1
|
Bolideei M, Barzigar R, Gahrouei RB, Mohebbi E, Haider KH, Paul S, Paul MK, Mehran MJ. Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases. Stem Cell Rev Rep 2025:10.1007/s12015-025-10857-0. [PMID: 40014250 DOI: 10.1007/s12015-025-10857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Stem cell research is a dynamic and fast-advancing discipline with great promise for the treatment of diverse human disorders. The incorporation of gene editing technologies, including ZFNs, TALENs, and the CRISPR/Cas system, in conjunction with progress in nanotechnology, is fundamentally transforming stem cell therapy and research. These innovations not only provide a glimmer of optimism for patients and healthcare practitioners but also possess the capacity to radically reshape medical treatment paradigms. Gene editing and nanotechnology synergistically enhance stem cell-based therapies' precision, efficiency, and applicability, offering transformative potential for treating complex diseases and advancing regenerative medicine. Nevertheless, it is important to acknowledge that these technologies also give rise to ethical considerations and possible hazards, such as inadvertent genetic modifications and the development of genetically modified organisms, therefore creating a new age of designer infants. This review emphasizes the crucial significance of gene editing technologies and nanotechnology in the progress of stem cell treatments, particularly for degenerative pathologies and injuries. It emphasizes their capacity to restructure and comprehensively revolutionize medical treatment paradigms, providing fresh hope and optimism for patients and healthcare practitioners.
Collapse
Affiliation(s)
- Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rambod Barzigar
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India
| | - Razieh Bahrami Gahrouei
- Department of Pharmacy PES College, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| | - Elham Mohebbi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| | - Khawaja Husnain Haider
- Sulaiman AlRajhi Medical School, Al Bukayriyah, AlQaseem, 52726, Kingdom of Saudi Arabia
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mohammad Javad Mehran
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India.
| |
Collapse
|
2
|
Liu Y, Zhao C, Zhang R, Pang Y, Li L, Feng S. Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury. Stem Cell Res Ther 2024; 15:343. [PMID: 39354635 PMCID: PMC11446099 DOI: 10.1186/s13287-024-03914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbalanced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive perspective is provided for the clinical translation of MSC transplantation for SCI.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Chenxi Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yilin Pang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Linquan Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China.
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
3
|
Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:6. [DOI: 10.1007/s11051-022-05654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
4
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
5
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
6
|
Helfer BM, Bulte JW. Cell Surveillance Using Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Rajendran RL, Jogalekar MP, Gangadaran P, Ahn BC. Noninvasive in vivo cell tracking using molecular imaging: A useful tool for developing mesenchymal stem cell-based cancer treatment. World J Stem Cells 2020; 12:1492-1510. [PMID: 33505597 PMCID: PMC7789123 DOI: 10.4252/wjsc.v12.i12.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.
Collapse
Affiliation(s)
| | | | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea.
