ALDH1, CD90, ABCG2, CD44 and MDR1, which are CSC specific markers, of demonstrating mitotic capacity with growth curve analysis and of their ability to form tumor spheroids in three different 3D cultures. The results of this study demonstrated for the first time the successful generation of both gemcitabine‐hydrochloride‐rt hNSCLC cells and CSCs derived from gemcitabine‐hydrochloride‐rt hNSCLC cells. It was also shown that isolated and characterized rt CSCs could proliferate and form tumor spheres in vitro using three different 3D in vitro techniques. It was shown that the cell surface markers CD326, CD133 and CD44 can serve as an antibody panel for CSCs.
Collapse
Affiliation(s)
- Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Metallurgical and Materials Engineering, Engineering and Architecture Faculty Eskisehir Osmangazi University Eskisehir Turkey
- Translational Medicine Research and Clinical Center, TATUM Eskisehir Osmangazi University Eskisehir Turkey
| | - Sibel Gunes Bagis
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| | - Tugba Semerci Sevimli
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Murat Dincer
- Department of Medicinal Oncology, Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Emilia Qomi Ekenel
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
| | - Suleyman Gokhan Kara
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Emergency Medicine Ministry of Health Eskişehir City Hospital Eskisehir Turkey
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| |
Collapse
|
23
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
24
|
Najibi K, Moghanibashi M, Naeimi S. Association of deletion polymorphism rs10573247 in the HMGA2 gene with the risk of breast cancer: bioinformatic and experimental analyses. World J Surg Oncol 2024; 22:142. [PMID: 38802807 PMCID: PMC11131319 DOI: 10.1186/s12957-024-03415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The high mobility group A2 (HMGA2) gene is expressed extensively during early embryonic development but is inactivated in adulthood, and it is also reactivated in various benign and malignant tumors, including breast cancer. We first assessed the potential functional significance of the unstudied deletion polymorphism rs10573247 at the 3'UTR of HMGA2 on miRNA binding using bioinformatic tools, and subsequently, the association between this polymorphism and breast cancer susceptibility was investigated. MATERIALS AND METHODS We applied the RNAhybrid tool to predict the functional effects of polymorphism rs10573247 located within the 3' UTR of the HMGA2 gene on miRNA binding. Then, following DNA extraction, 141 breast cancer patients and 123 healthy controls were genotyped for polymorphism rs10573247 using RFLP-PCR with the restriction enzyme Eam1104I. RESULTS Our bioinformatic data have shown that polymorphism rs10573247 is located in the region that serves as a potential target site for eight miRNAs binding. Among them, miR-3125 exhibited decreased binding affinity for the allele delTT (MFE = -21.8) when compared to the allele TT (MFE = -23.9), but miR-4476 increased binding affinity for the allele delTT (MFE = -22.4) compared to the allele TT (MFE = -22.2). In addition, our results showed that the genotype TT/delTT (p = 0.005) and the genotype delTT/delTT (p = 0.029) were significantly associated with an increased risk of developing breast cancer compared to the genotype TT/TT using RFLP-PCR. DISCUSSION AND CONCLUSION Our findings suggest that polymorphism rs10573247 may contribute to the risk of breast cancer through the functional effect of this polymorphism on miRNA binding.
Collapse
Affiliation(s)
- Kolsoom Najibi
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, P.O. Box: 73135-168, Kazerun, Iran.
| | - Sirous Naeimi
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
25
|
Baylie T, Kasaw M, Getinet M, Getie G, Jemal M, Nigatu A, Ahmed H, Bogale M. The role of miRNAs as biomarkers in breast cancer. Front Oncol 2024; 14:1374821. [PMID: 38812786 PMCID: PMC11133523 DOI: 10.3389/fonc.2024.1374821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer (BC) is the second most common cause of deaths reported in women worldwide, and therefore there is a need to identify BC patients at an early stage as timely diagnosis would help in effective management and appropriate monitoring of patients. This will allow for proper patient monitoring and effective care. However, the absence of a particular biomarker for BC early diagnosis and surveillance makes it difficult to accomplish these objectives. miRNAs have been identified as master regulators of the molecular pathways that are emphasized in various tumors and that lead to the advancement of malignancies. Small, non-coding RNA molecules known as miRNAs target particular mRNAs to control the expression of genes. miRNAs dysregulation has been linked to the start and development of a number of human malignancies, including BC, since there is compelling evidence that miRNAs can function as tumor suppressor genes or oncogenes. The current level of knowledge on the role of miRNAs in BC diagnosis, prognosis, and treatment is presented in this review. miRNAs can regulate the tumorigenesis of BC through targeting PI3K pathway and can be used as prognostic or diagnostic biomarkers for BC therapy. Some miRNAs, like miR-9, miR-10b, and miR-17-5p, are becoming known as biomarkers of BC for diagnosis, prognosis, and therapeutic outcome prediction. Other miRNAs, like miR-30c, miR-187, and miR-339-5p, play significant roles in the regulation of hallmark functions of BC, including invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs, such as miR-155 and miR-210, are circulating in bodily fluids and are therefore of interest as novel, conveniently accessible, reasonably priced, non-invasive methods for the customized care of patients with BC.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mulugeta Kasaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Amare Nigatu
