1
|
Wang YX, Deng ZH, Li YY, Bai K, Ma J, Liu Y, Chen Q. Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases. LIFE MEDICINE 2025; 4:lnaf015. [PMID: 40376111 PMCID: PMC12076419 DOI: 10.1093/lifemedi/lnaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 05/18/2025]
Abstract
Hematopoiesis and the behavior of hematopoietic stem and progenitor cells (HSPCs) are regulated by the bone marrow niche. Here, we introduce the major niche cell types in bone marrow and their response to stress condition. We highlight the hematopoietic response and bone marrow niche adaptation to inflammatory condition and non-hematopoietic diseases, which are not systematically summarized. These emerging data suggest targeting hematopoiesis and bone marrow niche may provide novel therapeutic target to precisely control the progression of the diseases.
Collapse
Affiliation(s)
- Yu-xiang Wang
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Zhao-hua Deng
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yu-yan Li
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Ke Bai
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- The Institute of Future Health, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi Chen
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| |
Collapse
|
2
|
Marchand T, Akinnola KE, Takeishi S, Maryanovich M, Pinho S, Saint-Vanne J, Birbrair A, Lamy T, Tarte K, Frenette P, Gritsman K. Periosteal skeletal stem cells can migrate into the bone marrow and support hematopoiesis after injury. eLife 2025; 13:RP101714. [PMID: 40401637 PMCID: PMC12097789 DOI: 10.7554/elife.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Skeletal stem cells (SSCs) have been isolated from various tissues, including periosteum and bone marrow, where they exhibit key functions in bone biology and hematopoiesis, respectively. The role of periosteal SSCs (P-SSCs) in bone regeneration and healing has been extensively studied, but their ability to contribute to the bone marrow stroma is still under debate. In the present study, we characterized a mouse whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration seen after injury. Using this model and a lineage tracing approach, we observed the migration of P-SSCs into the bone marrow after transplantation. Once in the bone marrow, P-SSCs are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells (BM-MSCs) that express high levels of hematopoietic stem cell niche factors such as Cxcl12 and Kitl. In addition, using ex vivo and in vivo approaches, we found that P-SSCs are more resistant to acute stress than BM-MSCs. These results highlight the plasticity of P-SSCs and their potential role in bone marrow regeneration after bone marrow injury.
Collapse
Affiliation(s)
- Tony Marchand
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de RennesRennesFrance
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Kemi E Akinnola
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Shoichiro Takeishi
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
- Department of Pharmacology & Regenerative Medicine, University of Illinois at ChicagoChicagoUnited States
| | - Julien Saint-Vanne
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
| | - Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Dermatology, University of Wisconsin-MadisonMadisonUnited States
| | - Thierry Lamy
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de RennesRennesFrance
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
| | - Karin Tarte
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le CancerRennesFrance
- Laboratoire Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de RennesRennesFrance
| | - Paul Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Kira Gritsman
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price CenterBronxUnited States
- Department of Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
3
|
Ambrosi TH, Taheri S, Chen K, Sinha R, Wang Y, Hunt EJ, Goodnough LH, Murphy MP, Steininger HM, Hoover MY, Felix F, Weldon KC, Koepke LS, Sokol J, Liu DD, Zhao L, Conley SD, Lu WJ, Morri M, Neff NF, Van Rysselberghe NL, Wheeler EE, Wang Y, Leach JK, Saiz A, Wang A, Yang GP, Goodman S, Bishop JA, Gardner MJ, Wan DC, Weissman IL, Longaker MT, Sahoo D, Chan CKF. Human skeletal development and regeneration are shaped by functional diversity of stem cells across skeletal sites. Cell Stem Cell 2025; 32:811-823.e11. [PMID: 40118065 PMCID: PMC12048286 DOI: 10.1016/j.stem.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/17/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
The skeleton is one of the most structurally and compositionally diverse organ systems in the human body, depending on unique cellular dynamisms. Here, we integrate prospective isolation of human skeletal stem cells (hSSCs; CD45-CD235a-TIE2-CD31-CD146-PDPN+CD73+CD164+) from ten skeletal sites with functional assays and single-cell RNA sequencing (scRNA-seq) analysis to identify chondrogenic, osteogenic, stromal, and fibrogenic subtypes of hSSCs during development and their linkage to skeletal phenotypes. We map the distinct composition of hSSC subtypes across multiple skeletal sites and demonstrate their unique in vivo clonal dynamics. We find that age-related changes in bone formation and regeneration disorders stem from a pathological fibroblastic shift in the hSSC pool. Utilizing a Boolean algorithm, we uncover gene regulatory networks that dictate differences in the ability of hSSCs to generate specific skeletal tissues. Importantly, hSSC lineage dynamics are pharmacologically malleable, providing a new strategy to treat aberrant hSSC diversity central to aging and skeletal maladies.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Chen
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuting Wang
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ethan J Hunt
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - L Henry Goodnough
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franco Felix
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan Sokol
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stephanie D Conley
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Norma F Neff
- Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| | | | - Erika E Wheeler
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Augustine Saiz
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Surgery, University of California Davis Health, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - George P Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Julius A Bishop
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA 94305, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Roelofs AJ, McClure JJ, Hay EA, De Bari C. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 2025; 21:211-220. [PMID: 40045009 DOI: 10.1038/s41584-025-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.
Collapse
Affiliation(s)
- Anke J Roelofs
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Elizabeth A Hay
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
5
|
Weldon KC, Longaker MT, Ambrosi TH. Harnessing the diversity and potential of endogenous skeletal stem cells for musculoskeletal tissue regeneration. Stem Cells 2025; 43:sxaf006. [PMID: 39945760 PMCID: PMC11892563 DOI: 10.1093/stmcls/sxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 03/11/2025]
Abstract
In our aging society, the degeneration of the musculoskeletal system and adjacent tissues is a growing orthopedic concern. As bones age, they become more fragile, increasing the risk of fractures and injuries. Furthermore, tissues like cartilage accumulate damage, leading to widespread joint issues. Compounding this, the regenerative capacity of these tissues declines with age, exacerbating the consequences of fractures and cartilage deterioration. With rising demand for fracture and cartilage repair, bone-derived stem cells have attracted significant research interest. However, the therapeutic use of stem cells has produced inconsistent results, largely due to ongoing debates and uncertainties regarding the precise identity of the stem cells responsible for musculoskeletal growth, maintenance and repair. This review focuses on the potential to leverage endogenous skeletal stem cells (SSCs)-a well-defined population of stem cells with specific markers, reliable isolation techniques, and functional properties-in bone repair and cartilage regeneration. Understanding SSC behavior in response to injury, including their activation to a functional state, could provide insights into improving treatment outcomes. Techniques like microfracture surgery, which aim to stimulate SSC activity for cartilage repair, are of particular interest. Here, we explore the latest advances in how such interventions may modulate SSC function to enhance bone healing and cartilage regeneration.
Collapse
Affiliation(s)
- Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
- School of Medicine, University of California, Sacramento, CA 95817, United States
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| |
Collapse
|
6
|
Yan B, Lu Q, Gao T, Xiao K, Zong Q, Lv H, Lv G, Wang L, Liu C, Yang W, Jiang G. CD146 regulates the stemness and chemoresistance of hepatocellular carcinoma via JAG2-NOTCH signaling. Cell Death Dis 2025; 16:150. [PMID: 40032820 PMCID: PMC11876685 DOI: 10.1038/s41419-025-07470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
CD146 plays a key role in cancer progression and metastasis. Cancer stem cells (CSCs) are responsible for tumor initiation, drug resistance, metastasis, and recurrence. In this study, we explored the role of CD146 in the regulation of liver CSCs. Here, we demonstrated that CD146 was highly expressed in liver CSCs. CD146 overexpression promoted the self-renewal ability and chemoresistance of Hepatocellular Carcinoma (HCC) cells in vitro and tumorigenicity in vivo. Inversely, knockdown of CD146 restrained these abilities. Mechanistically, CD146 activated the NF-κB signaling to up-regulate JAG2 expression and activated the Notch signaling, which resulted in increased stemness of HCC. Furthermore, JAG2 overexpression restored the Notch signaling activity, the stemness, and chemotherapeutic resistance caused by CD146 knockdown. These results demonstrated that CD146 positively regulates HCC stemness by activating the JAG2-NOTCH signaling. Combined targeting of CD146 and JAG2 may represent a novel therapeutic strategy for HCC treatment.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Jagged-2 Protein/metabolism
- Jagged-2 Protein/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Signal Transduction
- Receptors, Notch/metabolism
- Drug Resistance, Neoplasm/genetics
- Animals
- CD146 Antigen/metabolism
- CD146 Antigen/genetics
- Mice
- Cell Line, Tumor
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Male
Collapse
Affiliation(s)
- Bing Yan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, 337000, China
| | - QiuYu Lu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - TianMing Gao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - KunQing Xiao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - QianNi Zong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - HongWei Lv
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - GuiShuai Lv
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Liang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - ChunYing Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - GuoQing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
7
|
Shi F, Yuan G, Wu Z, Luo Z, Chen Z, Liu Q, Li N, Xu R. Identification and function of periosteal skeletal stem cells in skeletal development, homeostasis, and disease. J Orthop Translat 2025; 51:177-186. [PMID: 40160808 PMCID: PMC11952802 DOI: 10.1016/j.jot.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/06/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Background Periosteum-resident skeletal stem cells (SSCs) are essential for the growth, maintenance, and repair of the skeletal system. These cells exhibit self-renewal ability and clonal pluripotency. Compared to the diverse bone marrow mesenchymal stem cells (BMSCs), periosteal skeletal stem cells (P-SSCs) represent a purified stem cell population and are preferable for bone tissue engineering. Methods This review covers the histological structure of the periosteum, process of isolating and characterising P-SSCs, and spatiotemporal distribution and characteristics of P-SSCs from different lineages. Additionally, the roles of P-SSCs in bone injury, disease, and periosteal niche regulation are discussed. Results Intramembrane and intraconal ossification of P-SSCs exhibits favourable therapeutic potential. Osteogenesis using P-SSCs is an ideal process for bone repair. Conclusions P-SSCs are vital for bone formation, maintenance, and repair. P-SSCs are essential components of the periosteal microenvironment. Therefore, it is essential to investigate their critical clinical applications and translational functions. By targeting and inducing endogenous stem cells, the in situ repair of bone defects can be facilitated, leading to the development of more effective novel therapies. The translational potential of this article To enhance our understanding of the function of P-SSCs in bone repair and skeleton-related diseases, it is imperative to elucidate the current research status of P-SSCs and ascertain the prospective trajectory for their advancement and refinement in bone tissue engineering. P-SSCs are expected to play an expanded role in treating bone abnormalities, leading to the optimisation of bone tissue treatment.
