1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Yuan Z, Li J, Na Q. Recent advances in biomimetic nanodelivery systems for the treatment of glioblastoma. Colloids Surf B Biointerfaces 2025; 252:114668. [PMID: 40168694 DOI: 10.1016/j.colsurfb.2025.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Glioblastoma remain one of the deadliest malignant tumors in the central nervous system, largely due to their aggressiveness, high degree of heterogeneity, and the protective barrier of the blood-brain barrier (BBB). Conventional therapies including surgery, chemotherapy and radiotherapy often fail to improve patient prognosis due to limited drug penetration and non-specific toxicity. We then present recent advances in biomimetic nanodelivery systems, focusing on cell membrane coatings, nanoenzymes, and exosome-based carriers. By mimicking endogenous biological functions, these systems demonstrate improved immune evasion, enhanced BBB traversal, and selective drug release within the tumor microenvironment. Nevertheless, we acknowledge unresolved bottlenecks related to large-scale production, stability, and the intricacies of regulatory compliance. Looking forward, we propose an interdisciplinary roadmap that combines materials engineering, cellular biology, and clinical expertise. Through this collaborative approach, this work aims to optimize biomimetic nanodelivery for glioma therapy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Zhenru Yuan
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Jing Li
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Qi Na
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
3
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
4
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
5
|
Yang X, Shi G, Lin Z, Qiu Y, Liu F, Hu K, Guo J, Peng H, He Y. Pathogen-targeting biomineralized bacterial outer membrane vesicles for eradicating both intracellular and extracellular Staphylococcus aureus. J Control Release 2025; 382:113702. [PMID: 40189054 DOI: 10.1016/j.jconrel.2025.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/13/2025]
Abstract
Intracellular Staphylococcus aureus is associated with recurrent infections and antibiotic resistance. Conventional antibiotics are ineffective against such intracellular bacterial pathogens, which calls for exploration of new approaches to treat these infections. Here, we report the development of pathogen-targeting biomineralized bacterial outer membrane vesicle (OMV) for targeted antibiotic delivery and eradicating both intracellular and extracellular S. aureus. These OMVs were derived from E. coli, and chemically modified with hydroxamate-type siderophore to target the intracellular S. aureus. The surface of OMV was coated with pH-sensitive calcium carbonate (CaCO3) to target the infection microenvironment. The CaCO3-coated siderophore-OMV (SOMV@CaCO3) was loaded with the antimicrobial drugs lysostaphin (Lsn) and mupirocin (Mup) (Lsn-SOMV@CaCO3-Mup) and administration of these OMVs resulted in effective eradication of both extracellular and intracellular S. aureus. Thus, Lsn-SOMV@CaCO3-Mup provides a novel and promising strategy for the treatment of invasive S. aureus infections.
Collapse
Affiliation(s)
- Xiaohong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Gongming Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zihua Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yanfei Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Feiyang Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Kecui Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Haibo Peng
- Chongqing Academy of Science and Technology, Chongqing 401123, China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; Translational Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
6
|
Xiao R, Pan J, Yang M, Liu H, Zhang A, Guo X, Zhou S. Regulating astrocyte phenotype by Lcn2 inhibition toward ischemic stroke therapy. Biomaterials 2025; 317:123102. [PMID: 39836995 DOI: 10.1016/j.biomaterials.2025.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Astrocytes can be reacted to "reactive astrocytes" after ischemia-reperfusion injury, in which A1 phenotype causes neuronal and oligodendrocyte death, whereas the A2 phenotype exerts neuroprotective effects, thus regulating reactive astrocyte to A2 type is a potential target for stroke therapy. Lcn2 level is highly associated with the phenotypic polarization of astrocytes. We found that silencing the Lcn2 gene by adeno-associated virus (AAV)-Lcn2 shRNA adenovirus resulted in a dramatic decrease in A1-type astrocytes and increase in A2 astrocytes in MCAO mice. Hence, a nanoplatform was developed for stroke therapy by inhibiting Lcn2. This system was fabricated by N-acetyl Pro-Gly-Pro peptide-decorated rod-shaped poly (lactic-co-glycolic acid) nanoparticles loading with rolipram (AP@R). The nanodrug can be efficiently taken up by neutrophils simultaneously through morphology-mediated passive targeting and Cxcr2 receptor-mediated active targeting, subsequently crossing the blood-brain barrier (BBB) by hitchhiking neutrophils. When accumulating at the brain parenchyma, the released rolipram can inhibit the Lcn2 level, thereby reversing the astrocyte phenotype to alleviate neuroinflammation and promote BBB repair. This work provides a new strategy for treating ischemic stroke.
Collapse
Affiliation(s)
- Renmin Xiao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jingmei Pan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Mengyi Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hua Liu
- Department of neurology, the third people's hospital of Chengdu & the affiliated hospital of Southwest Jiaotong university, Chengdu 610031, PR China
| | - Aohan Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
7
|
Aswani BS, Sajeev A, Hegde M, Mishra A, Abbas M, Vayalpurayil T, Sethi G, Kunnumakkara AB. Exosomal dynamics: Bridging the gap between cellular senescence and cancer therapy. Mech Ageing Dev 2025; 225:112045. [PMID: 40074065 DOI: 10.1016/j.mad.2025.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle. Senescence has profound effects on both physiological and pathological processes, influencing cellular systems through secreted factors that affect surrounding and distant cells. Among these factors are exosomes, small extracellular vesicles that play crucial roles in cellular communication, development, and defense, and can contribute to pathological conditions. Recently, there has been increasing interest in engineering exosomes as precise drug delivery vehicles, capable of targeting specific cells or intracellular components. Studies have emphasized the significant role of exosomes from senescent cells in cancer progression and therapy. Notably, chemotherapeutic agents can alter the tumor microenvironment, induce senescence, and trigger immune responses through exosome-mediated cargo transfer. This review explores the intricate relationship between cellular senescence, exosomes, and cancer, examining how different therapeutics can eliminate cancer cells or promote drug resistance. It also investigates the molecular mechanisms and signaling pathways driving these processes, highlighting current challenges and proposing future perspectives to uncover new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anamika Mishra
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Li LY, Liang SY, Cai MP, Ge JC, Tan HS, Wang CB, Xu B. Engineered extracellular vesicles as imaging biomarkers and therapeutic applications for urological diseases. Mater Today Bio 2025; 32:101646. [PMID: 40160248 PMCID: PMC11953971 DOI: 10.1016/j.mtbio.2025.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
With the ever-increasing burden of urological diseases, the need for developing novel imaging biomarkers and therapeutics to manage these disorders has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles and widely applied in both diagnostics and therapeutics for many diseases. A growing body of research has demonstrated that EVs can be engineered to enhance their efficiency, specificity, and safety. We systematically examine the strategies for achieving targeted delivery of EVs as well as the techniques for engineering them in this review, with a particular emphasis on cargo loading and transportation. Additionally, this review highlights and summarizes the wide range of imaging biomarkers and therapeutic applications of engineered EVs in the context of urological diseases, emphasizing the potential applications in urological malignancy and kidney diseases.
