1
|
Shirosaki Y, Fregnan F, Muratori L, Yasutomi S, Geuna S, Raimondo S. The Impact of the Molecular Weight of Degradation Products with Silicon from Porous Chitosan-Siloxane Hybrids on Neuronal Cell Behavior. Polymers (Basel) 2023; 15:3272. [PMID: 37571166 PMCID: PMC10422348 DOI: 10.3390/polym15153272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan-3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation products with Si extracted from the hybrids in nerve regeneration are not clear. In this study, we prepared porous chitosan-GPTMS hybrids with different amounts of GPTMS to amino groups of chitosan (chitosan:GPTMS = 1:0.5 and 1:1 molar ratios). The structures of the degradation products with Si from the hybrids were examined using time-of-flight mass spectrometry, and biological assessments were conducted in order to evaluate their potential use in the preparation of devices for nerve repair. Glial and motor cell lines and ex vivo explants of dorsal root ganglia were used in this study for evaluating their behavior in the presence of the different degradation products with Si. The structure of the degradation products with Si depended on the starting composition. The results showed that glial cell proliferation was lower in the medium with the higher-molecular-weight degradation products with Si. Moreover, motor cell line differentiation and the neurite outgrowth of dorsal root ganglion explants were improved with the lower-molecular-weight degradation products with Si. The results obtained could be useful for designing a new nerve regeneration scaffold including silicon components.
Collapse
Affiliation(s)
- Yuki Shirosaki
- Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Federica Fregnan
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| | - Saki Yasutomi
- Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Stefano Geuna
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (L.M.); (S.G.); (S.R.)
| |
Collapse
|
2
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
3
|
Msheik Z, Durand S, Pinault E, Caillaud M, Vignaud L, Billet F, El Massry M, Desmouliere A. Charcot-Marie-Tooth-1A and sciatic nerve crush rat models: insights from proteomics. Neural Regen Res 2022; 18:1354-1363. [PMID: 36453423 PMCID: PMC9838138 DOI: 10.4103/1673-5374.357911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The sensorimotor and histological aspects of peripheral neuropathies were already studied by our team in two rat models: the sciatic nerve crush and the Charcot-Marie-Tooth-1A disease. In this study, we sought to highlight and compare the protein signature of these two pathological situations. Indeed, the identification of protein profiles in diseases can play an important role in the development of pharmacological targets. In fact, Charcot-Marie-Tooth-1A rats develop motor impairments that are more severe in the hind limbs. Therefore, for the first time, protein expression in sciatic nerve of Charcot-Marie-Tooth-1A rats was examined. First, distal sciatic nerves were collected from Charcot-Marie-Tooth-1A and uninjured wild-type rats aged 3 months. After protein extraction, sequential window acquisition of all theoretical fragment ion spectra liquid chromatography and mass spectrometry was employed. 445 proteins mapped to Swiss-Prot or trEMBL Uniprot databases were identified and quantified. Of these, 153 proteins showed statistically significant differences between Charcot-Marie-Tooth-1A and wild-type groups. The majority of these proteins were overexpressed in Charcot-Marie-Tooth-1A. Hierarchical clustering and functional enrichment using Gene Ontology were used to group these proteins based on their biological effects concerning Charcot-Marie-Tooth-1A pathophysiology. Second, proteomic characterization of wild-type rats subjected to sciatic nerve crush was performed sequential window acquisition of all theoretical fragment ion spectra liquid chromatography and mass spectrometry. One month after injury, distal sciatic nerves were collected and analyzed as described above. Out of 459 identified proteins, 92 showed significant differences between sciatic nerve crush and the uninjured wild-type rats used in the first study. The results suggest that young adult Charcot-Marie-Tooth-1A rats (3 months old) develop compensatory mechanisms at the level of redox balance, protein folding, myelination, and axonogenesis. These mechanisms seem insufficient to hurdle the progress of the disease. Notably, response to oxidative stress appears to be a significant feature of Charcot-Marie-Tooth-1A, potentially playing a role in the pathological process. In contrast to the first experiment, the majority of the proteins that differed from wild-type were downregulated in the sciatic nerve crush group. Functional enrichment suggested that neurogenesis, response to axon injury, and oxidative stress were important biological processes. Protein analysis revealed an imperfect repair at this time point after injury and identified several distinguishable proteins. In conclusion, we suggest that peripheral neuropathies, whether of a genetic or traumatic cause, share some common pathological pathways. This study may provide directions for better characterization of these models and/or identifying new specific therapeutic targets.