Collapse
Affiliation(s)
- Fan Shi
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Zhengqiong Luo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Zihan Chen
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Ren Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Cong T, Morse KW, Sosa BR, Lane JM, Rodeo SA, Greenblatt MB. Skeletal Stem Cells: A Basis for Orthopaedic Pathology and Tissue Repair. J Bone Joint Surg Am 2025; 107:418-426. [PMID: 39693451 PMCID: PMC11839314 DOI: 10.2106/jbjs.24.00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
➢ Skeletal stem cells (SSCs) continually replenish mature cell populations to support skeletal homeostasis.➢ SSCs repopulate by self-renewal, have multilineage potential, and are long-lived in vivo.➢ SSCs express specific combinations of cell surface markers that reflect their lineage identity.➢ SSCs adapt to their anatomic environment to support regional differences in skeletal behavior and pathology.
Collapse
Affiliation(s)
- Ting Cong
- Department of Orthopaedic Surgery, UPMC Sports Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Orthopedic Surgery, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Kyle W Morse
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Branden R Sosa
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Joseph M Lane
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, NY
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
10
|
Yoon JY, Quang BD, Shin JS, Kim JB, Lee JH, Kim HW, Lee JH. Establishing Minimum Criteria for Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) Cultured in Human Platelet Lysate (hPL)-Contained Media as Cell Therapy Candidates: Characterization and Predictive Analysis of Secretome Effects. Cells 2025; 14:316. [PMID: 39996787 PMCID: PMC11854447 DOI: 10.3390/cells14040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
SHEDs have demonstrated significant potential in cell therapy due to their superior proliferation rate, self-renewal and differentiation capacity (particularly neurogenesis attributed to their neural crest origin), and the less invasive procedure required for tissue collection compared to other stem cells. However, there is no established criterion to verify the minimum qualification to select one from numerous candidates, especially for SHEDs' cultured FBS-free medium for clinic application. For that, we performed a characteristic analysis containing the growth rate, colony-forming unit (CFU) number, average colony size, and migration capacity with hPL-cultured SHEDs from 21 different donors, and we suggest the result as a minimum standard to filter out unqualified candidates. In addition, in the secretome analysis to predict the paracrine effect, it was found that upregulated proteins compared to the control were related to angiogenesis, immune response, and BMP signaling, and this was found to have a strong correlation only with protein concentration. This study presents a minimum standard for selecting cell therapy candidates and suggests the protein concentration of a conditioned medium as a cost-effective tool to expect the paracrine effect of SHEDs.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Research Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (B.D.Q.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-W.K.)
| | - Bình Do Quang
- Research Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (B.D.Q.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.-S.S.); (J.-B.K.)
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.-S.S.); (J.-B.K.)
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-W.K.)
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-W.K.)
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Research Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (B.D.Q.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-W.K.)
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
11
|
Jing Y, Li B, Aierken A, Zhang Z, Han D, Lin Z, Gao J, Tian H, Hua J. Mesenchymal Stem Cells with Simultaneous Overexpression of GPX3 and CD47 for the Treatment of Drug-Induced Acute Liver Injury. Vet Sci 2025; 12:149. [PMID: 40005909 PMCID: PMC11861084 DOI: 10.3390/vetsci12020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The liver, as the largest metabolic and detoxification organ in mammals, metabolizes approximately 80-90% of drugs. However, drug-induced liver injury (DILI) is common and driven by factors such as individual variability, differences in liver metabolism, and improper drug use. Mesenchymal stem cells (MSCs), with their self-renewal and multipotent differentiation capabilities, offer therapeutic potential, but face challenges such as limited proliferation and increased apoptosis during in vitro expansion. Although MSCs exhibit low immunogenicity, they are often cleared by the host immune system, which limits their survival and engraftment. Glutathione peroxidase 3 (GPX3) is a key antioxidant enzyme that reduces reactive oxygen species (ROS), protecting cells from oxidative damage. CD47, also known as integrin-associated protein (IAP), helps cells evade immune clearance by binding to signal regulatory protein alpha (SIRPα) on the immune cells. Here, we used an acetaminophen (APAP)-induced DILI mouse model to evaluate the therapeutic efficacy of intravenously infused MSCs overexpressing GPX3 and CD47. Compared to unmodified MSCs, modified MSCs showed improved survival, reduced liver inflammation, and alleviated oxidative damage, offering enhanced protection against APAP-induced DILI.
Collapse
Affiliation(s)
- Yuanxiang Jing
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Balun Li
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Aili Aierken
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
- Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830000, China
| | - Zengyu Zhang
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Dongyao Han
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Zixi Lin
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Jiaqi Gao
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Hongkai Tian
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| | - Jinlian Hua
- College of Veterinary Medicine, Shanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China; (Y.J.); (B.L.); (A.A.); (Z.Z.); (D.H.); (Z.L.); (J.G.); (H.T.)
| |
Collapse
|
12
|
Yin C, Yan X, Ren J, Zhang C, Liu J, Wang Z, Liu J, Li W, Li X. MSCs with upregulated lipid metabolism block hematopoietic stem cell differentiation via exosomal CTP-1A in MDS. Stem Cell Res Ther 2025; 16:53. [PMID: 39920846 PMCID: PMC11806692 DOI: 10.1186/s13287-025-04154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and a high risk of progression to acute myeloid leukemia. Elucidating the mechanism underlying the dysfunction of MDS-HSCs is crucial for exploring the pathogenesis of the syndrome. While previous studies have implicated mesenchymal stem cells (MSCs), a principal component of the bone marrow (BM) microenvironment, in the inhibition of normal hematopoiesis, the precise molecular mechanisms have not been fully elucidated. In this study, we investigated the effects of MSCs from MDS patients on hematopoietic functions of HSCs from a metabolic perspective. METHODS MSCs were isolated from BM of MDS patients. The proliferation, apoptosis, differentiation and support for hematopoiesis of these cells were analyzed using CCK-8 assay, FC and induction medium and CFU (colony forming units) assay, respectively. Expression levels of metabolic molecules were used as indicators to screen MSCs with different metabolic pathways and were detected by RT-PCR and Western blotting. Exosome derived from MSCs were isolated from the culture supernatant and confirmed by Transmission Electron Microscope, Dynamic Light Scattering and Western blotting. The effects of these exosomes on HSCs were analyzed using the same methods as those used to assess MSCs function. RESULTS Our findings demonstrated that MDS-MSCs exhibited significant functional impairments, including reduced proliferation, impaired differentiation, diminished support for hematopoiesis, and increased apoptosis. Notably, we observed an upregulation of lipid metabolism in these MSCs, which appears to contribute to their dysfunction. Intriguingly, the aberrant lipid metabolic profile can be effectively reversed by the administration of etomoxir (ETO), an inhibitor of carnitine palmitoyltransferase 1A (CPT-1A). Furthermore, MSCs with enhanced lipid metabolism could transmit this dysfunction to HSCs through the secretion of exosomes that are enriched in CPT-1A. CONCLUSIONS We suggest that the MDS BM microenvironment disrupts MSCs metabolism by increasing the expression of CPT-1A, which impairs the ability to support normal HSCs. Interestingly, the suppressive effect is mediated by exosomes rich in CPT-1A, which derived from MSCs. These findings provide novel insights into MDS MSCs-metabolism-Exosome axis in ineffective hematopoiesis and offer new strategies for the treatment of MDS.