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Hassen Ahmed
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihiret Bogale
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Wollo University, Wollo, Ethiopia
| |
Collapse
|
26
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
27
|
Messina S. The RAS oncogene in brain tumors and the involvement of let-7 microRNA. Mol Biol Rep 2024; 51:531. [PMID: 38637419 PMCID: PMC11026240 DOI: 10.1007/s11033-024-09439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
RAS oncogenes are master regulator genes in many cancers. In general, RAS-driven cancers have an oncogenic RAS mutation that promotes disease progression (colon, lung, pancreas). In contrast, brain tumors are not necessarily RAS-driven cancers because RAS mutations are rarely observed. In particular, glioblastomas (the most lethal brain tumor) do not appear to have dominant genetic mutations that are suitable for targeted therapy. Standard treatment for most brain tumors continues to focus on maximal surgical resection, radiotherapy and chemotherapy. Yet the convergence of genomic aberrations such as EGFR, PDGFR and NF1 (some of which are clinically effective) with activation of the RAS/MAPK cascade is still considered a key point in gliomagenesis, and KRAS is undoubtedly a driving gene in gliomagenesis in mice. In cancer, microRNAs (miRNA) are small, non-coding RNAs that regulate carcinogenesis. However, the functional consequences of aberrant miRNA expression in cancer are still poorly understood. let-7 encodes an intergenic miRNA that is classified as a tumour suppressor, at least in lung cancer. Let-7 suppresses a plethora of oncogenes such as RAS, HMGA, c-Myc, cyclin-D and thus suppresses cancer development, differentiation and progression. let-7 family members are direct regulators of certain RAS family genes by binding to the sequences in their 3'untranslated region (3'UTR). let-7 miRNA is involved in the malignant behaviour in vitro-proliferation, migration and invasion-of gliomas and stem-like glioma cells as well as in vivo models of glioblastoma multiforme (GBM) via KRAS inhibition. It also increases resistance to certain chemotherapeutic agents and radiotherapy in GBM. Although let-7 therapy is not yet established, this review updates the current state of knowledge on the contribution of miRNA let-7 in interaction with KRAS to the oncogenesis of brain tumours.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
28
|
Hou M, Luo F, Ding Y, Bao X, Chen X, Liu L, Wu M. Let-7c-3p suppresses lens epithelial-mesenchymal transition by inhibiting cadherin-11 expression in fibrotic cataract. Mol Cell Biochem 2024; 479:743-759. [PMID: 37171723 DOI: 10.1007/s11010-023-04758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFβ2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFβ2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFβ2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Furong Luo
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, 570311, China
| | - Yujie Ding
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xuan Bao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China.
| |
Collapse
|
29
|
Oyejobi GK, Yan X, Sliz P, Wang L. Regulating Protein-RNA Interactions: Advances in Targeting the LIN28/Let-7 Pathway. Int J Mol Sci 2024; 25:3585. [PMID: 38612395 PMCID: PMC11011352 DOI: 10.3390/ijms25073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Xiaodan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| |
Collapse
|
30
|
Jang Y, Kang S, Han HH, Kim BG, Cho NH. CD24 induced cellular quiescence-like state and chemoresistance in ovarian cancer cells via miR-130a/301a-dependent CDK19 downregulation. Cell Death Discov 2024; 10:81. [PMID: 38360723 PMCID: PMC10869724 DOI: 10.1038/s41420-024-01858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Cancer stem-like cell (CSC) is thought to be responsible for ovarian cancer recurrence. CD24 serves as a CSC marker for ovarian cancer and regulates the expression of miRNAs, which are regulators of CSC phenotypes. Therefore, CD24-regulated miRNAs may play roles in manifesting the CSC phenotypes in ovarian cancer cells. Our miRNA transcriptome analysis showed that 94 miRNAs were up or down-regulated in a CD24-high clone from an ovarian cancer patient compared to a CD24-low one. The CD24-dependent expression trend of the top 7 upregulated miRNAs (miR-199a-3p, 34c, 199a-5p, 130a, 301a, 214, 34b*) was confirmed in other 8 clones (4 clones for each group). CD24 overexpression upregulated the expression of miR-199a-3p, 34c, 199a-5p, 130a, 301a, 214, and 34b* in TOV112D (CD24-low) cells compared to the control, while CD24 knockdown downregulated the expression of miR-199a-3p, 199a-5p, 130a, 301a, and 34b* in OV90 (CD24-high) cells. miR-130a and 301a targeted CDK19, which induced a cellular quiescence-like state (increased G0/G1 phase cell population, decreased cell proliferation, decreased colony formation, and decreased RNA synthesis) and resistance to platinum-based chemotherapeutic agents. CD24 regulated the expression of miR-130a and 301a via STAT4 and YY1 phosphorylation mediated by Src and FAK. miR-130a and 301a were positively correlated in expression with CD24 in ovarian cancer patient tissues and negatively correlated with CDK19. Our results showed that CD24 expression may induce a cellular quiescence-like state and resistance to platinum-based chemotherapeutic agents in ovarian cancer via miR-130a and 301a upregulation. CD24-miR-130a/301a-CDK19 signaling axis could be a prognostic marker for or a potential therapeutic target against ovarian cancer recurrence.
