1
|
Huang Y, Li Z, Ranaweera CD, Jayathilaka PB, Islam MS, Ajam A, Silberstein MN, Kilian KA, Kruzic JJ. Stretch activated molecule immobilization in disulfide linked double network hydrogels. Acta Biomater 2025; 198:174-187. [PMID: 40189118 DOI: 10.1016/j.actbio.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Inspired by how forces facilitate molecule immobilization in biological tissues to provide localized functionalization, tough hydrogel networks with stretch activated mechanochemistry are developed by utilizing disulfide bonds as dynamic covalent crosslinks. Specifically, disulfide linked polyethylene glycol hydrogels are reinforced with a second ionically bonded sodium alginate network to simultaneously achieve stretchability and mechanochemical functionalization. To demonstrate and quantify the mechanochemical response, thiols produced by disulfide bond rupture are sensed during stretching using a reaction activated fluorophore dissolved in the hydrating solution. By monitoring the increase in fluorescence intensity upon stretching, it is determined that disulfide bond breakage in the double network hydrogels becomes more activated in hydrogels with high stretchability under low stress. Such results provide guidance regarding how the molecular weights and mass fractions of the monomers must be chosen to design double network hydrogels that balance favorable mechanical properties and mechanochemical responsiveness. Finally, for the most mechanochemically active hydrogel, we demonstrate how the stretch-activated immobilization of a maleimide containing peptide can functionalize the gels to promote the growth of human fibroblasts. Results of this work are anticipated to encourage further research into the development of stretchable and multifunctionalizable hydrogels for biotechnology and biomedical applications. STATEMENT OF SIGNIFICANCE: Inspired by the mechanochemical dynamics in biological tissues, this work demonstrates the development of hydrogel-based biomaterials that can achieve stretch activated functionalization by molecule immobilization in multiple distinct ways. Using disulfide linked polyethylene glycol hydrogels reinforced with a second alginate network, we have elucidated the structure-property relationships of our hydrogels by functionalizing them with fluorophore to ensure a robust combination of stretchability and mechanochemical responsiveness. We also have demonstrated the capability for using stretch activated immobilization of functional peptides to guide human fibroblasts activity. By demonstrating how hydrogel network properties impact both mechanical and functional performance, this work opens pathways for designing multifunctionalizable hydrogels that adapt to mechanical forces, potentially broadening the application of hydrogels in biotechnology and biomedical applications.
Collapse
Affiliation(s)
- Yuwan Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Zihao Li
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Chavinya D Ranaweera
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Pavithra B Jayathilaka
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Alaa Ajam
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Kristopher A Kilian
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Mroueh J, Weber L, Endo Y, Mroueh V, Sinha I. Acellular Scaffolds for Muscle Regeneration: Advances and Challenges. Adv Wound Care (New Rochelle) 2025. [PMID: 40340574 DOI: 10.1089/wound.2024.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Significance: Volumetric muscle loss is defined as composite loss of muscle mass. Severe injuries result in permanent functional impairment. Treatment options are limited. Tissue engineering techniques utilizing scaffolds offer promise as a potential therapy. Recent Advances: Emerging strategies, including bioactive molecules and growth factors in biocompatible scaffolds, may promote muscle regeneration following severe injury. In this context, scaffolds can act as a drug-delivery device, provide guidance to cells as a supporting matrix, and slowly release growth factors to promote healing. Critical Issues: Scaffolds engraftment and ability to promote tissue regeneration in injured beds remain limited. Tuning and optimizing scaffold fiber diameter, alignment, cellular cues, growth factor delivery, and porosity will be important in reconstituting functional skeletal muscle following loss. Future Directions: Our mechanistic understanding of interactions between biomimetic scaffolds and host tissue is still evolving, and future research can identify factors to promote tissue regeneration.
Collapse
Affiliation(s)
- Jessica Mroueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luisa Weber
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Mroueh
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Petit N, Gomes A, Chang YYJ, Da Silva J, Leal EC, Carvalho E, Gomes P, Browne S. Development of a bioactive hyaluronic acid hydrogel functionalised with antimicrobial peptides for the treatment of chronic wounds. Biomater Sci 2025. [PMID: 40331923 DOI: 10.1039/d5bm00567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chronic wounds present significant clinical challenges due to delayed healing and high infection risk. This study presents the development and characterisation of acrylated hyaluronic acid (AcHyA) hydrogels functionalised with gelatin (G) and the antimicrobial peptide (AMP) PP4-3.1 to enhance cellular responses while providing antimicrobial activity. AcHyA-G and AcHyA-AMP hydrogels were formed via thiol-acrylate crosslinking, enabling in situ AcHyA hydrogel formation with stable mechanical properties across varying gelatin concentrations. Biophysical characterisation of AcHyA-G hydrogels showed rapid gelation, elastic behaviour, uniform mesh size, and consistent molecular diffusion across all formulations. Moreover, the presence of gelatin enhanced stability without affecting the hydrogel's degradation kinetics. AcHyA-G hydrogels supported the adhesion and spreading of key cell types involved in wound repair (dermal fibroblasts and endothelial cells), with 0.5% gelatin identified as the optimal effective concentration. Furthermore, the conjugation of the AMP conferred bactericidal activity against Staphylococcus aureus and Escherichia coli, two of the most prevalent bacterial species found in chronically infected wounds. These results highlight the dual function of AcHyA-AMP hydrogels in promoting cellular responses and antimicrobial activity, offering a promising strategy for chronic wound treatment. Further in vivo studies are needed to evaluate their efficacy, including in diabetic foot ulcers.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Ana Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Portugal
| | - Yu-Yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Jessica Da Silva
- University of Coimbra, Institute of Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), 3004-504 Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C Leal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Portugal
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Călin C, Dima O, Ancuta DL, Coman C, Pameijer CH, Paulsen F, Sprenger M, Nita T, Didilescu AC. Guided bone regeneration using beta-tricalcium phosphate and leucocyte platelet-rich fibrin versus a novel biodegradable urethane composite in critical-size osseous defects in rabbit tibia: Histologic results of a pilot study. Ann Anat 2025; 260:152672. [PMID: 40339925 DOI: 10.1016/j.aanat.2025.152672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 05/04/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Insufficient bone volume is a major problem in implant dentistry, which can be counteracted by using guided bone regeneration technique. Among the materials recently tested, synthetic polymers have been recommended as showing excellent biocompatibility and biodegradability. OBJECTIVE The aim of this pilot study was to analyze and compare through means of histology the healing of the bone tissue in critical size osseous defects in New-Zealand rabbit tibiae after application of beta-tricalcium phosphate (β-TCP) alone, β-TCP combined with leucocyte platelet-rich fibrin (L-PRF) and an injectable experimental bone cement (EBC) represented by a dual-curable degradable synthetic polymer. METHODS Two New-Zealand rabbits were used. Three standardized osseous defects of 5 mm diameter were created in each tibia. Each defect was filled with either β-TCP alone (control), β-TCP combined with L-PRF (test) or with EBC (test). The animals were sacrificed at 25 and 70 days; the tibia samples were removed, fixed in 10 % formaldehyde and stained with AZAN. RESULTS While at 25 days β-TCP produced sparse bone formation, at 70 days mature bone formation was visible in all areas of the defect with minimum remaining graft particles; at 25 days, β-TCP combined with L-PRF produced broad areas of bone lamellae, while at 70 days bone tissue formation was limited; at both 25 and 70 days, the EBC was stable and not penetrated by bone cells, while a narrow band of connective tissue could be seen superjacent and inferior to it. CONCLUSIONS Among the tested biomaterials, β-TCP was capable of generating bone formation at both healing time-points, while the addition of L-PRF seemed to provide a synergistic effect only in the early phase of bone healing.
Collapse
Affiliation(s)
- Claudiu Călin
- Department of Embryology and Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Oana Dima
- Department of Embryology and Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Diana L Ancuta
- Cantacuzino National Institute for Medical-Military Research and Development, Bucharest, Romania
| | - Cristin Coman
- Cantacuzino National Institute for Medical-Military Research and Development, Bucharest, Romania.
| | - Cornelis H Pameijer
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, USA.