Collapse
Affiliation(s)
- Chunlai Yin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xue Yan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jinyi Ren
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zilong Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Weiping Li
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
13
|
Kemna K, van der Burg M, Lankester A, Giera M. Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities. Bioessays 2025; 47:e2400154. [PMID: 39506498 PMCID: PMC11755706 DOI: 10.1002/bies.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Hematopoiesis unfolds within the bone marrow niche where hematopoietic stem cells (HSCs) play a central role in continually replenishing blood cells. The hypoxic bone marrow environment imparts peculiar metabolic characteristics to hematopoietic processes. Here, we discuss the internal metabolism of HSCs and describe external influences exerted on HSC metabolism by the bone marrow niche environment. Importantly, we suggest that the metabolic environment and metabolic cues are intertwined with HSC cell fate, and are crucial for hematopoietic processes. Metabolic dysregulation within the bone marrow niche during acute stress, inflammation, and chronic inflammatory conditions can lead to reduced HSC vitality. Additionally, we raise questions regarding metabolic stresses imposed on HSCs during implementation of stem cell protocols such as allo-SCT and gene therapy, and the potential ramifications. Enhancing our comprehension of metabolic influences on HSCs will expand our understanding of pathophysiology in the bone marrow and improve the application of stem cell therapies.
Collapse
Affiliation(s)
- Koen Kemna
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Arjan Lankester
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Martin Giera
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
14
|
Marchand T, Akinnola KE, Takeishi S, Maryanovich M, Pinho S, Saint-Vanne J, Birbrair A, Lamy T, Tarte K, Frenette PS, Gritsman K. Periosteal skeletal stem cells can migrate into the bone marrow and support hematopoiesis after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.01.12.523842. [PMID: 36711927 PMCID: PMC9882153 DOI: 10.1101/2023.01.12.523842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skeletal stem cells have been isolated from various tissues, including periosteum and bone marrow, where they exhibit key functions in bone biology and hematopoiesis, respectively. The role of periosteal skeletal stem cells in bone regeneration and healing has been extensively studied, but their ability to contribute to the bone marrow stroma is still under debate. In the present study, we characterized a whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration seen after injury. Using this model and a lineage tracing approach, we observed the migration of periosteal skeletal stem cells into the bone marrow after transplantation. Once in the bone marrow, periosteal skeletal stem cells are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells that express high levels of hematopoietic stem cell niche factors such as Cxcl12 and Kitl. In addition, using ex vivo and in vivo approaches, we found that periosteal skeletal stem cells are more resistant to acute stress than bone marrow mesenchymal stem cells. These results highlight the plasticity of periosteal skeletal stem cells and their potential role in bone marrow regeneration after bone marrow injury.
Collapse
Affiliation(s)
- Tony Marchand
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Kemi E. Akinnola
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Shoichiro Takeishi
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Julien Saint-Vanne
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thierry Lamy
- Service d’hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université Rennes, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Laboratoire Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de Rennes, F-35033 Rennes, France
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kira Gritsman
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1300 Morris Park Avenue, Room 101, Bronx, NY 10461, USA
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Lou Q, Jiang K, Wang X, Pan Y, Qiu G, Wu B, Yuan L, Xie S, Chen J, Xu Q, Zhao M, Jiang L. IGF1R signaling in perinatal mesenchymal stem cells determines definitive hematopoiesis in bone marrow. Blood 2024; 144:2773-2787. [PMID: 39437540 DOI: 10.1182/blood.2024024258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
ABTRACT During the transition from embryonic to adult life, the sites of hematopoiesis undergo dynamic shifts across various tissues. In adults, although bone marrow (BM) becomes the primary site for definitive hematopoiesis, the establishment of the BM niche for accommodating hematopoietic stem cells (HSCs) remains incompletely understood. Here, we reveal that perinatal BM mesenchymal stem cells (BMSCs) exhibit highly activated insulin-like growth factor 1 receptor (IGF1R) signaling compared with adult BMSCs (aBMSCs). Deletion of Igf1r in perinatal BMSCs (pBMSCs) hinders the transition of HSCs from the fetal liver to the BM in perinatal mice and disrupts hematopoiesis in adult individuals. Conversely, the deletion of Igf1r in aBMSCs, adipocytes, osteoblasts, or endothelial cells does not affect HSCs in the BM. Mechanistically, IGF1R signaling activates the transcription factor nuclear factor of activated T cells c1 in pBMSCs, which upregulates CXCL12 and other niche factors for HSC retention. Overall, IGF1R signaling in pBMSCs regulates the development of the BM niche for hematopoiesis.
Collapse
Affiliation(s)
- Qi Lou
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kaizheng Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Yuan Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guo Qiu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binghuo Wu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisha Yuan
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siyu Xie
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quanhui Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Raghav PK, Mann Z. Nano-Delivery Revolution: Harnessing Mesenchymal Stem Cell-Derived Exosomes' Potential for Wound Healing. Biomedicines 2024; 12:2791. [PMID: 39767697 PMCID: PMC11673788 DOI: 10.3390/biomedicines12122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Stem cell transplantation has proven effective in treating acute and chronic wounds, but its limitations, such as low cellular viability and the need for specialized transportation, highlight the necessity for alternative approaches. This review explores the potential of engineered exosomes, containing identified miRNAs/peptides, as a more stable and efficient cell-free therapy for regenerative medicine, particularly in wound healing. The discussion emphasizes the benefits of exosomes, including their stability, reduced damage, and consistent biological activity, paving the way for innovative applications like lyophilized exosomes, mist spray delivery, and exosome-based scaffolds. The exploration of cell-free therapy in this review holds promising implications for advancing wound-healing strategies.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94118, USA
| | | |
Collapse
|
17
|
Guvendir Bakkaloglu I, Zemheri IE, Kaya AH, Kilicaslan E. The Impact of Microenvironment and Dysplasia Types on the Prognosis of Myelodysplastic Syndrome. Diagnostics (Basel) 2024; 14:2720. [PMID: 39682628 DOI: 10.3390/diagnostics14232720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND A detailed examination of bone marrow (BM) aspiration and biopsy can provide clues regarding the course of the disease as well as the diagnostic features of myelodysplastic syndrome (MDS). METHODS Our aim is to reveal the histomorphological features of MDS, investigate the impact of dysplasia types on prognosis, and highlight the importance of the microenvironment. RESULTS In 130 (93.5%) of 139 cases, Wright-Giemsa-stained BM aspiration slides were evaluated, and the dysplasia diversity was examined in detail. A regression analysis of dysplasia features significant for overall survival revealed that the presence of hyperlobulation in the megakaryocytic series (p = 0.014, odds ratio = 3.485) and the presence of an abnormal localization of immature progenitors (ALIP) (p = 0.010, odds ratio = 2.206) were significantly associated with poor prognosis. Additionally, an increase in the microvessel density (MVD) was found to be associated with a poor prognosis (p < 0.001). A multiple regression analysis identified that MVD is the most significant parameter (p = 0.014). CONCLUSIONS The diversity of dysplasia in BM aspiration and biopsy does not predict MDS subtypes; however, certain cytomorphological dysplasia types can provide insights regarding survival. The microenvironment's impact on MDS pathogenesis is undeniable, with ALIP and MVD presence and frequency being significant factors. Thus, BM histomorphological examination, beyond its diagnostic role, also offers prognostic insights.
Collapse
Affiliation(s)
| | - Itir Ebru Zemheri
- Pathology Department, Umraniye Training and Research Hospital, Health Sciences University, Istanbul 34668, Turkey
| | - Ali Hakan Kaya
- Hematology Department, Medicine Faculty, Maltepe University, Istanbul 34858, Turkey
| | - Emrah Kilicaslan
- Hematology Department, Sultan Abdulhamid Han Suam Training and Research Hospital, Health Sciences University, Istanbul 34668, Turkey
| |
Collapse
|
18
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
19
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Marolt Presen D, Goeschl V, Hanetseder D, Ogrin L, Stetco AL, Tansek A, Pozenel L, Bruszel B, Mitulovic G, Oesterreicher J, Zipperle J, Schaedl B, Holnthoner W, Grillari J, Redl H. Prolonged cultivation enhances the stimulatory activity of hiPSC mesenchymal progenitor-derived conditioned medium. Stem Cell Res Ther 2024; 15:434. [PMID: 39551765 PMCID: PMC11572509 DOI: 10.1186/s13287-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cells represent a scalable source of youthful tissue progenitors and secretomes for regenerative therapies. The aim of our study was to investigate the potential of conditioned medium (CM) from hiPSC-mesenchymal progenitors (hiPSC-MPs) to stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (MSCs). We also investigated whether prolonged cultivation or osteogenic pre-differentiation of hiPSC-MPs could enhance the stimulatory activity of CM. METHODS MSCs were isolated from 13 donors (age 20-90 years). CM derived from hiPSC-MPs was added to the MSC cultures and the effects on proliferation and osteogenic differentiation were examined after 14 days and 6 weeks. The stimulatory activity of hiPSC-MP-CM was compared with the activity of MSC-derived CM and with the activity of CM prepared from hiPSC-MPs pre-cultured in growth or osteogenic medium for 14 days. Comparative proteomic analysis of CM was performed to gain insight into the molecular components responsible for the stimulatory activity. RESULTS Primary bone marrow-derived MSC exhibited variability, with a tendency towards lower proliferation and tri-lineage differentiation in older donors. hiPSC-MP-CM increased the proliferation and alkaline phosphatase activity of MSC from several adult/aged donors after 14 days of continuous supplementation under osteogenic conditions. However, CM supplementation failed to improve the mineralization of MSC pellets after 6 weeks under osteogenic conditions. hiPSC-MP-CM showed greater enhancement of proliferation and ALP activity than CM derived from bone marrow-derived MSCs. Moreover, 14-day cultivation but not osteogenic pre-differentiation of hiPSC-MPs strongly enhanced CM stimulatory activity. Quantitative proteomic analysis of d14-CM revealed a distinct profile of components that formed a highly interconnected associations network with two clusters, one functionally associated with binding and organization of actin/cytoskeletal components and the other with structural constituents of the extracellular matrix, collagen, and growth factor binding. Several hub proteins were identified that were reported to have functions in cell-extracellular matrix interaction, osteogenic differentiation and development. CONCLUSIONS Our data show that hiPSC-MP-CM enhances early osteogenic differentiation of human bone marrow-derived MSCs and that prolonged cultivation of hiPSC-MPs enhances CM-stimulatory activity. Proteomic analysis of the upregulated protein components provides the basis for further optimization of hiPSC-MP-CM for bone regenerative therapies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria.