Collapse
Affiliation(s)
- Zeina Msheik
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Stephanie Durand
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS, University of Limoges, Limoges, France,UMR 1308 Inserm/CHU–CAPTuR (Contrôle de l’Activation cellulaire, Progression Tumorale et Résistance thérapeutique), University of Limoges, Limoges, France
| | - Emilie Pinault
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS, University of Limoges, Limoges, France
| | - Martial Caillaud
- Inserm UMR1235–TENS (The Enteric Nervous System in Gut and Brain Diseases), University of Nantes, Nantes, France
| | - Laetitia Vignaud
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Fabrice Billet
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Mohamed El Massry
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France
| | - Alexis Desmouliere
- UR20218 NeurIT (NEURopathies périphériques et Innovation Thérapeutique), University of Limoges, Limoges, France,Correspondence to: Alexis Desmoulière, .
| |
Collapse
|
4
|
Yuan Y, Li J, Chen Y, Cai Q, Xu Y, Lin L, Lang Y, Guo S, Zhang R, Cai X. Mechanism underlying linezolid-induced peripheral neuropathy in multidrug-resistant tuberculosis. Front Pharmacol 2022; 13:946058. [PMID: 36160387 PMCID: PMC9500448 DOI: 10.3389/fphar.2022.946058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) remains a main global health concern as there is no comprehensive therapeutic intervention yet and numerous adverse effects follow the therapeutic process. In recent years, linezolid has been frequently used for treating MDR-TB. However, peripheral neuropathy associated with linezolid has reduced patient compliance. The current study explored the mechanism underlying linezolid-induced peripheral neuropathy in MDR-TB. Autophagy plays a neuroprotective role against peripheral nerve injury. We hypothesized that autophagy might also play a neuroprotective role against linezolid-induced peripheral neuropathy. In this study, we collected 12 questionnaires from MDR-TB patients in our hospital, and 10 of them developed linezolid-induced pain. The pain is mainly concentrated in the feet and accompanied by numbness. Subsequently, we used Sprague-Dawley (SD) rats and Schwann cells (SCs) to explore the mechanism. We found that linezolid causes a sparse arrangement of sciatic nerve tissue with associated loss of neurons, myelin sheaths, and down-regulation of LC3B expression. These results were also confirmed by in vitro experiments, showing that linezolid inhibited the proliferation of SCs. And the expression of P-AKT and P62 was elevated, and the expression of LC3B declined compared with the control group. Moreover, chloroquine (CQ), an autophagy inhibitor, also exhibited experimental results similar to linezolid. In summary, we conclude that linezolid-induced peripheral neuropathy is associated with the inhibition of autophagy flux.
Collapse
Affiliation(s)
- Yuan Yuan
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Jinmeng Li
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Yanhong Chen
- Laboratory Animal Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingshan Cai
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Yingying Xu
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Luting Lin
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yazhen Lang
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Suhang Guo
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
| | - Ruoying Zhang
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Ruoying Zhang, ; Xinjun Cai,
| | - Xinjun Cai
- Zhejiang University School of Medicine, Affiliated Hangzhou Chest Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Ruoying Zhang, ; Xinjun Cai,
| |
Collapse
|
5
|
Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4773. [PMID: 34500862 PMCID: PMC8432541 DOI: 10.3390/ma14174773] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
The current study aimed to evaluate the characteristics and the effects of degradation on the structural properties of Poly(lactic-co-glycolic acid) (PLGA)- and polycaprolactone (PCL)-based nanofibrous scaffolds. Six scaffolds were prepared by electrospinning, three with PCL 15% (w/v) and three with PLGA 10% (w/v), with electrospinning processing times of 30, 60 and 90 min. Both types of scaffolds displayed more robust mechanical properties with increased spinning times. The tensile strength of both scaffolds with 90-min electrospun membranes did not show a significant difference in their strengths, as the PCL and PLGA scaffolds measured at 1.492 MPa ± 0.378 SD and 1.764 MPa ± 0.7982 SD, respectively. All membranes were shown to be hydrophobic under a wettability test. A degradation behaviour study was performed by immersing all scaffolds in phosphate-buffered saline (PBS) solution at room temperature for 12 weeks and for 4 weeks at 37 °C. The effects of degradation were monitored by taking each sample out of the PBS solution every week, and the structural changes were investigated under a scanning electron microscope (SEM). The PCL and PLGA scaffolds showed excellent fibre structure with adequate degradation, and the fibre diameter, measured over time, showed slight increase in size. Therefore, as an example of fibre water intake and progressive degradation, the scaffold's percentage weight loss increased each week, further supporting the porous membrane's degradability. The pore size and the porosity percentage of all scaffolds decreased substantially over the degradation period. The conclusion drawn from this experiment is that PCL and PLGA hold great promise for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Morteza Bazgir
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China;
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China;
| | - Jacobo Elies
- Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Phil Coates
