1
|
Couvrette LJ, Walker KLA, Bui TV, Pelling AE. Plant Cellulose as a Substrate for 3D Neural Stem Cell Culture. Bioengineering (Basel) 2023; 10:1309. [PMID: 38002433 PMCID: PMC10669287 DOI: 10.3390/bioengineering10111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Neural stem cell (NSC)-based therapies are at the forefront of regenerative medicine strategies for various neural defects and injuries such as stroke, traumatic brain injury, and spinal cord injury. For several clinical applications, NSC therapies require biocompatible scaffolds to support cell survival and to direct differentiation. Here, we investigate decellularized plant tissue as a novel scaffold for three-dimensional (3D), in vitro culture of NSCs. Plant cellulose scaffolds were shown to support the attachment and proliferation of adult rat hippocampal neural stem cells (NSCs). Further, NSCs differentiated on the cellulose scaffold had significant increases in their expression of neuron-specific beta-III tubulin and glial fibrillary acidic protein compared to 2D culture on a polystyrene plate, indicating that the scaffold may enhance the differentiation of NSCs towards astrocytic and neuronal lineages. Our findings suggest that plant-derived cellulose scaffolds have the potential to be used in neural tissue engineering and can be harnessed to direct the differentiation of NSCs.
Collapse
Affiliation(s)
- Lauren J. Couvrette
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Krystal L. A. Walker
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| | - Tuan V. Bui
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Andrew E. Pelling
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| |
Collapse
|
2
|
Teranishi M, Kurose T, Nakagawa K, Kawahara Y, Yuge L. Hypergravity enhances RBM4 expression in human bone marrow-derived mesenchymal stem cells and accelerates their differentiation into neurons. Regen Ther 2023; 22:109-114. [PMID: 36712961 PMCID: PMC9851867 DOI: 10.1016/j.reth.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction The regulation of stem cell differentiation is important in determining the quality of transplanted cells in regenerative medicine. Physical stimuli are involved in regulating stem cell differentiation, and in particular, research on the regulation of differentiation using gravity is an attractive choice. We have shown that microgravity is useful for maintaining undifferentiated mesenchymal stem cells (MSCs). However, the effects of hypergravity on the differentiation of MSCs, especially on neural differentiation related to neural regeneration, have not been elucidated. Methods We induced neural differentiation of human bone marrow-derived MSCs (hbMSCs) for 10 days under normal gravity (1G) or hypergravity (3G) conditions using a gravity controller, Gravite®. HbMSCs were collected, and cell number and viability were measured 3 and 10 days after induction. RNA was also extracted from the collected hbMSCs, and the expression of neuron-associated genes and regulator markers of neural differentiation was analyzed using real-time polymerase chain reaction (PCR). Additionally, we evaluated the NF-M-positive cell rate 10 days after induction using immunofluorescent staining. Results Neural gene expression and the NF-M-positive cell rate were increased in hbMSCs under the 3G condition 10 days after induction. mRNA expression of RNA binding motif protein 4 (RBM4) and pyruvate kinase M 1 (PKM1) in the 3G condition was also higher than that in the 1G group. Conclusions Hypergravity can enhance RBM4 and PKM1, promoting the neural differentiation of hbMSCs.
Collapse
Affiliation(s)
- Masataka Teranishi
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,Space Bio-Laboratories Co. Ltd. Hiroshima, Japan,Corresponding author. Division of Bio-Environmental Adaptation Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan. Fax: +81 82 257 5344.