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria.
| | - Vanessa Goeschl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Laura Ogrin
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Alexandra-Larissa Stetco
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Anja Tansek
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Laura Pozenel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Bella Bruszel
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria
- Bruker Austria, Lemböckgasse 47b, Vienna, 1230, Austria
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
- University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna, 1090, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, A-1200, Austria
- Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna, 1200, Austria
| |
Collapse
|
21
|
Wu Y, Li J, Feng K, Tan A, Gao Y, Chen W, Jia W, Guo X, Kang J. N-CADHERIN +/CD168 - subpopulation determines therapeutic variations of UC-MSCs for cardiac repair after myocardial infarction. Stem Cell Res Ther 2024; 15:423. [PMID: 39533355 PMCID: PMC11559175 DOI: 10.1186/s13287-024-04032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The efficiency of mesenchymal stem cells (MSCs) in treating myocardial infarction (MI) remains inconsistent, which limits their therapeutic applications. Therefore, exploring the mechanism for the inconsistent efficacy of MSCs and identification the criteria for screening MSCs are important for improving the efficiency of MSCs. METHODS Mouse model after MI was utilized to test the role of MSCs from different donors and the functional subpopulation in improving cardiac function. Heterogeneity of MSCs was identified using single-cell RNA sequencing (scRNA-seq) of MSC-GY. GSEA and Scissor analyses were used to find the functional subpopulations of MSCs that promote angiogenesis. The role of functional subpopulations in promoting angiogenesis was verified by detecting the secretory proteins, the ratio of N-CADHERIN+/CD168- subpopulations in MSCs, and the tube formation, migration, and proliferation of HUVECs after treatment with conditional medium (CM) derived from different MSCs. RESULTS We found that umbilical cord-derived MSCs (UC-MSCs) from different donors have varied therapeutic efficacy in MI mice and UC-MSCs with higher therapeutic effectiveness exhibited the most potent pro-angiogenic effects by secreting elevated levels of angiogenesis-related proteins, such as MYDGF, VEGFA, and FGF2. ScRNA-seq of 10,463 UC-MSCs revealed that the N-CADHERIN+/CD168- subpopulation was closely associated with pro-angiogenic effects, and the ratio of this cell subpopulation was positively correlated with the angiogenic potential of MSCs. We also found that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in improving cardiac function of MI mice. CONCLUSIONS Our study identified that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in treating MI, which was essential for the development and utilization of MSCs in MI treatment.
Collapse
Affiliation(s)
- Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ailing Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingying Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Xinyi Y, Vladimirovich RI, Beeraka NM, Satyavathi A, Kamble D, Nikolenko VN, Lakshmi AN, Basappa B, Reddy Y P, Fan R, Liu J. Emerging insights into epigenetics and hematopoietic stem cell trafficking in age-related hematological malignancies. Stem Cell Res Ther 2024; 15:401. [PMID: 39506818 PMCID: PMC11539620 DOI: 10.1186/s13287-024-04008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hematopoiesis within the bone marrow (BM) is a complex and tightly regulated process predominantly influenced by immune factors. Aging, diabetes, and obesity are significant contributors to BM niche damage, which can alter hematopoiesis and lead to the development of clonal hematopoiesis of intermediate potential (CHIP). Genetic/epigenetic alterations during aging could influence BM niche reorganization for hematopoiesis or clonal hematopoiesis. CHIP is driven by mutations in genes such as Tet2, Dnmt3a, Asxl1, and Jak2, which are associated with age-related hematological malignancies. OBJECTIVE This literature review aims to provide an updated exploration of the functional aspects of BM niche cells within the hematopoietic microenvironment in the context of age-related hematological malignancies. The review specifically focuses on how immunological stressors modulate different signaling pathways that impact hematopoiesis. METHODS An extensive review of recent studies was conducted, examining the roles of various BM niche cells in hematopoietic stem cell (HSC) trafficking and the development of age-related hematological malignancies. Emphasis was placed on understanding the influence of immunological stressors on these processes. RESULTS Recent findings reveal a significant microheterogeneity and temporal stochasticity of niche cells across the BM during hematopoiesis. These studies demonstrate that niche cells, including mesenchymal stem cells, osteoblasts, and endothelial cells, exhibit dynamic interactions with HSCs, significantly influenced by the BM microenvironment as the age increases. Immunosurveillance plays a crucial role in maintaining hematopoietic homeostasis, with alterations in immune signaling pathways contributing to the onset of hematological malignancies. Novel insights into the interaction between niche cells and HSCs under stress/aging conditions highlight the importance of niche plasticity and adaptability. CONCLUSION The involvement of age-induced genetic/epigenetic alterations in BM niche cells and immunological stressors in hematopoiesis is crucial for understanding the development of age-related hematological malignancies. This comprehensive review provides new insights into the complex interplay between niche cells and HSCs, emphasizing the potential for novel therapeutic approaches that target niche cell functionality and resilience to improve hematopoietic outcomes in the context of aging and metabolic disorders. NOVELTY STATEMENT This review introduces novel concepts regarding the plasticity and adaptability of BM niche cells in response to immunological stressors and epigenetics. It proposes that targeted therapeutic strategies aimed at enhancing niche cell resilience could mitigate the adverse effects of aging, diabetes, and obesity on hematopoiesis and clonal hematopoiesis. Additionally, the review suggests that understanding the precise temporal and spatial dynamics of niche-HSC interactions and epigenetics influence may lead to innovative treatments for age-related hematological malignancies.
Collapse
Affiliation(s)
- Yang Xinyi
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Reshetov Igor Vladimirovich
- Department of Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Allaka Satyavathi
- Department of Chemistry, Faculty of science, Dr B R Ambedkar Open University, Wanaparthy, Telangana, 509103, India
| | - Dinisha Kamble
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Allaka Naga Lakshmi
- Department of Computer Science, St Philomena's College (Autonomous), Bangalore - Mysore Rd, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Padmanabha Reddy Y
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China.
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450000, China
| |
Collapse
|
23
|
Suhardi V, Oktarina A, Niu Y, Sosa B, Retzky J, Greenblatt M, Ivashkiv L, Bostrom M, Yang X. A Murine Model of Non-Wear-Particle-Induced Aseptic Loosening. Biomimetics (Basel) 2024; 9:673. [PMID: 39590245 PMCID: PMC11592190 DOI: 10.3390/biomimetics9110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The current murine models of peri-implant osseointegration failure are associated with wear particles. However, the current clinical osseointegration failure is not associated with wear particles. Here, we develop a murine model of osseointegration failure not associated with wear particles and validate it by comparing the cellular composition of interfacial tissues with human samples collected during total joint arthroplasty revision for aseptic loosening. MATERIALS AND METHODS Thirty-two 16-week-old female C57BL/6 mice underwent implantation with a press-fitted roughened titanium implant (Control, n = 11) to induce normal osseointegration and a press-fitted smooth polymethylmethacrylate implant (PMMA, n = 11), a loosely fitted smooth titanium implant (Smooth-Ti, n = 5) or a loosely fitted roughened titanium implant (Overdrill, n = 5) to induce osseointegration failure. Pullout testing was used to determine the strength of the bone-implant interface (n = 6 of each for Control and PMMA groups) at 2 weeks after implantation. Histology (n = 2/group) and immunofluorescence (n = 3/group) were used to determine the cellular composition of bone-implant interfacial tissue, and this was compared with two human samples. RESULTS Osseointegration failure was confirmed with grossly loosening implants and the presence of fibrous tissue identified via histology. The maximum pullout load in the PMMA group was 87% lower than in the Control group (2.8 ± 0.6 N vs. 21 ± 1.5 N, p < 0.001). With immunofluorescence, abundant fibroblasts (PDGFRα+ TCF4+ and PDGFRα+ Pu1+) were observed in osseointegration failure groups and the human samples, but not in controls. Interestingly, CD146+PDGFRα+ and LepR+PDGFRα+ mesenchymal progenitors, osteoblasts (OPN+), vascular endothelium (EMCN+) cells were observed in all groups, indicating dynamic osteogenic activity. Macrophages, only M2, were observed in conditions producing fibrous tissue. CONCLUSIONS In this newly developed non-wear-particle-related murine osseointegration failure model, the cellular composition of human and murine interfacial tissue implicates specific populations of fibroblasts in fibrous tissue formation and implies that these cells may derive from mesenchymal stem cells.