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Germany.
| | - Maximilian Sprenger
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Germany.
| | - Tiberiu Nita
- Department of Oral and Maxillofacial "Dan Theodorescu Hospital", Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Andreea C Didilescu
- Department of Embryology and Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
5
|
Zhao Y, Wang T, Liu J, Wang Z, Lu Y. Emerging brain organoids: 3D models to decipher, identify and revolutionize brain. Bioact Mater 2025; 47:378-402. [PMID: 40026825 PMCID: PMC11869974 DOI: 10.1016/j.bioactmat.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Brain organoids are an emerging in vitro 3D brain model that is integrated from pluripotent stem cells. This model mimics the human brain's developmental process and disease-related phenotypes to a certain extent while advancing the development of human brain-based biological intelligence. However, many limitations of brain organoid culture (e.g., lacking a functional vascular system, etc.) prevent in vitro-cultured organoids from truly replicating the human brain in terms of cell type and structure. To improve brain organoids' scalability, efficiency, and stability, this paper discusses important contributions of material biology and microprocessing technology in solving the related limitations of brain organoids and applying the latest imaging technology to make real-time imaging of brain organoids possible. In addition, the related applications of brain organoids, especially the development of organoid intelligence combined with artificial intelligence, are analyzed, which will help accelerate the rational design and guidance of brain organoids.
Collapse
Affiliation(s)
- Yuli Zhao
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jiajun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Hua Z, Zhao Y, Zhang M, Wang Y, Feng H, Wei X, Wu X, Chen W, Xue Y. Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel. J Biomater Appl 2025; 39:1121-1142. [PMID: 39929142 DOI: 10.1177/08853282251320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.
Collapse
Affiliation(s)
- Zekun Hua
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yinuo Zhao
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Meng Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Haoyu Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Wu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Li K, He Y, Jin X, Jin K, Qian J. Reproducible extracellular matrices for tumor organoid culture: challenges and opportunities. J Transl Med 2025; 23:497. [PMID: 40312683 PMCID: PMC12044958 DOI: 10.1186/s12967-025-06349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025] Open
Abstract
Tumor organoid models have emerged as valuable 3D in vitro systems to study cancer behavior in a physiologically relevant environment. The composition and architecture of the extracellular matrix (ECM) play critical roles in tumor organoid culture by influencing the tumor microenvironment and tumor behavior. Traditional matrices such as Matrigel and collagen, have been widely used, but their batch-to-batch variability and limited tunability hinder their reproducibility and broader applications. To address these challenges, researchers have turned to synthetic/engineered matrices and biopolymer-based matrices, which offer precise tunability, reproducibility, and chemically defined compositions. However, these matrices also present challenges of their own. In this review, we explore the significance of ECMs in tumor organoid culture, discuss the limitations of commonly used matrices, and highlight recent advancements in engineered/synthetic matrices for improved tumor organoid modeling.
Collapse
Affiliation(s)
- Kan Li
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yibo He
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 310006, China
- Department of Breast Surgery, Affiliated Hangzhou First People'S Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China.
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People'S Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China.
| |
Collapse
|
8
|
Sanati M, Pieterman I, Levy N, Akbari T, Tavakoli M, Hassani Najafabadi A, Amin Yavari S. Osteoimmunomodulation by bone implant materials: harnessing physicochemical properties and chemical composition. Biomater Sci 2025. [PMID: 40289736 DOI: 10.1039/d5bm00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic inflammation at bone defect sites can impede regenerative processes, but local immune responses can be adjusted to promote healing. Regulating the osteoimmune microenvironment, particularly through macrophage polarization, has become a key focus in bone regeneration research. While bone implants are crucial for addressing significant bone defects, they are often recognized by the immune system as foreign, triggering inflammation that leads to bone resorption and implant issues like fibrous encapsulation and aseptic loosening. Developing osteoimmunomodulatory implants offers a promising approach to transforming destructive inflammation into healing processes, enhancing implant integration and bone regeneration. This review explores strategies based on tuning the physicochemical attributes and chemical composition of materials in engineering osteoimmunomodulatory and pro-regenerative bone implants.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ines Pieterman
- Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Natacha Levy
- Metabolic Diseases Pediatrics Division, University Medical Centre Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Lu J, Pan X, Zhang W, Han J, Chen J, Song M, Xu C, Li X, Wang J, Wang L. Hydrogel sensing platforms for monitoring contractility in in vitro cardiac models. NANOSCALE 2025; 17:8436-8452. [PMID: 40091817 DOI: 10.1039/d4nr04087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) affects over 64 million people globally, marked by high incidence and mortality rates. Accurate measurements of myocardial contractility are crucial for evaluating cardiac pathomechanisms and monitoring disease progression. Hydrogel sensing devices, known for their flexibility, programmable structures, biocompatibility, and cell adhesion, are ideal for studying cardiac function, minimizing disruption to cardiomyocytes, and supporting long-term culture and monitoring. These platforms, while employing diverse detection principles to accurately measure cell contractility, still face challenges in achieving long-term stability and durability. This review summarizes current methods for monitoring cardiomyocyte contractility, emphasizes the significant impact of substrate mechanical properties on cellular function, and explores recent advances in hydrogel-based platforms for monitoring cell contraction forces. It also discusses the technical challenges and future prospects for measuring cardiac systolic function with these devices.
Collapse
Affiliation(s)
- Junxiu Lu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xiatong Pan
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
10
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2025; 480:2201-2222. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
11
|
March A, Hebner TS, Choe R, Benoit DSW. Leveraging the predictive power of a 3D in vitro vascularization screening assay for hydrogel-based tissue-engineered periosteum allograft healing. BIOMATERIALS ADVANCES 2025; 169:214187. [PMID: 39827700 PMCID: PMC11815559 DOI: 10.1016/j.bioadv.2025.214187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs. Since angiogenesis is a critical process orchestrated by the periosteum, this study investigates in vitro 3D cell spheroid vascularization as a predictive tool for TEP-mediated in vivo healing. Spheroids of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) are encapsulated in enzymatically-degradable poly (ethylene glycol)-based hydrogels and sprout formation, network formation, and angiogenic growth factor secretion are quantified. Hydrogels are also evaluated as TEP-modified allografts for in vivo bone healing with graft vascularization, callus formation, and biomechanical strength quantified as healing metrics. Evaluation of hydrogels highlights the importance of degradation, with 24-fold greater day 1 sprouts observed in degradable hydrogels in vitro and 4-fold greater graft-localized vascular volume at 6-weeks in vivo compared to non-degradable hydrogels. Correlations between in vitro and in vivo studies elucidate linear relationships when comparing in vitro sprout formation and angiocrine production with 3- and 6-week in vivo graft vascularization, 3-week cartilage callus, and 6-week bone callus, with a Pearson's R2 value equal to 0.97 for the linear correlation between in vitro sprout formation and 6-week in vivo vascular volume. Non-linear relationships are found between in vitro measures and bone torque strength at week 6. These correlations suggest that the in vitro sprouting assay has predictive power for in vivo vascularization and bone allograft healing.
Collapse
Affiliation(s)
- Alyson March
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Tayler S Hebner
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA; Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Regine Choe
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
12
|
Li W, Shi X, Zhang D, Hu J, Zhao S, Ye S, Wang J, Liu X, Zhang Q, Wang Z, Zhang Y, Yan L. Adipose derived mesenchymal stem cell-seeded regenerated silk fibroin scaffolds reverse liver fibrosis in mice. J Mater Chem B 2025; 13:4201-4213. [PMID: 40059659 DOI: 10.1039/d5tb00275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Liver fibrosis (LF) is an important process in the progression of chronic liver disease to cirrhosis. We have previously demonstrated that a regenerated silk fibroin scaffold loaded with adipose-derived stem cells (RSF + ADSCs) can repair acute liver injury. In this study, we established a chronic LF animal model using carbon tetrachloride (CCl4) and a high-fat diet. We then investigated the liver repair capacity after transplanting RSF + ADSC scaffolds and RSF scaffolds onto the liver surface of mice. Compared with the control group, the concentrations of ALT and AST in the serum were significantly reduced in the RSF and RSF + ADSC groups. HE staining and Masson trichrome staining revealed a decrease in the SAF score in both the RSF and RSF + ADSC groups. Meanwhile, the biomarkers of blood vessels and bile ducts, such as CD34, ERG, muc1, and CK19, were significantly elevated in the RSF + ADSC group. Finally, transcriptome analysis showed that the PPAR signaling pathway, which inhibits liver fibrosis, was significantly upregulated in both the RSF and RSF + ADSC groups. Our study suggests that, compared with RSF scaffolds alone, RSF + ADSCs have a significant repair effect on chronic LF in mice.
