1
|
Zheng Z, Lin X, Zhao Z, Lin Q, Liu J, Chen M, Wu W, Wu Z, Liu N, Chen H. A vascular endothelial growth factor-loaded chitosan-hyaluronic acid hydrogel scaffold enhances the therapeutic effect of adipose-derived stem cells in the context of stroke. Neural Regen Res 2025; 20:3591-3605. [PMID: 39248177 PMCID: PMC11974663 DOI: 10.4103/nrr.nrr-d-24-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00028/figure1/v/2025-01-31T122243Z/r/image-tiff Adipose-derived stem cell, one type of mesenchymal stem cells, is a promising approach in treating ischemia-reperfusion injury caused by occlusion of the middle cerebral artery. However, its application has been limited by the complexities of the ischemic microenvironment. Hydrogel scaffolds, which are composed of hyaluronic acid and chitosan, exhibit excellent biocompatibility and biodegradability, making them promising candidates as cell carriers. Vascular endothelial growth factor is a crucial regulatory factor for stem cells. Both hyaluronic acid and chitosan have the potential to make the microenvironment more hospitable to transplanted stem cells, thereby enhancing the therapeutic effect of mesenchymal stem cell transplantation in the context of stroke. Here, we found that vascular endothelial growth factor significantly improved the activity and paracrine function of adipose-derived stem cells. Subsequently, we developed a chitosan-hyaluronic acid hydrogel scaffold that incorporated vascular endothelial growth factor and first injected the scaffold into an animal model of cerebral ischemia-reperfusion injury. When loaded with adipose-derived stem cells, this vascular endothelial growth factor-loaded scaffold markedly reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation and substantially restored mitochondrial membrane potential and axon morphology. Further in vivo experiments revealed that this vascular endothelial growth factor-loaded hydrogel scaffold facilitated the transplantation of adipose-derived stem cells, leading to a reduction in infarct volume and neuronal apoptosis in a rat model of stroke induced by transient middle cerebral artery occlusion. It also helped maintain mitochondrial integrity and axonal morphology, greatly improving rat motor function and angiogenesis. Therefore, utilizing a hydrogel scaffold loaded with vascular endothelial growth factor as a stem cell delivery system can mitigate the adverse effects of ischemic microenvironment on transplanted stem cells and enhance the therapeutic effect of stem cells in the context of stroke.
Collapse
Affiliation(s)
- Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Kao YC, Yang PC, Lin YP, Chen GH, Liu SW, Ho CH, Huang SC, Lee PY, Chen L, Huang CC. Tailoring the therapeutic potential of stem cell spheroid-derived decellularized ECM through post-decellularization BDNF incorporation to enhance brain repair. Biomaterials 2025; 321:123332. [PMID: 40220567 DOI: 10.1016/j.biomaterials.2025.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Decellularized extracellular matrix (dECM) from tissues has significant therapeutic potential but is limited by its rigid molecular composition and reliance on post-decellularization modifications to tailor its functionality. Harsh decellularization processes often result in substantial glycosaminoglycan (GAG) loss, impairing natural growth factor incorporation and necessitating chemical modifications that complicate processing and limit clinical translation. To address these challenges, we developed mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) dECM using gentle decellularization techniques. This study demonstrated a crucial advancement-the retention of endogenous GAGs-enabling direct growth factor incorporation without chemical agents. As a proof-of-concept, brain-derived neurotrophic factor (BDNF) was incorporated into the 3D dECM to enhance its therapeutic potential for brain repair. In vitro, BDNF-loaded 3D dECM enabled sustained growth factor release, significantly enhancing the proneuritogenic, neuroprotective, and proangiogenic effects. In a mouse model of traumatic brain injury, the implantation of BDNF-loaded 3D dECM significantly enhanced motor function and facilitated brain repair. These findings highlight the adaptability of MSC spheroid-derived 3D dECM for tissue-specific customization through straightforward and translatable growth factor incorporation, demonstrating its potential as a pro-regenerative biomaterial for advancing regenerative medicine applications.
Collapse
Affiliation(s)
- Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ping Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Grace H Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hsin Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Peng-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
3
|
Zhang J, Chen X, Chai Y, Jin Y, Li F, Zhuo C, Xu Y, Wang H, Ju E, Lao YH, Xie X, Li M, Tao Y. Mesenchymal stromal/stem cell spheroid-derived extracellular vesicles advance the therapeutic efficacy of 3D-printed vascularized artificial liver lobules in liver failure treatment. Bioact Mater 2025; 49:121-139. [PMID: 40124595 PMCID: PMC11930233 DOI: 10.1016/j.bioactmat.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Acute liver failure (ALF) is a highly lethal condition characterized by massive tissue necrosis, excessive oxidative stress, and serious inflammatory storms, necessitating prompt medical intervention. Although hepatocyte-like cells (HLCs) derived from mesenchymal stromal/stem cells (MSCs) offer a promising alternative cell source for hepatocyte therapy, their low in-vivo integration and differentiation efficiency may compromise the eventual therapeutic efficacy. To this end, MSCs are bioengineered into multicellular spheroids in the present study. The proteomic analyses and experimental results reveal that extracellular vesicles (EVs) derived from these MSC spheroids (SpEV) contain abundant highly expressed bioactive proteins and can be efficiently endocytosed by recipient cells, resulting in enhanced pro-angiogenic and antioxidative effects. In addition, MSC spheroids exhibit superior hepatic cell differentiation compared to an equivalent number of dissociated single MSCs, particularly when being co-cultured with hexagonally patterned endothelial cells in a liver lobule-like arrangement. Following orthotopic implantation in the mouse model, the enhanced paracrine effects of SpEV, combined with an immunoregulatory decellularized extracellular matrix hydrogel carrier and functional artificial liver lobules (ALL), synergically contribute to the effective amelioration of ALF, highlighting the substantial potential for clinical translation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yurong Chai
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
4
|
Mao W, Liu X, Chen C, Luo T, Yan Z, Wu L, An Z. Roles for Exosomes from Various Cellular Sources in Spinal Cord Injury. Mol Neurobiol 2025:10.1007/s12035-025-05040-y. [PMID: 40347375 DOI: 10.1007/s12035-025-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2025] [Indexed: 05/12/2025]
Abstract
Spinal cord injury (SCI) is a severe disorder characterized by regeneration challenges in the central nervous system (CNS), resulting in permanent paralysis, loss of sensation, and abnormal autonomic functions. The complex pathophysiology of SCI poses challenges to traditional treatments, highlighting the urgent need for novel treatment approaches. Exosomes have emerged as promising candidates for SCI therapy because of their ability to deliver a wide range of bioactive molecules, such as RNAs, proteins, and lipids, to target cells with minimal immunogenicity, which contribute to anti-inflammatory, anti-apoptotic, autophagic, angiogenic, neurogenic, and axon remodeling activities. In this study, we classified exosomes from different sources into four categories based on the characteristics of the donor cells (mesenchymal stem cells, neurogenic cells, immune cells, vascular-associated cells) and provided a detailed summary and discussion of the current research progress and future directions for each source. We also conducted an in-depth investigation into the applications of engineered exosomes in SCI therapy, focusing on their roles in drug delivery and combination with surface engineering technologies and tissue engineering strategies. Finally, the challenges and prospects of exosomal clinical applications in SCI repair are described.
Collapse
Grants
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (No.202301039) Key Science and Technology planning project of Tongxiang City, Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
- (Zhejiang Health Commission Traditional Chinese Medicine [2019] No.1)). "13th Five-Year Plan" Traditional Chinese Medicine Key Specialty Construction Project of Zhejiang Province, China
Collapse
Affiliation(s)
- Wangnan Mao
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinghao Liu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Chen
- Orthopedic Traumatology II, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tongfu Luo
- The Second People's Hospital of Tongxiang City, Jiaxing, China
| | - Zheng Yan
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lianguo Wu
- Orthopedic Traumatology II, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhongcheng An
- Orthopedic Traumatology II, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Ho CT, Kao YC, Shyu YM, Wang IC, Liu QX, Liu SW, Huang SC, Chiu H, Hsu LW, Hsu TS, Hsieh WC, Huang CC. Assembly of MSCs into a spheroid configuration increases poly(I:C)-mediated TLR3 activation and the immunomodulatory potential of MSCs for alleviating murine colitis. Stem Cell Res Ther 2025; 16:172. [PMID: 40221757 PMCID: PMC11993957 DOI: 10.1186/s13287-025-04297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with significant clinical challenges due to the limitations of current therapeutic approaches. Mesenchymal stem cell (MSC)-based therapies have shown promise in alleviating IBD owing to their potent immunomodulatory properties. However, the therapeutic efficacy of these cells remains suboptimal, primarily due to the harsh peritoneal microenvironment, which compromises MSC viability and functional capacity after transplantation. METHODS To address these limitations, this study aimed to improve MSC engraftment and functionality by assembling MSCs into three-dimensional (3D) spheroids and priming them with the Toll-like receptor 3 (TLR3) agonist polyinosinic-polycytidylic acid (poly(I:C)). Their potential for treating IBD was evaluated using male C57BL/6 mice with dextran sulfate sodium-induced colitis. RESULTS While 3D spheroid formation alone upregulated TLR3 expression and increased MSC survival under oxidative stress, poly(I:C) priming had a pronounced synergistic effect, significantly increasing MSC-mediated splenocyte modulation and oxidative stress resistance. In a murine colitis model, compared with unprimed spheroids or MSC suspensions, poly(I:C)-primed MSC spheroids administered intraperitoneally exhibited increased survival and therapeutic efficacy, effectively alleviating colitis symptoms, reducing colonic inflammation, and promoting tissue recovery. CONCLUSION Collectively, these findings highlight the synergistic benefits of combining 3D spheroid assembly with TLR3 activation as an innovative strategy to improve the therapeutic efficacy of MSC-based treatments for IBD and other inflammatory diseases by increasing post-engraftment cell survival and immunomodulatory capacity.