| |
Collapse
|
3
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Gilmozzi V, Gentile G, Riekschnitz DA, Von Troyer M, Lavdas AA, Kerschbamer E, Weichenberger CX, Rosato-Siri MD, Casarosa S, Conti L, Pramstaller PP, Hicks AA, Pichler I, Zanon A. Generation of hiPSC-Derived Functional Dopaminergic Neurons in Alginate-Based 3D Culture. Front Cell Dev Biol 2021; 9:708389. [PMID: 34409038 PMCID: PMC8365765 DOI: 10.3389/fcell.2021.708389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent an unlimited cell source for the generation of patient-specific dopaminergic (DA) neurons, overcoming the hurdle of restricted accessibility to disease-affected tissue for mechanistic studies on Parkinson's disease (PD). However, the complexity of the human brain is not fully recapitulated by existing monolayer culture methods. Neurons differentiated in a three dimensional (3D) in vitro culture system might better mimic the in vivo cellular environment for basic mechanistic studies and represent better predictors of drug responses in vivo. In this work we established a new in vitro cell culture system based on the microencapsulation of hiPSCs in small alginate/fibronectin beads and their differentiation to DA neurons. Optimization of hydrogel matrix concentrations and composition allowed a high viability of embedded hiPSCs. Neural differentiation competence and efficiency of DA neuronal generation were increased in the 3D cultures compared to a conventional 2D culture methodology. Additionally, electrophysiological parameters and metabolic switching profile confirmed increased functionality and an anticipated metabolic resetting of neurons grown in alginate scaffolds with respect to their 2D counterpart neurons. We also report long-term maintenance of neuronal cultures and preservation of the mature functional properties. Furthermore, our findings indicate that our 3D model system can recapitulate mitochondrial superoxide production as an important mitochondrial phenotype observed in neurons derived from PD patients, and that this phenotype might be detectable earlier during neuronal differentiation. Taken together, these results indicate that our alginate-based 3D culture system offers an advantageous strategy for the reliable and rapid derivation of mature and functional DA neurons from hiPSCs.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Diana A. Riekschnitz
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael Von Troyer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian X. Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Marcelo D. Rosato-Siri
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
5
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
6
|
Harberts J, Fendler C, Teuber J, Siegmund M, Silva A, Rieck N, Wolpert M, Zierold R, Blick RH. Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS NANO 2020; 14:13091-13102. [PMID: 33058673 DOI: 10.1021/acsnano.0c04640] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jeremy Teuber
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Malte Siegmund
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Silva
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Niklas Rieck
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Merle Wolpert
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Dame K, Ribeiro AJ. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med (Maywood) 2020; 246:317-331. [PMID: 32938227 PMCID: PMC7859673 DOI: 10.1177/1535370220959598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.
Collapse
Affiliation(s)
- Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexandre Js Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
8
|
Harberts J, Haferkamp U, Haugg S, Fendler C, Lam D, Zierold R, Pless O, Blick RH. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater Sci 2020; 8:2434-2446. [DOI: 10.1039/d0bm00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Stefanie Haugg
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Dennis Lam
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert H. Blick
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
- Material Science and Engineering
| |
Collapse
|
9
|
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019; 8:E304. [PMID: 31374889 PMCID: PMC6723881 DOI: 10.3390/foods8080304] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
10
|
Develop a 3D neurological disease model of human cortical glutamatergic neurons using micropillar-based scaffolds. Acta Pharm Sin B 2019; 9:557-564. [PMID: 31193866 PMCID: PMC6543078 DOI: 10.1016/j.apsb.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Establishing an effective three-dimensional (3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture system, we further developed an in vitro disease-like model of traumatic brain injury (TBI), which showed a robust increase of glutamate-release from the neurons, in response to mechanical impacts, recapitulating the critical pathology of TBI. The increased glutamate-release from our 3D culture model was attenuated by the treatment of neural protective drugs, memantine or nimodipine. The established 3D in vitro human neural culture system and TBI-like model may be used to facilitate mechanistic studies and drug screening for neurotrauma or other neurological diseases.
Collapse
|
11
|
Mikhailova MM, Bolshakov AP, Chaban EA, Paltsev MA, Panteleyev AA. Primary culture of mouse embryonic spinal cord neurons: cell composition and suitability for axonal regeneration studies. Int J Neurosci 2019; 129:762-769. [PMID: 30621485 DOI: 10.1080/00207454.2019.1567508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Primary culture is an effective experimental model to study molecular mechanisms that drive axonal regeneration after central nervous system injury. However, the culture of spinal cord (SC) cells remains poorly characterized. Here, we have analyzed the cell composition of a primary SC culture during its maturation. Methods: Primary cell culture was prepared from mouse embryo spinal cords. After 2, 7, and 14 days of cultivation, the cells were fixed and stained with antibodies against β3-tubulin, nestin, crmp1, SMI-32, DCC or GFAP. We counted percentage of cells positive for the mentioned markers and measured the length of cell processes. Results: We found that β3-tubulin and nestin were both expressed at day 2 of culture in vitro. Surprisingly (given the use of differentiation-supporting culture medium), the number of nestin+ cells has significantly increased during the first week of cultivation. The GFAP+ cells appeared only at the seventh day in vitro, and their fraction increased during the following cultivation. At 14 day in vitro, SC culture contained cells that expressed the markers typical of commissural and motor neurons. At this age, the neurons had the ability to repair injured neurites after mechanical damage. Conclusion: Primary culture of SC cells is a dynamically developing cell population that contains all main types of SC cells and is capable of self-repair. Therefore, the culture of mouse embryonic SC cells represents an adequate experimental model for studying cellular and molecular processes taking place in SC neurons after axonal damage in the absence of external inhibitors.