Collapse
Affiliation(s)
- Weilong Li
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Xiaonan Shi
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Daxu Zhang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Jingjing Hu
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Shuo Zhao
- Department of Critical Care Medicine,Aerospace Central Hospital,Beijing,, PR China
| | - Shujun Ye
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Jingyi Wang
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Xiaojiao Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, PR China.
| | - Qian Zhang
- School of nursing, Lanzhou University, Gansu 730000, PR China
| | - Zhanbo Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, PR China.
| | - Li Yan
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
13
|
Tiskratok W, Chuinsiri N, Limraksasin P, Kyawsoewin M, Jitprasertwong P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers (Basel) 2025; 17:822. [PMID: 40292716 PMCID: PMC11946729 DOI: 10.3390/polym17060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network providing mechanical and biochemical cues that regulate cellular behavior. ECM stiffness critically influences fibroblasts, the primary ECM producers, particularly in inflammation and fibrosis. This review explores the role of ECM stiffness in fibroblast-driven inflammation and tissue remodeling, focusing on the physicochemical and biological mechanisms involved. Engineered materials, hydrogels, and polydimethylsiloxane (PDMS) are highlighted for replicating tissue-specific stiffness, enabling precise control over cell-matrix interactions. The surface functionalization of substrate materials, including collagen, polydopamine, and fibronectin, enhances bioactivity and fibroblast adhesion. Key mechanotransduction pathways, such as integrin signaling and YAP/TAZ activation, are related to regulating fibroblast behaviors and inflammatory responses. The role of fibroblasts in driving chronic inflammatory diseases emphasizes their therapeutic potentials. Advances in ECM-modifying strategies, including tunable biomaterials and hydrogel-based therapies, are explored for applications in tissue engineering, drug delivery, anti-inflammatory treatments, and diagnostic tools for the accurate diagnosis and prognosis of ECM stiffness-related inflammatory diseases. This review integrates mechanobiology with biomedical innovations, providing a comprehensive prognosis of fibroblast responses to ECM stiffness and outlining future directions for targeted therapies.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Nontawat Chuinsiri
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
14
|
Kontakis MG, Moulin M, Andersson B, Norein N, Samanta A, Stelzl C, Engberg A, Diez-Escudero A, Kreuger J, Hailer NP. Trabecular-bone mimicking osteoconductive collagen scaffolds: an optimized 3D printing approach using freeform reversible embedding of suspended hydrogels. 3D Print Med 2025; 11:11. [PMID: 40064747 PMCID: PMC11895158 DOI: 10.1186/s41205-025-00255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/01/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Technological constraints limit 3D printing of collagen structures with complex trabecular shapes. However, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) method may allow for precise 3D printing of porous collagen scaffolds that carry the potential for repairing critical size bone defects. METHODS Collagen type I scaffolds mimicking trabecular bone were fabricated through FRESH 3D printing and compared either with 2D collagen coatings or with 3D-printed polyethylene glycol diacrylate (PEGDA) scaffolds. The porosity of the printed scaffolds was visualized by confocal microscopy, the surface geometry of the scaffolds was investigated by scanning electron microscopy (SEM), and their mechanical properties were assessed with a rheometer. The osteoconductive properties of the different scaffolds were evaluated for up to four weeks by seeding and propagation of primary human osteoblasts (hOBs) or SaOS-2 cells. Intracellular alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities were measured, and cells colonizing scaffolds were stained for osteocalcin (OCN). RESULTS The FRESH technique enables printing of constructs at the millimetre scale using highly concentrated collagen, and the creation of stable trabecular structures that can support the growth osteogenic cells. FRESH-printed collagen scaffolds displayed an intricate and fibrous 3D network, as visualized by SEM, whereas the PEGDA scaffolds had a smooth surface. Amplitude sweep analyses revealed that the collagen scaffolds exhibited predominantly elastic behaviour, as indicated by higher storage modulus values relative to loss modulus values, while the degradation rate of collagen scaffolds was greater than PEGDA. The osteoconductive properties of collagen scaffolds were similar to those of PEGDA scaffolds but superior to 2D collagen, as verified by cell culture followed by analysis of ALP/LDH activity and OCN immunostaining. CONCLUSIONS Our findings suggest that FRESH-printed collagen scaffolds exhibit favourable mechanical, degradation and osteoconductive properties, potentially outperforming synthetic polymers such as PEGDA in bone tissue engineering applications.
Collapse
Affiliation(s)
- Michael G Kontakis
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden.
| | - Marie Moulin
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Brittmarie Andersson
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Norein Norein
- Department of Chemistry - Ångström Laboratory, Macromolecular Chemistry, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Ayan Samanta
- Department of Chemistry - Ångström Laboratory, Macromolecular Chemistry, Uppsala University, Uppsala, SE-751 21, Sweden
| | - Christina Stelzl
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Anna Diez-Escudero
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nils P Hailer
- OrthoLab, Department of Surgical Sciences/Orthopaedics, Uppsala University, Uppsala, SE-751 85, Sweden
| |
Collapse
|
15
|
Sama GR, Arguien MN, Hoffman TE, Fairbanks BD, Trujilo-Lemon M, Keyser S, Anseth KS, Spencer SL, Bowman CN. Design and Synthesis of Hydrolytically Degradable PEG Carbamate, Carbonate, and Ester Derivatives to Induce Reversible Biostasis. Biomacromolecules 2025; 26:1850-1859. [PMID: 39999569 DOI: 10.1021/acs.biomac.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Control over network chemistry and connectivity of hydrogels is critical for the generation of tunable material properties, including material degradation for applications such as tissue scaffolding and drug delivery. Here, the degradation of hydrogels employing different hydrolytically cleavable groups including benzamide and syringic acid-derived carbamates, kojic acid-derived carbonates, and kojic acid-derived esters under physiological conditions was studied. Tunability of the hydrogel network degradation was demonstrated by varying the hydrolytically degradable moiety, macromer functionality, and copolymerization with hydrolytically stable macromers. These hydrolytically labile macromers were introduced and cross-linked intracellularly to induce transient cellular quiescence in MCF10A cells, resulting in a highly tunable degradation mechanism that is shown to be capable of inducing reversible biostasis of cells with 60% of cells treated with the carbonate macromer returning to their proliferative state and rebounding in translational activity after 72 h, while the biological activity of the carbamate macromer-treated cells remained suppressed.
Collapse
Affiliation(s)
- Gopal Reddy Sama
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Meagan N Arguien
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Timothy E Hoffman
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Marianela Trujilo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Sean Keyser
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Sabrina L Spencer
- Department of Biochemistry and Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Holme S, Richardson SM, Bella J, Pinali C. Hydrogels for Cardiac Tissue Regeneration: Current and Future Developments. Int J Mol Sci 2025; 26:2309. [PMID: 40076929 PMCID: PMC11900105 DOI: 10.3390/ijms26052309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Myocardial infarction remains a leading cause of death worldwide due to the heart's limited regenerative capability and the current lack of viable therapeutic solutions. Therefore, there is an urgent need to develop effective treatment options to restore cardiac function after a heart attack. Stem cell-derived cardiac cells have been extensively utilised in cardiac tissue regeneration studies. However, the use of Matrigel as a substrate for the culture and maturation of these cells has been a major limitation for the translation of this research into clinical application. Hydrogels are emerging as a promising system to overcome this problem. They are biocompatible and can provide stem cells with a supportive scaffold that mimics the extracellular matrix, which is essential for repairing damaged tissue in the myocardium after an infarction. Thus, hydrogels provide an alternative and reproducible option in addressing myocardial infarction due to their unique potential therapeutic benefits. This review explores the different types of natural and synthetic polymers used to create hydrogels and their various delivery methods, the most common being via injection and cardiac patches and other applications such as bioprinting. Many challenges remain before hydrogels can be used in a clinical setting, but they hold great promise for the future of cardiac tissue regeneration.