Collapse
Affiliation(s)
- Liao-Yuan Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si-Yuan Liang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mao-Ping Cai
- Department of Urology, Cancer Center, Fudan University, Shanghai, China
| | - Jian-Chao Ge
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Song Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng-Bang Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Yan C, Zhu X, Ren Y, Guan S, He S, Qiu F, Huang M, Qu X, Liu H. Protein-based nano delivery systems focusing on protein materials, fabrication strategies and applications in ischemic stroke intervention: A review. Int J Biol Macromol 2025; 311:143645. [PMID: 40311959 DOI: 10.1016/j.ijbiomac.2025.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ischemic stroke (IS), characterized by acute cerebral vascular occlusion and narrow therapeutic windows, poses formidable clinical challenges due to the blood-brain barrier (BBB) restriction, reperfusion injury risks, and limited efficacy of conventional thrombolytic therapies. These hurdles necessitate advanced delivery systems capable of precise BBB penetration, remodeled circulation, and neuroprotection. Proteins and peptides emerge as universal biomaterials for constructing nano-delivery platforms, leveraging their biocompatibility, biodegradability, low toxicity, and receptor-specific targeting. This review systematically explores protein-based nanomaterials in stroke intervention, emphasizing material selection, fabrication strategies, and therapeutic applications. Various structural proteins are analyzed for their unique advantages in carrier design, while peptide modifications are highlighted for enhancing targeted delivery. Critical fabrication techniques are discussed to balance stability and functionality. Furthermore, the applications of protein-based nanomaterials in IS therapy are summarized. Advanced preparation and application of protein-based nanomaterials, from delivery vehicles to ligand modification, potentially prolong the therapeutic window for IS and provide effective neuroprotection.
Collapse
Affiliation(s)
- Chao Yan
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - XuChun Zhu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing 100036, China
| | | | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China; Guizhou Institute of Technology, Guizhou 550000, China.
| |
Collapse
|
10
|
Park KC, Jaafari A, Smith CA, Lobo AR, Errichelli L, Şimşek G, Gunadasa-Rohling M, Marchant A, Levitin MO, Castilla-Llorente V, Vilela P, Swietach P. A Langendorff-heart discovery pipeline demonstrates cardiomyocyte targeting by extracellular vesicles functionalized with beta-blockers using click-chemistry. J Mol Cell Cardiol 2025:S0022-2828(25)00089-6. [PMID: 40414416 DOI: 10.1016/j.yjmcc.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/18/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Extracellular vesicles (EVs) are widely explored as vehicles for delivering therapeutic or experimental cargo to cardiomyocytes. Efforts to improve EV bioavailability in the heart, and reduce their off-target actions, require screening methods that can replicate the physiological and anatomical barriers present in the myocardium. Additionally, discovery pipelines must exercise control over EV dosage and timing, and provide a means of assessing cargo incorporation into cardiomyocytes specifically. These criteria are not generally met by experiments on cultured cells or animals. Here, we present a Langendorff-heart discovery pipeline that combines the strengths of in vivo and in vitro approaches. Langendorff-mode perfusion enables controlled exposure of beating hearts to re-circulated EVs. Following perfusion, cardiomyocytes can be isolated enzymatically for analysis, such as imaging. We tested this discovery pipeline by functionalizing EVs with beta-blockers (atenolol, metoprolol) using click-chemistry and incorporating the fluorescent protein NeonGreen2 to track the fate of EV cargo. Fluorescence in cardiomyocytes, including their nuclear regions, increased after Langendorff-treatment with beta-blocker decorated EVs, but only if these contained NeonGreen2, implicating the fluorescent cargo as the source of signal. Superior binding efficacy of beta-blockers was confirmed by referencing to the substantially lower signals obtained using wild-type EVs or EVs presenting myomaker or myomixer proteins, motifs that modestly enrich cardiac EV uptake in mice. Our findings demonstrate successful cardiomyocyte targeting using EVs decorated with beta-receptor binders. We propose the Langendorff-perfused heart as an intermediate step, nested between in vitro characterisation and animal testing, in discovery pipelines for seeking improved EV designs for the heart.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Amir Jaafari
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK
| | | | | | - Lorenzo Errichelli
- Evox Therapeutics, Medawar Centre, Robert Robinson Ave, Oxford OX4 4HG, UK
| | - Gül Şimşek
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK; Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | | | - Alexander Marchant
- Evox Therapeutics, Medawar Centre, Robert Robinson Ave, Oxford OX4 4HG, UK
| | - Maria O Levitin
- Evox Therapeutics, Medawar Centre, Robert Robinson Ave, Oxford OX4 4HG, UK
| | | | - Patrick Vilela
- Evox Therapeutics, Medawar Centre, Robert Robinson Ave, Oxford OX4 4HG, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
11
|
Sergazy S, Adekenov S, Khabarov I, Adekenova K, Maikenova A, Aljofan M. Harnessing Mammalian- and Plant-Derived Exosomes for Drug Delivery: A Comparative Review. Int J Mol Sci 2025; 26:4857. [PMID: 40429997 DOI: 10.3390/ijms26104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Exosomes, nanoscale vesicles involved in intercellular communication, have garnered significant attention for their potential in drug delivery and therapeutic applications. This review provides a comparative analysis of mammalian-derived exosomes, particularly milk-derived exosomes, and plant-derived exosome-like nanoparticles (PDENs). It explores their biogenesis, bioactivities, and functional similarities, including their roles in cellular communication, immune modulation, and disease therapy. While milk-derived exosomes exhibit promising biocompatibility and stability for targeted delivery, PDENs offer distinct advantages, such as scalability and inherent bioactivities, derived from their plant sources. Despite similarities in their structure and cargo, PDENs differ in lipid composition and protein profiles, reflecting plant-specific functions. Emerging research highlights the therapeutic potential of PDENs in managing inflammation, oxidative stress, and other diseases, emphasizing their utility as functional food components and nanocarriers. However, challenges related to their chemical stability and large-scale production require further investigation. This review underscores the need for advanced studies to fully harness the potential of these natural nanocarriers in drug-delivery systems and therapeutic interventions.
Collapse
Affiliation(s)
- Shynggys Sergazy
- Research and Production Center Phytochemistry, Gazaliyev Street, Karaganda 100009, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sergazy Adekenov
- Research and Production Center Phytochemistry, Gazaliyev Street, Karaganda 100009, Kazakhstan
| | - Ilya Khabarov
- Research and Production Center Phytochemistry, Gazaliyev Street, Karaganda 100009, Kazakhstan
| | - Kymbat Adekenova
- Research and Production Center Phytochemistry, Gazaliyev Street, Karaganda 100009, Kazakhstan
| | - Assiya Maikenova
- Research and Production Center Phytochemistry, Gazaliyev Street, Karaganda 100009, Kazakhstan
| | - Mohamad Aljofan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Zhang X, Zhao J, Ge R, Zhang X, Sun H, Guo Y, Wang Y, Chen L, Li S, Yang J, Sun D. Arg-Gly-Asp engineered mesenchymal stem cells as targeted nanotherapeutics against kidney fibrosis by modulating m6A. Acta Biomater 2025; 198:85-101. [PMID: 40158765 DOI: 10.1016/j.actbio.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Background The recent surge in research on extracellular vesicles has generated considerable interest in their clinical applications. Extracellular vesicles derived from mesenchymal stem cells (MSC-EV) have emerged as a promising cell-free therapy for chronic kidney disease (CKD), offering an alternative to traditional Mesenchymal stem/stromal cells (MSCs) in extracellular vesicle-based nanotherapeutics. However, challenges such as in vivo off-target effects and limited bioavailability have impeded the wider adoption of MSC-EV in clinical settings. Methods Arginyl-glycyl-aspartic acid peptide-modified MSC-EV (RGD-MSC-EV) were developed using a donor cell-assisted membrane modification strategy. The targeting capability and therapeutic efficacy of RGD-MSC-EV were thoroughly evaluated both in vitro and in vivo. Additionally, the mechanisms of RNA N6-methyladenosine (m6A) methylation-mediated angiogenesis were extensively investigated to elucidate how RGD-MSC-EV mitigates renal fibrosis. Results RGD-MSC-EV demonstrated exceptional targeted delivery efficiency, exhibiting optimal biodistribution and retention within the target tissue. This breakthrough positions them as significantly enhanced anti-fibrotic therapeutics. Notably, RGD-MSC-EV sustains the viability of renal peritubular capillary (PTCs) endothelial cells by transporting microRNA-126-5p (miR-126-5p) and modulating alkB homolog 5 (ALKBH5)-mediated m6A modification of SIRT1(Sirtuin 1), a crucial regulator in angiogenesis. By revitalizing endothelial cells and promoting microcirculation, this approach restored oxygen metabolism homeostasis, ultimately delaying fibrogenesis associated with CKD. Conclusions RGD-MSC-EV offers a feasible and effective strategy to alleviate renal interstitial fibrosis by restoring m6A and mitigating the loss of renal PTCs. STATEMENT OF SIGNIFICANCE: Chronic kidney disease (CKD) often leads to renal fibrosis, which worsens disease progression. This study introduces a novel strategy using engineered extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EV). By modifying these EVs with RGD peptides, we significantly enhance their targeting ability to hypoxic kidney tissues. The research reveals how these EVs deliver microRNA (miR-126-5p) to restore key molecular mechanisms, stabilizing SIRT1 expression through m6A RNA modifications. This approach promotes blood vessel health and delays fibrosis. Compared to current treatments, RGD-MSC-EV offers a safe, effective, and cell-free therapeutic alternative. These findings advance the understanding of EV-based therapies and their clinical potential, bridging basic research and real-world CKD treatment applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Jiaqi Zhao
