1
|
Ramezani A, Rahnama M, Mahmoudian F, Shirazi F, Ganji M, Bakhshi S, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of the Exosomes and Their Associated Biomolecules in the Glioblastoma Biology, Clinical Treatment, and Diagnosis. J Neuroimmune Pharmacol 2025; 20:48. [PMID: 40299204 DOI: 10.1007/s11481-025-10204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma is the most common and aggressive brain tumor with a low survival rate. Due to its heterogeneous composition, high invasiveness, and frequent recurrence after surgery, treatment success has been limited. In addition, due to the brain's unique immune status and the suppressor tumor microenvironment (TME), glioblastoma treatment has faced more challenges. Exosomes play a critical role in cancer metastasis by regulating cell-cell interactions that promote tumor growth, angiogenesis, metastasis, treatment resistance, and immunological regulation in the tumor microenvironment. This review explores the pivotal role of exosomes in the development of glioblastoma, with a focus on their potential as non-invasive biomarkers for prognosis, early detection and real-time monitoring of disease progression. Notably, exosome-based drug delivery methods hold promise for overcoming the blood-brain barrier (BBB) and developing targeted therapies for glioblastoma. Despite challenges in clinical translation, the potential for personalized exosome = -054321`therapies and the capacity to enhance therapeutic responses in glioblastoma, present intriguing opportunities for improving patient outcomes. It seems that getting a good and current grasp of the role of exosomes in the fight against glioblastoma would properly serve the scientific community to further their understanding of the related potentials of these biological moieties.
Collapse
Affiliation(s)
- Aghdas Ramezani
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Rahnama
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
2
|
Karami Fath M, Vakilinezami P, Abdoli Keleshtery Z, Sima Azgomi Z, Nezamivand Chegini S, Shahriarinour M, Seyfizadeh Saraabestani S, Diyarkojouri M, Nikpassand M, Ranji N. Silibinin-Loaded Nanoparticles for Drug Delivery in Gastric Cancer: In Vitro Modulating miR-181a and miR-34a to Inhibit Cancer Cell Growth and Migration. Food Sci Nutr 2025; 13:e4609. [PMID: 40078338 PMCID: PMC11896884 DOI: 10.1002/fsn3.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 03/14/2025] Open
Abstract
Silibinin (C25H22O10), a notable bioactive flavonolignans, is recognized for its anticancer properties. However, due to its poor water solubility, the objective of this study was to design and synthesize nanocarriers to enhance the solubility of silibinin for effective delivery to AGS gastric cancer cells. This study details the synthesis of PEG400-OA nanoparticles for silibinin delivery to AGS cells. Various physicochemical techniques, including FT-IR, TGA, EDX, FE-SEM, and TEM, were employed to characterize the silibinin-loaded nanoparticles (SLNs), confirming particle size, elemental composition, thermal stability, and paramagnetic properties. The anticancer effects of the SLNs were assessed using MTT assay, scratch test, and Q-RT-PCR. The SLNs exhibited particle sizes ranging from 45 to 60 nm, with thermal stability below 110°C. TEM images suggested a micelles/liposomes structure due to the low polydispersity and spherical shape of the particles. EDX analysis revealed the presence of C, O, N, and P, confirming the incorporation of phospholipids (micelle/liposome) within the SLNs. The IC50 of SLNs in AGS cells was determined to be 28.21 μg/mL. Antimigration effects of SLNs's were demonstrated through the downregulation of miR-181a and upregulation of its potential targets (TGFB, SMAD3, and β-catenin genes), as well as the upregulation of miR-34a and downregulation of its potential target (E-Cadherin antimigration gene). The findings suggest that nanoparticles serve as effective nanocarriers for the targeted delivery of silibinin to cancer cells. Silibinin-loaded micelles/liposomes nanoparticles (SLNs) appear to inhibit cancer cell proliferation and migration by modulating the expressionof miRNAs and their target mRNAs.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Parastoo Vakilinezami
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | | | - Zahra Sima Azgomi
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | | | - Mahdi Shahriarinour
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | | | - Mahzad Diyarkojouri
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | - Mohammad Nikpassand
- Department of Chemistry, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | - Najmeh Ranji
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| |
Collapse
|
3
|
Bahramiazar P, Abdollahzade N, Tartibian B, Ahmadiasl N, Yaghoob Nezhad F. The Role of Estrogen in Brain MicroRNAs Regulation. Adv Pharm Bull 2024; 14:819-835. [PMID: 40190672 PMCID: PMC11970499 DOI: 10.34172/apb.39216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose This review aims to elucidate the role of estrogen-sensitive microRNAs (miRNAs) in modulating brain functions and disorders, highlighting the protective effects of estrogen on the central nervous system. Methods A comprehensive literature review was conducted, examining the relationship between estrogen, miRNAs, and cognitive health. The study focused on experimental data comparing cognitive impairments between genders and the mechanisms of estrogen's effects on brain function. Results Cognitive impairments are less prevalent in women of reproductive age compared to men, indicating estrogen's neuroprotective role. Estrogen modulates gene expression through specific receptors, while miRNAs regulate approximately 30% of protein-coding genes in mammals. These miRNAs play critical roles in synaptic plasticity and neuronal survival. The review identifies several estrogen-sensitive miRNAs and their potential involvement in brain disorders. Conclusion The interplay between estrogen and miRNAs offers valuable insights into the molecular mechanisms underlying cognitive health and disease. Understanding these relationships may lead to novel therapeutic strategies for addressing various brain disorders, particularly those associated with hormonal changes and aging.
Collapse
Affiliation(s)
- Peyvand Bahramiazar
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Naser Ahmadiasl
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Dakal TC, Kakde GS, Maurya PK. Genomic, epigenomic and transcriptomic landscape of glioblastoma. Metab Brain Dis 2024; 39:1591-1611. [PMID: 39180605 DOI: 10.1007/s11011-024-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
The mostly aggressive and extremely malignant type of central nervous system is Glioblastoma (GBM), which is characterized by an extremely short average survival time of lesser than 16 months. The primary cause of this phenomenon can be attributed to the extensively altered genome of GBM, which is characterized by the dysregulation of numerous critical signaling pathways and epigenetics regulations associated with proliferation, cellular growth, survival, and apoptosis. In light of this, different genetic alterations in critical signaling pathways and various epigenetics regulation mechanisms are associated with GBM and identified as distinguishing markers. Such GBM prognostic alterations are identified in PI3K/AKT, p53, RTK, RAS, RB, STAT3 and ZIP4 signaling pathways, metabolic pathway (IDH1/2), as well as alterations in epigenetic regulation genes (MGMT, CDKN2A-p16INK4aCDKN2B-p15INK4b). The exploration of innovative diagnostic and therapeutic approaches that specifically target these pathways is utmost importance to enhance the future medication for GBM. This study provides a comprehensive overview of dysregulated epigenetic mechanisms and signaling pathways due to mutations, methylation, and copy number alterations of in critical genes in GBM with prevalence and emphasizing their significance.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, Rajasthan, 313001, India.
| | - Ganesh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
6
|
Liang J, Deng Y, Zhang Y, Wu B, Zhou J. Identification and clinical value of a new ceRNA axis (TIMP3/hsa-miR-181b-5p/PAX8-AS1) in thyroid cancer. Health Sci Rep 2024; 7:e1859. [PMID: 38410497 PMCID: PMC10895078 DOI: 10.1002/hsr2.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Background Thyroid cancer (TC) is a prevalent and increasingly common malignant tumor. In most cases, TC progresses slowly and runs a virtually benign course. However, challenges remain with the treatment of refractory TC, which does not respond to traditional management or is subject to relapse or metastasis. Therefore, new therapeutic regimens for TC patients with poor outcomes are urgently needed. Methods The differentially expressed RNAs were identified from the expression profile data of RNA from TC downloaded from The Cancer Genome Atlas database. Multiple databases were utilized to investigate the regulatory relationship among RNAs. Subsequently, a competitive endogenous RNA (ceRNA) network was established to elucidate the ceRNA axis that is responsible for the clinical prognosis of TC. To understand the potential mechanism of ceRNA axis in TC, location analysis, functional enrichment analysis, and immune-related analysis were conducted. Results A ceRNA network of TC was constructed, and the TIMP3/hsa-miR-181b-5p/PAX8-AS1 ceRNA axis associated with the prognosis of TC was successfully identified. Our results showed that the axis might influence the prognosis of TC through its regulation of regulating tumor immunity. Conclusions Our findings provide evidence that TIMP3/hsa-miR-181b-5p/PAX8-AS1 axis is significantly related to the prognosis of TC. The molecules involved in this axis may serve as novel therapeutic approaches for TC treatment.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yubi Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Breast and Thyroid Surgery, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Adam M, Ozcan S, Dalkilic S, Tektemur NK, Tekin S, Bilgin B, Hekim MG, Bulut F, Kelestemur MM, Canpolat S, Ozcan M. Modulation of Neuronal Damage in DRG by Asprosin in a High-Glucose Environment and Its Impact on miRNA181-a Expression in Diabetic DRG. Neurotox Res 2023; 42:5. [PMID: 38133838 DOI: 10.1007/s12640-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Asprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.