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| | - Mansour Youseffi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
6
|
Zhou G, Chang W, Zhou X, Chen Y, Dai F, Anwar A, Yu X. Nanofibrous Nerve Conduits with Nerve Growth Factors and Bone Marrow Stromal Cells Pre-Cultured in Bioreactors for Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16168-16177. [PMID: 32182427 DOI: 10.1021/acsami.0c04191] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peripheral nerve injury (PNI) was the leading cause of permanent dysfunction in movement and sensation. Synthesized nerve guide conduits (NGCs) with Schwann Cells (SCs) can help peripheral nerve regeneration. However, poor accessibility of SCs and lack of full coverage of seeded cells on NGCs can lead to failure of nerve regeneration across long gaps and full functional recovery. To overcome these limitations, bone marrow stromal cells (BMSCs) and a novel culture method were proposed in the current study. BMSCs were harvested and seeded on a never growth factor (NGF)-loaded PCL nanofibrous NGCs and cultured with a rotary cell culture system (RCCS) before implantation. The NGCs were tested in vitro with PC-12 cells to validate the bioactivity of released NGF and to access its ability to promote neurite extension. Also, the NGCs were tested in vivo with rat sciatic nerve model to exam its potential in bridging the long gap (15 mm segmental defect). The efficacy of the NGCs was investigated based on the results of the functional test, electrophysiology test, muscle atrophy, and histological analysis. The results of in vitro PC-12 cell study confirmed the bioactivity of released NGF and showed a significant increase in the neurite extension with the help of PEG-diamine and BSA. These results showed that the novel loading method could preserve the bioactivity of growth factors and achieve a sustained release in vitro. Besides, the results of the in vivo study exhibited a significant increase with the combination of all additives. These results showed that with the help of NGF and RCCS, the NGCs with the seeded BMSCs could enhance peripheral nerve regeneration across long nerve injury gaps.
Collapse
Affiliation(s)
- Gan Zhou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Wei Chang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yifan Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Futao Dai
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Aneela Anwar
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Xiaojun Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
7
|
Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers (Basel) 2020; 12:E620. [PMID: 32182751 PMCID: PMC7182904 DOI: 10.3390/polym12030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of "one-matches-all" referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Idini M, Wieringa P, Rocchiccioli S, Nieddu G, Ucciferri N, Formato M, Lepedda A, Moroni L. Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomater 2019; 96:188-202. [PMID: 31265920 DOI: 10.1016/j.actbio.2019.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Nerve fibers of the peripheral nervous system (PNS) have a remarkable ability to regenerate up to an almost complete recovery of normal function following a crush or a Sunderland Type II injury. This process is governed by glial cells, known as Schwann cells, through their unique capacity to dedifferentiate into cells that drive the healing process. Despite that many progresses have occurred in restorative medicine and microsurgery, the regenerative process after a severe lesion of a major nerve trunk (e.g., Sunderland Types III-V) is often incomplete and functional recovery is unsatisfactory. In this aspect, it is known that glycosaminoglycans (GAGs) of the extracellular matrix are involved in proliferation, synaptogenesis, neural plasticity, and regeneration of the PNS. Here, we developed poly(caprolactone) (PCL) fibrous scaffolds functionalized with GAGs, which allowed us to assess their influence on the adhesion, proliferation, and differentiation of Schwann cells. We found that both aligned and random fiber scaffolds functionalized with GAGs resulted in increased cell proliferation on day 1. In addition, aligned functionalized scaffolds also resulted in increased GAG presence on day 1, probably because of cell extracellular matrix (ECM) formation and an increased syndecan-4 expression on day 7. A different modification and activation of Schwann cells in the presence of GAG versus no-GAG scaffolds was underlined by proteomic comparative analysis, where a general downregulation of the expression of intracellular/structural and synthetic proteins was shown on day 7 for GAG-functionalized scaffolds with regard to the nonfunctionalized ones. In conclusion, we have shown that GAG-functionalized scaffolds are effective in modulating Schwann cell behavior in terms of adhesion, proliferation, and differentiation and should be considered in strategies to improve PNS repair. STATEMENT OF SIGNIFICANCE: Nerve fibers functional recovery following a severe trauma of the Peripheral Nervous System (PNS) still represents a huge challenge for neurosurgery nowadays. In this respect, tissue engineering is committed to develop new constructs able to guide Schwann cells by mimicking the natural extracellular matrix environment. To this purpose, we successfully fabricated polycaprolactone (PCL) scaffolds with two well-defined fiber deposition patterns, functionalized with glycosaminoglycans (GAGs) and assessed for their potential as support for Schwann cells adhesion, growth and differentiation, by both classical biochemistry and LC-MS-based proteomic profiling. By this way, we showed that PCL-GAGs scaffolds could represent a promising artificial substrate that closely mimics the recently established pattern of Schwann cells migration into the regenerating nerve and, therefore, it should be considered in strategies to improve PNS repair.