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Rui Ge
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Zhang
- Department of Nephrology, Ningbo City first Hospital, Ningbo, China
| | - Haihan Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| | - Yuhan Guo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Rheumatology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Jing Yang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
13
|
Tang L, Wang Y, Mao S, Yu Z, Chen Y, Xu X, Cai W, Lai K, Yang G, Huang T. Engineered bone-targeting apoptotic vesicles as a minimally invasive nanotherapy for heterotopic ossification. J Nanobiotechnology 2025; 23:348. [PMID: 40369573 PMCID: PMC12077018 DOI: 10.1186/s12951-025-03431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Heterotopic Ossification (HO), refers to pathological extra skeletal bone formation, and there are currently no reliable methods except surgery to reverse these unexpected calcified tissues. Apoptotic vesicles (ApoEVs) are membrane-bound vesicles released by apoptotic cells, which are involved in metabolism regulation and intercellular communication. Due to its superior trauma-healing ability, the hard palate mucosa is expected to become an essential resource for tissue engineering. This work presents a minimally invasive nanotherapy based on an engineered apoEV. Briefly, apoEVs were extracted from hard palate mucosa and engineered with bone-targeting peptide SDSSD to treat HO. This engineered apoEV not only can achieve directed localization of heterotopic bones but also has the compelling dual function of promoting osteoclastic differentiation while inhibiting osteogenic differentiation. The underlying mechanism involves the activation of Hippo and Notch pathways, as well as the regulation of pyrimidine metabolism. We envision that this engineered apoEV may be a feasible and effective strategy for reversing HO.
Collapse
Affiliation(s)
- Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Shihua Mao
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Xiaoqiao Xu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
14
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
15
|
Qu M, Wang Q, Wang X, Tang J, Dong X, Zhao C, Guan Q. Recent advances in nanomaterial-based brain-targeted delivery systems for glioblastoma therapy. Nanomedicine (Lond) 2025:1-17. [PMID: 40353316 DOI: 10.1080/17435889.2025.2503694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GBM) poses a formidable challenge because of its high morbidity and mortality. The therapeutic efficacy of GBM is significantly hampered by the intricate blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). Nanomaterial-based brain-targeted delivery systems have shown great potential for effectively delivering therapeutic agents for GBM treatment by overcoming the limitations of conventional drugs, such as poor BBB penetration, a short half-life, and low bioavailability. This review focuses on an in-depth analysis of the interplay between the BBB/BBTB and drug transport kinetics while analyzing innovative nanoparticle-mediated strategies for enhanced GBM treatment. Moreover, the delivery strategies of nanoparticle-based brain-targeted systems are emphasized, with particular attention given to biomimetic nanoparticles (BMNPs), whose unique advantages. The current challenges, translational potential, and future research directions in this rapidly evolving field are comprehensively discussed, highlighting advances in nanomaterial applications. This review aims to stimulate further research into GBM delivery systems, offering promising avenues for maximizing the therapeutic effects of gene drugs or chemotherapeutic agents in practical applications.
Collapse
Affiliation(s)
- Mingyue Qu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinying Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiyao Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Chaoyue Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Qingxiang Guan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Wu Q, Xie Z, Cao X, Hu D, Sheng L, Guo X, Yan D, Ding C, Li C, Xiao J, Liu C, Wu K, Gong Y, Fan Q, Wang Q, Liu J, Liu Y. Chaihu-Shugan-San alleviates post-stroke depression in mice: Mechanistic insights into exosome-mediated neuroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119700. [PMID: 40154896 DOI: 10.1016/j.jep.2025.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Post-stroke depression (PSD) is common among stroke survivors and negatively impacts recovery. Chaihu-Shugan-San (CSS), a traditional Chinese medicine, has shown therapeutic potential for mood disorders, particularly PSD. Recent studies suggest that CSS's effects may be mediated by exosomes, but the mechanisms remain unclear. AIM OF STUDY This study aimed to evaluate the therapeutic effects of CSS on PSD in mice and investigate the underlying mechanisms, particularly the role of exosomes. MATERIALS AND METHODS Active compounds in CSS were identified from rat serum using liquid chromatography-mass spectrometry (LC-MS) and analyzed through network pharmacology. In vitro, an oxygen-glucose deprivation/reperfusion (OGD/R) BV2 microglia model was used to assess the effects of CSS-containing serum (CSS-S). Exosomes from OGD/R-treated BV2 microglia were isolated, labeled with PKH26, and analyzed using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). In vivo, a photothrombotic stroke (PT) model combined with chronic unpredictable mild stress (CUMS) was used to induce PSD in mice. Behavioral assessments and histological analysis were performed, along with immunofluorescence (IF), ELISA and q-PCR to measure key protein and miR-146 expression in the hippocampus. RESULTS CSS treatment significantly alleviated depressive-like behaviors in the PSD mouse model. Mice treated with high-dose CSS (4.2 g/kg) exhibited increased sucrose preference, reduced immobility in the tail suspension test (TST) and forced swimming test (FST), and enhanced exploratory activity in the open field test (OFT). Histological analysis demonstrated that CSS treatment improved brain tissue integrity, alleviating neuronal damage and reducing neuroinflammation. Exosome analysis revealed that CSS increased the expression of microglia-derived exosomes in the hippocampus, which were shown to carry miR-146. Further examination of miR-146 isoforms in the hippocampal tissue revealed significant changes: miR-146b-3p and miR-146a-5p were upregulated, while miR-146a-3p and miR-146b-5p were downregulated in PSD mice. Treatment with CSS reversed the altered miRNA expression, indicating a potential mechanism for its neuroprotective effects. Additionally, CSS treatment reduced the expression of inflammatory cytokines such as S100A8, IL1β, IL6, and TNF-α, while restoring the levels of angiogenic factors VEGFC and VEGFR3. ELISA measurements showed significant decreases in cyclic AMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) in PSD mice; high-dose CSS notably elevated CREB and BDNF levels and showed comparable effects to fluoxetine in restoring 5-HT and DA levels. Additionally, the calcium signaling pathway was implicated, with altered mRNA expressions of CaMKIIα, CREB, phosphorylated CREB (p-CREB), PDE4D, and BDNF, although fluoxetine demonstrated stronger modulatory effects than CSS. CONCLUSIONS CSS alleviates PSD in mice by modulating exosome-mediated signaling, particularly through the regulation of miR-146. The treatment reversed abnormal miRNA expression, reduced neuroinflammation, and improved synaptic function. These findings highlight CSS's potential as an effective therapeutic strategy for PSD by targeting exosome-mediated neuroprotection and miR-146 regulation.
Collapse
Affiliation(s)
- Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Dan Hu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Lei Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Xueyan Guo
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Dong Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Caixia Ding
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Chuanyou Li
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Jing Xiao
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Chunyu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Ke Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Yue Gong
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Qiqi Fan
- Central Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jinman Liu
- Central Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China.