Collapse
Affiliation(s)
- Sonja Holme
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Jordi Bella
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Christian Pinali
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
17
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
18
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
19
|
Ngau SM, Cheah KH, Wong VL, Khiew PS, Lim SS. 3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response. Int J Biol Macromol 2025; 296:139652. [PMID: 39793825 DOI: 10.1016/j.ijbiomac.2025.139652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds. nHA, synthesized via wet chemical precipitation, had a particle size of 28 nm and exhibited low crystallinity, as confirmed by X-ray diffraction. PEGDA-chitosan-nHA scaffolds underwent post-curing and 70 % ethanol leaching treatment. The presence of chitosan and nHA in the composite scaffolds was confirmed by their characteristic peaks. TGA analyses further verified nHA content correlating to the intended amount. The scaffolds featured interconnected pores ranging from 2891 to 3382 μm and porosities between 35 and 56 %. The swelling percentage and compressive modulus were reported at ~71-93 % and 0.52-1.18 MPa, respectively. Notably, PEGDA-chitosan-nHA scaffolds showed enhanced in vitro efficacy than pure PEGDA scaffolds, by promoting better MG63 cell adhesion (p < 0.05), higher proliferation and alkaline phosphatase (ALP) activity, particularly in scaffolds with 20 wt% chitosan across all incubation periods in cell proliferation and early osteoblast differentiation studies. These findings suggest that PEGDA-chitosan-nHA scaffolds have promising potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shannen Marcus Ngau
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kean How Cheah
- School of Aerospace, Faculty of Science and Engineering, University of Nottingham Ningbo China, China
| | - Voon Loong Wong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900 Sepang, Malaysia
| | - Poi Sim Khiew
- Centre of Nanotechnology and Advanced Materials, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
20
|
Lesko L, Jungova P, Culenova M, Thurzo A, Danisovic L. Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review. J Funct Biomater 2025; 16:80. [PMID: 40137359 PMCID: PMC11943271 DOI: 10.3390/jfb16030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Polymer-based scaffolds have emerged as transformative materials in regenerative dentistry, enabling the restoration and replacement of dental tissues through tissue engineering approaches. These scaffolds, derived from natural and synthetic polymers, mimic the extracellular matrix to promote cellular attachment, proliferation, and differentiation. Natural polymers such as collagen, chitosan, and alginate offer biocompatibility and bioactivity, while synthetic alternatives like polylactic acid (PLA) and polycaprolactone (PCL) provide tunable mechanical properties and degradation rates. Recent advancements highlight the integration of bioactive molecules and nanotechnology to enhance the regenerative potential of these materials. Furthermore, developing hybrid scaffolds combining natural and synthetic polymers addresses biocompatibility and mechanical strength challenges, paving the way for patient-specific treatments. Innovations in 3D bioprinting and stimuli-responsive biomaterials are expected to refine scaffold design further, improving therapeutic precision and clinical outcomes. This review underscores the critical role of polymer-based scaffolds in advancing regenerative dentistry, focusing on their applications, advantages, and limitations.
Collapse
Affiliation(s)
- Lubos Lesko
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Petra Jungova
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Andrej Thurzo
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
| |
Collapse
|
21
|
Muzzio N, Garcia S, Flores L, Newman G, Gomez A, Santi A, Usen Nazreen MS, Martinez-Cartagena EM, Yirgaalem D, Sankarasubramanian S, Romero G. Biocompatible EDOT-Pyrrole Conjugated Conductive Polymer Coating for Augmenting Cell Attachment, Activity, and Differentiation. ACS APPLIED BIO MATERIALS 2025; 8:1330-1342. [PMID: 39849945 DOI: 10.1021/acsabm.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation. The synthesized copolymer was characterized by Raman spectroscopy and dynamic light scattering. Its electrochemical properties were studied using galvanostatic charge-discharge (GCD) and voltammetry. PPy-PEDOT:PSS-coated hydrogels were characterized by Raman spectroscopy and atomic force microscopy, and protein adsorption was assessed using a quartz crystal microbalance with dissipation monitoring. Attachment and differentiation of the ND7/23 neuron hybrid cell line and C2C12 myoblasts were evaluated by cell cytoskeleton staining and quantification of morphological parameters. Viability was assessed by live/dead staining using flow cytometry. Cortex neural activity was studied by calcium ion influx that could be detected through the dynamic fluorescence changes of Fluo-4. The PPy-PEDOT:PSS coating supported cell attachment and differentiation and was nontoxic to cells. Primary neurons attached and remained responsive to electrical stimulation. Altogether, the biocompatible copolymer PPy-PEDOT:PSS is a simple yet effective alternative for hydrogel coating and presents great potential as an interface for nervous and other electrically excitable tissues.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| | - Samantha Garcia
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luis Flores
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gary Newman
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Athena Santi
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mohamed Shahid Usen Nazreen
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | - Delina Yirgaalem
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shrihari Sankarasubramanian
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
22
|
Zhang Y, Ding X, Yang Z, Wang J, Li C, Zhou G. Emerging Microfluidic Building Blocks for Cultured Meat Construction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8771-8793. [PMID: 39884858 DOI: 10.1021/acsami.4c19276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche in vivo. With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration. Microfluidic building blocks show promising prospects in the field of cultured meat; however, few reviews on the application of microfluidic building blocks in cultured meat have been published. This review outlines the recent status and prospects of the use of microfluidic building blocks in cultured meat. Starting with the introduction of cells and materials for cultured meat tissue construction, we then describe the diverse structures of the fabricated building blocks, including microspheres, microfibers, and microsphere-microfiber hybrid systems. Next, the stacking strategies for tissue construction are highlighted in detail. Finally, challenges and future prospects for developing microfluidic building blocks for cultured meat are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijiang Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Mohan SP, Priya SP, Tawfig N, Padmanabhan V, Babiker R, Palaniappan A, Prabhu S, Chaitanya NCSK, Rahman MM, Islam MS. The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves. Neurol Int 2025; 17:23. [PMID: 39997654 PMCID: PMC11858299 DOI: 10.3390/neurolint17020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries are common complications in surgical and dental practices, often resulting in functional deficiencies and reduced quality of life. Current treatment choices, such as autografts, have limitations, including donor site morbidity and suboptimal outcomes. Adipose-derived stem cells (ADSCs) have shown assuring regenerative potential due to their accessibility, ease of harvesting and propagation, and multipotent properties. This review investigates the therapeutic potential of ADSCs in peripheral nerve regeneration, focusing on their use in bioengineered nerve conduits and supportive microenvironments. The analysis is constructed on published case reports, organized reviews, and clinical trials from Phase I to Phase III that investigate ADSCs in managing nerve injuries, emphasizing both peripheral and orofacial applications. The findings highlight the advantages of ADSCs in promoting nerve regeneration, including their secretion of angiogenic and neurotrophic factors, support for cellular persistence, and supplementing scaffold-based tissue repair. The regenerative capabilities of ADSCs in peripheral nerve injuries offer a novel approach to augmenting nerve repair and functional recovery. The accessibility of adipose tissue and the minimally invasive nature of ADSC harvesting further encourage its prospective application as an autologous cell source in regenerative medicine. Future research is needed to ascertain standardized protocols and optimize clinical outcomes, paving the way for ADSCs to become a mainstay in nerve regeneration.