Collapse
Affiliation(s)
- Yeonsue Jang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
32
|
Al-Hawary SIS, Ruzibakieva M, Gupta R, Malviya J, Toama MA, Hjazi A, Alkhayyat MRR, Alsaab HO, Hadi A, Alwaily ER. Detailed role of microRNA-mediated regulation of PI3K/AKT axis in human tumors. Cell Biochem Funct 2024; 42:e3904. [PMID: 38102946 DOI: 10.1002/cbf.3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.
Collapse
Affiliation(s)
| | - Malika Ruzibakieva
- Cell Therapy Department, Institute of Immunology and Human Genomics, Uzbekistan Academy of Science, Tashkent, Uzbekistan
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Murtadha Raad Radhi Alkhayyat
- Department of Islamic Studies, College of Art, The Islamic University of Najaf, Najaf, Iraq
- Department of Islamic Studies, College of Art, The Islamic University of Babylon, Babylon, Iraq
- Department of Islamic Studies, College of Art, The Islamic University of Al Diwaniyah, Diwaniyah, Iraq
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Hadi
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
33
|
Darbandi M, Bado IL. Tumor Microenvironment and Epigenetic Implications in Breast Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:15-36. [PMID: 39586991 DOI: 10.1007/978-3-031-66686-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Breast cancer (BC) poses significant challenges, driven by its diverse nature and intricate dynamics. Epigenetic modifications, such as DNA methylation, histone modifications, and noncoding RNAs, have emerged as key regulators of gene expression and BC metastasis plasticity or therapeutic resistance. Targeting epigenetic regulators and pathways associated with therapeutic resistance holds promise for overcoming treatment obstacles and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Oncological Sciences, Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Igor L Bado
- Department of Oncological Sciences, Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
34
|
He X, Tang R, Lou J, Wang R. Identifying key factors in cell fate decisions by machine learning interpretable strategies. J Biol Phys 2023; 49:443-462. [PMID: 37458834 PMCID: PMC10651582 DOI: 10.1007/s10867-023-09640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 11/16/2023] Open
Abstract
Cell fate decisions and transitions are common in almost all developmental processes. Therefore, it is important to identify the decision-making mechanisms and important individual molecules behind the fate decision processes. In this paper, we propose an interpretable strategy based on systematic perturbation, unsupervised hierarchical cluster analysis (HCA), machine learning (ML), and Shapley additive explanation (SHAP) analysis for inferring the contribution and importance of individual molecules in cell fate decision and transition processes. In order to verify feasibility of the approach, we apply it to the core epithelial to mesenchymal transition (EMT)-metastasis network. The key factors identified in EMT-metastasis are consistent with relevant experimental observations. The approach presented here can be applied to other biological networks to identify important factors related to cell fate decisions and transitions.
Collapse
Affiliation(s)
- Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Jie Lou
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
35
|
Nguyen TTA, Demeestere I. A Journey to Reach the Ovary Using Next-Generation Technologies. Int J Mol Sci 2023; 24:16593. [PMID: 38068916 PMCID: PMC10705884 DOI: 10.3390/ijms242316593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Although effective in terms of the chances of future live birth, the current methods for fertility preservation, such as oocyte, embryo, or ovarian tissue cryopreservation, cannot be offered to all cancer patients in all clinical contexts. Expanding options for fertility preservation is crucial to addressing the need to encompass all situations. One emerging strategy is pharmacoprotection, a non-invasive approach that has the potential to fill existing gaps in fertility preservation. In addition to the identification of the most effective therapeutic agents, the potential for off-target effects remains one of the main limitations of this strategy for clinical application, particularly when healthy ovarian tissue is targeted. This review focuses on the advances in pharmacoprotective approaches and the challenge of targeting the ovaries to deliver these agents. The unique properties of gold nanoparticles (AuNPs) make them an attractive candidate for this purpose. We discuss how AuNPs meet many of the requirements for an ideal drug delivery system, as well as the existing limitations that have hindered the progression of AuNP research into more clinical trials. Additionally, the review highlights microRNA (miRNA) therapy as a next-generation approach to address the issues of fertility preservation and discusses the obstacles that currently impede its clinical availability.