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| |
Collapse
|
17
|
Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnology 2025; 23:329. [PMID: 40319325 PMCID: PMC12049023 DOI: 10.1186/s12951-025-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods. MAIN BODY This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions. CONCLUSION By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.
Collapse
Affiliation(s)
- Sepehr Mehdizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mobin Mamaghani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| |
Collapse
|
18
|
Du ZW, Li YS, Jiang XC, Gao JQ. Nanoparticles Designed Based on the Blood-Brain Barrier for the Treatment of Cerebral Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410404. [PMID: 40042407 DOI: 10.1002/smll.202410404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is currently considered a significant factor affecting the prognosis of ischemic stroke. The blood-brain barrier (BBB) plays multiple roles in the treatment ofCI/RI. BBB leakage allows bloodborne toxins to exacerbate the stroke pathology. Yet as the physiological barrier that separates the blood from the brain, BBB also poses a significant obstacle to therapeutic drug delivery. Therefore, it is essential to consider both crossing and repairing the BBB in the process of the treatment of CI/RI. Leveraging the exceptional benefits of nanoparticles (NPs) for BBB penetration and targeted repair, numerous NPs are developed as promising drug delivery platforms. Considering the complex role of the BBB in CI/RI, this review delves into the strategies for designing NPs to cross the BBB, focusing on peptide-modified NPs, cell-mediated NPs, cell membrane-derived NPs, and BBB-modulating NPs. Additionally, it summarizes design strategies of NPs targeting endothelial cells (ECs), astrocytes, and those aimed at regulating the microenvironment to repair the BBB. On this basis, it reveals the prospects and challenges of NPs designed around the BBB in CI/RI treatment. And it highlights the need to combine BBB permeability promotion and BBB repair in nanoparticle strategies designed based on the BBB to achieve more effective treatment.
Collapse
Affiliation(s)
- Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
19
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
20
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
Dipalo LL, Mikkelsen JG, Gijsbers R, Carlon MS. Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis. Hum Gene Ther 2025. [PMID: 40295092 DOI: 10.1089/hum.2024.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced "living drugs." We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in in vivo gene editing for this disease.
Collapse
Affiliation(s)
- Laudonia Lidia Dipalo
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Advanced Disease Modelling, Targeted Drug Discovery, and Gene Therapy (ADVANTAGE) labs, KU Leuven, Leuven, Belgium
- Leuven Viral Vector Core, group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Xiong S, Huang Z, Mukwaya V, Zhao W, Wang L, Dou H. Cell-Targeting Bio-Catalytic Killer Protocell for High-Order Assembly Guided Cancer Cell Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500047. [PMID: 40270292 DOI: 10.1002/smll.202500047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/03/2025] [Indexed: 04/25/2025]
Abstract
The design and construction of synthetic therapeutic protocells capable of engaging in high-order assembly with living cells represent a significant challenge in synthetic biology and bioengineering. Inspired by cell membrane receptor-ligand systems, a protocell bioreactor is developed for targeted cancer cell elimination. This is achieved by constructing orthogonal, polysaccharide-based protocells (polysaccharidosomes, P-somes) through a bottom-up approach that leverages host-guest chemistry. The protocells are assembled via electrostatically-driven self-assembly of β-cyclodextrin (β-CD)-modified amino-dextran on a sacrificial template encapsulating glucose oxidase (GOx). To enable specific cancer cell targeting and catalytic activity, cell-targeting ligands (arginylglycylaspartic acid, cRGD) and catalase-like platinum-gold nanoparticles (Pt-AuNPs) are introduced through host-guest interactions, forming a fully functional, cell-targeting, bio-catalytic killer protocell. These protocells are programmed to spatially couple the GOx/Pt-AuNP catalytic reaction cascade. In the presence of glucose and hydroxyurea, this cascade generates a localized flux of nitric oxide (NO), which is exploited for in vitro cancer cell inhibition. Overall, the results highlight the potential of integrating orthogonal and synergistic tumor inhibition mechanisms within synthetic microcompartments. This platform demonstrates promise for future therapeutic applications, especially in cancer treatment, and represents a step forward in the development of programmable protocell-based therapeutic systems.
Collapse
Affiliation(s)
- Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeqi Huang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Li S, Zhang Y, Ding S, Chang J, Liu G, Hu S. Curcumin Ameliorated Glucocorticoid-Induced Osteoporosis While Modulating the Gut Microbiota and Serum Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8254-8276. [PMID: 40139762 DOI: 10.1021/acs.jafc.4c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of secondary osteoporosis. Recently, the "bone-gut axis" theory has linked bone development with gut microbial diversity, community composition, and metabolites. Curcumin, a well-studied polyphenol, shows potential in mitigating bone loss and osteoporosis. Alendronate, a standard therapeutic agent for osteoporosis, serves as a positive control in this investigation. The study demonstrates the potency of curcumin in reducing bone loss and restoring bone mineral density, enhancing trabecular parameters notably through increased trabecular number, volume, and thickness and reduced bone marrow cavity size. Gut microbiome sequencing revealed that both curcumin and alendronate treatments similarly enhanced gut microbial diversity and altered microbiota composition, increasing beneficial bacteria (Akkermansia_muciniphila, Dubosiella_sp910585105, and Ruminococcus_sp910584195) while reducing harmful bacteria (Treponema_D_sp910584475 and Duncaniella_sp910584825). Furthermore, significant changes in serum levels of metabolites including raffinose, ursolic acid, spermidine, inosine, hypoxanthine, thiamine, and pantothenic acid were observed post-treatment with curcumin or alendronate. Importantly, these beneficial metabolites and microorganisms were negatively correlated with inflammatory cytokines. In conclusion, curcumin holds promise for use against GIOP by modulating the gut microbiome and serum metabolome as well as reducing systemic inflammation.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yating Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiang Chang
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Siwang Hu
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
24
|
Alptekin A, Khan MB, Parvin M, Chowdhury H, Kashif S, Selina FA, Bushra A, Kelleher J, Ghosh S, Williams D, Blumling E, Ara R, Bosomtwi A, Frank JA, Dhandapani KM, Arbab AS. Effects of low-intensity pulsed focal ultrasound-mediated delivery of endothelial progenitor-derived exosomes in tMCAo stroke. Front Neurol 2025; 16:1543133. [PMID: 40271117 PMCID: PMC12014438 DOI: 10.3389/fneur.2025.1543133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Exosomes from different sources have been used for therapeutic purposes to target stroke and other disorders. However, exosomes from endothelial progenitor cells (EPCs) have not been tested in any stroke model, and in vivo bio-distribution study is lacking. Targeted delivery of IV-administered exosomes has been a significant challenge. Delivery of exosomes to the brain is a daunting task, and a blood-brain barrier (BBB)-penetrable peptide is being considered. However, the next step in practical treatment will be delivering naïve (unmodified) exosomes to the stroke site without destroying host tissues or disrupting BBB, or the membranes of the delivery vehicles. Low-intensity-pulsed focused ultrasound (LIPFUS) is approved for clinical use in the musculoskeletal, transcranial brain, and physiotherapy clinics. The objectives of the proposed studies were to determine whether LIPFUS-mediated increased delivery of EPC-derived exosomes enhances stroke recovery and functional improvement in mice with transient middle cerebral artery occlusion (tMCAo) stroke. Methods To enhance exosome delivery to the stroke area, we utilized LIPFUS. We evaluated stroke volume using MRI at different time points and conducted behavioral studies parallel to MRI to determine recovery. Ultimately, we studied brain tissue using immunohistochemistry to assess the extent of stroke and tissue regeneration. Results and Discussion In vivo, imaging showed a higher accumulation of EPC exosomes following LIPFUS without any damage to the underlying brain tissues, increased leakage of albumin, or accumulation of CD45+ cells. Groups of mice (14-16 months old) were treated with Vehicle (PBS), LIPFUS only, EPC-exosomes only, and LIPFUS+EPC-exosomes. LIPFUS + EPC exosomes groups showed a significantly decreased stroke volume on day 7, decreased FluoroJade+ cells, and significantly higher numbers of neovascularization in and around the stroke areas compared to that of other groups.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohammad B. Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahrima Parvin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hasanul Chowdhury
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sawaiz Kashif
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Fowzia A. Selina
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Anika Bushra
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Justin Kelleher