Collapse
Affiliation(s)
- Muhammed Adam
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, University of Firat, Elazig, Turkey
| | - Semih Dalkilic
- Department of Biology, University of Firat, Elazig, Turkey
| | | | - Suat Tekin
- Department of Physiology, University of Inonu, Malatya, Turkey
| | - Batuhan Bilgin
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Ferah Bulut
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Sinan Canpolat
- Department of Physiology, University of Firat, Elazig, Turkey
| | - Mete Ozcan
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey.
| |
Collapse
|
8
|
Passos Gibson V, Tahiri H, Yang C, Phan QT, Banquy X, Hardy P. Hyaluronan decorated layer-by-layer assembled lipid nanoparticles for miR-181a delivery in glioblastoma treatment. Biomaterials 2023; 302:122341. [PMID: 37778056 DOI: 10.1016/j.biomaterials.2023.122341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer. Current pharmacological interventions marginally increase the 12-month overall survival of patients with GBM. Among the novel therapeutic strategies being pursued, micro-RNAs, a class of non-coding RNAs, are receiving considerable attention for their regulation of several pathways implicated in tumorigenesis and survival. Notably, microRNA-181a-5p (miR-181a) has consistently been reported to be downregulated in GBM clinical samples, and its overexpression negatively affects tumor growth both in vitro and in vivo. To improve the delivery of miR-181a to GBM cells, we sought to develop a modified lipid-based nanocarrier capable of encapsulating and delivering miR-181a to GBM cells in vitro and in vivo. Optimized ionizable-lipid containing lipid nanoparticles (LNP) were constructed by covering the miR-181a-loaded LNP with alternating layers of miR-181a, poly-l-arginine and hyaluronic acid through the layer-by-layer technique. The resulting hyaluronan-decorated lipid nanoparticles (HA-LNP) targeted GBM cells more efficiently than non-modified LNP and mediated siRNA and miRNA transfection in vitro. Finally, delivery of miR-181a by HA-LNP induced significant cellular death of U87 GBM cells in vitro and delayed tumor growth in an in vivo subcutaneous tumor model.
Collapse
Affiliation(s)
- Victor Passos Gibson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada; Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Houda Tahiri
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Chun Yang
- Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Quoc Thang Phan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Pierre Hardy
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada; Research Center of CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
9
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
10
|
Brazane M, Dimitrova DG, Pigeon J, Paolantoni C, Ye T, Marchand V, Da Silva B, Schaefer E, Angelova MT, Stark Z, Delatycki M, Dudding-Byth T, Gecz J, Plaçais PY, Teysset L, Préat T, Piton A, Hassan BA, Roignant JY, Motorin Y, Carré C. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance. Life Sci Alliance 2023; 6:e202201877. [PMID: 36720500 PMCID: PMC9889914 DOI: 10.26508/lsa.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.
Collapse
Affiliation(s)
- Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Julien Pigeon
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tao Ye
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor,Nancy, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Margarita T Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Thomas Préat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Amélie Piton
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
11
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
12
|
Propofol Suppresses Glioma Tumorigenesis by Regulating circ_0047688/miR-516b-5p/IFI30 Axis. Biochem Genet 2023; 61:151-169. [PMID: 35763173 DOI: 10.1007/s10528-022-10243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
Propofol has recently attracted increasing attention for its anti-tumor property in cancers, including glioma. Circular RNAs (circRNAs) can act as key regulators in various cancers. However, the relationship between propofol and circ_0047688 in glioma is still unclear. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays. Cell migration and invasion were determined using transwell assay. Cell apoptosis was detected by flow cytometry. Protein levels and RNA levels were detected by western blot assay and real-time quantitative polymerase chain reaction (RT‑qPCR), respectively. The intermolecular interaction was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. A mouse xenograft model was established for in vivo experiments. Propofol inhibited cell proliferation, migration, and invasion and accelerated apoptosis in glioma cells. Circ_0047688 was upregulated in glioma tissues and cells, and propofol downregulated circ_0047688 in a dose-dependent manner. Circ_0047688 knockdown inhibited glioma cell progression and its overexpression abated the anti-tumor role of propofol in glioma cells. Moreover, miR-516b-5p was a direct target of circ_0047688, and circ_0047688 promoted glioma cell progression by sponging miR-516b-5p. In addition, IFI30 was a direct target of miR-516b-5p, and miR-516b-5p inhibited glioma cell malignant behaviors by targeting IFI30 in propofol-treated cells. Furthermore, circ_0047688 overexpression could weaken the anti-tumor role of propofol in vivo. Propofol inhibited glioma progression via modulating circ_0047688/miR-516b-5p/IFI30 axis, providing a potential therapeutic strategy for treatment of glioma.
Collapse
|
13
|
MicroRNAs as potential diagnostic markers of glial brain tumors. Noncoding RNA Res 2022; 7:242-247. [PMID: 36203525 PMCID: PMC9519791 DOI: 10.1016/j.ncrna.2022.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Gliomas are the most invasive brain tumors characterized by high mortality and recurrence rates. Glioblastoma (GBM), a grade IV brain tumor, is known for its heterogeneity and resistance to therapy. Modern diagnostics of various forms of malignant brain tumors is carried out mainly by imaging methods, such as magnetic resonance imaging, electroencephalography, positron emission tomography, and tumor biopsy is also used. The disadvantages of these methods are their inaccuracy and invasiveness, which entails certain risks for the patient's health, so modern science has stepped up the search for more reliable and safe methods for diagnosing gliomas, including the search for novel biomarkers. MicroRNA (miRNAs), a class of small non-coding RNA, perform the most important functions in various biological processes. In recent years, great progress in the study of miRNAs paths associated with the GBM pathogenesis has been achieved. MiRNAs molecules were identified as diagnostic and prognostic biomarkers, and can also serve as therapeutic targets and agents. This review provides current knowledge about the role of miRNAs in the pathogenesis of glial brain tumors, as well as the potential use of miRNAs as diagnostic and therapeutic targets for gliomas.
Collapse
|
14
|
Associations of miR-181a with Health-Related Quality of Life, Cognitive Functioning, and Clinical Data of Patients with Different Grade Glioma Tumors. Int J Mol Sci 2022; 23:ijms231911149. [PMID: 36232448 PMCID: PMC9570445 DOI: 10.3390/ijms231911149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Gliomas are central nervous system tumors with a lethal prognosis. Small micro-RNA molecules participate in various biological processes, are tissue-specific, and, therefore, could be promising targets for cancer treatment. Thus, this study aims to examine miR-181a as a potent biomarker for the diagnosis and prognosis of glioma patients and, for the first time, to find associations between the expression level of miR-181a and patient quality of life (QoL) and cognitive functioning. The expression level of miR-181a was analyzed in 78 post-operative II-IV grade gliomas by quantitative real-time polymerase chain reaction. The expression profile was compared with patient clinical data (age, survival time after the operation, tumor grade and location, mutation status of isocitrate dehydrogenase 1 (IDH1), and promoter methylation of O-6-methylguanine methyltransferase). Furthermore, the health-related QoL was assessed using the Karnofsky performance scale and the quality of life questionnaires; while cognitive assessment was assessed by the Hopkins verbal learning test-revised, trail-making test, and phonemic fluency tasks. The expression of miR-181a was significantly lower in tumors of grade III and IV and was associated with IDH1 wild-type gliomas and a worse prognosis of patient overall survival. Additionally, a positive correlation was observed between miR-181a levels and functional status and QoL of glioma patients. Therefore, miR-181a is a unique molecule that plays an important role in gliomagenesis, and is also associated with changes in patients’ quality of life.