Collapse
Affiliation(s)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| |
Collapse
|
36
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
37
|
Zhang L, Kang Q, Kang M, Jiang S, Yang F, Gong J, Ou G, Wang S. Regulation of main ncRNAs by polyphenols: A novel anticancer therapeutic approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155072. [PMID: 37714063 DOI: 10.1016/j.phymed.2023.155072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Plant polyphenols have shown promising applications in oncotherapy. Increasing evidence reveals that polyphenols possess the antitumor potential for multiple cancers. Non-coding RNAs (ncRNAs), mainly including small ncRNAs (microRNA) and long ncRNAs (lncRNAs), play critical roles in cancer initiation and progression. PURPOSE To establish the modulation of ncRNAs by polyphenols as a novel and promising approach in anticancer treatment. STUDY DESIGN The present research employed ncRNA, miRNA, lncRNA, and regulatory mechanism as keywords to retrieve the literature from PubMed, Web of Science, Science direct, and Google Scholar, in a 20-year period from 2003 to 2023. This study critically reviewed the current literature and presented the regulation of prominent ncRNAs by polyphenols. A comprehensive total of 169 papers were retrieved on polyphenols and their related ncRNAs in cancers. RESULTS NcRNAs, mainly including miRNA and lncRNA, play critical roles in cancer initiation and progression, which are potential modulatory targets of bioactive polyphenols, such as resveratrol, genistein, curcumin, EGCG, quercetin, in cancer management. The mechanism involved in polyphenol-mediated ncRNA regulation includes epigenetic and transcriptional modification, and post-transcriptional processing. CONCLUSION Regulatory ncRNAs are potential therapeutic targets of bioactive polyphenols, and these phytochemicals could modulate the level of these ncRNAs directly and indirectly. A better comprehension of the ncRNA regulation by polyphenols in cancers, their functional outcomes on tumor pathophysiology and regulatory molecular mechanisms, may be helpful to develop effective strategies to fight the devastating disease.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518061, China
| | | | - Suwei Jiang
- School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Feng Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jun Gong
- Central Laboratory, Yunfu People's Hospital, Yunfu 527399, China
| | - Gaozhi Ou
- School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
38
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
39
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
40
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
41
|
Shiino S, Tokura M, Nakayama J, Yoshida M, Suto A, Yamamoto Y. Investigation of Tumor Heterogeneity Using Integrated Single-Cell RNA Sequence Analysis to Focus on Genes Related to Breast Cancer-, EMT-, CSC-, and Metastasis-Related Markers in Patients with HER2-Positive Breast Cancer. Cells 2023; 12:2286. [PMID: 37759508 PMCID: PMC10527746 DOI: 10.3390/cells12182286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) protein, which is characterized by the amplification of ERBB2, is a molecular target for HER2-overexpressing breast cancer. Many targeted HER2 strategies have been well developed thus far. Furthermore, intratumoral heterogeneity in HER2 cases has been observed with immunohistochemical staining and has been considered one of the reasons for drug resistance. Therefore, we conducted an integrated analysis of the breast cancer single-cell gene expression data for HER2-positive breast cancer cases from both scRNA-seq data from public datasets and data from our cohort and compared them with those for luminal breast cancer datasets. In our results, heterogeneous distribution of the expression of breast cancer-related genes (ESR1, PGR, ERBB2, and MKI67) was observed. Various gene expression levels differed at the single-cell level between the ERBB2-high group and ERBB2-low group. Moreover, molecular functions and ERBB2 expression levels differed between estrogen receptor (ER)-positive and ER-negative HER2 cases. Additionally, the gene expression levels of typical breast cancer-, CSC-, EMT-, and metastasis-related markers were also different across each patient. These results suggest that diversity in gene expression could occur not only in the presence of ERBB2 expression and ER status but also in the molecular characteristics of each patient.
Collapse
Affiliation(s)
- Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Momoko Tokura
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (M.T.); (J.N.)
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (M.T.); (J.N.)
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (M.T.); (J.N.)
| |
Collapse
|
42
|
Chang CM, Chang CC, Lam HYP, Peng SY, Lai YH, Hsiang BD, Liao YY, Hsu HJ, Jiang SJ. Therapeutic Peptide RF16 Derived from CXCL8 Inhibits MDA-MB-231 Cell Invasion and Metastasis. Int J Mol Sci 2023; 24:14029. [PMID: 37762330 PMCID: PMC10531501 DOI: 10.3390/ijms241814029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin (IL)-8 plays a vital role in regulating inflammation and breast cancer formation by activating CXCR1/2. We previously designed an antagonist peptide, (RF16), to inhibits the activation of downstream signaling pathways by competing with IL-8 in binding to CXCR1/2, thereby inhibiting IL-8-induced chemoattractant monocyte binding. To evaluate the effect of the RF16 peptide on breast cancer progression, triple-negative MDA-MB-231 and ER-positive MCF-7 breast cancer cells were used to investigate whether RF16 can inhibit the IL-8-induced breast cancer metastasis. Using growth, proliferation, and invasiveness assays, the results revealed that RF16 reduced cell proliferation, migration, and invasiveness in MDA-MB-231 cells. The RF16 peptide also regulated the protein and mRNA expressions of epithelial-mesenchymal transition (EMT) markers in IL-8-stimulated MDA-MB-231 cells. It also inhibited downstream IL-8 signaling and the IL-8-induced inflammatory response via the mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) pathways. In the xenograft tumor mouse model, RF16 synergistically reinforces the antitumor efficacy of docetaxel by improving mouse survival and retarding tumor growth. Our results indicate that RF16 significantly inhibited IL-8-stimulated cell growth, migration, and invasion in MDA-MB-231 breast cancer cells by blocking the activation of p38 and AKT cascades. It indicated that the RF16 peptide may serve as a new supplementary drug for breast cancer.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Hualien 97004, Taiwan;
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yi-Hsuan Lai
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
| | - Bi-Da Hsiang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yu-Yi Liao
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (H.Y.P.L.); (S.-Y.P.); (Y.-H.L.)