Collapse
Affiliation(s)
- Mariya M Mikhailova
- a National Research Center Kurchatov Institute , Moscow , Russian Federation
| | - Alexey P Bolshakov
- b Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences , Moscow , Russian Federation
| | - Ekaterina A Chaban
- c Emanuel Institute of Biochemical Physics Russian Academy of Sciences , Moscow , Russian Federation
| | - Mikhail A Paltsev
- c Emanuel Institute of Biochemical Physics Russian Academy of Sciences , Moscow , Russian Federation
| | - Andrey A Panteleyev
- a National Research Center Kurchatov Institute , Moscow , Russian Federation
| |
Collapse
|
12
|
Shen X, Yeung HT, Lai KO. Application of Human-Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Dev Neurobiol 2018; 79:20-35. [PMID: 30304570 DOI: 10.1002/dneu.22644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.
Collapse
Affiliation(s)
- Xuting Shen
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Hoi Ting Yeung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kwok-On Lai
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
13
|
DeBrot A, Yao L. The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration. Neural Regen Res 2018; 13:1677-1684. [PMID: 30136677 PMCID: PMC6128052 DOI: 10.4103/1673-5374.238602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injuries (SCIs) are debilitating conditions for which no effective treatment currently exists. The damage of neural tissue causes disruption of neural tracts and neuron loss in the spinal cord. Stem cell replacement offers a solution for SCI treatment by providing a source of therapeutic cells for neural function restoration. Induced pluripotent stem cells (iPSCs) have been investigated as a potential type of stem cell for such therapies. Transplantation of iPSCs has been shown to be effective in restoring function after SCIs in animal models while they circumvent ethical and immunological concerns produced by other stem cell types. Another approach for the treatment of SCI involves the graft of a bioscaffold at the site of injury to create a microenvironment that enhances cellular viability and guides the growing axons. Studies suggest that a combination of these two treatment methods could have a synergistic effect on functional recovery post-neural injury. While much progress has been made, more research is needed before clinical trials are possible. This review highlights recent advancements using iPSCs and bioscaffolds for treatment of SCI.
Collapse
Affiliation(s)
- Ashley DeBrot
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
14
|
Miller RJ, Chan CY, Rastogi A, Grant AM, White CM, Bette N, Schaub NJ, Corey JM. Combining electrospun nanofibers with cell-encapsulating hydrogel fibers for neural tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2018; 29:1625-1642. [PMID: 29862935 PMCID: PMC7446748 DOI: 10.1080/09205063.2018.1479084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
Abstract
A promising component of biomaterial constructs for neural tissue engineering are electrospun fibers, which differentiate stem cells and neurons as well as direct neurite growth. However, means of protecting neurons, glia, and stem cells seeded on electrospun fibers between lab and surgical suite have yet to be developed. Here we report an effort to accomplish this using cell-encapsulating hydrogel fibers made by interfacial polyelectrolyte complexation (IPC). IPC-hydrogel fibers were created by interfacing acid-soluble chitosan (AsC) and cell-containing alginate and spinning them on bundles of aligned electrospun fibers. Primary spinal astrocytes, cortical neurons, or L929 fibroblasts were mixed into alginate hydrogels prior to IPC-fiber spinning. The viability of each cell type was assessed at 30 min, 4 h, 1 d, and 7 d after encapsulation in IPC hydrogels. Some neurons were encapsulated in IPC-hydrogel fibers made from water-soluble chitosan (WsC). Neurons were also stained with Tuj1 and assessed for neurite extension. Neuron survival in AsC-fibers was worse than astrocytes in AsC-fibers (p < 0.05) and neurons in WsC-fibers (p < 0.05). As expected, neuron and glia survival was worse than L929 fibroblasts (p < 0.05). Neurons in IPC-hydrogel fibers fabricated with WsC extended neurites robustly, while none in AsC fibers did. Neurons remaining inside IPC-hydrogel fibers extended neurites inside them, while others de-encapsulated, extending neurites on electrospun fibers, which did not fully integrate with IPC-hydrogel fibers. This study demonstrates that primary neurons and astrocytes can be encapsulated in IPC-hydrogel fibers at good percentages of survival. IPC hydrogel technology may be a useful tool for encapsulating neural and other cells on electrospun fiber scaffolds.