Collapse
Affiliation(s)
- Sunil P. Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode 673323, Kerala, India
- Centre for Stem Cells and Regenerative Medicine, Malabar Medical College, Kozhikode 673315, Kerala, India
| | - Sivan P. Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Nada Tawfig
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Rasha Babiker
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 11172, United Arab Emirates;
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab., Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India;
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Muhammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| |
Collapse
|
24
|
Rathnayake MSB, Boos MA, Farrugia BL, van Osch GJVM, Stok KS. Glycosaminoglycan-Mediated Interactions in Articular, Auricular, Meniscal, and Nasal Cartilage. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:61-75. [PMID: 38613808 DOI: 10.1089/ten.teb.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Glycosaminoglycans (GAGs) are ubiquitous components in the cartilage extracellular matrix (ECM). Ultrastructural arrangement of ECM and GAG-mediated interactions with collagen are known to govern the mechanics in articular cartilage, but these interactions are less clear in other cartilage types. Therefore, this article reviews the current literature on ultrastructure of articular, auricular, meniscal, and nasal septal cartilage, seeking insight into GAG-mediated interactions influencing mechanics. Ultrastructural features of these cartilages are discussed to highlight differences between them. GAG-mediated interactions are reviewed under two categories: interactions with chondrocytes and interactions with other fibrillar macromolecules of the ECM. Moreover, efforts to replicate GAG-mediated interactions to improve mechanical integrity of tissue-engineered cartilage constructs are discussed. In conclusion, studies exploring cartilage specific GAGs are poorly represented in the literature, and the ultrastructure of nasal septal and auricular cartilage is less studied compared with articular and meniscal cartilages. Understanding the contribution of GAGs in cartilage mechanics at the ultrastructural level and translating that knowledge to engineered cartilage will facilitate improvement of cartilage tissue engineering approaches.
Collapse
Affiliation(s)
- Manula S B Rathnayake
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Manuela A Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Gerjo J V M van Osch
- Department of Otorhinolaryngology, Head and Neck Surgery and Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| |
Collapse
|
25
|
Li K, Li B, Li J, Wu X, Zhao Y, Yu J, Guo J, Huang C. Chairside live biotherapeutic hydrogel for comprehensive periodontitis therapy. Trends Biotechnol 2025; 43:408-432. [PMID: 39505614 DOI: 10.1016/j.tibtech.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Periodontitis, characterized by microbial dysbiosis and immune dysregulation, destroys tooth-supporting tissues and negatively affects overall health. Current strategies face significant challenges in restoring damaged tissues while halting periodontitis progression. In this study, we introduce a live biotherapeutic product (LBP) in an engineered living hydrogel for comprehensive periodontitis therapy. A dental blue light-responsive hydrogel (LRG) was fabricated to deliver and confine live Lactobacillus rhamnosus GG (LGG) in periodontal pockets, endowing the LRG with sustained antibacterial and immunomodulatory effects. The LRG was engineered through peptide modification to also promote tissue regeneration. Both in vitro and in vivo evaluations confirmed the effectiveness of this integrated therapeutic strategy, which combines antibacterial, anti-inflammatory, and regenerative properties with an underlying immunomodulatory mechanism that involves suppressor of cytokine signaling (SOCS)3 upregulation and the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway suppression in macrophages. Demonstrating a new paradigm, this proof of concept highlights the synergistic integration of live organisms and synthetic material engineering in a chairside treatment to address the multifaceted etiology of periodontitis.
Collapse
Affiliation(s)
- Kaifeng Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Boyi Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jiyun Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaoyi Wu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jian Yu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Cui Huang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
26
|
Yu C, Dong L, Lv Y, Shi X, Zhang R, Zhou W, Wu H, Li H, Li Y, Li Z, Luo D, Wei WB. Nanotherapy for Neural Retinal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409854. [PMID: 39807033 DOI: 10.1002/advs.202409854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers. Nanotechnology applications in ophthalmology have shown great potential in addressing the issue of drug delivery to the eye. Moreover, nanotechnology-based therapeutics can have profound clinical impacts on retinopathy, particularly retinal regeneration, thereby improving patient outcomes. Continuous advancements in nanotechnology are being applied to regenerate lost or damaged eye tissues and to treat vision loss and blindness caused by various retinal degenerative diseases. These approaches can be categorized into three main strategies: i) nanoparticles for delivering drugs, genes, and other essential substances; ii) nanoscaffolds for providing biocompatible support; and iii) nanocomposites for enhancing the functionality of primary or stem cells. The aim of this comprehensive review is to present the current understanding of nanotechnology-based therapeutics for retinal regeneration, with a focus on the perspective functions of nanomaterials.
Collapse
Affiliation(s)
- Chuyao Yu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xuhan Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruiheng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wenda Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haotian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Heyan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yitong Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
27
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2025; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
28
|
Matsushige C, Kitazumi K, Beaman A, Miyagi M, Tallquist MD, Yamazaki Y. RGD peptide promotes follicle growth through integrins αvβ3/αvβ5 in three-dimensional culture. Reproduction 2025; 169:e240151. [PMID: 39441765 PMCID: PMC11729052 DOI: 10.1530/rep-24-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
In brief Three-dimensional ovarian tissue culture is a unique model to define the effects of molecules on folliculogenesis. Using this model, we determined that RGD-integrin interaction plays a role in antrum formation and theca cell differentiation. Abstract We recently developed a three-dimensional (3D) ovarian tissue culture system supported by bacterial-derived dextran hydrogel. Arg-Gly-Asp (RGD) is an extracellular matrix-derived triple peptide. Immature ovarian tissues cultured in RGD-modified dextran hydrogel significantly promoted antral follicle growth and oocyte quality compared with those cultured in dextran hydrogel alone. In this study, we examined the mechanism of follicle growth stimulated by RGD treatment in the 3D system. First, we detected that direct contact between RGD-modified dextran hydrogel and ovarian interstitial cells is necessary to promote antral follicle growth. Therefore, we hypothesized that RGD stimulates antral follicle growth through RGD-binding integrin receptors expressed in the interstitial cell mass. Using quantitative PCR (qPCR) and immunochemical staining, we identified that integrins ⍺vβ3 and ⍺v5 are predominantly expressed in the ovarian interstitial compartment. To assess the effect of RGD-integrin interaction on follicle growth, ovarian tissues were cultured with cilengitide (Ci), an inhibitor specific for ⍺vβ3 and ⍺vβ5. Ci treatment suppressed RGD-induced follicle growth and oocyte quality in a dose-dependent manner. When the interstitial cell aggregates were cultured with RGD, cell migration and theca-related gene expression were significantly upregulated. Ci treatment dramatically suppressed these RGD-induced activities. In coculturing the interstitial aggregate and secondary follicles with RGD, migrating cells formed the outermost cell layers around the follicles, like theca layers, which were totally blocked by Ci treatment. In conclusion, our results suggest that RGD stimulates theca cell differentiation in the ovarian interstitial cells through integrins ⍺vβ3 and ⍺v5 to promote antral follicle growth in our 3D system.
Collapse
Affiliation(s)
- Cassandra Matsushige
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Kaelyn Kitazumi
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Amanda Beaman
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Marissa Miyagi
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Michelle D Tallquist
- Center for Cardiovascular Research, Department of Medicine, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yukiko Yamazaki
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
29
|
Tolentino MAK, Seyedzadeh MH, Peres NG, Du EY, Zhu L, Gaus K, Goyette J, Gooding JJ. Polyethylene Glycol-Based Hydrogel as a 3D Extracellular Matrix Mimic for Cytotoxic T Lymphocytes. J Biomed Mater Res A 2025; 113:e37811. [PMID: 39429059 DOI: 10.1002/jbm.a.37811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Three-dimensional (3D) in vitro models enable us to understand cell behavior that is a better reflection of what occurs in vivo than 2D in vitro models. As a result, developing 3D models for extracellular matrix (ECM) has been growing exponentially. Most of the efforts for these 3D models are geared toward understanding cancer cells. An intricate network of cells that engages with cancer cells and can kill them are the immune cells, particularly cytotoxic T lymphocytes (CTLs). However, limited reports are available for 3D ECM mimics to understand CTL dynamics. Currently, we lack ECM mimetic hydrogels for immune cells, with sufficient control over variables, such as stiffness, to fully understand CTL dynamics in vitro. Here, we developed PEG-based hydrogels as ECM mimics for CTLs. The ECM mimics are targeted to mimic the stiffness of soft tissues where CTLs reside, migrate, and deliver their function. To understand cell-material interaction, we determined the porosity, biocompatibility, and stiffness of the ECM mimics. The ECM mimics have median pore sizes of 10.7 and 13.3 μm, close to the average nucleus size of CTLs (~8.6 μm), and good biocompatibility to facilitate cell migration. The stiffness of the ECM mimics corresponds to biologically relevant microenvironments such as lungs and kidneys. Using time-lapse fluorescence microscopy, 3D cell migration was imaged and measured. CTLs migrated faster in softer ECM mimic with larger pores, consistent with previous studies in collagen (the gold standard ECM mimic for CTLs). The work herein demonstrates that the PEG-based ECM mimic can serve as an in vitro tool to elucidate the cell dynamics of CTLs. Thus, this study opens possibilities to study the mechanics of CTLs in well-defined ECM mimic conditions in vitro.