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santu Ghosh
- Department of Biostatistics, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Dylan Williams
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Emily Blumling
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Asamoah Bosomtwi
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joseph A. Frank
- Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ali S. Arbab
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Williams A, Branscome H, Kashanchi F, Batrakova EV. Targeting of Extracellular Vesicle-Based Therapeutics to the Brain. Cells 2025; 14:548. [PMID: 40214500 PMCID: PMC11989082 DOI: 10.3390/cells14070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Extracellular vesicles (EVs) have been explored as promising vehicles for drug delivery. One of the most valuable features of EVs is their ability to cross physiological barriers, particularly the blood-brain barrier (BBB). This significantly enhances the development of EV-based drug delivery systems for the treatment of CNS disorders. The present review focuses on the factors and techniques that contribute to the successful delivery of EV-based therapeutics to the brain. Here, we discuss the major methods of brain targeting which includes the utilization of different administration routes, capitalizing on the biological origins of EVs, and the modification of EVs through the addition of specific ligands on to the surface of EVs. Finally, we discuss the current challenges in large-scale EV production and drug loading while highlighting future perspectives regarding the application of EV-based therapeutics for brain delivery.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
| | - Elena V. Batrakova
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
| |
Collapse
|
26
|
Lee EC, Choi D, Lee DH, Oh JS. Engineering Exosomes for CNS Disorders: Advances, Challenges, and Therapeutic Potential. Int J Mol Sci 2025; 26:3137. [PMID: 40243901 PMCID: PMC11989722 DOI: 10.3390/ijms26073137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The development of targeted drugs for diseases of the central nervous system (CNS) is a significant challenge due to the structural complexity and functional specificities of these systems. Recently, exosomes have emerged as a promising therapeutic platform, given their unique capacity to traverse the blood-brain barrier and deliver bioactive molecules to target cells. This review examines recent advances in exosome research with a particular focus on CNS diseases, emphasizing their role as carriers of therapeutic cargo, including proteins, RNAs, and lipids. Nevertheless, significant challenges remain before exosome-based therapies can be translated from preclinical research to clinical applications. These include the need for scalable production and standardized isolation methods. Despite these hurdles, ongoing studies continue to shed light on the mechanisms of exosome-mediated neuroprotection and neurodegeneration. This paves the way for innovative therapeutic strategies to address CNS disorders.
Collapse
Affiliation(s)
- Eun Chae Lee
- Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Dongsic Choi
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea;
| | - Dong-Hun Lee
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Jae Sang Oh
- Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| |
Collapse
|
27
|
Hong Q, Lyu W, Zhang C, Yao W, Han Y, Chen N. Research trajectory and future trends in curcumin related to immunity: a bibliometric analysis of publications from last two decades. Front Immunol 2025; 16:1559670. [PMID: 40196111 PMCID: PMC11973075 DOI: 10.3389/fimmu.2025.1559670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Curcumin has a clear immunopharmacological effect and plays an important role as an immune agent in various immune diseases and tumor immunotherapy. To comprehensively and scientifically clarify and reflect the development process, current status, and research trends of curcumin in the field of immune regulation, and to provide reliable insights for discipline development strategies and future research expansion, this study systematically analyzes 3939 valid articles related to curcumin and immunity published between 2004 and 2024 from the Web of Science database. Using Citespace and R-bibliometrix software for bibliometric analysis, we create visual knowledge maps from multiple dimensions including overall publication output, influential research entities, highly cited papers, research topics and hotspots. The results indicate that the overall number of publications and citations is currently in a rapid development phase. China occupies a core position in this research field but has low collaboration intensity. The Egyptian Knowledge Bank (EKB) is the institution with the highest publication volume. Moreover, cluster analysis reveals that research hotspots are gradually shifting from fundamental pathology to topics involving broad social and environmental influences. The top five keywords with the most explosive citations-curcumin, inflammation, apoptosis, oxidative stress, and cancer-represent the most focused and influential research topics. Currently, curcumin immunology has developed a diversified research perspective, accumulating significant research in the areas of active substance basis, pharmacological activity, anti-inflammatory, and anti-cancer studies. The thematic evolution trends and keywords related to curcumin's immunological mechanisms summarized in this article provide insights and guidance for future research directions.
Collapse
Affiliation(s)
- Qing Hong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lyu
- School of Economics and Management, Anhui Polytechnic University, Wuhu, China
| | - Chaowei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxuan Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
28
|
Li P, Sun S, Zhu X, Liu X, Yin R, Chen Y, Chang J, Ye L, Gao J, Zhao X, Xu H, Wang Y, Zuo W, Sun Z, Wang S, Zhang X, Wei J, Zhao RC, Han Q. Intranasal delivery of engineered extracellular vesicles promotes neurofunctional recovery in traumatic brain injury. J Nanobiotechnology 2025; 23:229. [PMID: 40114197 PMCID: PMC11927228 DOI: 10.1186/s12951-025-03181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/01/2025] [Indexed: 03/22/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, significantly affecting patients' quality of life. Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have demonstrated therapeutic potential in TBI treatment. However, their limited targeting ability, short half-life, and low bioavailability present significant challenges for clinical application. In this study, we engineered extracellular vesicles (EEVs) by transfecting hADSCs with lentivirus and incorporating ultra-small paramagnetic nanoparticles (USPNs), resulting in EVs with enhanced miRNA expression and targeted delivery capabilities. These EEVs were administered intranasally to specifically target injury sites, effectively modulating the NF-κB signaling pathway to suppress neuroinflammation. In both in vitro and in vivo assessments, EEVs exhibited superior efficacy in promoting neurofunctional recovery and neurogenesis after brain injury compared to unmodified EVs. Furthermore, validation using human brain organoid models confirmed EEVs' remarkable ability to suppress neuroinflammation, offering a promising strategy for TBI treatment.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Sishuai Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyu Zhu
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yin
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxi Gao
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhao
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zuo
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shihua Wang
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Robert Chunhua Zhao
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Qin Han
- School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
García-Trujillo M, Lavado-García J, Boix-Besora A, Gòdia F, Cervera L. Gag HIV-1 Virus-like Particles and Extracellular Vesicles Functionalization with Spike Epitopes of SARS-CoV-2 Using a Copper-Free Click Chemistry Approach. Bioconjug Chem 2025; 36:486-499. [PMID: 39993141 DOI: 10.1021/acs.bioconjchem.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Enveloped nanoparticles such as extracellular vesicles (EVs) and virus-like particles (VLPs) have emerged as promising nanocarriers capable of transporting bioactive molecules for drug delivery and vaccination. Optimized functionalization methodologies are required to increase the functionalization levels of these nanoparticles, enhancing their performance. Here, a bioorthogonal copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reaction has been optimized to functionalize human immunodeficiency virus type 1 (HIV-1) Gag-based VLPs and EVs. The optimization process has been carried out through reaction kinetics and design of experiments (DoE) using Cy5 as a reporter molecule. The functionalization of both VLPs and EVs has been studied using super-resolution fluorescence microscopy (SRFM), revealing remarkable differences between Gag-VLPs and coproduced EVs. EVs produced by mock transfection and cell growth have been functionalized achieving a mean of 3618.63 ± 48.91 and 6498.75 ± 352.71 Cy5 molecules covalently linked per particle (Cy5cov/particle), respectively. Different nanoparticles have been functionalized with two linear B-cell epitopes from the Spike protein of SARS-CoV-2, S315-338 TSNFRVQPTESIVRFPNITNLCPF and S648-663 GCLIGAEHVNNSYECD, and analyzed by an immunoassay with sera from COVID-19 patients. The obtained results validate the selected B-cell epitopes and highlight the potential of the optimized functionalization approach for the development of nanoparticle-based vaccines.