Collapse
Affiliation(s)
- Vincentius Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Yingzhen Niu
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050052, China
| | - Branden Sosa
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Julia Retzky
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Matthew Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lionel Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
24
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
Nelson TA, Tommasini S, Fretz JA. Deletion of the transcription factor EBF1 in perivascular stroma disrupts skeletal homeostasis and precipitates premature aging of the marrow microenvironment. Bone 2024; 187:117198. [PMID: 39002837 PMCID: PMC11410106 DOI: 10.1016/j.bone.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Early B cell factor 1 (EBF1) is a transcription factor expressed by multiple lineages of stromal cells within the bone marrow. While cultures of Ebf1-deficient cells have been demonstrated to have impaired differentiation into either the osteoblast or adipogenic lineage in vitro by several groups, in vivo there has been a nominal consequence of the loss of EBF1 on skeletal development. In this study we used Prx-cre driven deletion of Ebf1 to eliminate EBF1 from the entire mesenchymal lineage of the skeleton and resolve this discrepancy. We report here that EBF1 is expressed primarily in the Mesenchymal Stem and Progenitor Cell (MSPC)-Adipo, MSPC-Osteo, and the Early Mesenchymal Progenitors, and that loss of EBF1 has a plethora of consequences to maintenance of the skeleton throughout adulthood. Stroma from the Prx-cre;Ebf1fl/fl bones had impaired osteogenic differentiation, an age-dependent loss of CFU-F, and elevated senescence accompanying Ebf1-deletion. New bone formation was reduced after 3 months, and resulted in a quiescent bone environment with fewer osteoblasts and an accompanied reduction in osteoclast-mediated remodeling. Consequently, bones were less ductile at a younger age, and deletion of EBF1 dramatically impaired fracture repair. Disruption of EBF1 in perivascular populations also rearranged the vascular network within these bones and disrupted cytokine signaling from key hematopoietic niches resulting in anemia, reductions in B cells, and myeloid skewing of marrow hematopoietic lineages. Mechanistically we observed disrupted BMP signaling within Ebf1-deficient progenitors with reduced SMAD1-phosphorylation, and elevated secretion of the soluble BMP-inhibitor Gremlin from the MSPC-Adipo cells. Ebf1-deficient progenitors also exhibited posttranslational suppression of glucocorticoid receptor expression. Together, these results suggest that EBF1 signaling is required for mesenchymal progenitor mobilization to maintain the adult skeleton, and that the primary action of EBF1 in the early mesenchymal lineage is to promote proliferation, and differentiation of these perivascular cells to sustain a healthy tissue.
Collapse
Affiliation(s)
- Tracy A Nelson
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America
| | - Stephen Tommasini
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America
| | - Jackie A Fretz
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America.
| |
Collapse
|
26
|
Wölfel EM, Fernandez-Guerra P, Nørgård MØ, Jeromdesella S, Kjær PK, Elkjær AS, Kassem M, Figeac F. Senescence of skeletal stem cells and their contribution to age-related bone loss. Mech Ageing Dev 2024; 221:111976. [PMID: 39111640 DOI: 10.1016/j.mad.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Human aging is linked to bone loss, resulting in bone fragility and an increased risk of fractures. This is primarily due to an age-related decline in the function of bone-forming osteoblastic cells and accelerated cellular senescence within the bone microenvironment. Here, we provide a detailed discussion of the hypothesis that age-related defective bone formation is caused by senescence of skeletal stem cells, as they are the main source of bone forming osteoblastic cells and influence the composition of bone microenvironment. Furthermore, this review discusses potential strategies to target cellular senescence as an emerging approach to treat age-related bone loss.
Collapse
Affiliation(s)
- Eva M Wölfel
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Paula Fernandez-Guerra
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Mikkel Ørnfeldt Nørgård
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Shakespeare Jeromdesella
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Pernille Kirkegaard Kjær
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Anna Sofie Elkjær
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Moustapha Kassem
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark; Institute of Cellular and Molecular Medicine (ICMM), Panum Institute, University of Copenhagen, 3B Blegdamsvej, Copenhagen N 2200, Denmark.
| | - Florence Figeac
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| |
Collapse
|
27
|
Hilage P, Birajdar A, Marsale T, Patil D, Patil AM, Telang G, Somasundaram I, Sharma RK, Joshi MG. Characterization and angiogenic potential of CD146 + endometrial stem cells. Stem Cell Res Ther 2024; 15:330. [PMID: 39334237 PMCID: PMC11438155 DOI: 10.1186/s13287-024-03918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The human endometrium, lining the inner uterus, regenerates over 400 times uniquely during a woman's reproductive life. Endometrial stem cells (eSCs) enrich the tissue, resulting in a dense vascular network, significant angiogenic potential, and effective regeneration power. Being of natural angiogenic properties and proven effective in the treatment of vascular disorders, eSCs can be considered safe, reliable, and superior to other post-natal stem cells. Cluster of Differentiation 146 (CD146) has emerged as a pivotal marker associated with pericytes and endothelial cells for promoting angiogenesis. Endometrial cells with high CD146 expression could proliferate and differentiate into multiple lineages. This study will explore the role of CD146 in eSCs, focusing on the potential to boost the angiogenic and regenerative functions of the cells. The novelty of this study lies in the investigation of CD146 on eSC function, which may open new possibilities for eSC-based therapy in regenerative medicine and vascular disorders. METHODS The study involved obtaining endometrial biopsies from active reproducing women to isolate and cultivate eSCs. eSCs were assessed for growth factor secretion pattern, characterized for their mesenchymal properties. Finally, eSCs were tested for their angiogenic potential by angiogenic gene expression profile and in-ovo chick embryo model. As aimed, to check the role of CD146 in eSC angiogenesis, CD146+ cells were magnetically sorted and cultured. The sorted cells underwent various analyses, including flowcytometry to identify mesenchymal markers and human growth factor panel to analyze growth factor secretion profiles The study evaluated the angiogenic potential of CD146 + cells using functional assays, including ring formation, endothelial differentiation, and wound scratch assays, to evaluate cell migration and healing capabilities. Molecular insights were obtained through chemokine and cytokine investigations In-ovo Chick model assay was conducted to check the angiogenic potential and evaluated through macroscopic as well as through immunohistochemistry. RESULT Endometrial stem cells (eSCs) were successfully isolated using a combination of mechanical and enzymatic digestion, followed by culturing in complete DMEM media. The secretion profile of eSCs revealed significant production of various angiogenic growth factors, including Granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGF), and Platelet derived growth factor AA (PDGF-AA). The angiogenic gene profile indicated upregulation of several angiogenic genes in eSCs. The mesenchymal nature of eSCs was demonstrated through surface marker analysis (Cluster of differentiation 73, Cluster of differentiation 90, Cluster of differentiation 105) and trilineage differentiation. The in-ovo chick model confirmed the angiogenic potential of eSCs. CD146+ cells, isolated via magnetic sorting, exhibited enhanced angiogenic potential. These cells secreted significant levels of angiogenic growth factors such as VEGF. In Matrigel assays, CD146+ cells formed endothelial ring structures more rapidly and persistently than unsorted eSCs. Semi-quantitative PCR confirmed their endothelial differentiation. CD146+ cells express various angiogenic chemokines such as CXCL5, CXCL8, CCL3, and CCL20 and cytokines such as GM-CSF, Interleukin-1β (IL-1β), Interleukin-6 (IL-6), PDGF AA/BB, Epidermal growth factor (EGF), Endothelin 1, Angiopoietin. In-ovo chick model assay showed that CD146+ cells had superior angiogenesis, with more nodes, junctions, and segments compared to eSCs and controls. Immunohistochemistry confirmed increased expression of endothelial markers (Cluster of differentiation 31, VEGF, Vascular associated protein (VAP), Von Willebrand factor (vWF) in CD146+ cells. CONCLUSION The study highlights the angiogenic potential of endometrial stem cells, particularly the CD146+ cell population. These cells promote angiogenesis, secreting growth factors and forming stable blood vessel structures. CD146+ cells have higher expression levels of VEGF and TGF-α, key factors in angiogenesis. This suggests CD146+ eSCs may be promising for therapeutic applications in vascular diseases requiring angiogenesis. Further research is needed.