Collapse
Affiliation(s)
- M A Kristine Tolentino
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mir Hadi Seyedzadeh
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Newton Gil Peres
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eric Yiwei Du
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lin Zhu
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Rendon-Romero LM, Rojas-Martinez A. Advances in the Development of Auricular Cartilage Bioimplants. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39723986 DOI: 10.1089/ten.teb.2024.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Conditions such as congenital abnormalities, cancer, infections, and trauma can severely impact the integrity of the auricular cartilage, resulting in the need for a replacement structure. Current implants, carved from the patient's rib, involve multiple surgeries and carry risks of adverse events such as contamination, rejection, and reabsorption. Tissue engineering aims to develop lifelong auricular bioimplants using different methods, different cell types, growth factors and maintenance media formulations, and scaffolding materials compatible with the host. This review aims to examine the progress in auricular bioengineering, focusing on improvements derived from in vivo models and clinical trials, as well as the author's suggestions to enhance the methods. For this scope review, 30 articles were retrieved through Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, plus 6 manually selected articles. The methods reported in the articles were categorized into four levels according to the development phases: source of cells, cell media supplementation, scaffold, or scaffold-free methods, and experimental in vivo or clinical approaches. Many methods have demonstrated potential for the development of bioimplants; four clinical trials reported a structure like the external ear that could be maintained after overcoming post-transplant inflammation. However, several challenges must be solved, such as obtaining a structure that accurately replicates the shape and size of the patient's healthy contralateral auricle and improvements to avoid immunological rejection and resorption of the bioimplant.
Collapse
|
31
|
Kumar MS, Varma P, Kandasubramanian B. From lab to life: advances in in-situbioprinting and bioink technology. Biomed Mater 2024; 20:012004. [PMID: 39704234 DOI: 10.1088/1748-605x/ad9dd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Bioprinting has the potential to revolutionize tissue engineering and regenerative medicine, offering innovative solutions for complex medical challenges and addressing unmet clinical needs. However, traditionalin vitrobioprinting techniques face significant limitations, including difficulties in fabricating and implanting scaffolds with irregular shapes, as well as limited accessibility for rapid clinical application. To overcome these challenges,in-situbioprinting has emerged as a groundbreaking approach that enables the direct deposition of cells, biomaterials, and bioactive factors onto damaged organs or tissues, eliminating the need for pre-fabricated 3D constructs. This method promises a personalized, patient-specific approach to treatment, aligning well with the principles of precision medicine. The success ofin-situbioprinting largely depends on the advancement of bioinks, which are essential for maintaining cell viability and supporting tissue development. Recent innovations in hand-held bioprinting devices and robotic arms have further enhanced the flexibility ofin-situbioprinting, making it applicable to various tissue types, such as skin, hair, muscle, bone, cartilage, and composite tissues. This review examinesin-situbioprinting techniques, the development of smart, multifunctional bioinks, and their essential properties for promoting cell viability and tissue growth. It highlights the versatility and recent advancements inin-situbioprinting methods and their applications in regenerating a wide range of tissues and organs. Furthermore, it addresses the key challenges that must be overcome for broader clinical adoption and propose strategies to advance these technologies toward mainstream medical practice.
Collapse
Affiliation(s)
- Manav Sree Kumar
- Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Tathawade Pune-411033 Maharashtra, India
| | - Payal Varma
- Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India
| |
Collapse
|
32
|
Safi SZ, Fazil S, Saeed L, Shah H, Arshad M, Alobaid HM, Rehman F, Sharif F, Selvaraj C, Orakzai AH, Tariq M, Samrot AV, Qadeer A, Ali A, Batumalaie K, Subramaniyan V, Khan SA, Ismail ISB. Chitosan- and heparin-based advanced hydrogels: their chemistry, structure and biomedical applications. CHEMICAL PAPERS 2024; 78:9287-9309. [DOI: 10.1007/s11696-024-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
|
33
|
Rovers MM, Rogkoti T, Bakker BK, Bakal KJ, van Genderen MH, Salmeron‐Sanchez M, Dankers PY. Using a Supramolecular Monomer Formulation Approach to Engineer Modular, Dynamic Microgels, and Composite Macrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405868. [PMID: 39463044 PMCID: PMC11636168 DOI: 10.1002/adma.202405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides. Functionalization with a bioactive supramolecular cell-adhesive peptide induced selectivity of cells toward the bioactive microgels over non-active, non-functionalized versions. Importantly, the supramolecular microgels can also be applied as microscale building blocks into supramolecular bulk macrogels with tunable dynamic behavior: a robust and weak macrogel, where the micro- and macrogels are composed of similar molecular building blocks. In a robust macrogel, microgels act as modular micro-building blocks, introducing multi-compartmentalization, while in a weak macrogel, microgels reinforce and enhance mechanical properties. This work demonstrates the potential to modularly engineer higher-length-scale structures using small molecule supramolecular monomers, wherein microgels serve as versatile and modular micro-building units.
Collapse
Affiliation(s)
- Maritza M. Rovers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Theodora Rogkoti
- Centre for the Cellular MicroenvironmentUniversity of Glasgow, Advanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
| | - Bram K. Bakker
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Kalpit J. Bakal
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Mechanical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Marcel H.P. van Genderen
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Manuel Salmeron‐Sanchez
- Centre for the Cellular MicroenvironmentUniversity of Glasgow, Advanced Research Centre11 Chapel LaneGlasgowG11 6EWUK
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona08010Spain
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Biomedical EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| |
Collapse
|
34
|
Walker M, Morton JP. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Biophys Rev 2024; 16:851-870. [PMID: 39830124 PMCID: PMC11735828 DOI: 10.1007/s12551-024-01265-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and one of the leading causes of cancer-related death worldwide, with an extremely poor prognosis after diagnosis. High mortality from PDAC arises partly due to late diagnosis resulting from a lack of early-stage biomarkers and due to chemotherapeutic drug resistance, which arises from a highly fibrotic stromal response known as desmoplasia. Desmoplasia alters tissue mechanics, which triggers changes in cell mechanosensing and leads to dysregulated transcriptional activity and disease phenotypes. Hydrogels are effective in vitro models to mimic mechanical changes in tissue mechanics during PDAC progression and to study the influence of these changes on mechanosensitive cell responses. Despite the complex biophysical changes that occur within the PDAC microenvironment, carefully designed hydrogels can very closely recapitulate these properties during PDAC progression. Hydrogels are relatively inexpensive, highly reproducible and can be designed in a humanised manner to increase their relevance for human PDAC studies. In vivo models have some limitations, including species-species differences, high variability, expense and legal/ethical considerations, which make hydrogel models a promising alternative. Here, we comprehensively review recent advancements in hydrogel bioengineering for developing our fundamental understanding of mechanobiology in PDAC, which is critical for informing advanced therapeutics.
Collapse
Affiliation(s)
- M Walker
- Centre for the Cellular Microenvironment, Advanced Research Centre, 11 Chapel Lane, James Watt School of Engineering, University of Glasgow, Glasgow, G11 6EW UK
| | - JP Morton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow, G61 1QH UK
| |
Collapse
|
35
|
K Jang L, T Ahlquist J, Ye C, Trujillo J, Triplett M, L Moya M, Robertson C, Hynes W, M Wasson E. Rapid curing dynamics of PEG-thiol-ene resins allow facile 3D bioprinting and in-air cell-laden microgel fabrication. Biomed Mater 2024; 20:015009. [PMID: 39584565 DOI: 10.1088/1748-605x/ad8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024]
Abstract
Thiol-norbornene photoclick hydrogels are highly efficient in tissue engineering applications due to their fast gelation, cytocompatibility, and tunability. In this work, we utilized the advantageous features of polyethylene glycol (PEG)-thiol-ene resins to enable fabrication of complex and heterogeneous tissue scaffolds using 3D bioprinting and in-air drop encapsulation techniques. We demonstrated that photoclickable PEG-thiol-ene resins could be tuned by varying the ratio of PEG-dithiol to PEG norbornene to generate a wide range of mechanical stiffness (0.5-12 kPa) and swelling ratios. Importantly, all formulations maintained a constant, rapid gelation time (<0.5 s). We used this resin in biological projection microstereolithography (BioPµSL) to print complex structures with geometric fidelity and demonstrated biocompatibility by printing cell-laden microgrids. Moreover, the rapid gelling kinetics of this resin permitted high-throughput fabrication of tunable, cell-laden microgels in air using a biological in-air drop encapsulation apparatus (BioIDEA). We demonstrated that these microgels could support cell viability and be assembled into a gradient structure. This PEG-thiol-ene resin, along with BioPµSL and BioIDEA technology, will allow rapid fabrication of complex and heterogeneous tissues that mimic native tissues with cellular and mechanical gradients. The engineered tissue scaffolds with a controlled microscale porosity could be utilized in applications including gradient tissue engineering, biosensing, andin vitrotissue models.