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
43
|
Izadpanah A, Mohammadkhani N, Masoudnia M, Ghasemzad M, Saeedian A, Mehdizadeh H, Poorebrahim M, Ebrahimi M. Update on immune-based therapy strategies targeting cancer stem cells. Cancer Med 2023; 12:18960-18980. [PMID: 37698048 PMCID: PMC10557910 DOI: 10.1002/cam4.6520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Accumulating data reveals that tumors possess a specialized subset of cancer cells named cancer stem cells (CSCs), responsible for metastasis and recurrence of malignancies, with various properties such as self-renewal, heterogenicity, and capacity for drug resistance. Some signaling pathways or processes like Notch, epithelial to mesenchymal transition (EMT), Hedgehog (Hh), and Wnt, as well as CSCs' surface markers such as CD44, CD123, CD133, and epithelial cell adhesion molecule (EpCAM) have pivotal roles in acquiring CSCs properties. Therefore, targeting CSC-related signaling pathways and surface markers might effectively eradicate tumors and pave the way for cancer survival. Since current treatments such as chemotherapy and radiation therapy cannot eradicate all of the CSCs and tumor relapse may happen following temporary recovery, improving novel and more efficient therapeutic options to combine with current treatments is required. Immunotherapy strategies are the new therapeutic modalities with promising results in targeting CSCs. Here, we review the targeting of CSCs by immunotherapy strategies such as dendritic cell (DC) vaccines, chimeric antigen receptors (CAR)-engineered immune cells, natural killer-cell (NK-cell) therapy, monoclonal antibodies (mAbs), checkpoint inhibitors, and the use of oncolytic viruses (OVs) in pre-clinical and clinical studies. This review will mainly focus on blood malignancies but also describe solid cancers.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Niloufar Mohammadkhani
- Department of Clinical BiochemistrySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mina Masoudnia
- Department of ImmunologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Ghasemzad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Molecular Cell Biology‐Genetics, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Arefeh Saeedian
- Radiation Oncology Research CenterCancer Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical SciencesTehranIran
| | - Hamid Mehdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Research Institute, University of CalgaryAlbertaCalgaryCanada
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of regenerative medicineCell Science research Center, Royan Institute for stem cell biology and technology, ACECRTehranIran
| |
Collapse
|
44
|
He R, He Y, Du R, Liu C, Chen Z, Zeng A, Song L. Revisiting of TAMs in tumor immune microenvironment: Insight from NF-κB signaling pathway. Biomed Pharmacother 2023; 165:115090. [PMID: 37390708 DOI: 10.1016/j.biopha.2023.115090] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are key components of tumor immune microenvironment and play a dual role in promoting tumor growth and anti-tumor immunity. Therefore, regulating TAMs has become a promising method in cancer immunotherapy. NF- κB pathway is the key regulatory pathway of TAMs. Targeting this pathway has shown the potential to improve tumor immune microenvironment. At present, there are still some controversies and the idea of combined therapy in this field. This article reviews the progress in the field of immunotherapy in improving tumor immune microenvironment by exploring the mechanism of regulating TAMs (including promoting M1 polarization, inhibiting M2 polarization and regulating TAMs infiltration).