Collapse
|
15
|
Karami Fath M, Azami J, Masoudi A, Mosaddeghi Heris R, Rahmani E, Alavi F, Alagheband Bahrami A, Payandeh Z, Khalesi B, Dadkhah M, Pourzardosht N, Tarhriz V. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int 2022; 22:262. [PMID: 35989351 PMCID: PMC9394011 DOI: 10.1186/s12935-022-02642-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | | | - Elnaz Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research, Tabriz, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Labib EM, Ezz El Arab LR, Ghanem HM, Hassan RE, Swellam M. Relevance of circulating MiRNA-21 and MiRNA-181 in prediction of glioblastoma multiforme prognosis. Arch Physiol Biochem 2022; 128:924-929. [PMID: 32316783 DOI: 10.1080/13813455.2020.1739716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Authors aimed to investigate the clinical role of miR-21 and miR-181 among glioblastoma multiforme (GBM) patients. MATERIALS AND METHODS Expression for both miRs were detected in blood samples from newly diagnosed twenty GBM patients before and after treatment along with 20 healthy individuals using QPCR technology. RESULTS MiR-21 reported increase expression while miR-181 reported decreased expression in GBM patients. Expression of miR-21 was up-regulated in GBM patients older than 60 years and frontal mass with tumor size > 5 cm while miR-181 expression was down-regulated among them. Worse PFS and OS reported increase in miR-21 expression and decrease in miR-181 expression. CONCLUSION Detection of miR-21 and miR-181 expression levels may be a potential diagnostic and predictors for GBM prognosis.
Collapse
Affiliation(s)
- Esraa M Labib
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Lobna R Ezz El Arab
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala M Ghanem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
17
|
Guo R, Liu T, Shasaltaneh MD, Wang X, Imani S, Wen Q. Targeting Adenylate Cyclase Family: New Concept of Targeted Cancer Therapy. Front Oncol 2022; 12:829212. [PMID: 35832555 PMCID: PMC9271773 DOI: 10.3389/fonc.2022.829212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
The adenylate cyclase (ADCY) superfamily is a group of glycoproteins regulating intracellular signaling. ADCYs act as key regulators in the cyclic adenosine monophosphate (cAMP) signaling pathway and are related to cell sensitivity to chemotherapy and ionizing radiation. Many members of the superfamily are detectable in most chemoresistance cases despite the complexity and unknownness of the specific mechanism underlying the role of ADCYs in the proliferation and invasion of cancer cells. The overactivation of ADCY, as well as its upstream and downstream regulators, is implicated as a major potential target of novel anticancer therapies and markers of exceptional responders to chemotherapy. The present review focuses on the oncogenic functions of the ADCY family and emphasizes the possibility of the mediating roles of deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) in ADCY as a prognostic therapeutic target in modulating resistance to chemotherapy and immunotherapy. It assesses the mediating roles of ADCY and its counterparts as stress regulators in reprogramming cancer cell metabolism and the tumor microenvironment. Additionally, the well-evaluated inhibitors of ADCY-related signaling, which are under clinical investigation, are highlighted. A better understanding of ADCY-induced signaling and deleterious nsSNPs (p.E1003K and p.R1116C) in ADCY6 provides new opportunities for developing novel therapeutic strategies in personalized oncology and new approaches to enhance chemoimmunotherapy efficacy in treating various cancers.
Collapse
Affiliation(s)
- Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Xuan Wang
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| |
Collapse
|
18
|
Wu J, Al-Zahrani A, Beylerli O, Sufianov R, Talybov R, Meshcheryakova S, Sufianova G, Gareev I, Sufianov A. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in High-Grade Gliomas. Front Oncol 2022; 12:898537. [PMID: 35646622 PMCID: PMC9133847 DOI: 10.3389/fonc.2022.898537] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
Objectives miR-181a/b and miR-410 downregulation and miR-155 upregulation has been shown to play important roles in the oncogenesis and progression of gliomas including high-grade gliomas. However, the potential role of plasma miR-181a/b, miR-410 and miR-155 in the diagnosis and prognosis of high-grade gliomas remains poorly known. Methods We retrieved published articles from the PubMed, the Cochrane Central Register of Controlled Trials, and Web of Science database and obtained different sets of data on microRNAs (miRNAs) expression profiling in glioma and highlighted the most frequently dysregulated miRNAs and their gene-targets (PDCD4, WNT5A, MET, and EGFR) in high-grade gliomas. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was carried out to measure the pre- and postoperative plasma levels of miR-181a/b, miR-410 and miR-155 in 114 Grade 3-4 glioma patients, 77 Grade 1-2 glioma patients and 85 healthy volunteers as control group. The diagnostic and prognostic value of circulating miR-181a/b, miR-410 and miR-155 as biomarker was estimated by the Receiver Operating Characteristic (ROC) curve and the area under the curve (AUC) and Kaplan–Meier analysis. Results We found a plasma miRNA signature including three downexpressed miRNAs and one overexpressed (miR-181a, miR-181b and miR-410; miR-155) in high-grade glioma patients in comparison with low-grade glioma patients control group. The ROC curve AUC of these four circulating miRNAs were ≥ 0.75 for high-grade glioma patients in before and after surgery. Higher circulating miR-155 and lower miR-181a/b and miR-410 expression is associated with clinical data, clinic pathological variables, worse overall survival (OS) of patients and negative correlated with potential gene-targets expression. Moreover, Kaplan–Meier analysis showed that miR-181a/b, miR-410 and miR-155 were independent predictors of OS in high-grade glioma patients. Conclusions Our data, for the first time, demonstrated that circulating miR-181a/b, miR-410 and miR-155 could be a useful diagnostic and prognostic non-invasive biomarkers in high-grade gliomas.
Collapse
Affiliation(s)
- Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Guangdong, China
| | - Abdulrahman Al-Zahrani
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurosurgery, King Saud Medical City (KSMC), Riyadh, Saudi Arabia
| | - Ozal Beylerli
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
| | - Rinat Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rustam Talybov
- Department of Radiology, Federal Center of Neurosurgery, Tyumen, Russia
| | | | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- *Correspondence: Albert Sufianov, ; Ilgiz Gareev,
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- *Correspondence: Albert Sufianov, ; Ilgiz Gareev,
| |
Collapse
|
19
|
Ngo C, Kothary R. MicroRNAs in oligodendrocyte development and remyelination. J Neurochem 2022; 162:310-321. [PMID: 35536759 DOI: 10.1111/jnc.15618] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Oligodendrocytes are the glial cells responsible for the formation of myelin around axons of the central nervous system (CNS). Myelin is an insulating layer that allows electrical impulses to transmit quickly and efficiently along neurons. If myelin is damaged, as in chronic demyelinating disorders such as multiple sclerosis (MS), these impulses slow down. Remyelination by oligodendrocytes is often ineffective in MS, in part because of the failure of oligodendrocyte precursor cells (OPCs) to differentiate into mature, myelinating oligodendrocytes. The process of oligodendrocyte differentiation is tightly controlled by several regulatory networks involving transcription factors, intracellular signaling pathways, and extrinsic cues. Understanding the factors that regulate oligodendrocyte development is essential for the discovery of new therapeutic strategies capable of enhancing remyelination. Over the past decade, microRNAs (miRNAs) have emerged as key regulators of oligodendrocyte development, exerting effects on cell specification, proliferation, differentiation, and myelination. This article will review the role of miRNAs on oligodendrocyte biology and discuss their potential as promising therapeutic tools for remyelination.