| |
Collapse
|
8
|
Huang J, Huang JH, Bao H, Ning X, Yu C, Chen Z, Chao J, Zhang Z. CT/MR Dual-Modality Imaging Tracking of Mesenchymal Stem Cells Labeled with a Au/GdNC@SiO 2 Nanotracer in Pulmonary Fibrosis. ACS APPLIED BIO MATERIALS 2020; 3:2489-2498. [PMID: 35025299 DOI: 10.1021/acsabm.0c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown potential as an innovative treatment for pulmonary fibrosis (PF), due to their capability to ameliorate the inflammation and moderate the deterioration of PF. The fate of the stem cells transplanted into the lung, including survival, migration, homing, and functions, however, has not been fully understood yet. In this paper, we report the development of a computed tomography/magnetic resonance (CT/MR) dual-modal nanotracer, gold/gadolinium nanoclusters overcoated with a silica shell (Au/GdNC@SiO2), for noninvasive labeling and tracking of the transplanted human MSCs (hMSCs) in a PF model. The Au/GdNC@SiO2 nanotracer exhibits good colloidal and chemical stability, high biocompatibility, enhanced longitudinal MR relaxivity, and superior X-ray attenuation property. The hMSCs can be effectively labeled with Au/GdNC@SiO2, resulting in a significantly increased cellular CT/MR imaging contrast, without any obvious adverse effect on the function, including proliferation and differentiation of the labeled stem cells. Moreover, by using the Au/GdNC@SiO2 nanotracer, the hMSCs transplanted in the lung can be tracked for 7 d via in vivo CT/MR dual-modality imaging. This work may provide an insight into the role the transplanted hMSCs play in PF therapy, thus promoting the stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 Jiangsu, China
| | - Jie Holly Huang
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009 Jiangsu, China
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 Jiangsu, China
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 Jiangsu, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 Jiangsu, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009 Jiangsu, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 Jiangsu, China
| |
Collapse
|
9
|
Ardelean IL, Ficai D, Sonmez M, Oprea O, Nechifor G, Andronescu E, Ficai A, Titu MA. Hybrid Magnetic Nanostructures For Cancer Diagnosis And Therapy. Anticancer Agents Med Chem 2019; 19:6-16. [PMID: 30411694 DOI: 10.2174/1871520618666181109112655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cancer is the second disease in the world from the point of view of mortality. The conventional routes of treatment were found to be not sufficient and thus alternative ways are imposed. The use of hybrid, magnetic nanostructures is a promising way for simultaneous targeted diagnosis and treatment of various types of cancer. For this reason, the development of core@shell structures was found to be an efficient way to develop stable, biocompatible, non-toxic carriers with shell-dependent internalization capacity in cancer cells. So, the multicomponent approach can be the most suitable way to assure the multifunctionality of these nanostructures to achieve the desired/necessary properties. The in vivo stability is mostly assured by the coating of the magnetic core with various polymers (including polyethylene glycol, silica etc.), while the targeting capacity is mostly assured by the decoration of these nanostructures with folic acid. Unfortunately, there are also some limitations related to the multilayered approach. For instance, the increasing of the thickness of layers leads to a decrease the magnetic properties, (hyperthermia and guiding ability in the magnetic field, for instance), the outer shell should contain the targeting molecules (as well as the agents helping the internalization into the cancer cells), etc.
Collapse
Affiliation(s)
- Ioana L Ardelean
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Denisa Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Maria Sonmez
- Leather and Footwear Research Institute, Department of Rubber, 93 Ion Minulescu street, 031215, Bucharest, Romania
| | - Ovidiu Oprea
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Anton Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Mihail A Titu
- "Lucian Blaga" University of Sibiu, Faculty of Engineering, Industrial Engineering and Management Departament, Sibiu, Romania
| |
Collapse
|
10
|
Chen D, Wan D, Wang R, Liu Y, Sun K, Tao X, Qu Y, Dai K, Ai S, Tao K. Multimodal Nanoprobe Based on Upconversion Nanoparticles for Monitoring Implanted Stem Cells in Bone Defect of Big Animal. ACS Biomater Sci Eng 2018; 4:626-634. [PMID: 33418751 DOI: 10.1021/acsbiomaterials.7b00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monitoring implanted stem cells in bone regeneration and other cell therapies is of great importance to reveal the mechanism of tissue repair and to optimize clinical treatments. However, big challenge still remained in lacking an imaging nanoprobe. Herein, we designed surface modified upconversion nanoparticles (UCNs) with multimodal imaging capabilities of fluorescence, magnetic resonance imaging (MRI) and dual-energy computed tomography (CT). It was found that the UCNs can label stem cells in an efficient (over 200 pg/cell) and long-term (at least 14 days) manner, with almost no influence on the viability, cell cycle, apoptosis, and multilineage differentiation. Thus, clinical dual-energy CT and MRI were successfully applied to observe the migration of labeled cells on a bone-defect model of rabbit for at least 14 days. The results visualized the gathering of stem cells at the defect site of cortical bone, and the in vivo images were well-correlated with the in vitro fluorescence observation without extra staining. Therefore, a potentially translatable nanoprobe was developed for noninvasive and real-time tracking of cells, which may be meaningful for understanding the bone regeneration in clinic and shed light on the visualization of cells in other cell therapies.