Collapse
Affiliation(s)
- Priyanka Hilage
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Apurva Birajdar
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Tejesh Marsale
- PCI Pharma Services, 23 commerce Dr, Bedford, NH, 03110, USA
| | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, NH Service Road, Nehru Nagar, Belagavi, 590010, Karnataka, India
| | - Ashwini Mane Patil
- Aster Adhar Hospital, Shastri Nagar, Kolhapur, 416012, Maharashtra, India
| | - Gaurang Telang
- BioRadius Therapeutics Research Pvt. Ltd, Pune, 411057, Maharashtra, India
| | - Indumathi Somasundaram
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Rakesh Kumar Sharma
- Department of Obstetrics and Gynecology, D.Y. Patil Medical College, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India.
- Stem Plus Biotech Pvt. Ltd, Sangli Miraj Kupwad Commercial Complex, C/S No. 1317/2, Near Shivaji Maharaj Putla, Bus Stand Road, Gaon Bhag, Sangli, 416416, MS, India.
| |
Collapse
|
28
|
Xing W, Feng H, Jiang B, Gao B, Liu J, Xie Z, Zhang Y, Hu X, Sun J, Greenblatt MB, Zhou BO, Zou W. Itm2a expression marks periosteal skeletal stem cells that contribute to bone fracture healing. J Clin Invest 2024; 134:e176528. [PMID: 39225088 PMCID: PMC11364384 DOI: 10.1172/jci176528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
The periosteum contains skeletal stem/progenitor cells that contribute to bone fracture healing. However, the in vivo identity of periosteal skeletal stem cells (P-SSCs) remains unclear, and membrane protein markers of P-SSCs that facilitate tissue engineering are needed. Here, we identified integral membrane protein 2A (Itm2a) enriched in SSCs using single-cell transcriptomics. Itm2a+ P-SSCs displayed clonal multipotency and self-renewal and sat at the apex of their differentiation hierarchy. Lineage-tracing experiments showed that Itm2a selectively labeled the periosteum and that Itm2a+ cells were preferentially located in the outer fibrous layer of the periosteum. The Itm2a+ cells rarely expressed CD34 or Osx, but expressed periosteal markers such as Ctsk, CD51, PDGFRA, Sca1, and Gli1. Itm2a+ P-SSCs contributed to osteoblasts, chondrocytes, and marrow stromal cells upon injury. Genetic lineage tracing using dual recombinases showed that Itm2a and Prrx1 lineage cells generated spatially separated subsets of chondrocytes and osteoblasts during fracture healing. Bone morphogenetic protein 2 (Bmp2) deficiency or ablation of Itm2a+ P-SSCs resulted in defects in fracture healing. ITM2A+ P-SSCs were also present in the human periosteum. Thus, our study identified a membrane protein marker that labels P-SSCs, providing an attractive target for drug and cellular therapy for skeletal disorders.
Collapse
Affiliation(s)
- Wenhui Xing
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
| | - Heng Feng
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo Gao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Orthopaedic Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jiping Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zaiqi Xie
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yazhuo Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuye Hu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Research Division, Hospital for Special Surgery, New York, New York, USA
| | - Bo O. Zhou
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Weiguo Zou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Schyrr F, Alonso-Calleja A, Vijaykumar A, Sordet-Dessimoz J, Gebhard S, Sarkis R, Bataclan C, Ferreira Lopes S, Oggier A, de Leval L, Nombela-Arrieta C, Naveiras O. Inducible CXCL12/CXCR4-dependent extramedullary hematopoietic niches in the adrenal gland. Blood 2024; 144:964-976. [PMID: 38728427 DOI: 10.1182/blood.2023020875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic niche, which regulates HSPC quiescence, self-renewal, and commitment in a demand-adapted manner. Although the complex BM niche is responsible for adult hematopoiesis, evidence exists for simpler, albeit functional and more accessible, extramedullary hematopoietic niches. Inspired by the anecdotal description of retroperitoneal hematopoietic masses occurring at higher frequency upon hormonal dysregulation within the adrenal gland, we hypothesized that the adult adrenal gland could be induced into a hematopoietic-supportive environment in a systematic manner, thus revealing mechanisms underlying de novo niche formation in the adult. Here, we show that upon splenectomy and hormonal stimulation, the adult adrenal gland of mice can be induced to recruit and host functional HSPCs, capable of serial transplantation, and that this phenomenon is associated with de novo formation of platelet-derived growth factor receptor α/leptin receptor (PDGFRα+/LEPR+/-)-expressing stromal nodules. We further show in CXCL12-green fluorescent protein reporter mice that adrenal glands contain a stromal population reminiscent of the CXCL12-abundant reticular cells, which compose the BM HSPC niche. Mechanistically, HSPC homing to hormonally induced adrenal glands was found dependent on the CXCR4-CXCL12 axis. Mirroring our findings in mice, we found reticular CXCL12+ cells coexpressing master niche regulator FOXC1 in primary samples from human adrenal myelolipomas, a benign tumor composed of adipose and hematopoietic tissue. Our findings reignite long-standing questions regarding hormonal regulation of hematopoiesis and provide a novel model to facilitate the study of adult-specific inducible hematopoietic niches, which may pave the way to therapeutic applications.
Collapse
Affiliation(s)
- Frédérica Schyrr
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anjali Vijaykumar
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center, University of Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandra Gebhard
- Centre vaudois anorexie boulimie, Espace CHUV Service de psychiatrie de liaison, Département de psychiatrie, Lausanne University Hospital, Lausanne, Switzerland
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Charles Bataclan
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Silvia Ferreira Lopes
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Aurélien Oggier
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center, University of Zürich and University Hospital Zürich, Zürich, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Hisamatsu D, Ikeba A, Yamato T, Mabuchi Y, Watanabe M, Akazawa C. Optimization of transplantation methods using isolated mesenchymal stem/stromal cells: clinical trials of inflammatory bowel diseases as an example. Inflamm Regen 2024; 44:37. [PMID: 39152520 PMCID: PMC11328379 DOI: 10.1186/s41232-024-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are distributed in various tissues and are used in clinical applications as a source of transplanted cells because of their easy harvestability. Although MSCs express numerous cell-surface antigens, single-cell analyses have revealed a highly heterogeneous cell population depending on the original tissue and donor conditions, including age and interindividual differences. This heterogeneity leads to differences in their functions, such as multipotency and immunomodulatory effects, making it challenging to effectively treat targeted diseases. The therapeutic efficacy of MSCs is controversial and depends on the implantation site. Thus, there is no established recipe for the transplantation of MSCs (including the type of disease, type of origin, method of cell culture, form of transplanted cells, and site of delivery). Our recent preclinical study identified appropriate MSCs and their suitable transplantation routes in a mouse model of inflammatory bowel disease (IBD). Three-dimensional (3D) cultures of MSCs have been demonstrated to enhance their properties and sustain engraftment at the lesion site. In this note, we explore the methods of MSC transplantation for treating IBDs, especially Crohn's disease, from clinical trials published over the past decade. Given the functional changes in MSCs in 3D culture, we also investigate the clinical trials using 3D constructs of MSCs and explore suitable diseases that might benefit from this approach. Furthermore, we discuss the advantages of the prospective isolation of MSCs in terms of interindividual variability. This note highlights the need to define the method of MSC transplantation, including interindividual variability, the culture period, and the transplantation route.
Collapse
Affiliation(s)
- Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akimi Ikeba
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Taku Yamato
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Tokyo, Japan
| | - Mamoru Watanabe
- Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
31
|
Nautiyal N, Maheshwari D, Kumar D, Rao EP, Tripathi DM, Kumar S, Diwakar S, Bhardwaj M, Mohanty S, Baligar P, Kumari A, Bihari C, Biswas S, Sarin SK, Kumar A. Rejuvenating bone marrow hematopoietic reserve prevents regeneration failure and hepatic decompensation in animal model of cirrhosis. Front Immunol 2024; 15:1439510. [PMID: 39188716 PMCID: PMC11345600 DOI: 10.3389/fimmu.2024.1439510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background and aim Bone marrow stem cells (BM-SCs) and their progeny play a central role in tissue repair and regeneration. In patients with chronic liver failure, bone marrow (BM) reserve is severally compromised and they showed marked defects in the resolution of injury and infection, leading to liver failure and the onset of decompensation. Whether BM failure is the cause or consequence of liver failure during cirrhosis is not known. In this study, we aimed to determine the underlying relationship between BM failure and regeneration failure in cirrhosis. Methodology C57Bl/6(J) mice were used to develop chronic liver injury through intra-peritoneal administration of carbon tetrachloride (CCl4) for 15 weeks (0.1-0.5 ml/kg). Animals were sacrificed to study the transition of cirrhosis and BM defects. To restore the BM-SC reserve; healthy BM cells were infused via intra-BM infusion and assessed for changes in liver injury, regeneration, and BM-SC reserve. Results Using a CCl4-induced animal - model of cirrhosis, we showed the loss of BM-SCs reserve occurred before regeneration failure and the onset of non-acute decompensation. Intra-BM infusion of healthy BM cells induced the repopulation of native hematopoietic stem cells (HSCs) in cirrhotic BM. Restoring BM-HSCs reserve augments liver macrophage-mediated clearance of infection and inflammation dampens neutrophil-mediated inflammation, accelerates fibrosis regression, enhances hepatocyte proliferation, and delays the onset of non-acute decompensation. Conclusion These findings suggest that loss of BM-HSCs reserve underlies the compromised innate immune function of the liver, drives regeneration failure, and the onset of non-acute decompensation. We further provide the proof-of-concept that rejuvenating BM-HSC reserve can serve as a potential therapeutic approach for preventing regeneration failure and transition to decompensated cirrhosis.