Collapse
Affiliation(s)
- Clarissa Ngo
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Program in Biomedical Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Wang M, Huang C, Gao W, Zhu Y, Zhang F, Li Z, Tian Z. MicroRNA-181a-5p prevents the progression of esophageal squamous cell carcinoma in vivo and in vitro via the MEK1-mediated ERK-MMP signaling pathway. Aging (Albany NY) 2022; 14:3540-3553. [PMID: 35468097 PMCID: PMC9085224 DOI: 10.18632/aging.204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) have been revealed to play a crucial role in oncogenesis of esophageal squamous cell carcinoma (ESCC). However, the biological role of miR-181a-5p in ESCC is currently less explored. The current study was designed to assess whether miR-181a-5p affects ESCC progression and further investigate relevant underlying mechanisms. Based on the data of GSE161533, GSE17351, GSE75241 and GSE67269 downloaded from GEO database, MAP2K1 (MEK1) was revealed to be one overlapping gene of the top 300 DGEs. Additionally, using the predicting software, miR-181a-5p was projected as the presumed target miRNA. Immunohistochemical staining and RT-qPCR research revealed that miR-181a-5p expression was decreased in human tumor tissues relative to surrounding peri-cancerous tissues. In an in vivo experiment, miR-181a-5p mimics could inhibit tumor growth and metastasis of ESCC. Gene expression profiles in combination with gene ontology (GO) and KEGG pathway analysis revealed that MAP2K1 (MEK1) gene and ERK-MMP pathway were implicated in ESCC progression. MiR-181a-5p mimics inhibited the activity of p-ERK1/2, MMP2 and MMP9 in vivo, as shown by Western blotting and immunohistochemistry labeling. There were no variations in the expression of p-P38 and p-JNK proteins. Additionally, miR-181a-5p mimics lowered p-ERK1/2, MMP2 and MMP9 levels in ECA109 cells, which were restored by MEK1-OE lentivirus. MEK1-OE Lentivirus significantly reversed the function induced by miR-181a-5p mimics in ECA109 cells. Moreover, further investigation indicated that the capability of migration, invasion and proliferation was repressed by miR-181a-5p mimics in ECA109 cells. In short, repressed ERK-MMP pathway mediated by miR-181a-5p can inhibit cell migration, invasion and proliferation by targeting MAP2K1 (MEK1) in ESCC.
Collapse
Affiliation(s)
- Mingbo Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Chao Huang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Wenda Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yonggang Zhu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
21
|
Zhong C, Yao Q, Han J, Yang J, Jiang F, Zhang Q, Zhou H, Hu Y, Wang W, Zhang Y, Sun Y. SNP rs322931 (C>T) in miR-181b and rs7158663 (G>A) in MEG3 aggravate the inflammatory response of anal abscess in patients with Crohn's disease. Aging (Albany NY) 2022; 14:3313-3324. [PMID: 35422450 PMCID: PMC9037263 DOI: 10.18632/aging.204014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The MEG3/miR-181b signaling has been implicated in the pathogenesis of several diseases including Crohn's disease. This work aimed to study the correlation between SNPs in MEG3/miR-181b and the severity of anal abscess in patients with Crohn's disease. METHODS Quantitative real-time PCR was performed to analyze the expression of MEG3 and miR-181b. ELISA was carried out to examine the expression of TNF-α, IL-1β, IL-6, CRP, SSA, AAT, AAG and HPT in the peripheral blood of patients with Crohn's disease. Luciferase assay was performed to explore the role of miR-181b in the expression of MEG3 and TNF-α. RESULTS The expression of MEG3 and miR-181b in the peripheral blood of patients with Crohn's disease was remarkably associated with the rs322931 and rs7158663 polymorphisms. rs322931 (C>T) in miR-181b and rs7158663 (G>A) in MEG3 significantly promoted the expression of TNF-α, IL-1β, IL-6, CRP, SSA, AAT, AAG and HPT. Luciferase assay demonstrated that miR-181b was capable of repressing the expression of MEG3 and TNF-α through binding to their specific binding sites. Moreover, alteration of MEG3 and miR-181b expression also showed a remarkable impact on the MEG3/miR-181b/TNF-α signaling pathway in THP-1 cells. CONCLUSIONS In conclusion, our study demonstrated that two SNPs, rs322931 (C>T) in miR-181b and rs7158663 (G>A) in MEG3, could aggravate the inflammatory response of anal abscess in patients with Crohn's disease via modulating the MEG3/miR-181b/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Chaoxiang Zhong
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Qiuju Yao
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Jing Han
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Jie Yang
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Fei Jiang
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Qiong Zhang
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Haiyi Zhou
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Yuchao Hu
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Wei Wang
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Yan Zhang
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| | - Ye Sun
- Anorectal, Shuyang County's Hospital of TCM, Shuyang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Shuyang 223600, Jiangsu, China
| |
Collapse
|
22
|
Schäfer A, Evers L, Meier L, Schlomann U, Bopp MHA, Dreizner GL, Lassmann O, Ben Bacha A, Benescu AC, Pojskic M, Preußer C, von Strandmann EP, Carl B, Nimsky C, Bartsch JW. The Metalloprotease-Disintegrin ADAM8 Alters the Tumor Suppressor miR-181a-5p Expression Profile in Glioblastoma Thereby Contributing to Its Aggressiveness. Front Oncol 2022; 12:826273. [PMID: 35371977 PMCID: PMC8964949 DOI: 10.3389/fonc.2022.826273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) as the most common and aggressive brain tumor is characterized by genetic heterogeneity, invasiveness, radio-/chemoresistance, and occurrence of GBM stem-like cells. The metalloprotease-disintegrin ADAM8 is highly expressed in GBM tumor and immune cells and correlates with poor survival. In GBM, ADAM8 affects intracellular kinase signaling and increases expression levels of osteopontin/SPP1 and matrix metalloproteinase 9 (MMP9) by an unknown mechanism. Here we explored whether microRNA (miRNA) expression levels could be regulators of MMP9 expression in GBM cells expressing ADAM8. Initially, we identified several miRNAs as dysregulated in ADAM8-deficient U87 GBM cells. Among these, the tumor suppressor miR-181a-5p was significantly upregulated in ADAM8 knockout clones. By inhibiting kinase signaling, we found that ADAM8 downregulates expression of miR-181a-5p via activation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling suggesting an ADAM8-dependent silencing of miR-181a-5p. In turn, mimic miR-181a-5p transfection caused decreased cell proliferation and lower MMP9 expression in GBM cells. Furthermore, miR-181a-5p was detected in GBM cell-derived extracellular vesicles (EVs) as well as patient serum-derived EVs. We identified miR-181a-5p downregulating MMP9 expression via targeting the MAPK pathway. Analysis of patient tissue samples (n=22) revealed that in GBM, miR-181a-5p is strongly downregulated compared to ADAM8 and MMP9 mRNA expression, even in localized tumor areas. Taken together, we provide evidence for a functional axis involving ADAM8/miR-181a-5p/MAPK/MMP9 in GBM tumor cells.
Collapse
Affiliation(s)
- Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Evers
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Meier
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Miriam H A Bopp
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Gian-Luca Dreizner
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Olivia Lassmann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Aaron Ben Bacha
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | | | - Mirza Pojskic
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Elke Pogge von Strandmann
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
23
|
Gomes C, Sequeira C, Likhite S, Dennys CN, Kolb SJ, Shaw PJ, Vaz AR, Kaspar BK, Meyer K, Brites D. Neurotoxic Astrocytes Directly Converted from Sporadic and Familial ALS Patient Fibroblasts Reveal Signature Diversities and miR-146a Theragnostic Potential in Specific Subtypes. Cells 2022; 11:cells11071186. [PMID: 35406750 PMCID: PMC8997588 DOI: 10.3390/cells11071186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
| | - Shibi Likhite
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Cassandra N. Dennys
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA;
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK;
| | - Ana R. Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Brian K. Kaspar
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathrin Meyer
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
24
|
The lncRNA MIAT/miR-181a-5p axis regulates osteopontin (OPN)-mediated proliferation and apoptosis of human chondrocytes in osteoarthritis. J Mol Histol 2022; 53:285-296. [PMID: 35286539 DOI: 10.1007/s10735-022-10067-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
Osteoarthritis (OA) is a slow-progressing degenerative joint disease mainly characterized by progressive cartilage loss and subchondral bone remodeling. Osteopontin (OPN) is a matrix extracellular glyco-phosphoprotein capable of regulating the expression levels of multiple factors linked with OA pathogenesis. This study explores the upstream regulatory molecular mechanism of OPN on proliferation and apoptosis of human chondrocytes in OA. Chondrocytes were isolated from OA cartilage and identified by toluidine blue staining and immunofluorescent staining of type II collagen. An MTT assay was used for cell viability, and a BrdU assay was applied for DNA synthesis. Cell apoptosis was detected by a flow cytometry assay. A lncRNA MIAT/miR-181a-5p/OPN axis regulating OA chondrocyte proliferation and apoptosis were identified. miR-181a-5p directly targeted OPN and inhibited OPN expression in OA chondrocytes. miR-181a-5p overexpression inhibited OA chondrocyte viability, suppressed DNA synthesis, and promoted apoptosis. OPN overexpression exerted opposite effects on OA chondrocytes and significantly attenuated the roles of miR-181a-5p overexpression in OA chondrocytes. A total of six long non-coding RNAs (lncRNAs) were predicted to target miR-181a-5p, and MIAT was the most up-regulated in OA cartilage tissues among the six lncRNAs. Through direct targeting, MIAT inhibited miR-181a-5p expression. MIAT silencing inhibited cell viability, suppressed DNA synthesis, and promoted cell apoptosis. Moreover, miR-181a-5p inhibition partially reversed the effects of MIAT silencing on OA chondrocytes. The lncRNA MIAT/miR-181a-5p/OPN axis could modulate OA chondrocyte proliferation and apoptosis. The comprehensive function of this axis on OA requires further in vivo and clinical investigations.