Collapse
Affiliation(s)
- Rui He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ran Du
- College of Education and Psychology, Chengdu Normal University, Chengdu, Sichuan 611130, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| |
Collapse
|
45
|
Llueca A, Ibañez MV, Cascales P, Gil-Moreno A, Bebia V, Ponce J, Fernandez S, Arjona-Sanchez A, Muruzabal JC, Veiga N, Diaz-Feijoo B, Celada C, Gilabert-Estelles J, Aghababyan C, Lacueva J, Calero A, Segura JJ, Maiocchi K, Llorca S, Villarin A, Climent MT, Delgado K, Serra A, Gomez-Quiles L, Llueca M, on behalf of Spain GOG and GECOP Working Group. Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study. Cancers (Basel) 2023; 15:4271. [PMID: 37686547 PMCID: PMC10486645 DOI: 10.3390/cancers15174271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is primarily confined to the peritoneal cavity. When primary complete surgery is not possible, neoadjuvant chemotherapy (NACT) is provided; however, the peritoneum-plasma barrier hinders the drug effect. The intraperitoneal administration of chemotherapy could eliminate residual microscopic peritoneal tumor cells and increase this effect by hyperthermia. Intraperitoneal hyperthermic chemotherapy (HIPEC) after interval cytoreductive surgery could improve outcomes in terms of disease-free survival (DFS) and overall survival (OS). MATERIALS AND METHODS A multicenter, retrospective observational study of advanced EOC patients who underwent interval cytoreductive surgery alone (CRSnoH) or interval cytoreductive surgery plus HIPEC (CRSH) was carried out in Spain between 07/2012 and 12/2021. A total of 515 patients were selected. Progression-free survival (PFS) and OS analyses were performed. The series of patients who underwent CRSH or CRSnoH was balanced regarding the risk factors using a statistical analysis technique called propensity score matching. RESULTS A total of 170 patients were included in each subgroup. The complete surgery rate was similar in both groups (79.4% vs. 84.7%). The median PFS times were 16 and 13 months in the CRSH and CRSnoH groups, respectively (Hazard ratio (HR) 0.74; 95% CI, 0.58-0.94; p = 0.031). The median OS times were 56 and 50 months in the CRSH and CRSnoH groups, respectively (HR, 0.88; 95% CI, 0.64-1.20; p = 0.44). There was no increase in complications in the CRSH group. CONCLUSION The addition of HIPEC after interval cytoreductive surgery is safe and increases DFS in advanced EOC patients.
Collapse
Affiliation(s)
- Antoni Llueca
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12071 Castellon, Spain
| | | | - Pedro Cascales
- Department of General Surgery, Hospital Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain;
| | - Antonio Gil-Moreno
- Gynecologic Oncology Unit, Department of Gynecology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.G.-M.); (V.B.)
| | - Vicente Bebia
- Gynecologic Oncology Unit, Department of Gynecology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.G.-M.); (V.B.)
| | - Jordi Ponce
- Department of Gynecology, University Hospital of Bellvitge, 08907 Barcelona, Spain; (J.P.); (S.F.)
| | - Sergi Fernandez
- Department of Gynecology, University Hospital of Bellvitge, 08907 Barcelona, Spain; (J.P.); (S.F.)
| | - Alvaro Arjona-Sanchez
- Unit of Surgical Oncology and Pancreatic Surgery, University Hospital Reina Sofia, 14004 Cordoba, Spain;
| | - Juan Carlos Muruzabal
- Department of Gynecologic Oncology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (J.C.M.); (N.V.)
| | - Nadia Veiga
- Department of Gynecologic Oncology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (J.C.M.); (N.V.)
| | - Berta Diaz-Feijoo
- Gynecologic Oncology Unit, Clinic Institute of Gynecology, Obstetrics, and Neonatology, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.D.-F.); (C.C.)
| | - Cristina Celada
- Gynecologic Oncology Unit, Clinic Institute of Gynecology, Obstetrics, and Neonatology, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.D.-F.); (C.C.)
| | - Juan Gilabert-Estelles
- Department of Obstetrics and Gynecology, University General Hospital of Valencia, 46014 Valencia, Spain; (J.G.-E.); (C.A.)
| | - Cristina Aghababyan
- Department of Obstetrics and Gynecology, University General Hospital of Valencia, 46014 Valencia, Spain; (J.G.-E.); (C.A.)
| | - Javier Lacueva
- Unit of Peritoneal Carcinomatosis, Department of General Surgery, University General Hospital of Elche, 03203 Elche, Spain; (J.L.); (A.C.)
| | - Alicia Calero
- Unit of Peritoneal Carcinomatosis, Department of General Surgery, University General Hospital of Elche, 03203 Elche, Spain; (J.L.); (A.C.)
| | - Juan Jose Segura
- Hepatobiliopancreatic Surgery and Peritoneal Oncology Surgery Unit, General Surgery and Digestive System Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain;
| | - Karina Maiocchi
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Department of General Surgery, University General Hospital of Castellon, 12004 Castellon, Spain
| | - Sara Llorca
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Department of General Surgery, University General Hospital of Castellon, 12004 Castellon, Spain
| | - Alvaro Villarin
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Department of General Surgery, University General Hospital of Castellon, 12004 Castellon, Spain
| | - Maria Teresa Climent
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12071 Castellon, Spain
| | - Katty Delgado
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12071 Castellon, Spain
| | - Anna Serra
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12071 Castellon, Spain
| | - Luis Gomez-Quiles
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, 12004 Castellon, Spain; (K.M.); (S.L.); (A.V.); (M.T.C.); (K.D.); (A.S.); (L.G.-Q.)