Collapse
Affiliation(s)
- Ryan J. Miller
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
| | - Cheook Y. Chan
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
- Undergraduate Research Opportunity Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjun Rastogi
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
| | - Allison M. Grant
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
- Undergraduate Research Opportunity Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Christina M. White
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
| | - Nicole Bette
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
| | - Nicholas J. Schaub
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
- Department of Neurology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph M. Corey
- Department of Research and Geriatric Research Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105
- Department of Neurology, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Program, The University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Misfolded Protein Linked Strategies Toward Biomarker Development for Neurodegenerative Diseases. Mol Neurobiol 2018; 56:2559-2578. [DOI: 10.1007/s12035-018-1232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
16
|
Sekar MP, Roopmani P, Krishnan UM. Development of a novel porous polyvinyl formal (PVF) microfibrous scaffold for nerve tissue engineering. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705388. [PMID: 29450919 DOI: 10.1002/adma.201705388] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
18
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
19
|
Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:501-525. [DOI: 10.1007/978-981-13-0947-2_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Narayanan K, Mishra S, Singh S, Pei M, Gulyas B, Padmanabhan P. Engineering Concepts in Stem Cell Research. Biotechnol J 2017; 12. [PMID: 28901712 DOI: 10.1002/biot.201700066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/07/2017] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
21
|
Kuo YC, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Li Y, Li L, Chen ZN, Gao G, Yao R, Sun W. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication 2017; 9:032001. [DOI: 10.1088/1758-5090/aa7e9a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Shou K, Huang Y, Qi B, Hu X, Ma Z, Lu A, Jian C, Zhang L, Yu A. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel. J Tissue Eng Regen Med 2017; 12:e867-e880. [PMID: 28079980 DOI: 10.1002/term.2400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/05/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been considered to be a promising strategy for wound healing. However, poor viability of engrafted BMSCs and limited capabilities of differentiation into the desired cell types in wounds often hinder its application. Few studies report the induction of BMSC differentiation into the skin regeneration-related cell types using natural biopolymer, e.g. chitin and its derivative. Here we utilized a chitin nanofiber (CNF) hydrogel as a directive cue to induce BMSC differentiation for enhancing cutaneous wound regeneration in the absence of cell-differentiating factors. First, a 'green' fabrication of CNF hydrogels encapsulating green fluorescence protein (GFP)-transfected rat BMSCs was performed via in-situ physical gelation without chemical cross-linking. Without soluble differentiation inducers, CNF hydrogels decreased the expression of BMSC transcription factors (Oct4 and Klf4) and concomitantly induced their differentiation into the angiogenic cells and fibroblasts, which are indispensable for wound regeneration. In vivo, rat full-thickness cutaneous wounds treated with BMSC hydrogel exhibited better viability of the cells than did local BMSC injection-treated wounds. Similar to that of the in vitro result, CNF hydrogels induced BMSCs to differentiate into beneficial cell types, resulting in accelerated wound repair characterized by granulation tissue formation. Our data suggest that three-dimensional CNF hydrogel may not only serve as a 'protection' to improve the viability of exogenous BMSCs, but also provide a functional scaffold capable of enhancing BMSC regenerative potential to promote wound healing. This may help to overcome the current limitations to stem cell therapy that are faced in the field of wound regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Huang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Baiwen Qi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhanjun Ma
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ang Lu
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lina Zhang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
24
|
Murphy AR, Laslett A, O'Brien CM, Cameron NR. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 2017; 54:1-20. [PMID: 28259835 DOI: 10.1016/j.actbio.2017.02.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. STATEMENT OF SIGNIFICANCE Neurodegenerative diseases, including dementia, Parkinson's and Alzheimer's diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds - materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.
Collapse
Affiliation(s)
- Ashley R Murphy
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Andrew Laslett
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.
| |
Collapse
|
25
|
Shah SB, Singh A. Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomater 2017; 53:29-45. [PMID: 28159716 DOI: 10.1016/j.actbio.2017.01.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. STATEMENT OF SIGNIFICANCE Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system.