Collapse
|
25
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
XU L, SONG JD. Crocin reversed the antitumor effects through up-regulation of MicroRNA-181a in cervical cancer cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.09422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lina XU
- The Affiliated Hospital of Inner Mongolia Medical University, China
| | - Jian-Dong SONG
- The Affiliated Hospital of Inner Mongolia Medical University, China
| |
Collapse
|
27
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
28
|
Macharia LW, Muriithi W, Heming CP, Nyaga DK, Aran V, Mureithi MW, Ferrer VP, Pane A, Filho PN, Moura-Neto V. The genotypic and phenotypic impact of hypoxia microenvironment on glioblastoma cell lines. BMC Cancer 2021; 21:1248. [PMID: 34798868 PMCID: PMC8605580 DOI: 10.1186/s12885-021-08978-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. METHODS Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. RESULTS It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4-10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3-6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. CONCLUSION This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro - (PPGAP-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Wanjiru Muriithi
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Carlos Pilotto Heming
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Dennis Kirii Nyaga
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veronica Aran
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | | | - Valeria Pereira Ferrer
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Attilio Pane
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Paulo Niemeyer Filho
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Vivaldo Moura-Neto
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro - (PPGAP-UFRJ), Rio de Janeiro, Brazil.
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil.
| |
Collapse
|
29
|
Nguyen VT, Le TTK, Nguyen TQV, Tran DH. Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph. BMC Med Genomics 2021; 14:225. [PMID: 34789252 PMCID: PMC8600685 DOI: 10.1186/s12920-021-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developing efficient and successful computational methods to infer potential miRNA-disease associations is urgently needed and is attracting many computer scientists in recent years. The reason is that miRNAs are involved in many important biological processes and it is tremendously expensive and time-consuming to do biological experiments to verify miRNA-disease associations. METHODS In this paper, we proposed a new method to infer miRNA-disease associations using collaborative filtering and resource allocation algorithms on a miRNA-disease-lncRNA tripartite graph. It combined the collaborative filtering algorithm in CFNBC model to solve the problem of imbalanced data and the method for association prediction established multiple types of known associations among multiple objects presented in TPGLDA model. RESULTS The experimental results showed that our proposed method achieved a reliable performance with Area Under Roc Curve (AUC) and Area Under Precision-Recall Curve (AUPR) values of 0.9788 and 0.9373, respectively, under fivefold-cross-validation experiments. It outperformed than some other previous methods such as DCSMDA and TPGLDA. Furthermore, it demonstrated the ability to derive new associations between miRNAs and diseases among 8, 19 and 14 new associations out of top 40 predicted associations in case studies of Prostatic Neoplasms, Heart Failure, and Glioma diseases, respectively. All of these new predicted associations have been confirmed by recent literatures. Besides, it could discover new associations for new diseases (or miRNAs) without any known associations as demonstrated in the case study of Open-angle glaucoma disease. CONCLUSION With the reliable performance to infer new associations between miRNAs and diseases as well as to discover new associations for new diseases (or miRNAs) without any known associations, our proposed method can be considered as a powerful tool to infer miRNA-disease associations.
Collapse
Affiliation(s)
- Van Tinh Nguyen
- Faculty of Information Technology, Hanoi University of Industry, Hanoi, Vietnam
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
| | - Thi Tu Kien Le
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam
| | - Tran Quoc Vinh Nguyen
- Faculty of Information Technology, The University of Da Nang - University of Science and Education, Da Nang, Vietnam
| | - Dang Hung Tran
- Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
30
|
Iravani Saadi M, Ramzi M, Hesami Z, kheradmand N, Owjfard M, Nabi Abdolyousefi E, Karimi Z. MiR-181a and -b expression in acute lymphoblastic leukemia and its correlation with acute graft-versus-host disease after hematopoietic stem cell transplantation, COVID-19 and torque teno viruses. Virusdisease 2021; 32:727-736. [PMID: 34722832 PMCID: PMC8543773 DOI: 10.1007/s13337-021-00743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL), a malignant transformation and proliferation of the lymphoid line of blood cells, is characterized by chromosomal abnormalities and genetic changes. The purpose of this research was the evaluation of expression level of miR-181a and -b in patients with ALL compared to the control group. Furthermore, we examined their expression level in hematopoietic stem-cell transplantation (HSCT) patients who developed acute graft-versus-host disease (aGVHD) in comparison with those without aGVHD and explore the relationship between their expression level and cytogenetic abnormalities. In this cross-sectional study, 76 newly diagnosed adult De novo ALL patients were enrolled who were admitted to our referral hospital. All patients received standard chemotherapy, consisting of daunorubicin. A total of 37 patients underwent HSCT from the related human leukocyte antigen-matched donors. ALL patients have been diagnosed with the coronavirus disease 2019 (COVID-19) and Torque teno viruses (TTVs). We assessed the expression levels of miR-181a and -b in the peripheral blood sample of ALL patients at the time of diagnosis prior to chemotherapy, and healthy matched individuals by RT–PCR. TTVs and COVID-19 load were also determined via RT–PCR. In conclusion, the expression level of miR-181a and -b were significantly higher in ALL patients than healthy controls and also increased in patients who developed aGVHD in comparison with those without aGVHD. MiR-181a and -b can be a useful biomarker in ALL and a useful indicator of aGVHD. The expression level of miR-181a in ALL patients with COVID-19 is significantly up-regulated, while it is reduced in these patients with TTV.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hesami
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiya kheradmand
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahed Karimi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Bahreini F, Jabbari P, Gossing W, Aziziyan F, Frohme M, Rezaei N. The role of noncoding RNAs in pituitary adenoma. Epigenomics 2021; 13:1421-1437. [PMID: 34558980 DOI: 10.2217/epi-2021-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenomas (PAs) are common cranial tumors that affect the quality of life in patients. Early detection of PA is beneficial for avoiding clinical complications of this disease and increasing the quality of life. Noncoding RNAs, including long noncoding RNA, miRNA and circRNA, regulate protein expression, mostly by inhibiting the translation process. Studies have shown that dysregulation of noncoding RNAs is associated with PA. Hence understanding the expression pattern of noncoding RNAs can be considered a promising method for developing biomarkers. This article reviews data on the expression pattern of dysregulated noncoding RNAs involved in PA. Possible molecular mechanisms by which the dysregulated noncoding RNA could possibly induce PA are also described.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Parnian Jabbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Genomics & Bioinformatics, University of California, Riverside, CA, USA
| | - Wilhelm Gossing
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marcus Frohme
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
miRNA and long non-coding RNA transcriptional expression in hepatocellular carcinoma cell line-secreted extracellular vesicles. Clin Exp Med 2021; 22:245-255. [PMID: 34319456 DOI: 10.1007/s10238-021-00744-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Extracellular vesicles (EVs) are membrane-released vesicles acting as transporters of proteins, lipids and short/long non-coding RNA (miRNAs and lncRNAs). They are released by normal and pathological cells, including hepatocellular carcinoma (HCC). To date, studies focused on miRNAs and lncRNAs contained in EVs derived from HCC are limited. Our aim was to analyze the transcriptional profile of potential regulating miRNAs and lncRNAs in EVs secreted by HCC tumor cell line (HepG2, n = 6), and from a non-tumorigenic hepatocyte cell line (WRL68, n = 6), to compare their differential expression profile and to identify novel molecular diagnostic markers of HCC. EVs were isolated from the conditioned medium, through differential centrifugations. The expression profile of miRNAs (miR-23a, miR-16-2, miR-181a, miR-373, miR-205, miR-27a, miR-1323, and miR-532) and lncRNAs (HULC, HOTAIR, XIST, MALAT-1, GAS-5, H19) was performed in Real-time PCR, and their transcript was found both in HepG2 and WRL68 EVs. Lower miR-181a, miR-205 and miR-1323 expression were detected in EVs secreted by HepG2 compared to WRL68, while an opposite trend was observed for miR-23a, miR-16-2, miR-373, miR-27a, and miR-532. Several significant correlations were found between miRNA and lncRNA. An in silico analysis was also performed. The results obtained could identified them as new potential diagnostic and prognostic biomarkers of HCC.