Collapse
Affiliation(s)
- Marc García-Trujillo
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Lavado-García
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Arnau Boix-Besora
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
30
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
31
|
Satao KS, Doshi GM. Intercellular communication via exosomes: A new paradigm in the pathophysiology of neurodegenerative disorders. Life Sci 2025; 365:123468. [PMID: 39954940 DOI: 10.1016/j.lfs.2025.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and pose a great economic burden on healthcare systems. Generally, these neurodegenerative disorders have a progressive deterioration in neural function and structure, and deposition of misfolded proteins commonly occurs, such as amyloid-β in AD and α-synuclein in PD. However, there exists a special class of exosomes, which acts like a transmitter and enhances communication between cells. The present review discusses the significant role of exosomes in neurodegenerative diseases, with a focus on Amyotrophic lateral Sclerosis (ALS), AD, PD, and Huntington's disease (HD). In this review, the biogenesis of exosomes is discussed from multivesicular bodies and onwards to their release into the extracellular environment. The present review focuses on recent data concerning the possible use of modified exosomes as ND therapy. Indeed, future work is needed to explain the processes driving exosome biogenesis and cargo selection, while opening new routes by the use of exosome-based therapeutics in neurodegenerative disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kiran S Satao
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
32
|
Su X, Wang H, Li Q, Chen Z. Extracellular Vesicles: A Review of Their Therapeutic Potentials, Sources, Biodistribution, and Administration Routes. Int J Nanomedicine 2025; 20:3175-3199. [PMID: 40098717 PMCID: PMC11913029 DOI: 10.2147/ijn.s502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) participate in intercellular communication and play an essential role in physiological and pathological processes. In recent years, EVs have garnered significant attention as cell-free therapeutic alternatives, vectors for drug and gene delivery, biomarkers for disease diagnosis and prognosis, vaccine development, and nutraceuticals. The biodistribution of EVs critically influences their efficacy and toxicity. Therefore, this review aims to discuss the main factors influencing the biodistribution of unmodified EVs, highlighting their distribution patterns, advantages, limitations, and applications under different routes of administration. In addition, we provide a comprehensive discussion of the currently available sources of EVs and summarize the current status of the therapeutic potentials of EVs. By optimizing administration routes and selecting appropriate EV sources, we aim to offer valuable insights to enhance the delivery efficiency and therapeutic efficacy of EVs to target tissues.
Collapse
Affiliation(s)
- Xiaorong Su
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People’s Republic of China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Engineering Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning, 437100, People’s Republic of China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
33
|
Bai L, Yu L, Ran M, Zhong X, Sun M, Xu M, Wang Y, Yan X, Lee RJ, Tang Y, Xie J. Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders. Int J Mol Sci 2025; 26:2491. [PMID: 40141135 PMCID: PMC11942545 DOI: 10.3390/ijms26062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities-particularly their capacity to traverse the blood-brain barrier-make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood-brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Collapse
Affiliation(s)
- Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Robert J. Lee
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| |
Collapse
|
34
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Zhao M, Li Q, Chai Y, Rong R, He L, Zhang Y, Cui H, Xu H, Zhang X, Wang Z, Yuan S, Chen M, He C, Zhang H, Qin L, Hu R, Zhang X, Zhuang W, Li B. An anti-CD19-exosome delivery system navigates the blood-brain barrier for targeting of central nervous system lymphoma. J Nanobiotechnology 2025; 23:173. [PMID: 40045315 PMCID: PMC11881385 DOI: 10.1186/s12951-025-03238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND High-dose methotrexate (HD-MTX) serves as the cornerstone of central nervous system lymphoma (CNSL) treatment, but its efficacy is limited due to low blood-brain barrier (BBB) penetration and adverse effects. This study is focused on an exosome-based drug delivery approach aimed at enhancing BBB permeability, thereby reducing the required dosage of methotrexate (MTX) while ensuring specific targeting of CNSL. METHODS Human adipose-derived mesenchymal stem cells (hAMSCs) were modified with a lentiviral vector encoding anti-CD19, incorporated into exosomes characterized by colloidal gold immunoelectron microscopy and Nano flow cytometry. MTX loaded into anti-CD19-Exos via co-incubation, assessed for loading and encapsulation efficiencies using HPLC. In vitro BBB model constructed using hCMEC/D3 and astrocytes to investigate BBB permeability. In vivo efficacy of anti-CD19-Exo-MTX evaluated in intracranial CNSL models using MRI. Biodistribution tracked with DiR-labeled exosomes, drug concentration in CSF measured by HPLC. LC-MS/MS identified and characterized exosomal proteins analyzed using GO Analysis. Neuroprotective effects of exosomal proteins assessed with TUNEL and Nissl staining on hippocampal neurons in CNSL models. Liver and kidney pathology, blood biochemical markers, and complete blood count evaluated exosomal protein effects on organ protection and MTX-induced myelosuppression. RESULTS We generated anti-CD19-Exo derived from hAMSCs. These adapted exosomes effectively encapsulated MTX, enhancing drug accessibility within lymphoma cells and sustained intracellular accumulation over an extended period. Notably, anti-CD19-Exo-MTX interacted with cerebrovascular endothelial cells and astrocytes of the BBB, leading to endocytosis and facilitating the transportation of MTX across the barrier. Anti-CD19-Exo-MTX outperformed free MTX in vitro, exhibiting a more potent lymphoma-suppressive effect (P < 0.05). In intracranial orthotopic CNSL models, anti-CD19-Exo-MTX exhibited a significantly reduced disease burden compared to both the MTX and Exo-MTX groups, along with prolonged overall survival (P < 0.05). CSF drug concentration analysis demonstrated enhanced stability and longer-lasting drug levels for anti-CD19-Exo-MTX. Anti-CD19-Exo-MTX exhibited precise CNSL targeting with no organ toxicity. Notably, our study highlighted the functional potential of reversal effect of hAMSCs-exosomes on MTX-induced neurotoxicity, hepatic and renal impairment, and myelosuppression. CONCLUSIONS We present anti-CD19-Exo-MTX as a promising exosome-based drug delivery platform that enhances BBB permeability and offers specific targeting for effective CNSL treatment with reduced adverse effects.
Collapse
Affiliation(s)
- Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Yali Chai
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Rong Rong
- Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lexin He
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hongxia Cui
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Zhiming Wang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Shushu Yuan
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Menglu Chen
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Han Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Linlin Qin
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Ruijing Hu
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Xinyuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China.
| |
Collapse
|
36
|
Zhang L, Kao G, Zhao Y, Zhang Z, Kim HS, Shi X, Cheng Q, Hou T, Lenz HJ, Zhang Y. Genetically reprogrammed exosomes for immunotherapy of acute myeloid leukemia. Mol Ther 2025; 33:1091-1104. [PMID: 39815621 PMCID: PMC11897778 DOI: 10.1016/j.ymthe.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/24/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Current treatments for acute myeloid leukemia (AML) remain challenging and are characterized by poor clinical outcomes. Exosomes, cell-derived membranous vesicles, have been emerging as a new modality of therapy. Here, we designed and generated genetically reprogrammed exosomes with surface-displayed antibodies and immunoregulatory proteins, namely programmed immune-engaging exosomes (PRIME Exos). By simultaneously targeting T cells and AML cells expressing C-type lectin-like molecule-1 (CLL-1), PRIME Exos can elicit tumor-specific immune responses and sustain cellular immunity against AML by modulating programmed death 1 (PD-1)- and CD27-mediated immune checkpoint pathways. In preclinical models of AML, PRIME Exos have shown promising efficacy and safety for suppressing leukemia expansion. This study developed a new exosome-based approach for AML immunotherapy.