Collapse
Affiliation(s)
- Dexin Chen
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Daqian Wan
- Department of Orthopedics, Orthopedic Institute of Harbin, The Fifth Hospital in Harbin, Harbin 150040, P. R. China
| | - Rongying Wang
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanyue Liu
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | | | | | | | - Ke Tao
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Stem Cell Tracing Through MR Molecular Imaging. Tissue Eng Regen Med 2018; 15:249-261. [PMID: 30603551 DOI: 10.1007/s13770-017-0112-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Stem cell therapy opens a new window in medicine to overcome several diseases that remain incurable. It appears such diseases as cardiovascular disorders, brain injury, multiple sclerosis, urinary system diseases, cartilage lesions and diabetes are curable with stem cell transplantation. However, some questions related to stem cell therapy have remained unanswered. Stem cell imaging allows approval of appropriated strategies such as selection of the type and dose of stem cell, and also mode of cell delivery before being tested in clinical trials. MRI as a non-invasive imaging modality provides proper conditions for this aim. So far, different contrast agents such as superparamagnetic or paramagnetic nanoparticles, ultrasmall superparamagnetic nanoparticles, fluorine, gadolinium and some types of reporter genes have been used for imaging of stem cells. The core subject of these studies is to investigate the survival and differentiation of stem cells, contrast agent's toxicity and long term following of transplanted cells. The promising results of in vivo and some clinical trial studies may raise hope for clinical stem cells imaging with MRI.
Collapse
|
12
|
Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury. Oncotarget 2017; 8:58985-58999. [PMID: 28938612 PMCID: PMC5601708 DOI: 10.18632/oncotarget.19775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
The transplantation of bone marrow mesenchymal stem cells (BMSCs) to repair spinal cord injury (SCI) has become a promising therapy. However, there is still a lack of visual evidence directly implicating the transplanted cells as the source of the improvement of spinal cord function. In this study, BMSCs were labeled with NF-200 promoter and lipase-activated gadolinium-containing nanoparticles (Gd-DTPA-FA). Double labeled BMSCs were implanted into spinal cord transaction injury in rat models in situ, the function recovery was evaluated on 1st, 7th, 14th, 28 th days by MRI, Diffusion Tensor Imaing, CT imaging and post-processing, and histological observations. BBB scores were used for assessing function recovery. After transplantation of BMSCs, the hypersignal emerged in spinal cord in T1WI starting at day 7 that was focused at the injection site, which then increased and extended until day 14. Subsequently, the increased signal intensity area rapidly spread from the injection site to entire injured segment lasting four weeks. The diffusion tensor tractography and histological analysis both showed the nerve fibre from dividing to connecting partly. Immunofluorescence showed higher expression of NF-200 in Repaired group than Injury group. Electron microscopy showed detachment and loose of myelin lamellar getting better in Repaired group compared with the Injury group. BBB scores in Repaired group were significantly higher than those of injury animals. Our study suggests that the migration and distribution of Gd-DTPA-FA labeled BMSCs can be tracked using MRI. Transplantation of BMSCs represents a promising potential strategy for the repair of SCI.