Collapse
Affiliation(s)
- Chao-Ting Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Ming Shyu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Qiao-Xuan Liu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Han Chiu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu , Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Zhang L, Yuan X, Song R, Yuan Z, Zhao Y, Zhang Y. Engineered 3D mesenchymal stem cell aggregates with multifunctional prowess for bone regeneration: Current status and future prospects. J Adv Res 2025:S2090-1232(25)00227-9. [PMID: 40220897 DOI: 10.1016/j.jare.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Impaired efficacy of in vitro expanded mesenchymal stem cells (MSCs) is a universal and thorny situation, which cast a shadow on further clinical translation of exogenous MSCs. Moreover, the relatively lengthy healing process, host metabolic heterogeneity and the sophisticated cell recognition and crosstalk pose rigorous challenges towards MSC-based bone regeneration strategies. Three-dimensional (3D) cell aggregates facilitate more robust intercellular communications and cell-extracellular matrix (ECM) interactions, providing a better mimicry of microarchitectures and biochemical milieus in vivo, which is conducive for stemness maintenance and downstream bone formation. AIM OF REVIEW This review enunciates the phenotypic features of MSCs in aggregates, which deepens the knowledge of the MSC fate determination in 3D microenvironment. By summarizing current empowerment methods and biomaterial-combined techniques for establishing functionalized MSC aggregates, this review aims to spark innovative and promising solutions for exalting the translational value of MSCs and improve their therapeutic applications in bone tissue repair. KEY SCIENTIFIC CONCEPTS OF REVIEW 3D aggregates optimize regenerative behaviors of in vitro cultured MSCs including cell adhesion, viability, proliferation, pluripotency and immunoregulation capacity, etc. Biomaterials hybridization endows MSC aggregates with tailored mechanical and biological properties, which offers more possibilities in adapting various clinical scenarios.
Collapse
Affiliation(s)
- Linxue Zhang
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China
| | - Xiaojing Yuan
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China
| | - Rui Song
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China
| | - Zuoying Yuan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, PR China; Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, PR China.
| | - Yuming Zhao
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| | - Yunfan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, 22 Zhongguancun South Avenue, Haidian District, Beijing, PR China.
| |
Collapse
|
7
|
Abdurakhmanova МM, Leonteva AA, Vasilieva NS, Kuligina EV, Nushtaeva AA. 3D cell culture models: how to obtain and characterize the main models. Vavilovskii Zhurnal Genet Selektsii 2025; 29:175-188. [PMID: 40264808 PMCID: PMC12011624 DOI: 10.18699/vjgb-25-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 04/24/2025] Open
Abstract
For many years, the gold standard in the study of malignant tumors has been the in vitro culture of tumor cells, in vivo xenografts or genetically modified animal models. Meanwhile, three-dimensional cell models (3D cultures) have been added to the arsenal of modern biomedical research. 3D cultures reproduce tissue-specific features of tissue topology. This makes them relevant tissue models in terms of cell differentiation, metabolism and the development of drug resistance. Such models are already being used by many research groups for both basic and translational research, and may substantially reduce the number of animal studies, for example in the field of oncological research. In the current literature, 3D cultures are classified according to the technique of their formation (with or without a scaffold), cultivation conditions (static or dynamic), as well as their cellular organization and function. In terms of cellular organization, 3D cultures are divided into "spheroid models", "organoids", "organs-on-a-chip" and "microtissues". Each of these models has its own unique features, which should be taken into account when using a particular model in an experiment. The simplest 3D cultures are spheroid models which are floating spherical cell aggregates. An organoid is a more complex 3D model, in which a self-organizing 3D structure is formed from stem cells (SCs) capable of self-renewal and differentiation within the model. Organ-on-a-chip models are chips of microfluidic systems that simulate dynamic physical and biological processes found in organs and tissues in vitro. By combining different cell types into a single structure, spheroids and organoids can act as a basis for the formation of a microtissue - a hybrid 3D model imitating a specific tissue phenotype and containing tissue-specific extracellular matrix (ECM) components. This review presents a brief history of 3D cell culture. It describes the main characteristics and perspectives of the use of "spheroid models", "organoids", "organ-on-a-chip" models and "microtissues" in immune oncology research of solid tumors.
Collapse
Affiliation(s)
- М M Abdurakhmanova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Leonteva
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N S Vasilieva
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Kuligina
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Nushtaeva
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Chen GH, Sia KC, Liu SW, Kao YC, Yang PC, Ho CH, Huang SC, Lee PY, Liang MZ, Chen L, Huang CC. Implantation of MSC spheroid-derived 3D decellularized ECM enriched with the MSC secretome ameliorates traumatic brain injury and promotes brain repair. Biomaterials 2025; 315:122941. [PMID: 39515193 DOI: 10.1016/j.biomaterials.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) presents substantial clinical challenges, as existing treatments are unable to reverse damage or effectively promote brain tissue regeneration. Although implantable biomaterials have been proposed to support tissue repair by mitigating the adverse microenvironment in injured brains, many fail to replicate the complex composition and architecture of the native extracellular matrix (ECM), resulting in only limited therapeutic outcomes. This study introduces an innovative approach by developing a mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) decellularized ECM (dECM) that is enriched with the MSC-derived matrisome and secretome, offering a promising solution for TBI treatment and brain tissue regeneration. Proteomic and cytokine array analyses revealed that 3D dECM retained a diverse array of MSC spheroid-derived matrisome proteins and secretome components, which are crucial for replicating the complexity of native ECM and the therapeutic capabilities of MSCs. These molecules were found to underlie the observed effects of 3D dECM on immunomodulation, proneuritogenesis, and proangiogenesis in our in vitro functional assays. Implantation of 3D dECM into TBI model mice effectively mitigated postinjury tissue damage and promoted brain repair, as evidenced by a reduced brain lesion volume, decreased cell apoptosis, alleviated neuroinflammation, reduced glial scar formation, and increased of neuroblast recruitment to the lesion site. These outcomes culminated in improved motor function recovery in animals, highlighting the multifaceted therapeutic potential of 3D dECM for TBI. In summary, our study elucidates the transformative potential of MSC spheroid-derived bioactive 3D dECM as an implantable biomaterial for effectively mitigating post-TBI neurological damage, paving the way for its broader therapeutic application.
Collapse
Affiliation(s)
- Grace H Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kee-Chin Sia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hsin Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Peng-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
9
|
Hashimoto S, Sugiyama A, Ota T, Matsumoto H, Kimata Y, Iwai R. Development of a unique tissue-engineered in vitro vascular model with endothelial layer-inverted vascular tissue structure using a cell self-aggregation technique. J Biosci Bioeng 2025; 139:226-233. [PMID: 39730253 DOI: 10.1016/j.jbiosc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
Vascular-like tissues composed of cells maintaining their shape and structure at any position in a culture dish without the use of gels or other artificial materials are ideal vascular models to test the effects of candidate drugs on cells without adsorption by artificial materials and analysis of structural changes over time. In this study, we aimed to prepare fiber-shaped cell aggregates composed of human umbilical vein endothelial and mesenchymal stem cells as vascular pericytes anchored to the bottom of culture dishes at a defined location using our developed cell self-aggregation technique and dumbbell-shaped culture groove. The fiber-shaped cell aggregates maintained their shape for at least two weeks without rupture, and histological analysis revealed that they formed a unique tissue structure with a gapless endothelial layer on the outer surface and capillary-like structures oriented in the same direction as the long axis of the fiber in the medial side. Moreover, exposure to cadmium chloride, a vascular toxicant, elicited toxic responses in vascular endothelialized fiber-shaped tissues, with only their outer endothelial layer being disintegrated but their fiber shape remaining intact. Overall, our results suggest the developed vascular endothelialized fiber-shaped tissue construct as potential models for vascular toxicity testing, facilitating the evaluation of toxicity over time without any effects of gel adsorption.