- Department of General Surgery, University General Hospital of Castellon, 12004 Castellon, Spain
| | - Maria Llueca
- Department of Obstetrics and Gynecology, Joan XXIII University Hospital of Tarragona, 43005 Tarragona, Spain;
| | | |
Collapse
|
46
|
Guo Q, Li Y, Zhang Y, Shen L, Lin H, Chen J, Song E, Luo M. LncRNA NRON promotes tumorigenesis by enhancing MDM2 activity toward tumor suppressor substrates. EMBO J 2023; 42:e112414. [PMID: 37382239 PMCID: PMC10425849 DOI: 10.15252/embj.2022112414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The E3 ligase MDM2 promotes tumor growth and progression by inducing ubiquitin-mediated degradation of P53 and other tumor-suppressing proteins. Here, we identified an MDM2-interacting lncRNA NRON, which promotes tumor formation by suppressing both P53-dependent and independent pathways. NRON binds to MDM2 and MDMX (MDM4) via two different stem-loops, respectively, and induces their heterogenous dimerization, thereby enhancing the E3 ligase activity of MDM2 toward its tumor-suppressing substrates, including P53, RB1, and NFAT1. NRON knockdown dramatically inhibits tumor cell growth in vitro and in vivo. More importantly, NRON overexpression promotes oncogenic transformation by inducing anchorage-independent growth in vitro and facilitating tumor formation in immunocompromised mice. Clinically, NRON expression is significantly associated with poor clinical outcome in breast cancer patients. Together, our data uncover a pivotal role of lncRNA that induces malignant transformation of epithelial cells by inhibiting multiple tumor suppressor proteins.
Collapse
Affiliation(s)
- Qiannan Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Thyroid Surgery, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Medical Research CenterNanhai Translational Innovation Center of Precision Immunology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yunmei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Liping Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Man‐Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Medical Research CenterNanhai Translational Innovation Center of Precision Immunology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
47
|
Fischer AD, Veronese Paniagua DA, Swaminathan S, Kashima H, Rubin DC, Madison BB. The oncogenic function of PLAGL2 is mediated via ASCL2 and IGF2 and a Wnt-independent mechanism in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2023; 325:G196-G211. [PMID: 37310750 PMCID: PMC10396286 DOI: 10.1152/ajpgi.00058.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Colorectal cancer (CRC) tumorigenesis and progression are linked to common oncogenic mutations, especially in the tumor suppressor APC, whose loss triggers the deregulation of TCF4/β-Catenin activity. CRC tumorigenesis is also driven by multiple epimutational modifiers such as transcriptional regulators. We describe the common (and near-universal) activation of the zinc finger transcription factor and Let-7 target PLAGL2 in CRC and find that it is a key driver of intestinal epithelial transformation. PLAGL2 drives proliferation, cell cycle progression, and anchorage-independent growth in CRC cell lines and nontransformed intestinal cells. Investigating effects of PLAGL2 on downstream pathways revealed very modest effects on canonical Wnt signaling. Alternatively, we find pronounced effects on the direct PLAGL2 target genes IGF2, a fetal growth factor, and ASCL2, an intestinal stem cell-specific bHLH transcription factor. Inactivation of PLAGL2 in CRC cell lines has pronounced effects on ASCL2 reporter activity. Furthermore, ASCL2 expression can partially rescue deficits of proliferation and cell cycle progression caused by depletion of PLAGL2 in CRC cell lines. Thus, the oncogenic effects of PLAGL2 appear to be mediated via core stem cell and onco-fetal pathways, with minimal effects on downstream Wnt signaling.NEW & NOTEWORTHY A Let-7 target called PLAGL2 drives oncogenic transformation via Wnt-independent pathways. This work illustrates the robust effects of this zinc finger transcription factor in colorectal cancer (CRC) cell lines and nontransformed intestinal epithelium, with effects mediated, in part, via the direct target genes ASCL2 and IGF2. This has implications for the role of PLAGL2 in activation of onco-fetal and onco-stem cell pathways, contributing to immature and highly proliferative phenotypes in CRC.
Collapse
Affiliation(s)
- Anthony D Fischer
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Daniel A Veronese Paniagua
- Washington University School of Medicine, Saint Louis, Missouri, United States
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, United States
| | - Shriya Swaminathan
- Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Hajime Kashima
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| |
Collapse
|
48
|
Sui Z, Zhang Y, Zhang Z, Wang C, Li X, Xing F. Lin28B overexpression decreases let-7b and let-7g levels and increases proliferation and estrogen secretion in Dolang sheep ovarian granulosa cells. Arch Anim Breed 2023; 66:217-224. [PMID: 37560354 PMCID: PMC10407058 DOI: 10.5194/aab-66-217-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Although ovine puberty initiation has been previously studied, the mechanism by which the RNA-binding protein Lin28B affects this process has not been investigated. The present study aimed to investigate the effects of Lin28B overexpression on let-7b, let-7g, cell proliferation, and estrogen secretion in Dolang sheep ovine ovarian granulosa cells. In this study, a Lin28B vector was constructed and transfected into ovarian granulosa cells using liposomes. After 24, 48, and 72 h of overexpression, quantitative real-time PCR (qRT-PCR) was used for measuring let-7b and let-7g microRNA (miRNA) levels, and estrogen secretion was measured using the enzyme-linked immunosorbent assay (ELISA). A CCK-8 (Cell Counting Kit-8) kit was used for evaluating cell viability and proliferation in response to Lin28B overexpression at 24 h. The results showed that the expression of let-7b and let-7g decreased significantly after Lin28B overexpression, and the difference was consistent over different periods. The result of ELISA showed that estradiol (E2) levels significantly increased following Lin28B overexpression. Additionally, Lin28B overexpression significantly increased the cell viability and proliferation. Therefore, the Lin28B-let-7 family axis may play a key role in the initiation of female ovine puberty.