Collapse
Affiliation(s)
- Michela Idini
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marilena Formato
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Antonio Lepedda
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Lorenzo Moroni
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands.
| |
Collapse
|
9
|
Chen Y, Taskin MB, Zhang Z, Su Y, Han X, Chen M. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension. Biomater Sci 2019; 7:2165-2173. [PMID: 30896681 DOI: 10.1039/c8bm01603h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases and acute nerve injuries are becoming global clinical problems. Engineering three-dimensional (3D), anisotropic neural cellular structures in vitro is therefore desirable in the regenerative medicine research community. Here, we present, for the first time, a single-step, facile but delicate, fabrication of a 3D macroporous microfibrous scaffold with both anisotropic nanogrooved topography and in situ functionalization with a mussel inspired bioadhesive, poly(norepinephrine) (pNE). Specifically, immiscible blends of polycaprolactone (PCL) and polyethylene oxide (PEO) were electrospun into a grounded coagulation bath containing the precursor of pNE. Upon jet entrance in the bath, both phase-separation-driven longitudinal nanotopography and in situ pNE surface functionalization were introduced on individual microfibers that were packed into a 3D macroporous structure. The resulting scaffold significantly promoted 3D neurite extension capacity, 8-fold higher neurite extension over the isotropic counterpart, demonstrating that such a scaffold has great promise in 3D neural cell culture for nerve tissue modelling and engineering.
Collapse
Affiliation(s)
- Yilin Chen
- Department of Engineering, Aarhus University, Aarhus 8000, Denmark.
| | | | | | | | | | | |
Collapse
|
10
|
Carmagnola I, Chiono V, Abrigo M, Ranzato E, Martinotti S, Ciardelli G. Tailored functionalization of poly(L-lactic acid) substrates at the nanoscale to enhance cell response. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:526-546. [PMID: 30773129 DOI: 10.1080/09205063.2019.1580954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poly(L-lactic) acid (PLLA) has been widely employed in tissue engineering due to its mechanical properties, biodegradability and biocompatibility. The layer-by-layer (LbL) technique was here proposed as a simple method to impart bioactivity to the surface of PLLA substrates. Aminolysis treatment was applied to introduce amino groups on the surface of PLLA solvent cast films. Then, PLLA films were coated with heparin (HE)/chitosan (CH) multilayer by the LbL technique. Each functionalization step was characterized through physico-chemical and morphological analyses. Aminolysis treatment increased film surface wettability (64.8° ± 2.4° against 74.6° ± 1.3° for untreated PLLA) due to the formation of surface amino groups, which were quantified by acid orange colorimetric assay (0.05 nmol/mm2). After the deposition of 9 layers, the static contact angle varied between values close to 40° C (HE-based layer) and 60 °C (CH-based layer), showing the typical alternate trend of LbL coating. The successful HE/CH deposition was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Particularly, XPS spectra of coated samples showed the presence of nitrogen (indicative of HE and CH deposition), and sulfur (indicative of HE deposition). The amount of deposited HE was quantified by Taylor's Blue colorimetric method: after the deposition of 19 and 20 layers the HE concentration was around 33 µg/cm2. Finally, in vitro studies performed using HaCaT immortalized human skin keratinocytes, C2C12 immortalized mouse myoblasts and human fibroblasts demonstrated that HE/CH multilayer-coated PLLA is a promising substrate for soft tissue engineering, as cell response may be modulated by changing the surface chemical properties.