Collapse
Affiliation(s)
- Shingo Hashimoto
- Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Akihiko Sugiyama
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Ehime 794-8555, Japan
| | - Tomoyuki Ota
- Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Matsumoto
- Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshihiro Kimata
- Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan.
| |
Collapse
|
10
|
Huang CC, Chang CK, Yang PC, Chiu H, Chen SH, Hsu LW. Injectable Glucose-Releasing Microgels Enhance the Survival and Therapeutic Potential of Transplanted MSCs Under Ischemic Conditions. Adv Healthc Mater 2025; 14:e2401724. [PMID: 39324547 DOI: 10.1002/adhm.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapies show potential to treat ischemic diseases owing to their versatile functions. However, sustaining MSC viability and therapeutic efficacy in ischemic tissues postengraftment remains a significant challenge. This is because, although MSCs are metabolically flexible, they fail to adapt to hypoxic conditions in the absence of glucose, leading to cell death. To overcome these issues, it is aimed to establish an injectable glucose delivery system using starch and amyloglucosidase embedded in alginate microgels. Here, starch/amyloglucosidase (S/A) microgels are engineered to continuously release glucose for seven days via enzymatic hydrolysis, thereby supporting MSC functions under ischemic conditions. In vitro tests under oxygen/glucose-deprived conditions revealed that the S/A microgels not only maintained the viability and intracellular energy but also enhanced the pro-angiogenic and immunomodulatory functions of MSCs. In vivo data further confirmed the pro-survival and pro-angiogenic effects of S/A microgels on MSCs following subcutaneous engraftment in mice. Overall, the developed S/A microgel significantly enhanced the survival and therapeutic potential of MSCs via sustained glucose delivery, highlighting its potential use in advancing MSC-based therapies for ischemic conditions.
Collapse
Affiliation(s)
- Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Kai Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Han Chiu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Heng Chen
- Department of Plastic & Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan
| | - Li-Wen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300193, Taiwan
| |
Collapse
|
11
|
Xu Q, Gu L, Li Z, Gao L, Wei L, Shafiq Z, Chen S, Cai Q. Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke. Neuromolecular Med 2024; 26:51. [PMID: 39644405 DOI: 10.1007/s12017-024-08819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Ischemic stroke (IS) is a disease with high mortality and disability rates worldwide and is a serious threat to patient health. Owing to the narrow therapeutic window, effective treatments during the recovery period are limited. However, in recent years, mesenchymal stem cells (MSCs) have attracted attention and have shown therapeutic potential in IS treatment because of their abilities to home and secrete multiple bioactive substances and potential for differentiation and substitution. The therapeutic mechanisms of MSCs in IS include the regulatory effects of MSCs on microglia, the dual role of MSCs in astrocytes, how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to favor the restoration of the blood‒brain barrier (BBB), and the potential function of local neural replacement by MSCs. However, the low graft survival rate, insufficient homing, poor targeting, and inability to achieve directional differentiation of MSCs limit their wide application. As an approach to compensate for the shortcomings of MSCs, scientists have used nanomaterials to assist MSCs in homing, survival and proliferation. In addition, the unique material of nanomaterials adds tracking, imaging and real-time monitoring to stroke treatment. The identification of effective treatments for stroke is urgently needed; thus, an understanding of how MSCs treat stroke and further improvements in the use of nanomaterials are necessary.
Collapse
Affiliation(s)
- Qingxue Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Wei
- Department of Anesthesiology, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430200, China
| | - Zohaib Shafiq
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, 430072, Hubei, China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Hsiao CH, Huang HL, Liu HL, Huang CC, Su JC, Chen YH, Lin YH. Combining ultrasound technology with targeted fucoidan/arginine-gelatin nanoparticles loaded with doxorubicin to enhance therapeutic efficacy and modulate bioeffects in drug-resistant triple-negative breast cancer. Int J Biol Macromol 2024; 283:137764. [PMID: 39557262 DOI: 10.1016/j.ijbiomac.2024.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Triple-negative breast cancer (TNBC) presents formidable challenges due to its aggressive nature and high recurrence rates, compounded by the involvement of epithelial-mesenchymal transition (EMT) in its progression and metastasis. Standard chemotherapy, which typically employs doxorubicin (DOX), remains a primary treatment approach. However, multidrug resistance (MDR) mechanisms, which include ATP-binding cassette transporters and EMT, contribute to treatment failures. Ultrasound has emerged as a promising modality among the various strategies explored to address MDR in TNBC. It serves as a diagnostic tool and holds therapeutic potential by inducing various biological effects depending on the exposure level. Targeted nanoparticles offer a means to enhance drug delivery efficiency. Our study aims to advance ultrasound technology combined with biocompatible nanoparticles using simplified preparation methods to improve treatment outcomes for drug-resistant TNBC. In particular, employing DOX-loaded fucoidan/arginine-gelatin nanoparticles facilitated the targeted delivery of chemotherapy drugs to tumors by effectively interacting with P-selectin, resulting in tumor growth inhibition. Furthermore, these nanoparticles mitigated MDR and EMT, particularly when combined with ultrasound treatment. This integrated approach of nanoparticle delivery with ultrasonography opens up a promising and innovative avenue for clinical cancer research.
Collapse
Affiliation(s)
- Chi-Huang Hsiao
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei 220216, Taiwan
| | - Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Hsuan Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan.
| |
Collapse
|
13
|
Gao Q, Cekuc MS, Ergul YS, Pius AK, Shinohara I, Murayama M, Susuki Y, Ma C, Morita M, Chow SKH, Goodman SB. 3D Culture of MSCs for Clinical Application. Bioengineering (Basel) 2024; 11:1199. [PMID: 39768017 PMCID: PMC11726872 DOI: 10.3390/bioengineering11121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in regenerative medicine and drug discovery due to their multipotential differentiation capabilities and immunomodulatory effects. Compared with traditional 2D cultures of MSCs, 3D cultures of MSCs have emerged as an effective approach to enhance cell viability, proliferation, and functionality, and provide a more relevant physiological environment. Here, we review the therapeutic potential of 3D-cultured MSCs, highlighting their roles in tissue regeneration and repair and drug screening. We further summarize successful cases that apply 3D MSCs in modeling disease states, enabling the identification of novel therapeutic strategies. Despite these promising applications, we discuss challenges that remain in the clinical translation of 3D MSC technologies, including stability, cell heterogeneity, and regulatory issues. We conclude by addressing these obstacles and emphasizing the need for further research to fully exploit the potential of 3D MSCs in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94304, USA; (Q.G.)
| |
Collapse
|
14
|
Polak M, Karbowniczek JE, Stachewicz U. Strategies in Electrospun Polymer and Hybrid Scaffolds for Enhanced Cell Integration and Vascularization for Bone Tissue Engineering and Organoids. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2022. [PMID: 39696966 DOI: 10.1002/wnan.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Addressing the demand for bone substitutes, tissue engineering responds to the high prevalence of orthopedic surgeries worldwide and the limitations of conventional tissue reconstruction techniques. Materials, cells, and growth factors constitute the core elements in bone tissue engineering, influencing cellular behavior crucial for regenerative treatments. Scaffold design, including architectural features and porosity, significantly impacts cellular penetration, proliferation, differentiation, and vascularization. This review discusses the hierarchical structure of bone and the process of neovascularization in the context of biofabrication of scaffolds. We focus on the role of electrospinning and its modifications in scaffold fabrication to improve scaffold properties to enhance further tissue regeneration, for example, by boosting oxygen and nutrient delivery. We highlight how scaffold design impacts osteogenesis and the overall success of regenerative treatments by mimicking the extracellular matrix (ECM). Additionally, we explore the emerging field of bone organoids-self-assembled, three-dimensional (3D) structures derived from stem cells that replicate native bone tissue's architecture and functionality. While bone organoids hold immense potential for modeling bone diseases and facilitating regenerative treatments, their main limitation remains insufficient vascularization. Hence, we evaluate innovative strategies for pre-vascularization and discuss the latest techniques for assessing and improving vascularization in both scaffolds and organoids presenting the most commonly used cell lines and biological models. Moreover, we analyze cutting-edge techniques for assessing vascularization, evaluating their advantages and drawbacks to propose complex solutions. Finally, by integrating these approaches, we aim to advance the development of bioactive materials that promote successful bone regeneration.