Collapse
Affiliation(s)
- Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Deepanshu Maheshwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dhananjay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - E. Pranshu Rao
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sandeep Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sunidhi Diwakar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Bhardwaj
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - S. K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
32
|
Lee BC. Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems. BMB Rep 2024; 57:352-362. [PMID: 38919014 PMCID: PMC11362137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems. [BMB Reports 2024; 57(8): 352-362].
Collapse
Affiliation(s)
- Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
33
|
Pereira AL, Galli S, Nombela‐Arrieta C. Bone marrow niches for hematopoietic stem cells. Hemasphere 2024; 8:e133. [PMID: 39086665 PMCID: PMC11289431 DOI: 10.1002/hem3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 08/02/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are the cornerstone of the hematopoietic system. HSCs sustain the continuous generation of mature blood derivatives while self-renewing to preserve a relatively constant pool of progenitors throughout life. Yet, long-term maintenance of functional HSCs exclusively takes place in association with their native tissue microenvironment of the bone marrow (BM). HSCs have been long proposed to reside in fixed and identifiable anatomical units found in the complex BM tissue landscape, which control their identity and fate in a deterministic manner. In the last decades, tremendous progress has been made in the dissection of the cellular and molecular fabric of the BM, the structural organization governing tissue function, and the plethora of interactions established by HSCs. Nonetheless, a holistic model of the mechanisms controlling HSC regulation in their niche is lacking to date. Here, we provide an overview of our current understanding of BM anatomy, HSC localization, and crosstalk within local cellular neighborhoods in murine and human tissues, and highlight fundamental open questions on how HSCs functionally integrate in the BM microenvironment.
Collapse
Affiliation(s)
- Ana Luísa Pereira
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - Serena Galli
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - César Nombela‐Arrieta
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| |
Collapse
|
34
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
35
|
Lim SU, Lee DW, Kim JH, Kang YJ, Kim IY, Oh IH. Chemical Coaxing of Mesenchymal Stromal Cells by Drug Repositioning for Nestin Induction. Int J Mol Sci 2024; 25:8006. [PMID: 39125577 PMCID: PMC11311338 DOI: 10.3390/ijms25158006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) display heterogeneity in origin and functional role in tissue homeostasis. Subsets of MSCs derived from the neural crest express nestin and serve as niches in bone marrow, but the possibility of coaxing MSCs into nestin-expresing cells for enhanced supportive activity is unclear. In this study, as an approach to the chemical coaxing of MSC functions, we screened libraries of clinically approved chemicals to identify compounds capable of inducing nestin expression in MSCs. Out of 2000 clinical compounds, we chose vorinostat as a candidate to coax the MSCs into neural crest-like fates. When treated with vorinostat, MSCs exhibited a significant increase in the expression of genes involved in the pluripotency and epithelial-mesenchymal transition (EMT), as well as nestin and CD146, the markers for pericytes. In addition, these nestin-induced MSCs exhibited enhanced differentiation towards neuronal cells with the upregulation of neurogenic markers, including SRY-box transcription factor 2 (Sox2), SRY-box transcription factor 10 (Sox10) and microtubule associated protein 2 (Map2) in addition to nestin. Moreover, the coaxed MSCs exhibited enhanced supporting activity for hematopoietic progenitors without supporting leukemia cells. These results demonstrate the feasibility of the drug repositioning of MSCs to induce neural crest-like properties through the chemical coaxing of cell fates.
Collapse
Affiliation(s)
- Sun-Ung Lim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul 06591, Republic of Korea; (S.-U.L.); (D.-W.L.); (I.-Y.K.)
| | - Dae-Won Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul 06591, Republic of Korea; (S.-U.L.); (D.-W.L.); (I.-Y.K.)
| | - Jung-Ho Kim
- Regen Innopharm Inc., Seoul 06591, Republic of Korea; (J.-H.K.); (Y.-J.K.)
| | - Young-Ju Kang
- Regen Innopharm Inc., Seoul 06591, Republic of Korea; (J.-H.K.); (Y.-J.K.)
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul 06591, Republic of Korea; (S.-U.L.); (D.-W.L.); (I.-Y.K.)
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul 06591, Republic of Korea; (S.-U.L.); (D.-W.L.); (I.-Y.K.)
- Regen Innopharm Inc., Seoul 06591, Republic of Korea; (J.-H.K.); (Y.-J.K.)
| |
Collapse
|
36
|
Donnelly H, Ross E, Xiao Y, Hermantara R, Taqi AF, Doherty-Boyd WS, Cassels J, Tsimbouri PM, Dunn KM, Hay J, Cheng A, Meek RMD, Jain N, West C, Wheadon H, Michie AM, Peault B, West AG, Salmeron-Sanchez M, Dalby MJ. Bioengineered niches that recreate physiological extracellular matrix organisation to support long-term haematopoietic stem cells. Nat Commun 2024; 15:5791. [PMID: 38987295 PMCID: PMC11237034 DOI: 10.1038/s41467-024-50054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.
Collapse
Affiliation(s)
- Hannah Donnelly
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Ewan Ross
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Rio Hermantara
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Aqeel F Taqi
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - W Sebastian Doherty-Boyd
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Jennifer Cassels
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Karen M Dunn
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Jodie Hay
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Annie Cheng
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - R M Dominic Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, United Kingdom
| | - Nikhil Jain
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Christopher West
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Helen Wheadon
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Alison M Michie
- School of Cancer Sciences, Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital, University of Glasgow, Glasgow, G12 0YN, United Kingdom
| | - Bruno Peault
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Adam G West
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom.
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, The Advanced Research Centre, 11 Chapel Lane, University of Glasgow, Glasgow, G11 6EW, United Kingdom.
| |
Collapse
|
37
|
Moriggi M, Torretta E, Cescon M, Russo L, Gregorio I, Braghetta P, Sabatelli P, Faldini C, Merlini L, Gargioli C, Bonaldo P, Gelfi C, Capitanio D. Characterization of Proteome Changes in Aged and Collagen VI-Deficient Human Pericyte Cultures. Int J Mol Sci 2024; 25:7118. [PMID: 39000224 PMCID: PMC11241165 DOI: 10.3390/ijms25137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Pericytes are a distinct type of cells interacting with endothelial cells in blood vessels and contributing to endothelial barrier integrity. Furthermore, pericytes show mesenchymal stem cell properties. Muscle-derived pericytes can demonstrate both angiogenic and myogenic capabilities. It is well known that regenerative abilities and muscle stem cell potential decline during aging, leading to sarcopenia. Therefore, this study aimed to investigate the potential of pericytes in supporting muscle differentiation and angiogenesis in elderly individuals and in patients affected by Ullrich congenital muscular dystrophy or by Bethlem myopathy, two inherited conditions caused by mutations in collagen VI genes and sharing similarities with the progressive skeletal muscle changes observed during aging. The study characterized pericytes from different age groups and from individuals with collagen VI deficiency by mass spectrometry-based proteomic and bioinformatic analyses. The findings revealed that aged pericytes display metabolic changes comparable to those seen in aging skeletal muscle, as well as a decline in their stem potential, reduced protein synthesis, and alterations in focal adhesion and contractility, pointing to a decrease in their ability to form blood vessels. Strikingly, pericytes from young patients with collagen VI deficiency showed similar characteristics to aged pericytes, but were found to still handle oxidative stress effectively together with an enhanced angiogenic capacity.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milano, 20133 Milano, Italy; (M.M.); (C.G.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy;
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (L.R.); (I.G.); (P.B.); (P.B.)
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (L.R.); (I.G.); (P.B.); (P.B.)
| | - Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (L.R.); (I.G.); (P.B.); (P.B.)
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (L.R.); (I.G.); (P.B.); (P.B.)
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.C.); (L.R.); (I.G.); (P.B.); (P.B.)