Collapse
Affiliation(s)
- Lindy K Jang
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Jesse T Ahlquist
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Congwang Ye
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Juliana Trujillo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Michael Triplett
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| | - William Hynes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Elisa M Wasson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| |
Collapse
|
36
|
Pradhan R, Chimene D, Ko BS, Goncharov A, Ozcan A, McShane MJ. Insertable Biomaterial-Based Multianalyte Barcode Sensor toward Continuous Monitoring of Glucose and Oxygen. ACS Sens 2024; 9:6060-6070. [PMID: 39494514 PMCID: PMC11590103 DOI: 10.1021/acssensors.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Chronic diseases, including diabetes, cardiovascular diseases, and microvascular complications, contribute significantly to global morbidity and mortality. Current monitoring tools such as glucometers and continuous glucose monitors only measure one analyte; multiplexing technologies offer a promising approach for monitoring multiple biomarkers, enabling the management of comorbidities and providing more comprehensive disease insights. In this work, we describe a miniaturized optical "barcode" sensor with high biocompatibility for the continuous monitoring of glucose and oxygen. This enzymatic sensor relies on oxygen consumption in proportion to local glucose levels and the phosphorescence reporting of tissue oxygen with a lifetime-based probe. The sensor was specifically designed to operate in a tissue environment with low levels of dissolved oxygen. The barcode sensor consists of a poly(ethylene glycol) diacrylate (PEGDA) hydrogel with four discrete compartments separately filled with glucose- or oxygen-sensing phosphorescent microparticles. We evaluated the response of the barcode hydrogels to fluctuating glucose levels over the physiological range under low oxygen conditions, demonstrating the controlled tuning of dynamic range and sensitivity. Moreover, the barcode sensor exhibited remarkable storage stability over 12 weeks, along with full reversibility and excellent reproducibility (∼6% variability in the phosphorescence lifetime) over nearly 50 devices. Electron beam sterilization had a negligible effect on the glucose response of the barcode sensors. Furthermore, our investigation revealed minimal phosphorescence lifetime changes in oxygen compartments while exhibiting increased lifetime in glucose-responsive compartments when subjected to alternating glucose concentrations (0 and 200 mg/dL), showcasing the sensor's multianalyte sensing capabilities without crosstalk between compartments. Additionally, the evaluation of chronic tissue response to sensors inserted in pigs revealed the appropriate biocompatibility of the barcodes as well as excellent material stability over many months. These findings support further development of similar technologies for introducing optical assays for multiple biomarkers that can provide continuous or on-demand feedback to individuals to manage chronic conditions.
Collapse
Affiliation(s)
- Ridhi Pradhan
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - David Chimene
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Brian S. Ko
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Artem Goncharov
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Michael J. McShane
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
37
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
38
|
Zambuto SG, Scott AK, Oyen ML. Beyond 2D: Novel biomaterial approaches for modeling the placenta. Placenta 2024; 157:55-66. [PMID: 38514278 PMCID: PMC11399328 DOI: 10.1016/j.placenta.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
This review considers fully three-dimensional biomaterial environments of varying complexity as these pertain to research on the placenta. The developments in placental cell sources are first considered, along with the corresponding maternal cells with which the trophoblast interact. We consider biomaterial sources, including hybrid and composite biomaterials. Properties and characterization of biomaterials are discussed in the context of material design for specific placental applications. The development of increasingly complicated three-dimensional structures includes examples of advanced fabrication methods such as microfluidic device fabrication and 3D bioprinting, as utilized in a placenta context. The review finishes with a discussion of the potential for in vitro, three-dimensional placenta research to address health disparities and sexual dimorphism, especially in light of the exciting recent changes in the regulatory environment for in vitro devices.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Adrienne K Scott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
39
|
Liu Y, Gilchrist AE, Heilshorn SC. Engineered Protein Hydrogels as Biomimetic Cellular Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407794. [PMID: 39233559 PMCID: PMC11573243 DOI: 10.1002/adma.202407794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Indexed: 09/06/2024]
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) play a pivotal role in regulating cellular behaviors such as proliferation, migration, and differentiation. Engineered protein-based hydrogels, with highly tunable multifunctional properties, have the potential to replicate key features of the native ECM. Formed by self-assembly or crosslinking, engineered protein-based hydrogels can induce a range of cell behaviors through bioactive and functional domains incorporated into the polymer backbone. Using recombinant techniques, the amino acid sequence of the protein backbone can be designed with precise control over the chain-length, folded structure, and cell-interaction sites. In this review, the modular design of engineered protein-based hydrogels from both a molecular- and network-level perspective are discussed, and summarize recent progress and case studies to highlight the diverse strategies used to construct biomimetic scaffolds. This review focuses on amino acid sequences that form structural blocks, bioactive blocks, and stimuli-responsive blocks designed into the protein backbone for highly precise and tunable control of scaffold properties. Both physical and chemical methods to stabilize dynamic protein networks with defined structure and bioactivity for cell culture applications are discussed. Finally, a discussion of future directions of engineered protein-based hydrogels as biomimetic cellular scaffolds is concluded.
Collapse
Affiliation(s)
- Yueming Liu
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis 451 Health Sciences Dr, GBSF 3315, Davis, CA, 95616, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, 476 Lomita Mall, McCullough Room 246, Stanford, CA, 94305, USA
| |
Collapse
|
40
|
Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, Chen F, Ozbolat IT, Yu Y. Progress in Organ Bioprinting for Regenerative Medicine. ENGINEERING 2024; 42:121-142. [DOI: 10.1016/j.eng.2024.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Wang F, Xu Y, Zhou Q, Xie L. Biomolecule-based hydrogels as delivery systems for limbal stem cell transplantation: A review. Int J Biol Macromol 2024; 280:135778. [PMID: 39304050 DOI: 10.1016/j.ijbiomac.2024.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Limbal stem cell deficiency (LSCD) is a complex disease of the cornea resulting from dysfunction and/or loss of limbal stem cells (LSCs) and their niche. Most patients with LSCD cannot be treated by conventional corneal transplants because the donor tissue lacks the LSCs necessary for corneal epithelial regeneration. Successful treatment of LSCD depends on effective stem cell transplantation to the ocular surface for replenishment of the LSC reservoir. Thus, stem cell therapies employing carrier substrates for LSCs have been widely explored. Hydrogel biomaterials have many favorable characteristics, including hydrophilicity, flexibility, cytocompatibility, and optical properties suitable for the transplantation of LSCs. Therefore, due to these properties, along with the necessary signals for stem cell proliferation and differentiation, hydrogels are ideal carrier substrates for LSCD treatment. This review summarizes the use of different medical-type hydrogels in LSC transplantation from 2001 to 2024. First, a brief background of LSCD is provided. Then, studies that employed various hydrogel scaffolds as LSC carriers are highlighted to provide a multimodal strategic reference for LSCD treatment. Finally, an analysis of prospective future developments and challenges in the field of hydrogels as LSC carriers for treating LSCD is presented.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Yuehe Xu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| |
Collapse
|
42
|
Dong Y, Zhou X, Ding Y, Luo Y, Zhao H. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting. Biochem Biophys Res Commun 2024; 730:150339. [PMID: 39032359 DOI: 10.1016/j.bbrc.2024.150339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.