Collapse
|
33
|
Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 2021; 476:4081-4092. [PMID: 34273059 DOI: 10.1007/s11010-021-04221-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.
Collapse
|
34
|
miR-181b-5p Promotes the Progression of Cholangiocarcinoma by Targeting PARK2 via PTEN/PI3K/AKT Signaling Pathway. Biochem Genet 2021; 60:223-240. [PMID: 34169384 DOI: 10.1007/s10528-021-10084-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
This study combined with bioinformatics analysis and investigated the expression pattern of miR-181b-5p, as well as explored its role and mechanism in cholangiocarcinoma (CCA or CHOL). Several bioinformatics databases were used to analyze the expression of miR-181b and the enrichment of miR-181b in biological activities and biological pathways in CCA. The RT-qPCR analysis was used to examine the expression levels of miR-181b-5p. A receiver operation characteristics (ROC) curve analysis and the Kaplan-Meier survival assay were conducted to validate the diagnostic and prognostic implication of miR-181b-5p. Cell experiments were used to explore the possible functional role of miR-181b-5p in CCA progression. The bioinformatics assay was used to predict the target gene of miR-181b-5p and Western blot was used to confirm the related signaling pathway. The bioinformatics analysis results suggest that miR-181b-5p was highly expressed in cholangiocarcinoma and its expression was negatively related to PARK2 expression in CCA tissues. miR-181b-5p expression in the serum and tissues was upregulated and associated with lymph node metastasis and TNM stage. Increased expression of miR-181b-5p had relatively high diagnostic accuracy and showed poor prognosis in CCA patients. In addition, miR-181b-5p overexpression enhanced cell proliferation, migration, and invasion by targeting PARK2. Overexpression of miR-181b-5p activated the PI3K/AKT signaling pathway, while knockdown of miR-181b-5p suppressed the signaling pathway. Increased expression of miR-181b-5p in CCA may be a potential diagnostic or/and prognostic indicator for CCA patients. The present data indicated miR-181b-5p acted as an oncogene in CCA through promoting tumor cell proliferation, migration, and invasion of CCA via the PTEN/PI3K/AKT signaling pathway by targeting PARK2, which might be a promising therapeutic target or biomarker for CCA.
Collapse
|
35
|
MiR-379-5p targets microsomal glutathione transferase 1 (MGST1) to regulate human glioma in cell proliferation, migration and invasion and epithelial-mesenchymal transition (EMT). Biochem Biophys Res Commun 2021; 568:8-14. [PMID: 34171541 DOI: 10.1016/j.bbrc.2021.05.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioma is one of the most malignant tumors worldwide. This study was aimed to study the effect of miR-379-5p/MGST1 on cell proliferation, migration, invasion and EMT in glioma. METHODS RT-qPCR detected the expression of miR-379-5p and MGST1 in RNA level in glioma cell lines. Bioinformatic analysis was made to explore the associations between miR-379-5p and MGST1 while survival analysis was made with regards to MGST1 expression in glioma patients. Western blot analysis was applied to measure the EMT changes. MTT examined the cell viability. Transwell was used to detect the cellular invasion and migration. The binding sites between miR-379-5p and MGST1 were validated by luciferase reporter assays. RESULTS miR-379-5p expression was lower in glioma cells. MiR-379-5p increase inhibited the viability, migration, invasion and EMT while inhibition of miR-379-5p showed a reverse effect. MGST1 inhibition curbed the cell functions. MiR-379-5p targeted and regulated MGST1 expression. Lower MGST1 is related to higher survival rate. CONCLUSION miR-379-5p could regulate glioma cell viability, migration, invasion and EMT through MGST1, suggesting that miR-379-5p/MGST1 axis might function in the regulation of glioma progression.
Collapse
|
36
|
MicroRNA-150 inhibits myeloid-derived suppressor cells proliferation and function through negative regulation of ARG-1 in sepsis. Life Sci 2021; 278:119626. [PMID: 34004247 DOI: 10.1016/j.lfs.2021.119626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
AIMS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The majority of sepsis-related deaths occur during late sepsis, which presents as a state of immunosuppression. Myeloid-derived suppressor cells (MDSCs) have been reported to promote immunosuppression during sepsis. Here we aim to understand the role of microRNAs in regulating MDSCs proliferation and immunosuppression function during sepsis. MAIN METHODS Murine sepsis model was established using cecal ligation and puncture (CLP). A microarray was used to identify microRNAs with differential expression in murine sepsis. The effect of microRNA-150 on MDSCs proliferation and function was then evaluated. 140 multiple trauma patients from Tongji Hospital and 10 healthy controls were recruited. Peripheral blood samples were taken and the serum level of miR-150 was measured. KEY FINDINGS In the murine model of sepsis, MDSCs expansion was noted in the spleen and bone marrow, while expression of miR-150 in MDSCs decreased. Replenishing miR-150 inhibited the expansion of MDSCs in both monocytic and polymorphonuclear subpopulations, as well as decreasing the immunosuppressive function of MDSCs, through down-regulation of ARG1. Both pro-inflammatory cytokine IL-6 and anti-inflammatory cytokines TGF-β and IL-10 were reduced by miR-150. In human, the serum level of miR-150 was down-regulated in septic patients and elevated in non-septic trauma patients compared to healthy controls. SIGNIFICANCE Our study showed that MiR-150 is down-regulated during sepsis. Replenishing miR-150 reduces the immunosuppression function of MDSCs by down-regulating ARG1 in late sepsis. MiR-150 might serve as a potential therapeutic option for sepsis.
Collapse
|
37
|
Géczi D, Nagy B, Szilágyi M, Penyige A, Klekner Á, Jenei A, Virga J, Birkó Z. Analysis of Circulating miRNA Profile in Plasma Samples of Glioblastoma Patients. Int J Mol Sci 2021; 22:ijms22105058. [PMID: 34064637 PMCID: PMC8151942 DOI: 10.3390/ijms22105058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis. Treatment options are limited, clinicians lack efficient prognostic and predictive markers. Circulating miRNAs—besides being important regulators of cancer development—may have potential as diagnostic biomarkers of GBM. (2) Methods: In this study, profiling of 798 human miRNAs was performed on blood plasma samples from 6 healthy individuals and 6 patients with GBM, using a NanoString nCounter Analysis System. To validate our results, five miRNAs (hsa-miR-433-3p, hsa-miR-362-3p, hsa-miR-195-5p, hsa-miR-133a-3p, and hsa-miR-29a-3p) were randomly chosen for RT-qPCR detection. (3) Results: In all, 53 miRNAs were significantly differentially expressed in plasma samples of GBM patients when data were filtered for FC 1 and FDR 0.1. Target genes of the top 39 differentially expressed miRNAs were identified, and we carried out functional annotation and pathway enrichment analysis of target genes via GO and KEGG-based tools. General and cortex-specific protein–protein interaction networks were constructed from the target genes of top miRNAs to assess their functional connections. (4) Conclusions: We demonstrated that plasma microRNA profiles are promising diagnostic and prognostic molecular biomarkers that may find an actual application in the clinical practice of GBM, although more studies are needed to validate our results.
Collapse
Affiliation(s)
- Dóra Géczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.G.); (B.N.); (M.S.)