Collapse
Affiliation(s)
- Irene Carmagnola
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy.,b Politecnico di Torino , POLITO BIOMedLAB , Turin , Italy
| | - Valeria Chiono
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy.,b Politecnico di Torino , POLITO BIOMedLAB , Turin , Italy.,c CNR-IPCF , National Research Council-Institute for Chemical and Physical Processes , Pisa , Italy
| | - Martina Abrigo
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy
| | - Elia Ranzato
- d Department of Science and Technological Innovation , University of Oriental Piedmont , Alessandria , Italy
| | - Simona Martinotti
- d Department of Science and Technological Innovation , University of Oriental Piedmont , Alessandria , Italy
| | - Gianluca Ciardelli
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy.,b Politecnico di Torino , POLITO BIOMedLAB , Turin , Italy.,c CNR-IPCF , National Research Council-Institute for Chemical and Physical Processes , Pisa , Italy
| |
Collapse
|
11
|
Sadeghi A, Moztarzadeh F, Aghazadeh Mohandesi J. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Int J Biol Macromol 2019; 121:625-632. [DOI: 10.1016/j.ijbiomac.2018.10.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
|
12
|
Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2018; 11:E1. [PMID: 30959985 PMCID: PMC6401776 DOI: 10.3390/polym11010001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Rahul Patil
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|
13
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Velmurugan BK, Bharathi Priya L, Poornima P, Lee LJ, Baskaran R. Biomaterial aided differentiation and maturation of induced pluripotent stem cells. J Cell Physiol 2018; 234:8443-8454. [PMID: 30565686 DOI: 10.1002/jcp.27769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Lohanathan Bharathi Priya
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Paramasivan Poornima
- Molecular and Cellular Pharmacology Laboratory, School of Science, Engineering and Technology, University of Abertay, Dundee, UK
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 2018; 139:98-116. [PMID: 30018000 DOI: 10.1016/j.neuropharm.2018.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
Traumatic injuries to peripheral nerves are frequent, however, specific pharmacological treatments are currently lacking. Curcumin has antioxidant, anti-inflammatory and neuroprotective properties but high oral doses are required for therapeutic use, particularly due to its low bioavailability. The aim of the present study was to investigate the effects of local and continuous treatment using low curcumin doses on functional recovery and nerve regeneration after rat sciatic nerve crush (SNC). Curcumin was administered by osmotic pumps with a catheter delivering the drug at the injury site (0.2 mg/day for 4 weeks). Functionally, early improvements in mechanical sensitivity, finger spacing of the injured paw, skilful walking and grip strength were observed in curcumin-treated animals. The curcumin treatment increased expression of compact myelin proteins (MPZ and PMP22), myelin sheath thickness and, correspondingly, increased motor and sensitive nerve conduction velocity. Microscopic analysis of gastrocnemius muscle indicated a curcumin-induced decrease in neurogenic lesions. Curcumin treatment reduced the production of reactive oxygen species (ROS) (which were notably produced by macrophages), lipid peroxidation and increased expression of transcription factor Nrf2. In silico analyses indicated that curcumin combines all the characteristics required to be an efficient lipid peroxidation inhibitor at the heart of biological membranes, hence protecting their degradation due to ROS. This antioxidant capacity is likely to contribute to the beneficial effects of curcumin after SNC injury. These results demonstrate that, when administrated locally, low doses of curcumin represent a promising therapy for peripheral nerve regeneration.
Collapse
|
16
|
Chang W, Shah MB, Lee P, Yu X. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Acta Biomater 2018; 73:302-311. [PMID: 29702292 DOI: 10.1016/j.actbio.2018.04.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve. Results from this study can help further optimize tissue engineering strategies for peripheral nerve repair.
Collapse
|
17
|
The role of precisely matching fascicles in the quick recovery of nerve function in long peripheral nerve defects. Neuroreport 2018; 28:1008-1015. [PMID: 28914740 PMCID: PMC5610562 DOI: 10.1097/wnr.0000000000000873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury therapy in the clinic remains less than satisfactory. The gold standard of treatment for long peripheral nerve defects is autologous nerve grafts; however, numerous clinical complications are associated with this treatment. As tissue engineering has developed, tissue-engineered nerve grafts (TENGs) have shown potential applications as alternatives to autologous nerve grafts. To verify the important role of the biomimetic pathway of fascicle design in TENGs, we designed an animal model to study the role of the precise matching of fascicles in the effectiveness of nerve function recovery. 24 Sprague-Dawley rats were divided randomly into three groups (eight/group) that corresponded to 100% fascicle matching (100%FM), 50%FM and 0%FM. We selected Sprague–Dawley rat long-gap (15 mm) sciatic nerve defects. In the 6 weeks after surgery, we found that the 100%FM group showed the most effective functional recovery among the three groups. The 100%FM group showed better functional recovery on the basis of the sciatic functional index than the 50%FM and 0%FM groups. According to histological evaluation, the 100%FM group showed more regenerating nerve fibres. Moreover, in terms of the prevention of muscle atrophy, the 100%FM group showed excellent physiological outcomes. The 100%FM as tissue-engineered scaffolds can enhance nerve regeneration and effective functional recovery after the repair of large nerve defects. The results of this study provide a theoretical basis for future TENG designs including biomimetic fascicle pathways for repairing long nerve defects.