Collapse
|
26
|
Leong MF, Lu HF, Lim TC, Du C, Ma NK, Wan AC. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells. Acta Biomater 2016; 46:266-277. [PMID: 27667015 DOI: 10.1016/j.actbio.2016.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
The use of human induced pluripotent stem cells (hiPSCs) for clinical tissue engineering applications requires expansion and differentiation of the cells using defined, xeno-free substrates. The screening and selection of suitable synthetic substrates however, is tedious, as their performance relies on the inherent material properties. In the present work, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffolds were found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates which were shown to be pluripotent colonies. Immunostaining, PCR analyses, in vitro differentiation and in vivo teratoma formation studies demonstrated that these hiPSC aggregates could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency. Flow cytometry showed that more than 80% of the cell population stained positive for the pluripotent marker OCT4 at P1, P5 and P10. P10 cells could be differentiated to neuronal-like cells and cultured within the ESPS for up to 18months. Our results suggest the usefulness of a generic class of synthetic substrates, exemplified by ESPS, for 'trapped aggregate culture' of hiPSCs. STATEMENT OF SIGNIFICANCE To realize the potential of human induced pluripotent stem cells (hiPSCs) in clinical medicine, robust, xeno-free substrates for expansion and differentiation of iPSCs are required. In the existing literature, synthetic materials have been reported that meet the requirement for non-xenogeneic substrates. However, the self-renewal and differentiation characteristics of hiPSCs are affected differently by the biocompatibility and physico-chemical properties of individual substrates. Although some rules based on chemical structure and substrate rigidity have been developed, most of these efforts are still empirical, and most synthetic substrates must still be rigorously screened for suitability. In this paper, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffold was found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates. In the form of these trapped aggregates, we showed that hiPSCs could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency, following which they could be differentiated to a chosen lineage. We believe that this novel, generic class of synthetic substrates that employs 'trapped aggregate culture' for expansion and differentiation of hiPSCs is an important conceptual advance, and would be of high interest to the readership of Acta Biomaterialia.
Collapse
|
27
|
Collins SJ, Haigh CL. Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochem Biophys 2016; 75:3-13. [PMID: 27796787 DOI: 10.1007/s12013-016-0768-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
Abstract
The ability to model brain tissue in three-dimensions offers new potential for elucidating functional cellular interactions and corruption of such functions during pathogenesis. Many protocols now exist for growing neurones in three-dimensions and these vary in complexity and cost. Herein, we describe a straight-forward method for generating three-dimensional, terminally differentiated central nervous system cultures from adult murine neural stem cells. The protocol requires no specialist equipment, is not labour intensive or expensive and produces mature cultures within 10 days that can survive beyond a month. Populations of functional glutamatergic neurones could be identified within cultures. Additionally, the three dimensional neuronal cultures can be used to investigate tissue changes during the development of neurodegenerative disease where demonstration of hallmark features, such as plaque generation, has not previously been possible using two-dimensional cultures of neuronal cells. Using a prion model of acquired neurodegenerative disease, biochemical changes indicative of prion pathology were induced within 2-3 weeks in the three dimensional cultures. Our findings show that tissue differentiated in this simplified three dimensional culture model is physiologically competent to model central nervous system cellular behaviour as well as manifest the functional failures and pathological changes associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, The University of Melbourne, 30 Royal Parade, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
28
|
Engel M, Do-Ha D, Muñoz SS, Ooi L. Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 2016; 73:3693-709. [PMID: 27154043 PMCID: PMC5002043 DOI: 10.1007/s00018-016-2265-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells and embryonic stem cells have revolutionized cellular neuroscience, providing the opportunity to model neurological diseases and test potential therapeutics in a pre-clinical setting. The power of these models has been widely discussed, but the potential pitfalls of stem cell differentiation in this research are less well described. We have analyzed the literature that describes differentiation of human pluripotent stem cells into three neural cell types that are commonly used to study diseases, including forebrain cholinergic neurons for Alzheimer's disease, midbrain dopaminergic neurons for Parkinson's disease and cortical astrocytes for neurodegenerative and psychiatric disorders. Published protocols for differentiation vary widely in the reported efficiency of target cell generation. Additionally, characterization of the cells by expression profile and functionality differs between studies and is often insufficient, leading to highly variable protocol outcomes. We have synthesized this information into a simple methodology that can be followed when performing or assessing differentiation techniques. Finally we propose three considerations for future research, including the use of physiological O2 conditions, three-dimensional co-culture systems and microfluidics to control feeding cycles and growth factor gradients. Following these guidelines will help researchers to ensure that robust and meaningful data is generated, enabling the full potential of stem cell differentiation for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Dzung Do-Ha
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
29
|
Singh N, Chen J, Koziol KK, Hallam KR, Janas D, Patil AJ, Strachan A, G Hanley J, Rahatekar SS. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. NANOSCALE 2016; 8:8288-8299. [PMID: 27031428 DOI: 10.1039/c5nr06595j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.