Collapse
|
13
|
Wan D, Chen D, Li K, Qu Y, Sun K, Tao K, Dai K, Ai S. Gold Nanoparticles as a Potential Cellular Probe for Tracking of Stem Cells in Bone Regeneration Using Dual-Energy Computed Tomography. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32241-32249. [PMID: 27933815 DOI: 10.1021/acsami.6b11856] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transplant of bone marrow mesenchymal stem cells (BMSCs) has attracted considerable interest for bone regeneration. However, noninvasive and real-time tracking of location and concentration of the implanted BMSCs remains a big challenge. Herein we designed a novel approach involving the surface modification of gold nanoparticles (AuNPs) with silica layers and DNA Transfectin 3000 (TS) to improve biocompatibility and to enhance the uptake by BMSCs, hence rendering the ability of tracking BMSCs with dual-energy computer tomography (DECT). Results showed that the endocytosis of AuNPs@SiO2-TS by BMSCs was as high as ∼255 pg/cell after one-day incubation and did not obviously decrease after 14 days. Meanwhile, the AuNPs@SiO2-TS had no influence on the viability, cell cycle, and capabilities on osteogenic, chondrogenic, and adipogenic differentiation of BMSCs. Under a bone-defect rabbit model, the DECT images showed the migration of BMSCs toward a cortical bone defect without variation in volume. This study demonstrated that AuNPs@SiO2-TS could be a potential cellular probe for noninvasive and real-time tracking of BMSCs in bone tissue repairs using clinical CT or DECT techniques. It provided a novel and intuitive methodology for observing and investigating the bone regeneration in clinic.
Collapse
Affiliation(s)
- Daqian Wan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, P. R. China
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, P. R. China
| | - Dexin Chen
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Kaicheng Li
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, P. R. China
| | - Yang Qu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Kerong Dai
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, P. R. China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, P. R. China
| |
Collapse
|
14
|
Zuidema JM, Gilbert RJ, Osterhout DJ. Nanoparticle Technologies in the Spinal Cord. Cells Tissues Organs 2016; 202:102-115. [PMID: 27701150 DOI: 10.1159/000446647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats. Nanoparticles releasing chABC helped promote axonal regeneration following injury, and the nanoparticles also protected the enzyme from rapid degradation. In summary, nanoparticles are viable materials for diagnostic or therapeutic applications within experimental models of SCI and have potential for future clinical use.
Collapse
|
15
|
Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016; 2016:9240652. [PMID: 26880997 PMCID: PMC4736428 DOI: 10.1155/2016/9240652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field.
Collapse
|
16
|
Carney CE, MacRenaris KW, Meade TJ. Water-soluble lipophilic MR contrast agents for cell membrane labeling. J Biol Inorg Chem 2015. [PMID: 26215869 DOI: 10.1007/s00775-015-1280-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-term cell tracking using MR imaging necessitates the development of contrast agents that both label and are retained by cells. One promising strategy for long-term cell labeling is the development of lipophilic Gd(III)-based contrast agents that anchor into the cell membrane. We have previously reported the efficacy of monomeric and multimeric lipophilic agents and showed that the monomeric agents have improved labeling and contrast enhancement of cell populations. Here, we report on the synthesis, characterization, and in vitro testing of a series of monomeric lipophilic contrast agents with varied alkyl chain compositions. We show that these agents disperse in water, localize to the cell membrane, and label HeLa and MCF7 cells effectively. Additionally, these agents have up to tenfold improved retention in cells compared to clinically available ProHance(®).
Collapse
Affiliation(s)
- Christiane E Carney
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | | | | |
Collapse
|
17
|
Tang Y, Zhang C, Wang J, Lin X, Zhang L, Yang Y, Wang Y, Zhang Z, Bulte JWM, Yang GY. MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model. ADVANCED FUNCTIONAL MATERIALS 2015; 25:1024-1034. [PMID: 26290659 PMCID: PMC4539160 DOI: 10.1002/adfm.201402930] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Quantitatively tracking engraftment of intracerebrally or intravenously transplanted stem cells and evaluating their concomitant therapeutic efficacy for stroke has been a challenge in the field of stem cell therapy. In this study, first, an MRI/SPECT/fluorescent tri-modal probe (125I-fSiO4@SPIOs) is synthesized for quantitatively tracking mesenchymal stem cells (MSCs) transplanted intracerebrally or intravenously into stroke rats, and then the therapeutic efficacy of MSCs delivered by both routes and the possible mechanism of the therapy are evaluated. It is demonstrated that (125)I-fSiO4@SPIOs have high efficiency for labeling MSCs without affecting their viability, differentiation, and proliferation capacity, and found that 35% of intracerebrally injected MSCs migrate along the corpus callosum to the lesion area, while 90% of intravenously injected MSCs remain trapped in the lung at 14 days after MSC transplantation. However, neurobehavioral outcomes are significantly improved in both transplantation groups, which are accompanied by increases of vascular endothelial growth factor, basic fibroblast growth factor, and tissue inhibitor of metalloproteinases-3 in blood, lung, and brain tissue (p < 0.05). The study demonstrates that 125I-fSiO4@SPIOs are robust probe for long-term tracking of MSCs in the treatment of ischemic brain and MSCs delivered via both routes improve neurobehavioral outcomes in ischemic rats.