Collapse
Affiliation(s)
- Martyna Polak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| | - Joanna Ewa Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Kraków, Poland
| |
Collapse
|
15
|
Tian H, Tian F, Ma D, Xiao B, Ding Z, Zhai X, Song L, Ma C. Priming and Combined Strategies for the Application of Mesenchymal Stem Cells in Ischemic Stroke: A Promising Approach. Mol Neurobiol 2024; 61:7127-7150. [PMID: 38366307 DOI: 10.1007/s12035-024-04012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) administration and mechanical thrombectomy are the main treatments but have a narrow time window. Mesenchymal stem cells (MSCs), which are easily scalable in vitro and lack ethical concerns, possess the potential to differentiate into various types of cells and secrete a great number of growth factors for neuroprotection and regeneration. Moreover, MSCs have low immunogenicity and tumorigenic properties, showing safety and preliminary efficacy both in preclinical studies and clinical trials of IS. However, it is unlikely that MSC treatment alone will be sufficient to maximize recovery due to the low survival rate of transplanted cells and various mechanisms of ischemic brain damage in the different stages of IS. Preconditioning was used to facilitate the homing, survival, and secretion ability of the grafted MSCs in the ischemic region, while combination therapies are alternatives that can maximize the treatment effects, focusing on multiple therapeutic targets to promote stroke recovery. In this case, the combination therapy can yield a synergistic effect. In this review, we summarize the type of MSCs, preconditioning methods, and combined strategies as well as their therapeutic mechanism in the treatment of IS to accelerate the transformation from basic research to clinical application.
Collapse
Affiliation(s)
- Hao Tian
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Dong Ma
- Department of Neurosurgery, The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong, 037003, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoyan Zhai
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
- School of Basic Medicine of Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Lijuan Song
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Cungen Ma
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| |
Collapse
|
16
|
Shih YT, Cheng KC, Ko YJ, Lin CY, Wang MC, Lee CI, Lee PL, Qi R, Chiu JJ, Hsu SH. 3D-Printed proangiogenic patches of photo-crosslinked gelatin and polyurethane hydrogels laden with vascular cells for treating vascular ischemic diseases. Biomaterials 2024; 309:122600. [PMID: 38718614 DOI: 10.1016/j.biomaterials.2024.122600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.
Collapse
Affiliation(s)
- Yu-Tsung Shih
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Ko
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Cun Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-I Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; College of Medical Science and Technology, Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
17
|
Kang Y, Na J, Karima G, Amirthalingam S, Hwang NS, Kim HD. Mesenchymal Stem Cell Spheroids: A Promising Tool for Vascularized Tissue Regeneration. Tissue Eng Regen Med 2024; 21:673-693. [PMID: 38578424 PMCID: PMC11187036 DOI: 10.1007/s13770-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs. MSCs can also participate in vascular formation by differentiating into endothelial cells and secreting paracrine factors. Vascularization ability is essential in impaired tissue repair and function recovery. Therefore, the vascularization ability of MSCs, which enhances angiogenesis and accelerates tissue healing has made MSCs a promising tool for tissue regeneration. However, MSC spheroids are a relatively new research field, and more research is needed to understand their full potential. METHODS In this review, we highlight the importance of MSC spheroids' vascularization ability in tissue engineering and regenerative medicine while providing the current status of studies on the MSC spheroids' vascularization and suggesting potential future research directions for MSC spheroids. RESULTS Studies both in vivo and in vitro have demonstrated MSC spheroids' capacity to develop into endothelial cells and stimulate vasculogenesis. CONCLUSION MSC spheroids show potential to enhance vascularization ability in tissue regeneration. Yet, further research is required to comprehensively understand the relationship between MSC spheroids and vascularization mechanisms.
Collapse
Affiliation(s)
- Yoonjoo Kang
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jinwoo Na
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea.
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
18
|
Velankar K, Liu W, Hartmeier PR, Veleke SR, Reddy GA, Clegg B, Gawalt ES, Fan Y, Meng WS. Fibril-Guided Three-Dimensional Assembly of Human Fibroblastic Reticular Cells. ACS APPLIED BIO MATERIALS 2024; 7:3953-3963. [PMID: 38805413 PMCID: PMC11190984 DOI: 10.1021/acsabm.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells (SCs) that can be isolated from lymph node (LN) biopsies. Studies have shown that these nonhematopoietic cells have the capacity to shape and regulate adaptive immunity and can become a form of personalized cell therapy. Successful translational efforts, however, require the cells to be formulated as injectable units, with their native architecture preserved. The intrinsic reticular organization of FRCs, however, is lost in the monolayer cultures. Organizing FRCs into three-dimensional (3D) clusters would recapitulate their structural and functional attributes. Herein, we report a scaffolding method based on the self-assembling peptide (SAP) EAKII biotinylated at the N-terminus (EAKbt). Cross-linking with avidin transformed the EAKbt fibrils into a dense network of coacervates. The combined forces of fibrillization and bioaffinity interactions in the cross-linked EAKbt likely drove the cells into a cohesive 3D reticula. This facile method of generating clustered FRCs (clFRCs) can be completed within 10 days. In vitro clFRCs attracted the infiltration of T cells and rendered an immunosuppressive milieu in the cocultures. These results demonstrate the potential of clFRCs as a method for stromal cell delivery.
Collapse
Affiliation(s)
- Ketki
Y. Velankar
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Wen Liu
- Allegheny
Health Network Cancer Institute, Allegheny Health Network, Pittsburgh Pennsylvania 15212, United States
| | - Paul R. Hartmeier
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Samuel R. Veleke
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Gayathri Aparnasai Reddy
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Benjamin Clegg
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
| | - Ellen S. Gawalt
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yong Fan
- Allegheny
Health Network Cancer Institute, Allegheny Health Network, Pittsburgh Pennsylvania 15212, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh,Pennsylvania 15213, United States
| | - Wilson S. Meng
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
19
|
Liu Y, Chen P, Zhou T, Zeng J, Liu Z, Wang R, Xu Y, Yin W, Rong M. Co-culture of STRO1 + human gingival mesenchymal stem cells and human umbilical vein endothelial cells in 3D spheroids: enhanced in vitro osteogenic and angiogenic capacities. Front Cell Dev Biol 2024; 12:1378035. [PMID: 38770153 PMCID: PMC11102987 DOI: 10.3389/fcell.2024.1378035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Stem cell spheroid is a promising graft substitute for bone tissue engineering. Spheroids obtained by 3D culture of STRO1+ Gingival Mesenchymal Stem Cells (sGMSCs) (sGMSC spheroids, GS) seldom express angiogenic factors, limiting their angiogenic differentiation in vivo. This study introduced a novel stem cell spheroid with osteogenic and angiogenic potential through 3D co-culture of sGMSCs and Human Umbilical Vein Endothelial Cells (HUVECs) (sGMSC/HUVEC spheroids, GHS). GHS with varying seeding ratios of sGMSCs to HUVECs (GHR) were developed. Cell fusion within the GHS system was observed via immunofluorescence. Calcein-AM/PI staining and chemiluminescence assay indicated cellular viability within the GHS. Furthermore, osteogenic and angiogenic markers, including ALP, OCN, RUNX2, CD31, and VEGFA, were quantified and compared with the control group comprising solely of sGMSCs (GS). Incorporating HUVECs into GHS extended cell viability and stability, initiated the expression of angiogenic factors CD31 and VEGFA, and upregulated the expression of osteogenic factors ALP, OCN, and RUNX2, especially when GHS with a GHR of 1:1. Taken together, GHS, derived from the 3D co-culture of sGMSCs and HUVECs, enhanced osteogenic and angiogenic capacities in vitro, extending the application of cell therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tengfei Zhou
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ruijie Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yiwei Xu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
| | - Wuwei Yin
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Chen S, Wang H, Yang P, Chen S, Ho C, Yang P, Kao Y, Liu S, Chiu H, Lin Y, Chuang E, Huang J, Kao H, Huang C. Schwann cells acquire a repair phenotype after assembling into spheroids and show enhanced in vivo therapeutic potential for promoting peripheral nerve repair. Bioeng Transl Med 2024; 9:e10635. [PMID: 38435829 PMCID: PMC10905550 DOI: 10.1002/btm2.10635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 03/05/2024] Open
Abstract