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.G.); (B.N.); (M.S.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.G.); (B.N.); (M.S.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.K.); (A.J.)
| | - Adrienn Jenei
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.K.); (A.J.)
| | - József Virga
- Department of Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
38
|
Nie E, Jin X, Miao F, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Xie M, You Y. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol 2021; 23:435-446. [PMID: 32813021 PMCID: PMC7992894 DOI: 10.1093/neuonc/noaa198] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Our previous studies have indicated that miR-198 reduces cellular methylguanine DNA methyltransferase (MGMT) levels to enhance temozolomide sensitivity. Transforming growth factor beta 1 (TGF-β1) switches off miR-198 expression by repressing K-homology splicing regulatory protein (KSRP) expression in epidermal keratinocytes. However, the underlying role of TGF-β1 in temozolomide resistance has remained unknown. Methods The distribution of KSRP was detected by western blotting and immunofluorescence. Microarray analysis was used to compare the levels of long noncoding RNAs (lncRNAs) between TGF-β1–treated and untreated cells. RNA immunoprecipitation was performed to verify the relationship between RNAs and KSRP. Flow cytometry and orthotopic and subcutaneous xenograft tumor models were used to determine the function of TGF-β1 in temozolomide resistance. Results Overexpression of TGF-β1 contributed to temozolomide resistance in MGMT promoter hypomethylated glioblastoma cells in vitro and in vivo. TGF-β1 treatment reduced cellular MGMT levels through suppressing the expression of miR-198. However, TGF-β1 upregulation did not affect KSRP expression in glioma cells. We identified and characterized 2 lncRNAs (H19 and HOXD-AS2) that were upregulated by TGF-β1 through Smad signaling. H19 and HOXD-AS2 exhibited competitive binding to KSRP and prevented KSRP from binding to primary miR-198, thus decreasing miR-198 expression. HOXD-AS2 or H19 upregulation strongly promoted temozolomide resistance and MGMT expression. Moreover, KSRP depletion abrogated the effects of TGF-β1 and lncRNAs on miR-198 and MGMT. Finally, we found that patients with low levels of TGF-β1 or lncRNA expression benefited from temozolomide therapy. Conclusions Our results reveal an underlying mechanism by which TGF-β1 confers temozolomide resistance. Furthermore, our findings suggest that a novel combination of temozolomide with a TGF-β inhibitor may serve as an effective therapy for glioblastomas.
Collapse
Affiliation(s)
- Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China
| | - Xin Jin
- Department of Medicine, Nanjing Gaochun People's Hospital, Nanjing, Jiangsu Province, PR China
| | - Faan Miao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China
| | - Tianfu Yu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | - Tongle Zhi
- Department of Neurosurgery, Yancheng City No. 1 People's Hospital, The 4th Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, PR China
| | - Zhumei Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Yingyi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Junxia Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Manyi Xie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
39
|
Abstract
Background: Recently, miRNA-181a2 could be identified as a major regulator of IDH1 expression in fat tissue. The IDH1 gene, its mutation and expression have a major impact on overall survival in patients with glioblastoma. The presented study aimed to investigate the effect of miRNA-181a2 on IDH1 expression in glioblastoma and on the prognosis of patients suffering from, for example, a tumor. Methods: A total of 74 glioblastoma specimens were analyzed for the expression of miRNA-181a2, acquired as fold change, using qRT-PCR. IDH1 protein expression was estimated via mRNA quantification. Eight post mortal, non-glioma related brain tissue specimens served as the control group. The results were correlated with relevant demographic and clinical aspects of the cohort. A TCGA dataset was used as an independent reference. Results: MiRNA-181a2 was significantly downregulated in tumor samples compared to the control group (p < 0.001). In the glioblastoma cohort, 63/74 (85.1%) showed an IDH1 wild type, while 11/74 (14.9%) patients harbored an IDH 1 mutation. In patients with IDH1 wild type glioblastoma, low miRNA-181a2 expression correlated with a prolonged overall survival (p = 0.019), also verifiable in an independent TCGA dataset. This correlation could not be identified for patients with an IDH1 mutation. MiRNA-181a2 expression tended to correlate inversely with IDH1 protein expression (p = 0.06). Gross total resection of the tumor was an independent marker for a prolonged survival (p = 0.03). Conclusion: MiRNA-181a2 seems to be a promising prognostic marker of selective glioblastoma patients with IDH1 wild type characteristics. This effect may be mediated via direct regulation of IDH1 expression.
Collapse
|
40
|
Gga-miR-181a modulates ANP32A expression and inhibits MDCC-MSB-1 cell. In Vitro Cell Dev Biol Anim 2021; 57:272-279. [PMID: 33686586 DOI: 10.1007/s11626-021-00550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Marek's disease (MD), a highly contagious T cell lymphoid neoplasia disease of chickens, causes huge economic losses to the poultry industry. It is the only one tumor disease which can be prevented by vaccine in chickens; therefore, MD is considered to be an excellent model to study the pathogenesis of virus-induced cancer. Recently, abundant evidences have verified that miRNAs are regulators in the process of neoplastic transformation. In our previous study on miRNome analysis of MDV-induced lymphoma in chicken, we found that gga-miR-181a was downregulated drastically in MDV-infected spleens. To further investigate the role of gga-miR-181a in MDV-induced lymphomagenesis, we performed cell migration assay, and the results suggested that gga-miR-181a suppressed the migration of MDV-transformed lymphoid cell (MSB-1). Subsequently, luciferase reporter gene assay revealed that acidic nuclear phosphoprotein 32A (ANP32A) was a functional target gene of gga-miR181a. Real-time PCR and western blot assay showed that the mRNA and protein levels of ANP32A were downregulated in gga-miR-181a mimic group at 48-h and 96-h post-transfection, respectively, indicating that ANP32A was modulated by gga-miR-181a. All the results suggested that gga-miR-181a was an inhibitor in MSB-1 cell migration. ANP32A was a direct target gene of gga-miR-181a and they were implicated in MD lymphoma tumorigenesis.
Collapse
|
41
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
42
|
Marisetty A, Wei J, Kong LY, Ott M, Fang D, Sabbagh A, Heimberger AB. MiR-181 Family Modulates Osteopontin in Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12123813. [PMID: 33348707 PMCID: PMC7765845 DOI: 10.3390/cancers12123813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary MicroRNAs can silence a broad set of target genes that may benefit heterogeneous tumors like glioblastoma. We have previously shown that osteopontin has an oncogenic role and may have immune modulatory effects on macrophages. In the current study, we used miRNAs to target osteopontin in tumor cells and modulate immune cells to elicit an antitumor effect. Intravenous delivery of miR-181a to immune competent mice bearing intracranial glioblastoma demonstrated a 22% increase in median survival duration relative to that of control mice. The overexpression of miR-181a in tumor cells led to decreased OPN production and proliferation and increased apoptosis in vitro, and increased survival duration of the mice when compared to its controls. miR-181a controls osteopontin expression in tumor cells by regulating their proliferation and apoptosis. Abstract MiRNAs can silence a wide range of genes, which may be an advantage for targeting heterogenous tumors like glioblastoma. Osteopontin (OPN) plays both an oncogenic role in a variety of cancers and can immune modulate macrophages. We conducted a genome wide profiling and bioinformatic analysis to identify miR-181a/b/c/d as potential miRNAs that target OPN. Luciferase assays confirmed the binding potential of miRNAs to OPN. Expression levels of miR-181a/b/c/d and OPN were evaluated by using quantitative real-time PCR and enzyme-linked immunosorbent assay in mouse and human glioblastomas and macrophages that showed these miRNAs were downregulated in Glioblastoma associated CD11b+ cells compared to their matched blood CD14b+ cells. miRNA mimicking and overexpression using lentiviruses showed that MiR-181a overexpression in glioblastoma cells led to decreased OPN production and proliferation and increased apoptosis in vitro. MiR-181a treatment of immune competent mice bearing intracranial glioblastoma demonstrated a 22% increase in median survival duration relative to that of control mice.