Collapse
Affiliation(s)
- Yaohui Tang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunfu Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jixian Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaojie Lin
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
18
|
Geng K, Yang ZX, Huang D, Yi M, Jia Y, Yan G, Cheng X, Wu R. Tracking of mesenchymal stem cells labeled with gadolinium diethylenetriamine pentaacetic acid by 7T magnetic resonance imaging in a model of cerebral ischemia. Mol Med Rep 2014; 11:954-60. [PMID: 25352164 PMCID: PMC4262487 DOI: 10.3892/mmr.2014.2805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022] Open
Abstract
Progress in the development of stem cell and gene therapy requires repeatable and non-invasive techniques to monitor the survival and integration of stem cells in vivo with a high temporal and spatial resolution. The purpose of the present study was to examine the feasibility of using the standard contrast agent gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) to label rat mesenchymal stem cells (MSCs) for stem cell tracking. MSCs, obtained from the bilateral femora of rats, were cultured and propagated. The non-liposomal lipid transfection reagent effectene was then used to induce the intracellular uptake of Gd-DTPA. Electron microscopy was used to detect the distribution of Gd-DTPA particles in the MSCs. The labeling efficiency of the Gd-DTPA particles in the MSCs was determined using spectrophotometry, and MTT and trypan blue exclusion assays were used to evaluate the viability and proliferation of the labeled MSCs. T1-weighted magnetic resonance imaging (MRI) was used to observe the labeled cells in vitro and in the rat brain. Gd-DTPA particles were detected inside the MSCs using transmission electron microscopy and a high labeling efficiency was observed. No difference was observed in cell viability or proliferation between the labeled and unlabeled MSCs (P>0.05). In the in vitro T1-weighted MRI and in the rat brain, a high signal intensity was observed in the labeled MSCs. The T1-weighted imaging of the labeled cells revealed a significantly higher signal intensity compared with that of the unlabeled cells (P<0.05) and the T1 values were significantly lower. The function of the labeled MSCs demonstrated no change following Gd-DTPA labeling, with no evident adverse effect on cell viability or proliferation. Therefore, a change in MR signal intensity was detected in vitro and in vivo, suggesting Gd-DTPA can be used to label MSCs for MRI tracking.
Collapse
Affiliation(s)
- Kuan Geng
- The Chinese People's Liberation Army 59 Hospital, Yunnan, Kaiyuan, Yunnan 661699, P.R. China
| | - Zhong Xian Yang
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Dexiao Huang
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Meizi Yi
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Yanlong Jia
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Gen Yan
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Xiaofang Cheng
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
19
|
Xing R, Liu G, Zhu J, Hou Y, Chen X. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. Pharm Res 2013; 31:1377-89. [PMID: 24065595 DOI: 10.1007/s11095-013-1205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/12/2013] [Indexed: 01/11/2023]
Abstract
Gene therapy is becoming a promising strategy to treat various kinds of genetic and acquired diseases. However, the development of safe, efficient, and targetable gene delivery systems remains a major challenge in gene therapy. The unique material characteristics of magnetic nanoparticles (MNPs), including high surface area, facile surface modification, controllable size, and excellent magnetic properties, make them promising candidates for gene delivery. The engineered MNPs with modifiable functional surfaces and bioactive cores can result in several advantageous diagnostic and therapeutic properties including enhanced magnetic resonance imaging (MRI) signal intensity, long permeation and retention in the circulatory system, specific delivery of therapeutic genes to target sites. In this review, the updated research on the preparation and surface modification of MNPs for gene delivery is summarized.