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milano, 20133 Milano, Italy; (M.M.); (C.G.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milano, 20133 Milano, Italy; (M.M.); (C.G.)
| |
Collapse
|
38
|
Fazio A, Neri I, Koufi FD, Marvi MV, Galvani A, Evangelisti C, McCubrey JA, Cocco L, Manzoli L, Ratti S. Signaling Role of Pericytes in Vascular Health and Tissue Homeostasis. Int J Mol Sci 2024; 25:6592. [PMID: 38928298 PMCID: PMC11203602 DOI: 10.3390/ijms25126592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Pericytes are multipotent cells embedded within the vascular system, primarily surrounding capillaries and microvessels where they closely interact with endothelial cells. These cells are known for their intriguing properties due to their heterogeneity in tissue distribution, origin, and multifunctional capabilities. Specifically, pericytes are essential in regulating blood flow, promoting angiogenesis, and supporting tissue homeostasis and regeneration. These multifaceted roles draw on pericytes' remarkable ability to respond to biochemical cues, interact with neighboring cells, and adapt to changing environmental conditions. This review aims to summarize existing knowledge on pericytes, emphasizing their versatility and involvement in vascular integrity and tissue health. In particular, a comprehensive view of the major signaling pathways, such as PDGFβ/ PDGFRβ, TGF-β, FOXO and VEGF, along with their downstream targets, which coordinate the behavior of pericytes in preserving vascular integrity and promoting tissue regeneration, will be discussed. In this light, a deeper understanding of the complex signaling networks defining the phenotype of pericytes in healthy tissues is crucial for the development of targeted therapies in vascular and degenerative diseases.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Irene Neri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Foteini-Dionysia Koufi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Andrea Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| |
Collapse
|
39
|
Zhang S, Lu C, Zheng S, Hong G. Hydrogel loaded with bone marrow stromal cell-derived exosomes promotes bone regeneration by inhibiting inflammatory responses and angiogenesis. World J Stem Cells 2024; 16:499-511. [PMID: 38817325 PMCID: PMC11135248 DOI: 10.4252/wjsc.v16.i5.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Bone healing is a complex process involving early inflammatory immune regulation, angiogenesis, osteogenic differentiation, and biomineralization. Fracture repair poses challenges for orthopedic surgeons, necessitating the search for efficient healing methods. AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells (BMSCs) facilitate the process of fracture healing. METHODS Hydrogels and loaded BMSC-derived exosome (BMSC-exo) gels were characterized to validate their properties. In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process. Hydrogels could recruit macrophages and inhibit inflammatory responses, enhance of human umbilical vein endothelial cell angiogenesis, and promote the osteogenic differentiation of primary cranial osteoblasts. Furthermore, the effect of hydrogel on fracture healing was confirmed using a mouse fracture model. RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration, promoted the formation of large vessels, and enabled functional vascularization during bone repair. These effects were further validated in fracture models. CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
Collapse
Affiliation(s)
- Shuai Zhang
- Division for International Collaborative and Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Chuan Lu
- Division for International Collaborative and Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan
| | - Sheng Zheng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Guang Hong
- Division for International Collaborative and Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan.
| |
Collapse
|
40
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
41
|
Haga CL, Booker CN, Strivelli J, Boregowda SV, Phinney DG. Comparative transcriptome analysis of bone marrow resident versus culture-expanded mouse mesenchymal stem/stromal cells. Cytotherapy 2024; 26:498-505. [PMID: 38372680 PMCID: PMC11065607 DOI: 10.1016/j.jcyt.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are defined as culture-expanded populations, and although these cells recapitulate many properties of bone marrow (BM) resident skeletal stem/progenitor cells, few studies have directly compared these populations to evaluate how culture adaptation and expansion impact critical quality attributes. METHODS We analyzed by RNA sequencing Lin-SCA1+ MSCs enriched from BM by immunodepletion (ID) and after subsequent culture expansion (Ex) and Lin-LEPR+ MSCs sorted (S) directly from BM. Pairwise comparisons were used to identify differentially expressed genes (DEGs) between populations, and gene set enrichment analysis was employed to identify biological pathways/processes unique to each population. K-means cluster analysis resolved isolation status-dependent changes in transcription in pseudotime. RESULTS Hierarchical clustering segregated populations by isolation process, and principal component analysis identified transcripts related to vasculature development, ossification and inflammatory/cytokine signaling as key drivers of population variance. Pairwise comparisons identified 3849 DEGs in ID versus S BM-MSCs mapping to Gene Ontology (GO) terms related to immune and metabolic processes and 334 DEGs in Ex versus ID BM-MSCs mapping to GO terms related to tissue development, cell growth and replication and organelle organization. K-means cluster analysis revealed significant differences in transcripts encoding stemness and differentiation markers, extracellular matrix structural constituents and remodeling enzymes and paracrine-acting factors between populations. CONCLUSIONS These comparative analyses reveal significant differences in gene expression signatures between BM resident and culture-expanded MSCs, thereby providing new insight into how culture adaptation/expansion endows the latter with unique quality attributes.
Collapse
Affiliation(s)
- Christopher L Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Cori N Booker
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Jacqueline Strivelli
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Siddaraju V Boregowda
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA.
| |
Collapse
|
42
|
Dai K, Wang J, Liu C. Biomaterial-assisted therapeutic cell production and modification in vivo. Exp Hematol 2024; 133:104192. [PMID: 38432427 DOI: 10.1016/j.exphem.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Hematopoietic stem cell transplantation remains the preferred treatment for a variety of hematopoietic function disorders. To address the issue of limited numbers of hematopoietic stem/progenitor cells (HSPCs), significant progress has been made in the technology for ex vivo expansion of HSPCs. In addition, biomaterial-assisted in vivo production technology for therapeutic cells, including HSPCs, is gradually gaining attention. With the aid of specifically functional biomaterials, researchers can construct bone-like tissues exhibiting typical bone marrow-like structures (termed in vivo osteo-organoids in this article) for the production of therapeutic cells. These in vivo osteo-organoids mimic the native bone marrow niche and provide a microenvironment conducive to the expansion and differentiation of HSPCs. In this perspective article, we systematically summarize the history of in vivo osteo-organoids as a model for studying hematopoiesis and cancer metastasis and propose the challenges faced by the in vivo osteo-organoid production platform for therapeutic cells in terms of clinical translation. Ultimately, we hope to achieve functional customization of in vivo osteo-organoid-derived cells through continuously developed material design methods, so as to meet the treatment needs of different types of diseases and bring hope for life to more people.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China; Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
43
|
da Silva Gonçalves CE, Fock RA. Semaphorins and the bone marrow microenvironment: New candidates that influence the hematopoietic system. Cytokine Growth Factor Rev 2024; 76:22-29. [PMID: 38472041 DOI: 10.1016/j.cytogfr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different in vitro and in vivo studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.
Collapse
Affiliation(s)
- Carlos E da Silva Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Ricardo A Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
45
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
46
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
47
|
Matsushita Y, Liu J, Chu AKY, Ono W, Welch JD, Ono N. Endosteal stem cells at the bone-blood interface: A double-edged sword for rapid bone formation: Bone marrow endosteal stem cells provide a robust source of bone-making osteoblasts both in normal and abnormal bone formation. Bioessays 2024; 46:e2300173. [PMID: 38161246 PMCID: PMC11729589 DOI: 10.1002/bies.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.
Collapse
Affiliation(s)
- Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jialin Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Joshua D. Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
48
|
Gonzalez Galofre ZN, Kilpatrick AM, Marques M, Sá da Bandeira D, Ventura T, Gomez Salazar M, Bouilleau L, Marc Y, Barbosa AB, Rossi F, Beltran M, van de Werken HJG, van IJcken WFJ, Henderson NC, Forbes SJ, Crisan M. Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo. Nat Commun 2024; 15:1653. [PMID: 38395882 PMCID: PMC10891074 DOI: 10.1038/s41467-024-44913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.
Collapse
Affiliation(s)
- Zaniah N Gonzalez Galofre
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Diana Sá da Bandeira
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Léa Bouilleau
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yvan Marc
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Ana B Barbosa
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 GE, Rotterdam, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
49
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
50
|
Song J, Ma Q, Li Y, Wang X, Chen S, Liang B, Lin X, Chen J, Xu S, Shi S, Zhang J, Diao L, Zeng Y, Xu J. CD317 + MSCs expanded with chemically defined media have enhanced immunological anti-inflammatory activities. Stem Cell Res Ther 2024; 15:2. [PMID: 38169422 PMCID: PMC10763464 DOI: 10.1186/s13287-023-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Although both preclinical and clinical studies have shown the great application potential of MSCs (mesenchymal stem/stromal cells) in treating many kinds of diseases, therapeutic inconsistency resulting from cell heterogeneity is the major stumbling block to their clinical applications. Cell population diversity and batch variation in the cell expansion medium are two major inducers of MSC heterogeneity. METHODS Cell population diversity was investigated through single-cell RNA sequencing analysis of human MSCs derived from the umbilical cord and expanded with fully chemically defined medium in the current study. Then, the MSC subpopulation with enhanced anti-inflammatory effects was studied in vitro and in vivo. RESULTS Our data showed that MSCs contain different populations with different functions, including subpopulations with enhanced functions of exosome secretion, extracellular matrix modification and responses to stimuli (regeneration and immune response). Among them, CD317+ MSCs have improved differentiation capabilities and enhanced immune suppression activities. Underlying mechanism studies showed that higher levels of TSG6 confer enhanced anti-inflammatory functions of CD317+ MSCs. CONCLUSIONS Thus, CD317+ MSCs might be a promising candidate for treating immunological disorder-related diseases.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Qi Ma
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yumeng Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Xianqi Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Xiaoqi Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, 518000, People's Republic of China
| | - Shiru Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Shaoquan Shi
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jingting Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|