Collapse
Affiliation(s)
- Yingying Dong
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xue Zhou
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Yunyi Ding
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School, Hangzhou, 310009, China.
| | - Yichen Luo
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Hong Zhao
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310060, China.
| |
Collapse
|
43
|
Zhao Z, Qin Z, Zhao T, Li Y, Hou Z, Hu H, Su X, Gao Y. Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release. Molecules 2024; 29:4952. [PMID: 39459320 PMCID: PMC11510199 DOI: 10.3390/molecules29204952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG-OH was first modified to obtain four-arm-PEG-succinimidyl glutarate (4-arm-PEG-SG), which formed the gelatin-PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zihao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Tianqing Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yuanyuan Li
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| |
Collapse
|
44
|
Ishikawa S, Yasuda T, Iwanaga Y, Sakai T. Gel-Gel Phase Separation in Clustered Poly(ethylene glycol) Hydrogel with Enhanced Hydrophobicity. ACS Macro Lett 2024; 13:1369-1375. [PMID: 39330972 DOI: 10.1021/acsmacrolett.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The development of hydrophobic poly(ethylene glycol) (PEG) hydrogels, which are typically hydrophilic, could significantly enhance their application as artificial extracellular matrices. In this study, we designed PEG hydrogels with enhanced hydrophobicity through gel-gel phase separation (GGPS), a phenomenon that uniquely enhances hydrophobicity under ambient conditions, and we elucidated the pivotal role of elasticity in this process. We hypothesized that increased elasticity would amplify GGPS, thereby improving the hydrophobicity and cell adhesion on PEG hydrogel surfaces, despite their inherent hydrophilicity. To test this hypothesis, we engineered dilute oligo-PEG gels via a two-step process, creating polymer networks from tetra-PEG clusters with multiple reaction points. These oligo-PEG gels exhibited significantly higher elasticity, turbidity, and shrinkage upon water immersion compared to dilute PEG gels. Detailed characterization through confocal laser scanning microscopy, rheological measurements, and cell adhesion assays revealed distinct biphasic structures, increased hydrophobicity, and enhanced cell attachability in the dilute oligo-PEG gels. Our findings confirm that elasticity is crucial for effective GGPS, providing a novel method for tailoring hydrogel properties without chemical modification. This research introduces a new paradigm for designing biomaterials with improved cell-scaffolding capabilities, offering significant potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takashi Yasuda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuhide Iwanaga
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
45
|
Schmidt RF, Winter HH, Gradzielski M. Generalized vs. fractional: a comparative analysis of Maxwell models applied to entangled polymer solutions. SOFT MATTER 2024; 20:7914-7925. [PMID: 39324759 DOI: 10.1039/d4sm00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Fractional viscoelastic models provide an excellent description of rheological data for polymer systems with power-law behaviour. However, the physical interpretation of their model parameters, which carry fractional units of time, often remains elusive. We show that for poly(ethylene oxide) (PEO) solutions, the fractional Maxwell model (FMM) requires much fewer model parameters than the classical generalized Maxwell model for a good description of the data and that it can be applied consistently to solutions with varying degrees of viscoelasticity. Despite their fractional units, the parameters exhibit scaling laws similar to classical parameters as a function of polymer concentration.
Collapse
Affiliation(s)
- Robert Franz Schmidt
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Horst Henning Winter
- Chemical Engineering and Polymer Science & Engineering, Silvio O. Conte National Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003-3110, USA
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
46
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
47
|
Liu S, Chen Y, Wang Z, Liu M, Zhao Y, Tan Y, Qu Z, Du L, Wu C. The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives. MedComm (Beijing) 2024; 5:e753. [PMID: 39314888 PMCID: PMC11417428 DOI: 10.1002/mco2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioprinting is a highly promising application area of additive manufacturing technology that has been widely used in various fields, including tissue engineering, drug screening, organ regeneration, and biosensing. Its primary goal is to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices through software-layered discrete and numerical control molding. Despite its immense potential, bioprinting technology still faces several challenges. It requires concerted efforts from researchers, engineers, regulatory bodies, and industry stakeholders are principal to overcome these challenges and unlock the full potential of bioprinting. This review systematically discusses bioprinting principles, applications, and future perspectives while also providing a topical overview of research progress in bioprinting over the past two decades. The most recent advancements in bioprinting are comprehensively reviewed here. First, printing techniques and methods are summarized along with advancements related to bioinks and supporting structures. Second, interesting and representative cases regarding the applications of bioprinting in tissue engineering, drug screening, organ regeneration, and biosensing are introduced in detail. Finally, the remaining challenges and suggestions for future directions of bioprinting technology are proposed and discussed. Bioprinting is one of the most promising application areas of additive manufacturing technology that has been widely used in various fields. It aims to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices. This review systematically discusses bioprinting principles, applications, and future perspectives, which provides a topical description of the research progress of bioprinting.
Collapse
Affiliation(s)
- Shuge Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yating Chen
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhiyao Wang
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Minggao Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yundi Zhao
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yushuo Tan
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhan Qu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Liping Du
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Chunsheng Wu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| |
Collapse
|
48
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
49
|
Szatkowski P, Flis Z, Ptak A, Molik E. Hydrogel Dressing Biomaterial Enriched with Vitamin C: Synthesis and Characterization. Int J Mol Sci 2024; 25:10565. [PMID: 39408893 PMCID: PMC11476569 DOI: 10.3390/ijms251910565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Materials engineering has become an important tool in the field of hydrogel dressings used to treat difficult-to-heal wounds. Hydrogels filled with bioactive substances used as a targeted healing system are worthy of attention. Vitamin C has healing and supporting effects in the treatment of many skin problems. The aim of the research was to produce a hydrogel biomaterial enriched with ascorbic acid for use as a dressing for difficult-to-heal wounds. A total of four different dressings were developed, each with different modifications in each layer. The dressing with vitamin C in the third layer was shown to release vitamin C ions more slowly than the dressing with vitamin C in the first layer. The studies conducted have shown that the dressings containing vitamin C have, among other things, a higher compressive strength, are characterised by a lower relative shortening after the application of force and shorten without damage at a lower force than in the case of a dressing without vitamin C. The dressings designed have a very good stability in the temperature range of 18 °C to 60 °C. It was found that the higher the vitamin C content in the dressing, the greater the increase in the specific heat value of the transformations. Therefore, hydrogel dressings containing vitamin C may be candidates for local delivery of vitamin C to the skin and protection of the wound area.
Collapse
Affiliation(s)
- Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Zuzanna Flis
- Department of Animal Biotechnology, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland;
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Edyta Molik
- Department of Animal Biotechnology, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland;
| |
Collapse
|
50
|
Zhang K, Yang Z, Seitz MP, Jain E. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5925-5938. [PMID: 39135543 PMCID: PMC11409214 DOI: 10.1021/acsabm.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/17/2024]
Abstract
Trauma or repeated damage to joints can result in focal cartilage defects, significantly elevating the risk of osteoarthritis. Damaged cartilage has an inherently limited self-healing capacity and remains an urgent unmet clinical need. Consequently, there is growing interest in biodegradable hydrogels as potential scaffolds for the repair or reconstruction of cartilage defects. Here, we developed a biodegradable and macroporous hybrid double-network (DN) cryogel by combining two independently cross-linked networks of multiarm polyethylene glycol (PEG) acrylate and alginate.Hybrid DN cryogels are formed using highly biocompatible click reactions for the PEG network and ionic bonding for the alginate network. By judicious selection of various structurally similar cross-linkers to form the PEG network, we can generate hybrid DN cryogels with customizable degradation kinetics. The resulting PEG-alginate hybrid DN cryogels have an interconnected macroporous structure, high mechanical strength, and rapid swelling kinetics. The interconnected macropores in the cryogels support efficient mesenchymal stem cell infiltration at a high density. Finally, we demonstrate that PEG-alginate hybrid DN cryogels allow sustained release of chondrogenic growth factors and support chondrogenic differentiation of mouse mesenchymal stem cells. This study provides a novel method to generate macroporous hybrid DN cryogels with customizable degradation rates and a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Zining Yang
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Michael Patrick Seitz
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|