Collapse
MESH Headings
- Exosomes/genetics
- Exosomes/metabolism
- Exosomes/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Immunotherapy/methods
- Mice
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Disease Models, Animal
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Guoyun Kao
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuanteng Zhao
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zeyu Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hyo Sun Kim
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianling Hou
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
37
|
Zhang Y, Liu K, Ma X, Su X, Zhao L, Wu Y, Shi Y. Therapeutic Effects of Puerarin Loaded Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a Rat Model of Osteoarthritis. Chem Biodivers 2025; 22:e202402095. [PMID: 39420681 DOI: 10.1002/cbdv.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. The primary objective of this study was to assess the therapeutic potential of puerarin loaded bone marrow mesenchymal stem cell-derived exosomes (Pue@BMSC-Exo), and reveal their inflammatory regulating mechanisms through affecting the nuclear factor kappa-B (NF-κB) signaling pathway. In this study, exosomes derived from BMSCs were isolated and identified. Cell proliferation and migration were evaluated by CCK-8 and scratch methods. Furthermore, histological and micro-computed tomography analysis were performed to assess alterations of articular cartilage in OA rats. Results showed that BMSC-Exo and Pue@BMSC-Exo conformed with the basic characteristics of exosomes. BMSC-Exo increased the solubility of Pue and enhanced drug uptake by chondrocytes. In addition, Pue@BMSC-Exo stimulated proliferation and migration of chondrocyte, and also promoted cartilage repair by reducing matrix metalloproteinase MMP13 production and increasing type II collagen (Col2) synthesis. Furthermore, Pue@BMSC-Exo, by effectively inhibiting the NF-κB signaling pathway, reduced the production of inflammatory mediators and attenuated the release of the inflammatory marker nitric oxide (NO), ultimately ameliorating the damage of chondrocyte. These findings exhibited the potential therapeutic significance of Pue@BMSC-Exo in OA and warranted further exploration in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Yi Wu
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, 110030, P R China
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110030, P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| |
Collapse
|
38
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Zhang Q, Wang Y, Zhu Z, Ahmed W, Zhou D, Chen L. Therapeutic Potential of Injectable Supramolecular Hydrogels With Neural Stem Cell Exosomes and Hydroxypropyl Methylcellulose for Post-Stroke Neurological Recovery. Int J Nanomedicine 2025; 20:2253-2271. [PMID: 40007907 PMCID: PMC11853779 DOI: 10.2147/ijn.s505792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background Stroke has significantly contributed to the global mortality rate over the years, emphasizing the urgency of finding effective treatment strategies. Neural stem cell (NSC)-derived exosomes have the potential to improve neurological recovery after stroke; however, their therapeutic efficacy is hindered by their rapid clearance and limited duration of action. This study presents an innovative drug delivery method: a hydrogel based on NSC exosomes and hydroxypropyl methylcellulose (HPMC), which is intended to offer a continuous release, thereby enhancing and prolonging neurological improvement. Results We developed a nanohydrogel (Exo-HPMC) by integrating Buyang Huanwu Decoction (BHD) -preconditioned NSC-derived exosomes with HPMC. This study thoroughly investigated the controlled-release capabilities and rheological properties of Exo-HPMC. Our findings show that Exo-HPMC enables effective sustained exosome release, significantly extending their retention in mice. When administered to mice with middle cerebral artery occlusion (MCAO), Exo-HPMC facilitated notable post-stroke neurorepair. Behavioral assessments and immunofluorescence staining demonstrated that exosomes significantly promoted angiogenesis and nerve regeneration in stroke-affected areas, thereby reversing programmed cell death. Conclusion The Exo-HPMC nanohydrogel presents a groundbreaking approach for stroke therapy. Ensuring a controlled and prolonged release of NSC-derived exosomes over two weeks, significantly enhances the therapeutic potential of exosomes for ischemic stroke treatment.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yupeng Wang
- Key Laboratory of Mental Health of the Ministry of Education, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Waqas Ahmed
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Dongfang Zhou
- Key Laboratory of Mental Health of the Ministry of Education, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
40
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
41
|
Wang H, Lin F, Zhang Y, Lin Y, Gao B, Kang D. Biomaterial-based vascularization strategies for enhanced treatment of peripheral arterial disease. J Nanobiotechnology 2025; 23:103. [PMID: 39940018 PMCID: PMC11823048 DOI: 10.1186/s12951-025-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025] Open
Abstract
Peripheral arterial disease (PAD) poses a global health challenge, particularly in its advanced stages known as critical limb ischemia (CLI). Conventional treatments often fail to achieve satisfactory outcomes. Patients with CLI face high rates of morbidity and mortality, underscoring the urgent need for innovative therapeutic strategies. Recent advancements in biomaterials and biotechnology have positioned biomaterial-based vascularization strategies as promising approaches to improve blood perfusion and ameliorate ischemic conditions in affected tissues. These materials have shown potential to enhance therapeutic outcomes while mitigating toxicity concerns. This work summarizes the current status of PAD and highlights emerging biomaterial-based strategies for its treatment, focusing on functional genes, cells, proteins, and metal ions, as well as their delivery and controlled release systems. Additionally, the limitations associated with these approaches are discussed. This review provides a framework for designing therapeutic biomaterials and offers insights into their potential for clinical translation, contributing to the advancement of PAD treatments.
Collapse
Affiliation(s)
- Haojie Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Fuxin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yibin Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
42
|
Zhang LK, Liu L, Li Z, Zhang Y, Zhai L, Zhang L, Li CH, Guan YQ. Polyphenylalanine-Baicalein Nanomicelles Reduce Nerve Cell Apoptosis and Inflammation to Enhance Neuroprotection and Poststroke Rehabilitation. Biomacromolecules 2025; 26:1149-1160. [PMID: 39874462 DOI: 10.1021/acs.biomac.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas. The results showed that LF-PEG-PPhe-Bai greatly improved the antioxidation, antiapoptosis, and anti-inflammation activity in vitro. Meanwhile, LF-PEG-PPhe-Bai improved the behavioral and cognitive impairment of 2-VO model mice, protected nerve cells in the hippocampus, and reduced inflammation at the brain injury site in vivo. In conclusion, LF-PEG-PPhe-Bai nanomicelles are employed for enhancing neuroprotection and poststroke rehabilitation. The development of this technology might provide a new technique for neural repair after ischemia in the future.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
- School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ziqing Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiquan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Luna Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| |
Collapse
|
43
|
Hossain M, Liu Y. Extracellular Vesicles and Glaucoma: Opportunities and Challenges. Curr Eye Res 2025:1-10. [PMID: 39898581 DOI: 10.1080/02713683.2025.2459888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE Glaucoma is one of the leading causes of irreversible blindness, characterized by progressive visual field loss. Several risk factors are associated with developing the disease. However, the exact mechanisms or pathological pathways involved are still unknown. There is an urgent need to find the mechanisms and biomarkers for early detection and therapy to halt progression or cure the disease. Extracellular vesicles (EVs), specifically exosomes, have emerged as a crucial player in all aspects of glaucoma, including pathogenesis to therapeutic application with their cell-cell communication properties. METHODS We performed a literature search on PubMed, Google Scholar, and Web of Science using different keywords. Next, we reviewed the literature with studies focusing on the role of EVs as a causative factor in disease progression, biomarker discovery based on their contents, and protection from glaucoma. RESULTS Studies summarized here provide reports of differential EV miRNA and protein expression alterations when communicating with aqueous humor drainage tissues. We described how EV contents are involved in various pathways, including extracellular matrix remodeling and miRNA-mediated oxidative stress transmission between outflow tissues, thereby contributing to glaucoma. Extracellular vesicles, mainly derived from mesenchymal stem cells protecting the optic nerve from degeneration, have also been discussed as potential therapies for glaucoma. CONCLUSIONS Overall, this review provides a comprehensive discussion of the role of extracellular vesicles in glaucoma. We identified the challenges in finding major signaling molecules of glaucoma etiology. Lastly, we highlighted future directions to improve the treatment of glaucoma by extracellular vesicles.