Collapse
|
18
|
Diogo CC, Camassa JA, Pereira JE, Costa LMD, Filipe V, Couto PA, Geuna S, Maurício AC, Varejão AS. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: review of the literature. Neurol Res 2017; 39:926-939. [DOI: 10.1080/01616412.2017.1331873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Camila Cardoso Diogo
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - José Arthur Camassa
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - José Eduardo Pereira
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Luís Maltez da Costa
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Vítor Filipe
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- INESC TEC, Porto, Portugal
| | - Pedro Alexandre Couto
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Ana Colette Maurício
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
- Animal Science and Study Centre (CECA), Food and Agrarian Sciences and Technologies Institute (ICETA), University of Porto, Porto, Portugal
| | - Artur Severo Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
19
|
Alexandre N, Amorim I, Caseiro AR, Pereira T, Alvites R, Rêma A, Gonçalves A, Valadares G, Costa E, Santos-Silva A, Rodrigues M, Lopes MA, Almeida A, Santos JD, Maurício AC, Luís AL. Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm 2017; 523:515-530. [PMID: 28283218 DOI: 10.1016/j.ijpharm.2017.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional and structural performance of a 5cm synthetic small diameter vascular graft (SDVG) produced by the copolymerization of polyvinyl alcohol hydrogel with low molecular weight dextran (PVA/Dx graft) associated to mesenchymal stem cells (MSCs)-based therapies and anticoagulant treatment with heparin, clopidogrel and warfarin was tested using the ovine model during the healing period of 24 weeks. The results were compared to the ones obtained with standard expanded polyetetrafluoroethylene grafts (ePTFE graft). Blood flow, vessel and graft diameter measurements, graft appearance and patency rate (PR), thrombus, stenosis and collateral vessel formation were evaluated by B-mode ultrasound, audio and color flow Doppler. Graft and regenerated vessels morphologic evaluation was performed by scanning electronic microscopy (SEM), histopathological and immunohistochemical analysis. All PVA/Dx grafts could maintain a similar or higher PR and systolic/diastolic laminar blood flow velocities were similar to ePTFE grafts. CD14 (macrophages) and α-actin (smooth muscle) staining presented similar results in PVA/Dx/MSCs and ePTFE graft groups. Fibrosis layer was lower and endothelial cells were only detected at graft-artery transitions where it was added the MSCs. In conclusion, PVA/Dx graft can be an excellent scaffold candidate for vascular reconstruction, including clinic mechanically challenging applications, such as SDVGs, especially when associated to MSCs-based therapies to promote higher endothelialization and lower fibrosis of the vascular prosthesis, but also higher PR values.
Collapse
Affiliation(s)
- Nuno Alexandre
- Departamento de Zootecnia, Universidade de Évora, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal; Instituto de Ciências Agroambientais Mediterrânicas (ICAAM), Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal
| | - Irina Amorim
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Tiago Pereira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Gonçalves
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Guilherme Valadares
- Internvet, Rua Academia Recreativa Santo Amaro, n° 13, 1300-001 Lisboa, Portugal
| | - Elísio Costa
- Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Rua do Campo Alegre, N°. 823, 4150 Porto, Portugal
| | - Alice Santos-Silva
- Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Rua do Campo Alegre, N°. 823, 4150 Porto, Portugal
| | - Miguel Rodrigues
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Maria Ascensão Lopes
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - André Almeida
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - José Domingos Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Lúcia Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Ribeiro J, Caseiro AR, Pereira T, Armada-da-Silva PA, Pires I, Prada J, Amorim I, Leal Reis I, Amado S, Santos JD, Bompasso S, Raimondo S, Varejão ASP, Geuna S, Luís AL, Maurício AC. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model. J Biomed Mater Res A 2017; 105:1267-1280. [PMID: 28078802 DOI: 10.1002/jbm.a.35998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022]
Abstract