Collapse
|
43
|
Rezaei T, Hejazi M, Mansoori B, Mohammadi A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A, Baradaran B. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol 2020; 888:173483. [DOI: 10.1016/j.ejphar.2020.173483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
|
44
|
Shafik RE, Abd El Wahab N, Mokhtar MM, El Taweel MA, Ebeid E. Expression of microRNA-181a and microRNA-196b in Egyptian Pediatric acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2020; 21:3429-3434. [PMID: 33247705 PMCID: PMC8033117 DOI: 10.31557/apjcp.2020.21.11.3429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Differential expression of miRNA provides important insights into pathogenesis of cancer including leukemia. Deregulation of microRNA may contribute to hematopoietic malignancies. In this study, we aimed to evaluate the role of miR-181a and miR-196b in acute lymphoblastic leukemia (ALL) and correlate their expression with clinical and laboratory data. Methods: The study was performed on bone marrow samples of 70 consecutive newly diagnosed pediatric (ALL) patients, of which 56 were evaluated for both miR-181a and miR-196b (all 70 for miR-181a) by real-time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). In addition, bone marrow from seven age and sex matched healthy controls derived from donors of bone marrow transplantation were assessed. Results: miR-181a expression was significantly up-regulated in ALL patients compared with healthy controls (p<0.001). However, miR-196b expression was significantly down-regulated in patients compared with healthy controls (p=0.038). Conclusion: Our results suggest that miR-181a has an oncogenic, while miR-196b has a tumor suppressive role in pediatric ALL patients. A finding which demonstrate the potential role of these microRNAs in pathogenesis of pediatric ALL. Also, estimation of their expression level may provide a tool for confirmation of a diagnosis of childhood ALL and could be a possible predictor of early relapse.
Collapse
Affiliation(s)
| | | | - Marwa M Mokhtar
- Department of Clinical Pathology, NCI, Cairo University, Cairo, Egypt
| | - Maha A El Taweel
- Department of Pediatric Oncology, NCI, Cairo University, Cairo, Egypt
| | - Emad Ebeid
- Department of Pediatric Oncology, NCI, Cairo University, Cairo, Egypt
| |
Collapse
|
45
|
Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary and metastatic brain tumors are usually serious conditions with poor prognosis, which reveal the urgent need of developing rapid diagnostic tools and efficacious treatments. To achieve these objectives, progress must be made in the understanding of brain tumor biology, for example, how they resist natural defenses and therapeutic intervention. One resistance mechanism involves extracellular vesicles that are released by tumors to meet target cells nearby or distant via circulation and reprogram them by introducing their cargo. This consists of different molecules among which are microRNAs (miRNAs) and molecular chaperones, the focus of this article. miRNAs modify target cells in the immune system to avoid antitumor reaction and chaperones are key survival molecules for the tumor cell. Extracellular vesicles cargo reflects the composition and metabolism of the original tumor cell; therefore, it is a source of markers, including the miRNAs and chaperones discussed in this article, with potential diagnostic and prognostic value. This and their relatively easy availability by minimally invasive procedures (e.g., drawing venous blood) illustrate the potential of extracellular vesicles as useful materials to manage brain tumor patients. Furthermore, understanding extracellular vesicles circulation and interaction with target cells will provide the basis for using this vesicle for delivering therapeutic compounds to selected tumor cells.
Collapse
|
46
|
Khalife H, Skafi N, Fayyad-Kazan M, Badran B. MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genet 2020; 246-247:18-40. [PMID: 32805688 DOI: 10.1016/j.cancergen.2020.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs, short non-coding single-stranded RNAs, are important regulators and gatekeepers of the coding genes in the human genome. MicroRNAs are highly conserved among species and expressed in different tissues and cell types. They are involved in almost all the biological processes as apoptosis, proliferation, cell cycle arrest and differentiation. Playing all these roles, it is not surprising that the deregulation of the microRNA profile causes a number of diseases including cancer. Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Different microRNAs were shown to be up or down regulated in breast cancer. MicroRNAs can function as oncogenes or tumor suppressors according to their targets. In this review, the most common microRNAs implicated in breast cancer are fully illustrated with their targets. Besides, the review highlights the effect of exosomal microRNA on breast cancer and the effect of microRNAs on drug and therapies resistance as well as the miRNA-based therapeutic strategies used until today.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Najwa Skafi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
47
|
Xu W, Zhao M, Lin Z, Liu H, Ma H, Hong Q, Gui D, Feng J, Liu Y, Zhou W, Liu H. Increased expression of plasma hsa-miR-181a in male patients with heroin addiction use disorder. J Clin Lab Anal 2020; 34:e23486. [PMID: 32748469 PMCID: PMC7676194 DOI: 10.1002/jcla.23486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Drug addiction is an uncontrolled, chronic, and recurrent encephalopathy that presently lacks specific and characteristic biomarkers for diagnosis and treatment. As regulators of gene expression, microRNAs (miRNAs) are increasingly used for diagnostic and prognostic purposes in various disease states. Previous studies indicated that miRNAs play important roles in the development and progression of drug addictions, including addiction to methamphetamine, cocaine, alcohol, and heroin. METHODS We identified significant miRNAs using the microarray method and then validated the hsa-miR-181a expression levels in 53 heroin addiction patients and 49 normal controls using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential associations between transcriptional levels in heroin addiction patients and their clinicopathological features were analyzed. RESULTS A total of 2006 miRNAs were differentially expressed between heroin addiction patients and normal controls. The top 10 up-regulated miRNAs in patients were hsa-miR-21a, hsa-miR-181a, hsa-miR-4459, hsa-miR-4430, hsa-miR-4306, hsa-miR-22-3P, hsa-miR-486-5P, hsa-miR-371b-5P, hsa-miR-92a-3P, and hsa-miR-5001-5P. The top 10 down-regulated miRNAs in patients were hsa-miR-3195, hsa-miR-4767, hsa-miR-3135b, hsa-miR-6087, hsa-miR-1181, hsa-miR-4785, hsa-miR-718, hsa-miR-3141, hsa-miR-652-5P, and hsa-miR-6126. The expression level of hsa-miR-181a in heroin addiction patients was significantly increased compared with that in normal controls (P < .001). The area under the receiver operating characteristic curve of hsa-miR-181a was 0.783, the sensitivity was 0.867, and the specificity was 0.551. CONCLUSIONS The increased expression of hsa-miR-181a in the plasma of heroin patients may be a consequence of the pathological process of heroin abuse. This study highlights the potential of hsa-miR-181a as a novel biomarker for the diagnosis of heroin addiction.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Ming Zhao
- Department of Medical Services, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Haixiong Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Donghui Gui
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Jiying Feng
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Yue Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo University, Ningbo, China
| |
Collapse
|
48
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
49
|
Casey S, Goasdoue K, Miller SM, Brennan GP, Cowin G, O'Mahony AG, Burke C, Hallberg B, Boylan GB, Sullivan AM, Henshall DC, O'Keeffe GW, Mooney C, Bjorkman T, Murray DM. Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury. Mol Neurobiol 2020; 57:4322-4344. [PMID: 32720074 PMCID: PMC7383124 DOI: 10.1007/s12035-020-02018-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most frequent cause of acquired infant brain injury. Early, clinically relevant biomarkers are required to allow timely application of therapeutic interventions. We previously reported early alterations in several microRNAs (miRNA) in umbilical cord blood at birth in infants with HIE. However, the exact timing of these alterations is unknown. Here, we report serial changes in six circulating, cross-species/bridging biomarkers in a clinically relevant porcine model of neonatal HIE with functional analysis. Six miRNAs—miR-374a, miR-181b, miR-181a, miR-151a, miR-148a and miR-128—were significantly and rapidly upregulated 1-h post-HI. Changes in miR-374a, miR-181b and miR-181a appeared specific to moderate-severe HI. Histopathological injury and five miRNAs displayed positive correlations and were predictive of MRS Lac/Cr ratios. Bioinformatic analysis identified that components of the bone morphogenic protein (BMP) family may be targets of miR-181a. Inhibition of miR-181a increased neurite length in both SH-SY5Y cells at 1 DIV (days in vitro) and in primary cultures of rat neuronal midbrain at 3 DIV. In agreement, inhibition of miR-181a increased expression of BMPR2 in differentiating SH-SY5Y cells. These miRNAs may therefore act as early biomarkers of HIE, thereby allowing for rapid diagnosis and timely therapeutic intervention and may regulate expression of signalling pathways vital to neuronal survival.
Collapse
Affiliation(s)
- Sophie Casey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland.
| | - Kate Goasdoue
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Stephanie M Miller
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - Christopher Burke
- Department of Pathology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard W O'Keeffe
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - Catherine Mooney
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Computer Science, University College Dublin, Dublin, Ireland
| | - Tracey Bjorkman
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Deirdre M Murray
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|