Collapse
Affiliation(s)
- Mofazzal Hossain
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
44
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
45
|
Huang C, Xiao Y, Qing L, Tang J, Wu P. Exosomal non-coding RNAs in the regulation of bone metabolism homeostasis: Molecular mechanism and therapeutic potential. Heliyon 2025; 11:e41632. [PMID: 39911437 PMCID: PMC11795052 DOI: 10.1016/j.heliyon.2025.e41632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Bone metabolism is a dynamic balance between bone formation and absorption regulated by osteoblasts/osteoclasts. Bone metabolic disorders can lead to metabolic bone disease. Osteoporosis (OP), osteoarthritis (OA) and femoral head necrosis (ONFH) are common metabolic bone diseases. At present, the treatment of metabolic bone disease is still mainly to relieve pain and improve joint function. However, surgical treatment does not apply to the vast majority of high-risk groups, including postmenopausal women, patients with diabetes, cirrhosis, etc. Exosomes (Exos) are nanoscale membrane vesicles that are released by almost all cells. Exos are rich in a variety of bioactive substances, such as non-coding RNAs, nucleic acids, proteins and lipids. In view of the structure of Exos, it can protect the biologically active molecules can be smoothly delivered to the target cells and involved in the regulation of cell function. In this review, we focus on the regulation mechanism and function of bone homeostasis mediated by exosomal ncRNAs (Exos-ncRNAs), including macrophage polarization, autophagy, angiogenesis, signal transduction and competing endogenous RNA (ceRNA). We summarized the therapeutic strategies and potential drugs of Exos-ncRNAs in metabolic bone disease. Moreover, we discussed the shortcomings and potential research directions of Exos as carrier to deliver ncRNAs to play a role.
Collapse
Affiliation(s)
- Chengxiong Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yu Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| |
Collapse
|
46
|
Geng R, Wang Y, Wang R, Wu J, Bao X. Enhanced neurogenesis after ischemic stroke: the interplay between endogenous and exogenous stem cells. Neural Regen Res 2025; 21:01300535-990000000-00663. [PMID: 39820432 PMCID: PMC12094570 DOI: 10.4103/nrr.nrr-d-24-00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT Ischemic stroke is a significant global health crisis, frequently resulting in disability or death, with limited therapeutic interventions available. Although various intrinsic reparative processes are initiated within the ischemic brain, these mechanisms are often insufficient to restore neuronal functionality. This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option. This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events, with focus on the impact of stem cell-based therapies on neural stem cells. Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-to-cell contact and through the secretion of growth factors and exosomes. Additionally, implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called "biobridges." Furthermore, xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects, thereby supporting endogenous neuroregeneration. Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment, we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types. These approaches include: (1) co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis; (2) synergistic administration of stem cells and their exosomes to amplify paracrine effects; and (3) integration of stem cells within hydrogels, which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits. This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ruxu Geng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhe Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Wu
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
47
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
48
|
Erel-Akbaba G, Akbaba H, Karaman O, Tian T, Tannous BA, Turunc E. Rabies virus-mimicking liposomes for targeted gene therapy in Alzheimer's disease. Int J Pharm 2025; 668:124962. [PMID: 39592065 DOI: 10.1016/j.ijpharm.2024.124962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
RNA interference (RNAi) harbors significant potential for treating neurological disorders; nevertheless, limited efficacy has been discerned. The presence of barriers within the central nervous system, coupled with the inherent instability of nucleic acids within biological conditions, poses formidable challenges in advancing effective gene delivery strategies. In this study, we designed and prepared a virus-mimic non-viral gene vector, rabies virus glycoprotein (RVG29)-decorated liposome (f(Lipo)-RVG29), to deliver small interfering RNAs to the brain. Alzheimer's disease (AD) was chosen as a model of neurodegenerative disease in this context, and b-site APP cleaving enzyme silencing siRNA (siBACE1) was used. The developed liposomal delivery system has a particle size of under 80 nm with a spherical shape, positive zeta potential, and the ability to protect siRNA against nucleases. In vitro studies demonstrate that functionalizing the cationic liposome by the RVG29 targeting ligand significantly enhances the effectiveness of gene delivery and silencing. Examination through ex vivo imaging illustrates an increased deposition of fluorescent-labeled f(Lipo)-RVG29 within brain tissue after 12 h post application. Additionally, the in vivo delivery of f(Lipo)-RVG29 carrying siRNA has substantially suppressed BACE1 expression at both mRNA and protein levels within the brain tissue. Our results suggest that the developed non-viral vector could be a promising gene carrier system combining the synergistic effect of virus-mimic RVG29 ligand with bioinspired liposome that imitates the natural lipid bilayers of cell membranes for brain-targeted RNAi therapeutics.
Collapse
Affiliation(s)
- Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey; Vaccine Development Application and Research Center, Ege University, 35100 Izmir, Türkiye
| | - Ozan Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, United States; Program in Neuroscience, Harvard Medical School, Boston, MA 02129, United States
| | - Ezgi Turunc
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| |
Collapse
|
49
|
Wen Z, Song ZZ, Cai MZ, Zhang NY, Li HZ, Yang Y, Wang QT, Ghafoor MH, An HW, Wang H. Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70005. [PMID: 39895019 DOI: 10.1002/wnan.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.
Collapse
Affiliation(s)
- Zhuan Wen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhang-Zhi Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Ming-Ze Cai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Ze Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Yang Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Qian-Ting Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Muhammad Hamza Ghafoor
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Awuah WA, Ahluwalia A, Tan JK, Sanker V, Roy S, Ben-Jaafar A, Shah DM, Tenkorang PO, Aderinto N, Abdul-Rahman T, Atallah O, Alexiou A. Theranostics Advances in the Treatment and Diagnosis of Neurological and Neurosurgical Diseases. Arch Med Res 2025; 56:103085. [PMID: 39369666 DOI: 10.1016/j.arcmed.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Theranostics represents a significant advance in the fields of neurology and neurosurgery, offering innovative approaches that combine the diagnosis and treatment of various neurological disorders. This innovation serves as a cornerstone of personalized medicine, where therapeutic strategies are closely integrated with diagnostic tools to enable precise and targeted interventions. Primary research results emphasize the profound impact of theranostics in Neuro Oncol. In this context, it has provided valuable insights into the complexity of the tumor microenvironment and mechanisms of resistance. In addition, in the field of neurodegenerative diseases (NDs), theranostics has facilitated the identification of distinct disease subtypes and novel therapeutic targets. It has also unravelled the intricate pathophysiology underlying conditions such as cerebrovascular disease (CVD) and epilepsy, setting the stage for more refined treatment approaches. As theranostics continues to evolve through ongoing research and refinement, its goals include further advancing the field of precision medicine, developing practical biomarkers for clinical use, and opening doors to new therapeutic opportunities. Nevertheless, the integration of these approaches into clinical settings presents challenges, including ethical considerations, the need for advanced data interpretation, standardization of procedures, and ensuring cost-effectiveness. Despite these obstacles, the promise of theranostics to significantly improve patient outcomes in the fields of neurology and neurosurgery remains a source of optimism for the future of healthcare.
Collapse
Affiliation(s)
| | - Arjun Ahluwalia
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Vivek Sanker
- Department of Neurosurgery, Stanford University, CA, USA
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | - Devansh Mitesh Shah
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research and Development, Funogen, Athens, Greece; Department of Research and Development, AFNP Med, Wien, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|