The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10-6 S/m, 579 ± 0.6 × 10-6 S/m, and 1837.5 ± 0.7 × 10-6 S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Rita Caseiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Tiago Pereira
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Paulo Alexandre Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Dafundo, Cruz Quebrada, Portugal.,CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - Isabel Pires
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Justina Prada
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Irina Amorim
- Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, Porto, 4200-135, Portugal
| | - Inês Leal Reis
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Sandra Amado
- Instituto Politécnico de Leiria, UIS-IPL: Unidade de Investigação em Saúde da Escola Superior de Saúde de Leiria, Portugal.,CDrsp - Centre for Rapid and Sustainable Product Development, Rua de Portugal 2430-028, Marinha, Grande, Portugal
| | - José Domingos Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Simone Bompasso
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Artur Severo Proença Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Ana Lúcia Luís
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Colette Maurício
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| |
Collapse
|
21
|
Non-covalently crosslinked chitosan nanofibrous mats prepared by electrospinning as substrates for soft tissue regeneration. Carbohydr Polym 2017; 162:82-92. [PMID: 28224898 DOI: 10.1016/j.carbpol.2017.01.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 11/22/2022]
Abstract
Chitosan (CS) membranes obtained by electrospinning are potentially ideal substrates for soft tissue engineering as they combine the excellent biological properties of CS with the extracellular matrix (ECM)-like structure of nanofibrous mats. However, the high amount of acid solvents required to spun CS solutions interferes with the biocompatibility of CS fibres. To overcome this limitation, novel CS based solutions were investigated in this work. Low amount of acidic acid (0.5M) was used and dibasic sodium phosphate (DSP) was introduced as ionic crosslinker to improve nanofibres water stability and to neutralize the acidic pH of electrospun membranes after fibres soaking in biological fluids. Randomly oriented and aligned nanofibres (128±19nm and 140±41nm, respectively) were obtained through electrospinning process (voltage of 30kV, 30μL/min flow rate and temperature of 39°C) showing mechanical properties similar to those of soft tissues (Young Modulus lower than 40MPa in dry condition) and water stability until 7 days. C2C12 myoblast cell line was cultured on CS fibres showing that the aligned architecture of substrate induces cell orientation that can enhance skeletal muscle regeneration.
Collapse
|
22
|
Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm 2016; 513:332-346. [DOI: 10.1016/j.ijpharm.2016.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023]
|
23
|
Waterborne chitosan-epoxysilane hybrid pretreatments for corrosion protection of zinc. Biointerphases 2016; 11:021001. [PMID: 27009436 DOI: 10.1116/1.4944828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biopolymer-based systems are extensively studied as green alternatives for traditional polymer coatings, e.g., in corrosion protection. Chitosan-epoxysilane hybrid films are presented in this work as a chitosan-based protective system, which could, e.g., be applied in a pretreatment step. For the preparation of the chitosan-epoxysilane hybrid systems, a sol-gel procedure was applied. The function of the silane is to ensure adhesion to the substrate. On zinc substrates, homogeneous thin films with thickness of 50-70 nm were obtained after thermal curing. The hybrid-coated zinc substrates were characterized by infrared spectroscopy, ellipsometry, and x-ray photoelectron spectroscopy. As model corrosion experiments, linear polarization resistance was measured, and cathodic delamination of the weak polymer coating poly(vinylbutyral) (PVB) was studied using scanning Kelvin probe. Overall, chitosan-epoxysilane hybrid pretreated samples showed lower delamination rates than unmodified chitosan coatings and pure PVB. Electrochemical impedance spectroscopy confirmed a reduced ion permeability and water uptake by chitosan-epoxysilane films compared to that of a nonmodified chitosan coating. Even though the coatings are hydrophobic and contain water, they slow down cathodic delamination by limiting ion transport.