The prognosis for postinjury peripheral nerve regeneration remains suboptimal. Although transplantation of exogenous Schwann cells (SCs) has been considered a promising treatment to promote nerve repair, this strategy has been hampered in practice by the limited availability of SC sources and an insufficient postengraftment cell retention rate. In this study, to address these challenges, SCs were aggregated into spheroids before being delivered to an injured rat sciatic nerve. We found that the three-dimensional aggregation of SCs induced their acquisition of a repair phenotype, as indicated by enhanced levels of c-Jun expression/activation and decreased expression of myelin sheath protein. Furthermore, our in vitro results demonstrated the superior potential of the SC spheroid-derived secretome in promoting neurite outgrowth of dorsal root ganglion neurons, enhancing the proliferation and migration of endogenous SCs, and recruiting macrophages. Moreover, transplantation of SC spheroids into rats after sciatic nerve transection effectively increased the postinjury nerve structure restoration and motor functional recovery rates, demonstrating the therapeutic potential of SC spheroids. In summary, transplantation of preassembled SC spheroids may hold great potential for enhancing the cell delivery efficiency and the resultant therapeutic outcome, thereby improving SC-based transplantation approaches for promoting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shih‐Heng Chen
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- School of MedicineCollege of Medicine, Chang Gung UniversityTaoyuanTaiwan
| | - Hsin‐Wen Wang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Ching Yang
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Shih‐Shien Chen
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Chia‐Hsin Ho
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Ching Yang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Ying‐Chi Kao
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Shao‐Wen Liu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Han Chiu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Jie Lin
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Er‐Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical UniversityTaipeiTaiwan
- Cell Physiology and Molecular Image Research CenterTaipei Medical University–Wan Fang HospitalTaipeiTaiwan
| | - Jen‐Huang Huang
- Department of Chemical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Huang‐Kai Kao
- Department of Plastic and Reconstructive SurgeryLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- School of MedicineCollege of Medicine, Chang Gung UniversityTaoyuanTaiwan
| | - Chieh‐Cheng Huang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
21
|
Chen SH, Lee YW, Kao HK, Yang PC, Chen SH, Liu SW, Yang PC, Lin YJ, Huang CC. The Transplantation of 3-Dimensional Spheroids of Adipose-Derived Stem Cells Promotes Achilles Tendon Healing in Rabbits by Enhancing the Proliferation of Tenocytes and Suppressing M1 Macrophages. Am J Sports Med 2024; 52:406-422. [PMID: 38193194 DOI: 10.1177/03635465231214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Tendons have limited regenerative potential, so healing of ruptured tendon tissue requires a prolonged period, and the prognosis is suboptimal. Although stem cell transplantation-based approaches show promise for accelerating tendon repair, the resultant therapeutic efficacy remains unsatisfactory. HYPOTHESIS The transplantation of stem cells preassembled as 3-dimensional spheroids achieves a superior therapeutic outcome compared with the transplantation of single-cell suspensions. STUDY DESIGN Controlled laboratory study. METHODS Adipose-derived stem cells (ADSCs) were assembled as spheroids using a methylcellulose hydrogel system. The secretome of ADSC suspensions or spheroids was collected and utilized to treat tenocytes and macrophages to evaluate their therapeutic potential and investigate the mechanisms underlying their effects. RNA sequencing was performed to investigate the global difference in gene expression between ADSC suspensions and spheroids in an in vitro inflammatory microenvironment. For the in vivo experiment, rabbits that underwent Achilles tendon transection, followed by stump suturing, were randomly assigned to 1 of 3 groups: intratendinous injection of saline, rabbit ADSCs as conventional single-cell suspensions, or preassembled ADSC spheroids. The tendons were harvested for biomechanical testing and histological analysis at 4 weeks postoperatively. RESULTS Our in vitro results demonstrated that the secretome of ADSCs assembled as spheroids exhibited enhanced modulatory activity in (1) tenocyte proliferation (P = .015) and migration (P = .001) by activating extracellular signal-regulated kinase (ERK) signaling and (2) the suppression of the secretion of interleukin-6 (P = .005) and interleukin-1α (P = .042) by M1 macrophages via the COX-2/PGE2/EP4 signaling axis. Gene expression profiling of cells exposed to an inflammatory milieu revealed significantly enriched terms that were associated with the immune response, cytokines, and tissue remodeling in preassembled ADSC spheroids. Ex vivo fluorescence imaging revealed that the engraftment efficiency of ADSCs in the form of spheroids was higher than that of ADSCs in single-cell suspensions (P = .003). Furthermore, the transplantation of ADSC spheroids showed superior therapeutic effects in promoting the healing of sutured stumps, as evidenced by improvements in the tensile strength (P = .019) and fiber alignment (P < .001) of the repaired tendons. CONCLUSION The assembly of ADSCs as spheroids significantly advanced their potential to harness tenocytes and macrophages. As a proof of concept, this study clearly demonstrates the effectiveness of using ADSC spheroids to promote tendon regeneration. CLINICAL RELEVANCE The present study lays a foundation for future clinical applications of stem cell spheroid-based therapy for the management of tendon injuries.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Wei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Ching Yang
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Hsien Chen
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
22
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
23
|
Wang P, Liu Y, Duan XF, Pan XY, Kong XR, Yang Y. A Novel Multi-compartment Rotating Bioreactor for Improving ADSC-Spheroid Formation and its Application in Neurogenic Erectile Dysfunction. Curr Stem Cell Res Ther 2024; 19:1382-1392. [PMID: 38357905 DOI: 10.2174/011574888x253599231126161254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 02/16/2024]
Abstract
OBJECTIVE The aim of this study was to construct a multicompartment synchronous rotating bioreactor (MCSRB) for batch-production of homogenized adipose-derived stem cell (ADSC) microspheres and treat neurogenic erectile dysfunction (ED). METHODS Firstly, an MCSRB was constructed using a centrifugal device and hinged trays. Secondly, influence factors (density, rotational speed) on the formation of ADSC-spheroids were explored. Finally, a neurogenic ED model was established to verify the effectiveness and safety of ADSC-spheroids for ED treatment. RESULTS An MCSRB promoted ADSCs to gather microspheres, most of which were 90-130 μm in diameter. Supernatant from three-dimensional culture led to a significant increase in cytokine expression in ADSCs and migration rate in human umbilical vein endothelial cells (HUVECs) compared to control groups. The erectile function and pathological changes of the penis were improved in the ADSC-spheroids treatment group compared to the traditional ADSCs treatment group (p < 0.01). CONCLUSION Efficient, batch, controlled and homogenized production of ADSC stem cell microspheres, and effective improvement of erectile dysfunction in neurogenic rats can be achieved using the MCSRB device.
Collapse
Affiliation(s)
- Peng Wang
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiao-Feng Duan
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiao-Ying Pan
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiang-Rui Kong
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yong Yang
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
Wang YT, Meng XT. A review of the evidence to support electrical stimulation -induced vascularization in engineered tissue. Regen Ther 2023; 24:237-244. [PMID: 37534238 PMCID: PMC10393514 DOI: 10.1016/j.reth.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
25
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
26
|
You Y, Liu Y, Ma C, Xu J, Xie L, Tong S, Sun Y, Ma F, Huang Y, Liu J, Xiao W, Dai C, Li S, Lei J, Mei Q, Gao X, Chen J. Surface-tethered ROS-responsive micelle backpacks for boosting mesenchymal stem cell vitality and modulating inflammation in ischemic stroke treatment. J Control Release 2023; 362:210-224. [PMID: 37619863 DOI: 10.1016/j.jconrel.2023.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Mesenchymal stem cells (MSCs) exhibited remarkable therapeutic potential in ischemic stroke due to their exceptional immunomodulatory ability and paracrine effect; they have also been regarded as excellent neuroprotectant delivery vehicles with inflammatory tropism. However, the presence of high levels of reactive oxygen species (ROS) and an oxidative stress environment at the lesion site inhibits cell survival and further therapeutic effects. Using bioorthogonal click chemistry, ROS-responsive luteolin-loaded micelles were tethered to the surface of MSCs. As MSCs migrated to the ischemic brain, the micelles would achieve ROS-responsive release of luteolin to protect MSCs from excessive oxidative damage while inhibiting neuroinflammation and scavenging ROS to ameliorate ischemic stroke. This study provided an effective and prospective therapeutic strategy for ischemic stroke and a framework for a stem cell-based therapeutic system to treat inflammatory cerebral diseases.