Collapse
Affiliation(s)
- Nandita Singh
- School of Clinical Sciences, University of Bristol, Bristol BS2 8DZ, UK
| | - Jinhu Chen
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Krzysztof K Koziol
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Keith R Hallam
- Interface Analysis Centre, School of Physics, University of Bristol, Bristol BS8 1TL, UK
| | - Dawid Janas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Avinash J Patil
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ally Strachan
- Centre for Nanoscience and Quantum Information, University of Bristol, Bristol BS8 1FD, UK
| | - Jonathan G Hanley
- School of Biochemistry and Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Sameer S Rahatekar
- Advanced Composites Centre for Innovation and Science, Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK.
| |
Collapse
|
30
|
Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Res 2015; 9:513-35. [DOI: 10.1002/aur.1570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael W. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Andre W. Phillips
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Elena Artimovich
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Jonathan E. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - John P. Hussman
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Gene J. Blatt
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| |
Collapse
|
31
|
Pethe P, Pursani V, Bhartiya D. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro. Cell Biol Int 2015; 39:600-610. [PMID: 25572667 DOI: 10.1002/cbin.10431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/26/2014] [Indexed: 02/05/2023]
Abstract
Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level.
Collapse
Affiliation(s)
- Prasad Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | | | | |
Collapse
|
32
|
Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2014.12.001] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Landers J, Turner JT, Heden G, Carlson AL, Bennett NK, Moghe PV, Neimark AV. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv Healthc Mater 2014; 3:1745-52. [PMID: 24753391 DOI: 10.1002/adhm.201400042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/17/2014] [Indexed: 12/23/2022]
Affiliation(s)
- John Landers
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
| | - Jeffrey T. Turner
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Greg Heden
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
| | - Aaron L. Carlson
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Neal K. Bennett
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Prabhas V. Moghe
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Alexander V. Neimark
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
| |
Collapse
|
34
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
35
|
Seifi T, Ghaedi K, Tanhaei S, Karamali F, Kiani-Esfahani A, Peymani M, Baharvand H, Nasr-Esfahani MH. Identification, cloning, and functional analysis of the TATA-less mouse FNDC5 promoter during neural differentiation. Cell Mol Neurobiol 2014; 34:715-25. [PMID: 24706335 PMCID: PMC11488958 DOI: 10.1007/s10571-014-0053-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/18/2014] [Indexed: 01/31/2023]
Abstract
FNDC5 (also termed PEP) gene encodes a type I membrane protein which is cleaved and secreted as Irisin hormone. We have identified mouse putative core promoter of FNDC5 and characterized its activity. FNDC5 is located within mouse chromosome 4, spans about 7,534 bp, and consists of 6 exons. The mouse FNDC5 promoter is TATA-less and lacks a consensus initiator sequence. In silico analyses revealed that the core promoter (-561/+101 with respect to translation start site) is located in a GC-rich domain (approximately 70.01 %) with one CpG island as a promoter index and several GC box factors including GC/SP1 which is necessary for transcription of TATA-less promoters. The core promoter showed a lower activity than CMV promoter in CHO and P19 cell lines when located upstream of EGFP CDS in an appropriate expression vector. Data implicated that both exon 1 and intron 1 of the gene are included in the core promoter. Upon treating with retinoic acid, FNDC5 expression was upregulated during embryoid body formation and decreased slowly at final stage of neural differentiation when neurospheres emerged. However, Noggin induction induced up regulation of FNDC5 expression at final stage of neural differentiation. In conclusion, stage dependent expression of FNDC5 is affected by neural induction method used for neural differentiation.