Collapse
Affiliation(s)
- Ruijun Xing
- Department of Materials Science and Engineering College of Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
20
|
Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Am J Cancer Res 2013; 3:595-615. [PMID: 23946825 PMCID: PMC3741608 DOI: 10.7150/thno.5366] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
Stem cells hold great promise for the treatment of multiple human diseases and disorders. Tracking and monitoring of stem cells in vivo after transplantation can supply important information for determining the efficacy of stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be the most effective and safest non-invasive technique for stem cell tracking in living bodies. Commercial superparamagnetic iron oxide nanoparticles (SPIONs) in the aid of transfection agents (TAs) have been applied to labeling stem cells. However, owing to the potential toxicity of TAs, more attentions have been paid to develop novel SPIONs with specific surface coating or functional moieties which facilitate effective cell internalization in the absence of TAs. This review aims to summarize the recent progress in the design and preparation of SPIONs as cellular MRI probes, to discuss their applications and current problems facing in stem cell labeling and tracking, and to offer perspectives and solutions for the future development of SPIONs in this field.
Collapse
|
21
|
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:786475. [PMID: 23484157 PMCID: PMC3581246 DOI: 10.1155/2013/786475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a "bench to bedside" gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
22
|
Paspala SA, Vishwakarma SK, Murthy TV, Rao TN, Khan AA. Potential role of stem cells in severe spinal cord injury: current perspectives and clinical data. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2012; 5:15-27. [PMID: 24198535 PMCID: PMC3781762 DOI: 10.2147/sccaa.s28477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cell transplantation for spinal cord injury (SCI) along with new pharmacotherapy research offers the potential to restore function and ease the associated social and economic burden in the years ahead. Various sources of stem cells have been used in the treatment of SCI, but the most convincing results have been obtained with neural progenitor cells in preclinical models. Although the use of cell-based transplantation strategies for the repair of chronic SCI remains the long sought after holy grail, these approaches have been to date the most successful when applied in the subacute phase of injury. Application of cell-based strategies for the repair and regeneration of the chronically injured spinal cord will require a combinational strategy that may need to include approaches to overcome the effects of the glial scar, inhibitory molecules, and use of tissue engineering strategies to bridge the lesion. Nonetheless, cell transplantation strategies are promising, and it is anticipated that the Phase I clinical trials of some form of neural stem cell-based approach in SCI will commence very soon.
Collapse
Affiliation(s)
- Syed Ab Paspala
- PAN Research Foundation, CARE, Hyderabad, India ; The Institute of Medical Sciences, Hyderabad, India
| | | | | | | | | |
Collapse
|
23
|
Leung L. Cellular therapies for treating pain associated with spinal cord injury. J Transl Med 2012; 10:37. [PMID: 22394650 PMCID: PMC3320547 DOI: 10.1186/1479-5876-10-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 03/06/2012] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing.
Collapse
Affiliation(s)
- Lawrence Leung
- Centre of Neurosciences Study, Queen's University, 18 Stuart Street, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
24
|
Xing R, Liu G, Quan Q, Bhirde A, Zhang G, Jin A, Bryant LH, Zhang A, Liang A, Eden HS, Hou Y, Chen X. Functional MnO nanoclusters for efficient siRNA delivery. Chem Commun (Camb) 2011; 47:12152-4. [PMID: 21991584 PMCID: PMC4620662 DOI: 10.1039/c1cc15408g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A non-viral gene delivery nanovehicle based on Alkyl-PEI2k capped MnO nanoclusters was synthesized via a simple, facile method and used for efficient siRNA delivery and magnetic resonance imaging.
Collapse
Affiliation(s)
- Ruijun Xing
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gang Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 63700, P.R. China
| | - Qimeng Quan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ashwinkumar Bhirde
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - L. Henry Bryant
- Laboratory of Diagnostic Radiology Research (CC), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Angela Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amy Liang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Henry S. Eden
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yanglong Hou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|