Collapse
Affiliation(s)
- Yang You
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Chuchu Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Jianpei Xu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Shiqiang Tong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yinzhe Sun
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junbin Liu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
| | - Chengxiang Dai
- Daxing Research Institute, University of Science and Technology Beijing, 41 Yongda Road, Biomedical Industry Base, Zhongguancun Science and Technology Park, Daxing District, Beijing 102600, China; Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Jigang Lei
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
27
|
Özkan B, Yılmaz Tuğan B, Hemşinlioğlu C, Sır Karakuş G, Şahin Ö, Ovalı E. Suprachoroidal spheroidal mesenchymal stem cell implantation in retinitis pigmentosa: clinical results of 6 months follow-up. Stem Cell Res Ther 2023; 14:252. [PMID: 37705097 PMCID: PMC10500760 DOI: 10.1186/s13287-023-03489-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE This prospective clinical case series aimed to evaluate the effect of suprachoroidal implantation of mesenchymal stem cells (MSCs) in the form of spheroids as a stem cell therapy for retinitis pigmentosa (RP) patients with relatively good visual acuity. METHODS Fifteen eyes of 15 patients with RP who received suprachoroidal implantation of MSCs in the form of spheroids were included. Best-corrected visual acuity (BCVA), 10-2 and 30-2 visual field examination and multifocal electroretinography (mfERG) recordings were recorded at baseline, postoperative 1st, 3rd and 6th months during follow-up. RESULTS Baseline median BCVA of RP patients was 1.30 (1.00-2.00) logMAR. BCVA has improved to 1.00 (0.50-1.30), 0.80 (0.40-1.30) and 0.80 (0.40-1.30) at the postoperative 1st, 3rd and 6th months, respectively. The improvements from baseline to the 3rd and 6th months were statistically significant (p = 0.03 and p < 0.001, respectively). In the 30-2 VF test, median MD was significantly improved at the 6th month compared to baseline (p = 0.030). In the 10-2 VF test, the median MD value was significantly different at the 6th month compared to the baseline (p = 0.043). The PSD value of the 10-2 VF test was significantly different at the 6th month compared to the 3rd month (p = 0.043). The amplitudes of P1 waves in < 2°, 5°-10° and 10°-15° rings improved significantly at the postoperative 6th month (p = 0.014, p = 0.018 and p = 0.017, respectively). There was also a statistically significant improvement in implicit times of P1 waves in 10°-15° ring at the postoperative 6th month (p = 0.004). CONCLUSION Suprachoroidal implantation of MSCs in the form of spheroids as a stem cell therapy for RP patients with relatively good visual acuity has an improving effect on BCVA, VF and mfERG recordings during the 6-month follow-up period. Spheroidal MSCs with enhanced effects may be more successful in preventing apoptosis and improving retinal tissue healing in RP patients.
Collapse
Affiliation(s)
- Berna Özkan
- Department of Ophthalmology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| | | | | | | | - Özlem Şahin
- Department of Ophthalmology, Marmara University, Istanbul, Turkey
| | - Ercüment Ovalı
- Acıbadem Labcell Cellular Therapy Center, Istanbul, Turkey
| |
Collapse
|
28
|
Harley-Troxell ME, Dhar M. Assembling Spheroids of Rat Primary Neurons Using a Stress-Free 3D Culture System. Int J Mol Sci 2023; 24:13506. [PMID: 37686310 PMCID: PMC10488062 DOI: 10.3390/ijms241713506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Neural injuries disrupt the normal functions of the nervous system, whose complexities limit current treatment options. Because of their enhanced therapeutic effects, neurospheres have the potential to advance the field of regenerative medicine and neural tissue engineering. Methodological steps can pose challenges for implementing neurosphere assemblies; for example, conventional static cultures hinder yield and throughput, while the presence of the necrotic core, time-consuming methodology, and high variability can slow their progression to clinical application. Here we demonstrate the optimization of primary neural cell-derived neurospheres, developed using a high-throughput, stress-free, 3D bioreactor. This process provides a necessary baseline for future studies that could develop co-cultured assemblies of stem cells combined with endothelial cells, and/or biomaterials and nanomaterials for clinical therapeutic use. Neurosphere size and neurite spreading were evaluated under various conditions using Image J software. Primary neural cells obtained from the hippocampi of three-day-old rat pups, when incubated for 24 h in a reactor coated with 2% Pluronic and seeded on Poly-D-Lysine-coated plates establish neurospheres suitable for therapeutic use within five days. Most notably, neurospheres maintained high cell viability of ≥84% and expressed the neural marker MAP2, neural marker β-Tubulin III, and glial marker GFAP at all time points when evaluated over seven days. Establishing these factors reduces the variability in developing neurospheres, while increasing the ease and output of the culture process and maintaining viable cellular constructs.
Collapse
Affiliation(s)
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
29
|
Song YC, Park GT, Moon HJ, Choi EB, Lim MJ, Yoon JW, Lee N, Kwon SM, Lee BJ, Kim JH. Hybrid spheroids containing mesenchymal stem cells promote therapeutic angiogenesis by increasing engraftment of co-transplanted endothelial colony-forming cells in vivo. Stem Cell Res Ther 2023; 14:193. [PMID: 37533021 PMCID: PMC10394850 DOI: 10.1186/s13287-023-03435-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Peripheral artery disease is an ischemic vascular disease caused by the blockage of blood vessels supplying blood to the lower extremities. Mesenchymal stem cells (MSCs) and endothelial colony-forming cells (ECFCs) have been reported to alleviate peripheral artery disease by forming new blood vessels. However, the clinical application of MSCs and ECFCs has been impeded by their poor in vivo engraftment after cell transplantation. To augment in vivo engraftment of transplanted MSCs and ECFCs, we investigated the effects of hybrid cell spheroids, which mimic a tissue-like environment, on the therapeutic efficacy and survival of transplanted cells. METHODS The in vivo survival and angiogenic activities of the spheroids or cell suspension composed of MSCs and ECFCs were measured in a murine hindlimb ischemia model and Matrigel plug assay. In the hindlimb ischemia model, the hybrid spheroids showed enhanced therapeutic effects compared with the control groups, such as adherent cultured cells or spheroids containing either MSCs or ECFCs. RESULTS Spheroids from MSCs, but not from ECFCs, exhibited prolonged in vivo survival compared with adherent cultured cells, whereas hybrid spheroids composed of MSCs and ECFCs substantially increased the survival of ECFCs. Moreover, single spheroids of either MSCs or ECFCs secreted greater levels of pro-angiogenic factors than adherent cultured cells, and the hybrid spheroids of MSCs and ECFCs promoted the secretion of several pro-angiogenic factors, such as angiopoietin-2 and platelet-derived growth factor. CONCLUSION These results suggest that hybrid spheroids containing MSCs can serve as carriers for cell transplantation of ECFCs which have poor in vivo engraftment efficiency.
Collapse
Affiliation(s)
- Young Cheol Song
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Hye Ji Moon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eun-Bae Choi
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Mi-Ju Lim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Nayeon Lee
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sang Mo Kwon
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Korea
| | - Jae Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
30
|
Adhikari B, Stager MA, Krebs MD. Cell-instructive biomaterials in tissue engineering and regenerative medicine. J Biomed Mater Res A 2023; 111:660-681. [PMID: 36779265 DOI: 10.1002/jbm.a.37510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
The field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell-directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro- or nano-geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
31
|
Vascularized Tissue Organoids. Bioengineering (Basel) 2023; 10:bioengineering10020124. [PMID: 36829618 PMCID: PMC9951914 DOI: 10.3390/bioengineering10020124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tissue organoids hold enormous potential as tools for a variety of applications, including disease modeling and drug screening. To effectively mimic the native tissue environment, it is critical to integrate a microvasculature with the parenchyma and stroma. In addition to providing a means to physiologically perfuse the organoids, the microvasculature also contributes to the cellular dynamics of the tissue model via the cells of the perivascular niche, thereby further modulating tissue function. In this review, we discuss current and developing strategies for vascularizing organoids, consider tissue-specific vascularization approaches, discuss the importance of perfusion, and provide perspectives on the state of the field.
Collapse
|
32
|
Bayaraa O, Dashnyam K, Singh RK, Mandakhbayar N, Lee JH, Park JT, Lee JH, Kim HW. Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 2023; 292:121914. [PMID: 36436306 DOI: 10.1016/j.biomaterials.2022.121914] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Critical limb ischemia (CLI) is a serious form of peripheral arterial disease that involves severe blockage of blood flow in lower extremities, often leading to foot necrosis and limb loss. Lack of blood flow and high pro-inflammation with overproduced reactive oxygen species (ROS) in CLI aggravate the degenerative events. Among other therapies, cell delivery is considered potential for restoring regenerative capacity, and preservation of cell survival under high oxidative stress has been challenging and prerequisite to harness cellular functions. Here, we introduce a multicellular delivery system that is intercalated with nanoceria-decorated graphene oxide (CeGO), which is considered to have high ROS scavenging ability while providing cell-matrix interaction signals. The CeGO nano-microsheets (8-nm-nanoceria/0.9-μm-GO) incorporated in HUVEC/MSC (7/3) could form cell-material hybrid spheroids mediated by cellular contraction. Under in vitro oxidative-stress-challenge with H2O2, the CeGO-intercalation enhanced the survival and anti-apoptotic capacity of cellular spheroids. Pro-angiogenic events of cellular spheroids, including cell sprouting and expression of angiogenic markers (HIF1α, VEGF, FGF2, eNOS) were significantly enhanced by the CeGO-intercalation. Proteomics analysis also confirmed substantial up-regulation of a series of angiogenesis-related secretome molecules. Such pro-angiogenic events with CeGO-intercalation were proven to be mediated by the APE/Ref-1 signaling pathway. When delivered to ischemic hindlimb in mice, the CeGO-cell spheroids could inhibit the accumulation of in vivo ROS rapidly, preserving high cell survival rate (cells were more proliferative and less apoptotic vs. those in cell-only spheroids), and up-regulated angiogenic molecular expressions. Monitoring over 28 days revealed significantly enhanced blood reperfusion and tissue recovery, and an ultimate limb salvage with the CeGO-cell delivery (∼60% salvaged vs. ∼29% in cell-only delivery vs. 0% in ischemia control). Together, the CeGO intercalated in HUVEC/MSC delivery is considered a potential nano-microplatform for CLI treatment, by scavenging excessive ROS and enhancing transplanted cell survival, while stimulating angiogenic events, which collectively help revascularization and tissue recovery, salvaging critical ischemic limbs.