Collapse
Affiliation(s)
- Tahere Seifi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
- Present Address: Department of Biology, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Kamran Ghaedi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology at Cell Science Research Center, ACECR, Royan Institute for Biotechnology, 816513-1378 Isfahan, Iran
| | - Sommayeh Tanhaei
- Department of Cellular Biotechnology at Cell Science Research Center, ACECR, Royan Institute for Biotechnology, 816513-1378 Isfahan, Iran
| | - Fereshteh Karamali
- Department of Cellular Biotechnology at Cell Science Research Center, ACECR, Royan Institute for Biotechnology, 816513-1378 Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, ACECR, Royan Institute for Biotechnology, 816513-1378 Isfahan, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology at Cell Science Research Center, ACECR, Royan Institute for Biotechnology, 816513-1378 Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, ACECR, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, ACECR, Royan Institute for Biotechnology, 816513-1378 Isfahan, Iran
| |
Collapse
|
36
|
Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials 2014; 35:4636-45. [PMID: 24631250 DOI: 10.1016/j.biomaterials.2014.02.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
Biomaterial-supported culture methods, allowing for directed three-dimensional differentiation of stem cells are an alternative to canonical two-dimensional cell cultures. In this paper, we evaluate the suitability of alginate for three-dimensional cultures to enhance differentiation of mouse embryonic stem cells (mESCs) towards neural lineages. We tested whether encapsulation of mESCs within alginate beads could support and/or enhance neural differentiation with respect to two-dimensional cultures. We encapsulated cells in beads of alginate with or without modification by fibronectin (Fn) or hyaluronic acid (HA). Gene expression analysis showed that cells grown in alginate and alginate-HA present increased differentiation toward neural lineages with respect to the two-dimensional control and to Fn group. Immunocytochemistry analyses confirmed these results, further showing terminal differentiation of neurons as seen by the expression of synaptic markers and markers of different neuronal subtypes. Our data show that alginate, alone or modified, is a suitable biomaterial to promote in vitro differentiation of pluripotent cells toward neural fates.
Collapse
|
37
|
Li Y, Liu M, Yan Y, Yang ST. Neural differentiation from pluripotent stem cells: The role of natural and synthetic extracellular matrix. World J Stem Cells 2014; 6:11-23. [PMID: 24567784 PMCID: PMC3927010 DOI: 10.4252/wjsc.v6.i1.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 02/06/2023] Open
Abstract
Neural cells differentiated from pluripotent stem cells (PSCs), including both embryonic stem cells and induced pluripotent stem cells, provide a powerful tool for drug screening, disease modeling and regenerative medicine. High-purity oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) have been derived from PSCs recently due to the advancements in understanding the developmental signaling pathways. Extracellular matrices (ECM) have been shown to play important roles in regulating the survival, proliferation, and differentiation of neural cells. To improve the function and maturation of the derived neural cells from PSCs, understanding the effects of ECM over the course of neural differentiation of PSCs is critical. During neural differentiation of PSCs, the cells are sensitive to the properties of natural or synthetic ECMs, including biochemical composition, biomechanical properties, and structural/topographical features. This review summarizes recent advances in neural differentiation of human PSCs into OPCs and NPCs, focusing on the role of ECM in modulating the composition and function of the differentiated cells. Especially, the importance of using three-dimensional ECM scaffolds to simulate the in vivo microenvironment for neural differentiation of PSCs is highlighted. Future perspectives including the immediate applications of PSC-derived neural cells in drug screening and disease modeling are also discussed.
Collapse
Affiliation(s)
- Yan Li
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Meimei Liu
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Yuanwei Yan
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Shang-Tian Yang
- Yan Li, Yuanwei Yan, Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| |
Collapse
|
38
|
Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan ACA. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 2014; 35:2816-26. [PMID: 24411336 DOI: 10.1016/j.biomaterials.2013.12.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/24/2022]
Abstract
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However, standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium, imposing a significant obstacle to clinical translation. Here, we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions, we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently, transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal, normal karyotype and pluripotency, as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly, we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications.
Collapse
Affiliation(s)
- Hong Fang Lu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Chou Chai
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Tze Chiun Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jia Kai Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Kah Leong Lim
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
39
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Wan AC, Tai BC. CHITIN — A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 2013; 31:1776-85. [DOI: 10.1016/j.biotechadv.2013.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
|
41
|
Liu N, Ouyang A, Li Y, Yang ST. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors. Biotechnol Prog 2013; 29:1013-22. [PMID: 23657995 DOI: 10.1002/btpr.1742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/17/2013] [Indexed: 12/21/2022]
Abstract
The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells.
Collapse
Affiliation(s)
- Ning Liu
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|