Collapse
Affiliation(s)
- Zhiyuan Sui
- Key Laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
| | - Yongjie Zhang
- Key Laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
| | - Zhishuai Zhang
- Key Laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
| | - Chenguang Wang
- Key Laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
| | - Xiaojun Li
- Key Laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
| | - Feng Xing
- Key Laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
| |
Collapse
|
49
|
Singh S, Saini H, Sharma A, Gupta S, Huddar VG, Tripathi R. Breast cancer: miRNAs monitoring chemoresistance and systemic therapy. Front Oncol 2023; 13:1155254. [PMID: 37397377 PMCID: PMC10312137 DOI: 10.3389/fonc.2023.1155254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
With a high mortality rate that accounts for millions of cancer-related deaths each year, breast cancer is the second most common malignancy in women. Chemotherapy has significant potential in the prevention and spreading of breast cancer; however, drug resistance often hinders therapy in breast cancer patients. The identification and the use of novel molecular biomarkers, which can predict response to chemotherapy, might lead to tailoring breast cancer treatment. In this context, accumulating research has reported microRNAs (miRNAs) as potential biomarkers for early cancer detection, and are conducive to designing a more specific treatment plan by helping analyze drug resistance and sensitivity in breast cancer treatment. In this review, miRNAs are discussed in two alternative ways-as tumor suppressors to be used in miRNA replacement therapy to reduce oncogenesis and as oncomirs to lessen the translation of the target miRNA. Different miRNAs like miR-638, miR-17, miR-20b, miR-342, miR-484, miR-21, miR-24, miR-27, miR-23 and miR-200 are involved in the regulation of chemoresistance through diverse genetic targets. For instance, tumor-suppressing miRNAs like miR-342, miR-16, miR-214, and miR-128 and tumor-promoting miRNAs like miR101 and miR-106-25 cluster regulate the cell cycle, apoptosis, epithelial to mesenchymal transition and other pathways to impart breast cancer drug resistance. Hence, in this review, we have discussed the significance of miRNA biomarkers that could assist in providing novel therapeutic targets to overcome potential chemotherapy resistance to systemic therapy and further facilitate the design of tailored therapy for enhanced efficacy against breast cancer.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Heena Saini
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - V. G. Huddar
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Richa Tripathi
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| |
Collapse
|
50
|
Di Pace AL, Pelosi A, Fiore PF, Tumino N, Besi F, Quatrini L, Santopolo S, Vacca P, Moretta L. MicroRNA analysis of Natural Killer cell-derived exosomes: the microRNA let-7b-5p is enriched in exosomes and participates in their anti-tumor effects against pancreatic cancer cells. Oncoimmunology 2023; 12:2221081. [PMID: 37304055 PMCID: PMC10251800 DOI: 10.1080/2162402x.2023.2221081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Natural Killer (NK) cells are important components of the immune system in the defense against tumor growth and metastasis. They release exosomes containing proteins and nucleic acids, including microRNAs (miRNAs). NK-derived exosomes play a role in the anti-tumor NK cell function since they are able to recognize and kill cancer cells. However, the involvement of exosomal miRNAs in the function of NK exosomes is poorly understood. In this study, we explored the miRNA content of NK exosomes by microarray as compared to their cellular counterparts. The expression of selected miRNAs and lytic potential of NK exosomes against childhood B acute lymphoblastic leukemia cells after co-cultures with pancreatic cancer cells were also evaluated. We identified a small subset of miRNAs, including miR-16-5p, miR-342-3p, miR-24-3p, miR-92a-3p and let-7b-5p that is highly expressed in NK exosomes. Moreover, we provide evidence that NK exosomes efficiently increase let-7b-5p expression in pancreatic cancer cells and induce inhibition of cell proliferation by targeting the cell cycle regulator CDK6. Let-7b-5p transfer by NK exosomes could represent a novel mechanism by which NK cells counteract tumor growth. However, both cytolytic activity and miRNA content of NK exosomes were reduced upon co-culture with pancreatic cancer cells. Alteration in the miRNA cargo of NK exosomes, together with their reduced cytotoxic activity, could represent another strategy exerted by cancer to evade the immune response. Our study provides new information on the molecular mechanisms used by NK exosomes to exert anti-tumor-activity and offers new clues to integrate cancer treatments with NK exosomes.
Collapse
Affiliation(s)
| | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesca Besi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Linda Quatrini
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvia Santopolo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|