Collapse
Affiliation(s)
- Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Drug Research Institute, Mongolian University of Pharmaceutical Science, 14250, Mongolia
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Drug Research Institute, Mongolian University of Pharmaceutical Science, 14250, Mongolia
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jong-Tae Park
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Oral Anatomy, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
33
|
Mohd Satar A, Othman FA, Tan SC. Biomaterial application strategies to enhance stem cell-based therapy for ischemic stroke. World J Stem Cells 2022; 14:851-867. [PMID: 36619694 PMCID: PMC9813837 DOI: 10.4252/wjsc.v14.i12.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemic stroke is a condition in which an occluded blood vessel interrupts blood flow to the brain and causes irreversible neuronal cell death. Transplantation of regenerative stem cells has been proposed as a novel therapy to restore damaged neural circuitry after ischemic stroke attack. However, limitations such as low cell survival rates after transplantation remain significant challenges to stem cell-based therapy for ischemic stroke in the clinical setting. In order to enhance the therapeutic efficacy of transplanted stem cells, several biomaterials have been developed to provide a supportable cellular microenvironment or functional modification on the stem cells to optimize their reparative roles in injured tissues or organs. AIM To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches. METHODS The PubMed, Science Direct and Scopus literature databases were searched using the keywords of "biomaterial" and "ischemic stroke". All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to "stem cells" OR "progenitor cells" OR "undifferentiated cells" published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022. RESULTS A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms. CONCLUSION Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.
Collapse
Affiliation(s)
- Asmaa' Mohd Satar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farah Amna Othman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| |
Collapse
|
34
|
Liang Q, Liang C, Liu X, Xing X, Ma S, Huang H, Liang C, Liu L, Liao L, Tian W. Vascularized dental pulp regeneration using cell-laden microfiber aggregates. J Mater Chem B 2022; 10:10097-10111. [PMID: 36458580 DOI: 10.1039/d2tb01825j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regeneration of dental pulp via the transplantation of dental pulp stem cells (DPSCs) has emerged as a novel therapy for dental pulp necrosis after inflammation and injury. However, providing sufficient oxygen and nutrients to support stem cell survival, self-renewal, and differentiation in the narrow root canal remains a great challenge. In this study, we explored a novel strategy based on cell-laden microfibers for dental pulp regeneration. Firstly, we fabricated suitable GelMA hydrogels that facilitate the survival and proliferation of DPSCs and human umbilical vein endothelial cells (HUVECs) and possess satisfactory biomechanical properties to generate microfibers. Two kinds of GelMA microfibers were fabricated with DPSCs and HUVECs via a silicone-tube-based coagulant bath-free method. Live/dead and Ki-67 immunofluorescence staining assays identified that these two cell lines maintained high survival rate and proliferation ability in GelMA microfibers. Immunofluorescence staining confirmed that DPSCs fully spread in the microfibers and highly expressed CD90 and laminin. HUVECs positively express CD31 and VE-cad in microfibers and could migrate well in the GelMA hydrogel. In vitro permeation experiments confirmed the superiority of microfiber aggregates (MAs) in liquid permeation compared to GelMA hydrogel blocks. We further adopted an ectopic pulp regeneration assay in nude mice to validate the regeneration of the aggregates of mixed DPSC-microfibers and HUVEC-microfibers in vivo. Compared to a conventional mixture of DPSCs and HUVECs in GelMA hydrogel blocks, the aggregates of cell-laden microfibers generated more pulp-like tissue, blood vessels, and odontoblast-like cells that positively express DMP-1 and DSPP. To our knowledge, this is the first attempt to apply cell-laden MAs for pulp regeneration. Our study proposes a new solution to the challenge of pulp regeneration, which might promote the clinical translation and application of stem cell-based therapy.
Collapse
Affiliation(s)
- Qingqing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaojing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chao Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Electrochemical microwell sensor with Fe-N co-doped carbon catalyst to monitor nitric oxide release from endothelial cell spheroids. ANAL SCI 2022; 38:1297-1304. [PMID: 35895213 DOI: 10.1007/s44211-022-00160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/01/2022]
Abstract
Endothelial cells have been widely used for vascular biology studies; recent progress in tissue engineering have offered three-dimensional (3D) culture systems for vascular endothelial cells which can be considered as physiologically relevant models. To facilitate the studies, we developed an electrochemical device to detect nitric oxide (NO), a key molecule in the vasculature, for the evaluation of 3D cultured endothelial cells. Using an NO-sensitive catalyst composed of Fe-N co-doped reduced graphene oxide, the real-time monitoring of NO release from the endothelial cell spheroids was demonstrated.
Collapse
|
36
|
Li L, Mu J, Zhang Y, Zhang C, Ma T, Chen L, Huang T, Wu J, Cao J, Feng S, Cai Y, Han M, Gao J. Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair. ACS NANO 2022; 16:10811-10823. [PMID: 35786851 DOI: 10.1021/acsnano.2c02898] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Revascularization treatment is a critical measure for tissue engineering therapies like spinal cord repair. As multipotent stem cells, mesenchymal stem cells (MSCs) have proven to regulate the lesion microenvironment through feedback to the microenvironment signals. The angiogenic capacities of MSCs have been reported to be facilitated by vein endothelial cells in the niche. As emerging evidence demonstrated the roles of exosomes in cell-cell and cell-microenvironment communications, to cope with the ischemia complication for treatment of traumatic spinal cord injury, the study extracts the microenvironment factors to stimulate angiogenic MSCs through using exosomes (EX) derived from hypoxic preconditioned (HPC) human umbilical vein endothelial cells (HUVEC). The HPC treatment with a hypoxia time segment of only 15 min efficiently enhanced the function of EX in facilitating MSCs angiogenesis activity. MSCs stimulated by HPC-EX showed significant tube formation within 2 h, and the in vivo transplantation of the stimulated MSCs elicited effective nerve tissue repair after rat spinal cord transection, which could be attributed to the pro-angiogenic and anti-inflammatory impacts of the MSCs. Through the simulation of MSCs using HPC-tailored HUVEC exosomes, the results proposed an efficient angiogenic nerve tissue repair strategy for spinal cord injury treatment and could provide inspiration for therapies based on stem cells and exosomes.
Collapse
Affiliation(s)
- Liming Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Teng Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Youzhi Cai
- Department of Orthopedics and Center for Sports Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
37
|
Biophysical Characterization and Cytocompatibility of Cellulose Cryogels Reinforced with Chitin Nanowhiskers. Polymers (Basel) 2022; 14:polym14132694. [PMID: 35808742 PMCID: PMC9268798 DOI: 10.3390/polym14132694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/23/2023] Open
Abstract
Polysaccharide-based cryogels are promising materials for producing scaffolds in tissue engineering. In this work, we obtained ultralight (0.046–0.162 g/cm3) and highly porous (88.2–96.7%) cryogels with a complex hierarchical morphology by dissolving cellulose in phosphoric acid, with subsequent regeneration and freeze-drying. The effect of the cellulose dissolution temperature on phosphoric acid and the effect of the freezing time of cellulose hydrogels on the structure and properties of the obtained cryogels were studied. It has been shown that prolonged freezing leads to the formation of denser and stronger cryogels with a network structure. The incorporation of chitin nanowhiskers led to a threefold increase in the strength of the cellulose cryogels. The X-ray diffraction method showed that the regenerated cellulose was mostly amorphous, with a crystallinity of 26.8–28.4% in the structure of cellulose II. Cellulose cryogels with chitin nanowhiskers demonstrated better biocompatibility with mesenchymal stem cells compared to the normal cellulose cryogels.
Collapse
|
38
|
Liu X, Hu L, Liu F. Mesenchymal stem cell-derived extracellular vesicles for cell-free therapy of ocular diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:102-117. [PMID: 39698446 PMCID: PMC11648472 DOI: 10.20517/evcna.2022.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2024]
Abstract
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have noticeably attracted clinicians' attention in treating ocular diseases. As the paracrine factor of MSCs and an alternative for cell-free therapies, MSC-EVs can be conveniently dropped over the ocular surface or diffused through the retina upon intravitreal injection, without increasing the risks of cellular rejection and tumor formation. For clinical translation, a standardized and scalable production, as well as reprogramming the MSC-EVs, are highly encouraged. This review aims to assess the potential approaches for EV production and functional modification, in addition to summarizing the worldwide clinical trials initiated for various physiological systems and the specific biochemical effects of MSC-EVs on the therapy of eye diseases. Recent advances in the therapy of ocular diseases based on MSC-EVs are reviewed, and the associated challenges and prospects are discussed as well.
Collapse
Affiliation(s)
- Xiaoling Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Fei Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
39
|
Methods for vascularization and perfusion of tissue organoids. Mamm Genome 2022; 33:437-450. [PMID: 35333952 DOI: 10.1007/s00335-022-09951-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Tissue organoids or "mini organs" can be invaluable tools for understanding health and disease biology, modeling tissue dynamics, or screening potential drug candidates. Effective vascularization of these models is critical for truly representing the in vivo tissue environment. Not only is the formation of a vascular network, and ultimately a microcirculation, essential for proper distribution and exchange of oxygen and nutrients throughout larger organoids, but vascular cells dynamically communicate with other cells to modulate overall tissue behavior. Additionally, interstitial fluid flow, mediated by a perfused microvasculature, can have profound influences on tissue biology. Thus, a truly functionally and biologically relevant organoid requires a vasculature. Here, we review existing strategies for fabricating and incorporating vascular elements and perfusion within tissue organoids.
Collapse
|
40
|
Shi J, Yang Y, Yin N, Liu C, Zhao Y, Cheng H, Zhou T, Zhang Z, Zhang K. Engineering CXCL12 Biomimetic Decoy-Integrated Versatile Immunosuppressive Nanoparticle for Ischemic Stroke Therapy with Management of Overactivated Brain Immune Microenvironment. SMALL METHODS 2022; 6:e2101158. [PMID: 35041278 DOI: 10.1002/smtd.202101158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Following ischemic stroke, brain-resident activated microglia and peripherally infiltrated inflammatory cells create a complicated and overactivated brain immune microenvironment, which causes neuron death and dramatically hinders neurological functional recovery. Herein, an engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle (VIN) for management of the overactivated brain immune microenvironment is reported. The shell of VIN (membrane of CXCR4 overexpressed mesenchymal stem cells), can not only improve the homing of nanoparticles to the cerebral ischemic lesions, but also efficiently adsorb and neutralize CXCL12 to cut off infiltration of peripheral-neutrophils and mononuclear macrophages. The loaded A151 (cGAS inhibitor, telomerase repeat sequences) can inhibit cGAS-STING pathway in microglia, leading to microglia polarization toward an anti-inflammatory M2-like phenotype. Interestingly, A151 can be efficiently loaded onto the polydopamine nanospheres (PDA, the core of VIN) through the bridge of Zn2+ . In the inflammatory site, PDA is oxidized by reactive oxygen species (ROS), with the disappearance of Zn2+ complexation effect, and then A151 realizes a controlled release. In a model of rat ischemic stroke, VIN integrates inflammation tropism, peripherally inflammatory cells filtrate, brain-resident activated microglia polarization, as well as, ROS scavenging, exerting outstanding therapeutic effects on ameliorating the mortality, reducing the infarct volume, and protecting neurogenic functions of neurons.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Changhua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tonghai Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
41
|
Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential. Cells 2021; 10:cells10102747. [PMID: 34685727 PMCID: PMC8534378 DOI: 10.3390/cells10102747] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
Multicellular spheroids show three-dimensional (3D) organization with extensive cell–cell and cell–extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell therapy. Herein, we aim to further enhance their therapeutic potential by tuning the cultivation parameters and thus the inherent niche of 3D MSC spheroids. Significantly increased expression of multiple pro-regenerative paracrine signaling molecules and immunomodulatory factors by MSCs was observed after optimizing the conditions for spheroid culture. Moreover, these alterations in cellular behaviors may be associated with not only the hypoxic niche developed in the spheroid core but also with the metabolic reconfiguration of MSCs. The present study provides efficient methods for manipulating the therapeutic capacity of 3D MSC spheroids, thus laying solid foundations for future development and clinical application of spheroid-based MSC therapy for regenerative medicine.
Collapse
|
42
|
Chen YC, Chen YH, Chiu H, Ko YH, Wang RT, Wang WP, Chuang YJ, Huang CC, Lu TT. Cell-Penetrating Delivery of Nitric Oxide by Biocompatible Dinitrosyl Iron Complex and Its Dermato-Physiological Implications. Int J Mol Sci 2021; 22:ijms221810101. [PMID: 34576264 PMCID: PMC8469893 DOI: 10.3390/ijms221810101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
After the discovery of endogenous dinitrosyl iron complexes (DNICs) as a potential biological equivalent of nitric oxide (NO), bioinorganic engineering of [Fe(NO)2] unit has emerged to develop biomimetic DNICs [(NO)2Fe(L)2] as a chemical biology tool for controlled delivery of NO. For example, water-soluble DNIC [Fe2(μ-SCH2CH2OH)2(NO)4] (DNIC-1) was explored for oral delivery of NO to the brain and for the activation of hippocampal neurogenesis. However, the kinetics and mechanism for cellular uptake and intracellular release of NO, as well as the biocompatibility of synthetic DNICs, remain elusive. Prompted by the potential application of NO to dermato-physiological regulations, in this study, cellular uptake and intracellular delivery of DNIC [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-2) and its regulatory effect/biocompatibility toward epidermal cells were investigated. Upon the treatment of DNIC-2 to human fibroblast cells, cellular uptake of DNIC-2 followed by transformation into protein-bound DNICs occur to trigger the intracellular release of NO with a half-life of 1.8 ± 0.2 h. As opposed to the burst release of extracellular NO from diethylamine NONOate (DEANO), the cell-penetrating nature of DNIC-2 rationalizes its overwhelming efficacy for intracellular delivery of NO. Moreover, NO-delivery DNIC-2 can regulate cell proliferation, accelerate wound healing, and enhance the deposition of collagen in human fibroblast cells. Based on the in vitro and in vivo biocompatibility evaluation, biocompatible DNIC-2 holds the potential to be a novel active ingredient for skincare products.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.C.); (Y.-H.K.); (Y.-J.C.)
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-H.C.); (H.C.)
| | - Han Chiu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-H.C.); (H.C.)
| | - Yi-Hsuan Ko
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.C.); (Y.-H.K.); (Y.-J.C.)
| | - Ruei-Ting Wang
- CHLITINA Research and Development Center, CHLITINA Holding Ltd., Taipei 10073, Taiwan; (R.-T.W.); (W.-P.W.)
| | - Wei-Ping Wang
- CHLITINA Research and Development Center, CHLITINA Holding Ltd., Taipei 10073, Taiwan; (R.-T.W.); (W.-P.W.)
| | - Yung-Jen Chuang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.C.); (Y.-H.K.); (Y.-J.C.)
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-H.C.); (H.C.)
- Correspondence: (C.-C.H.); (T.-T.L.)
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-H.C.); (H.C.)
- Correspondence: (C.-C.H.); (T.-T.L.)
| |
Collapse
|
43
|
Efremov YM, Zurina IM, Presniakova VS, Kosheleva NV, Butnaru DV, Svistunov AA, Rochev YA, Timashev PS. Mechanical properties of cell sheets and spheroids: the link between single cells and complex tissues. Biophys Rev 2021; 13:541-561. [PMID: 34471438 PMCID: PMC8355304 DOI: 10.1007/s12551-021-00821-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell aggregates, including sheets and spheroids, represent a simple yet powerful model system to study both biochemical and biophysical intercellular interactions. However, it is becoming evident that, although the mechanical properties and behavior of multicellular structures share some similarities with individual cells, yet distinct differences are observed in some principal aspects. The description of mechanical phenomena at the level of multicellular model systems is a necessary step for understanding tissue mechanics and its fundamental principles in health and disease. Both cell sheets and spheroids are used in tissue engineering, and the modulation of mechanical properties of cell constructs is a promising tool for regenerative medicine. Here, we review the data on mechanical characterization of cell sheets and spheroids, focusing both on advances in the measurement techniques and current understanding of the subject. The reviewed material suggest that interplay between the ECM, intercellular junctions, and cellular contractility determines the behavior and mechanical properties of the cell aggregates.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
| | - Irina M. Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Denis V. Butnaru
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Andrey A. Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St, Moscow, Russia
| | - Yury A. Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, H91 W2TY, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin St, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow, 119991 Russia
| |
Collapse
|