Collapse
|
24
|
Yue W, Yan F, Zhang YL, Liu SL, Hou SP, Mao GC, Liu N, Ji Y. Differentiation of Rat Bone Marrow Mesenchymal Stem Cells Into Neuron-Like Cells In Vitro and Co-Cultured with Biological Scaffold as Transplantation Carrier. Med Sci Monit 2016; 22:1766-72. [PMID: 27225035 PMCID: PMC4917310 DOI: 10.12659/msm.898441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Autograft and allograft transplantation are used to prompt the regeneration of axons after nerve injury. However, the poor self-regeneration caused by the glial scar and growth inhibitory factors after neuronal necrosis limit the efficacy of these methods. The purpose of this study was to develop a new chitosan porous scaffold for cell seeding. MATERIAL AND METHODS The bone marrow mesenchymal stem cells (BMSCs) and tissue-engineered biomaterial scaffold compound were constructed and co-cultured in vitro with the differentiated BMSCs of Wistar rats and chitosan scaffold in a 3D environment. The purity of the third-generation BMSCs culture was identified using flow cytometry and assessment of induced neuronal differentiation. The scaffolds were prepared by the freeze-drying method. The internal structure of scaffolds and the change of cells' growth and morphology were observed under a scanning electron microscope. The proliferation of cells was detected with the MTT method. RESULTS On day 5 there was a significant difference in the absorbance value of the experimental group (0.549±0.0256) and the control group (0.487±0.0357) (P>0.05); but on day 7 there was no significant difference in the proliferation of the experimental group (0.751±0.011) and the control group and (0.78±0.017) (P>0.05). CONCLUSIONS Tissue engineering technology can provide a carrier for cells seeding and is expected to become an effective method for the regeneration and repair of nerve cells. Our study showed that chitosan porous scaffolds can be used for such purposes.
Collapse
Affiliation(s)
- Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Feng Yan
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Yue-Lin Zhang
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Shu-Ling Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Shu-Ping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Guo-Chao Mao
- Department of Neurosurgery, The Third Affiliate Hospital of Xi’an Jiaotong University, Shanxi Provincial People’s Hospital, Xi’an, Shaanxi, P.R. China
| | - Ning Liu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| |
Collapse
|
25
|
Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells Int 2016; 2016:9756973. [PMID: 26880998 PMCID: PMC4736584 DOI: 10.1155/2016/9756973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.
Collapse
|
26
|
Repair and regeneration of lumbosacral nerve defects in rats with chitosan conduits containing bone marrow mesenchymal stem cells. Injury 2015; 46:2156-63. [PMID: 26429103 DOI: 10.1016/j.injury.2015.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Despite the great progress in surgical treatment of lumbosacral nerve injuries caused by high-energy trauma, functional recovery remains poor and insufficient. Bone marrow mesenchymal stem cells (BMSCs), which express neurotrophic factors and can also differentiate into nerve cells, have potential as an effective alternative therapy for lumbosacral nerve defects. The aim of the present study was to evaluate the functional recovery, nerve regeneration, motor neuron survival and apoptosis after lumbosacral nerve transection in rats receiving BMSC transplantation into the chitosan conduit. METHODS The right L4-L6 nerve roots of rats were transected and bridged with three 1-cm-long chitosan conduits, which were further injected with the BMSCs (MSC-treated group) or culture medium (DMEM group). The nerve regeneration and motor function recovery were assessed by the sciatic functional index (SFI) and analysed electrophysiologically and morphologically. RESULTS At 6 and 12 weeks after surgery, the SFI values in MSC-treated group were significantly higher than those in DMEM group (P≤0.05). The peak amplitude of CMAP (compound muscle action potential) and nerve conduction velocity in MSC-treated group were significantly higher than that in DMEM group (P≤0.01), while the latency of CMAP onset in MSC-treated group was significantly shorter than that in DMEM group (P≤0.01). The diameter of the myelinated fibres and thickness of the myelin sheath in MSC-treated group were significantly higher than those in DMEM group (P≤0.05). There was no difference in the number of motor neurons in the anterior horn of the spinal cord at 6 weeks post-operation (P>0.05), while the number of motor neurons was significantly greater in MSC-treated group than that in DMEM group at 12 weeks post-operation (P≤0.001). The number of apoptotic cells was also significantly lower (P≤0.01). CONCLUSIONS The results of the present study showed that BMSCs treatment improved lumbosacral nerve regeneration and motor function. In addition, our data suggested that BMSCs inhibited motor neuron apoptosis, and improved motor neuron function and survival in the anterior horn of the spinal cord.
Collapse
|
27
|
Zheng C, Zhu Q, Liu X, Huang X, He C, Jiang L, Quan D. Improved peripheral nerve regeneration using acellular nerve allografts loaded with platelet-rich plasma. Tissue Eng Part A 2015; 20:3228-40. [PMID: 24901030 DOI: 10.1089/ten.tea.2013.0729] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acellular nerve allografts (ANAs) behave in a similar manner to autografts in supporting axonal regeneration in the repair of short peripheral nerve defects but fail in larger defects. The objective of this article is to evaluate the effect of ANA supplemented with platelet-rich plasma (PRP) to improve nerve regeneration after surgical repair and to discuss the mechanisms that underlie this approach. Autologous PRP was obtained from rats by double-step centrifugation and was characterized by determining platelet numbers and the release of growth factors. Forty-eight Sprague-Dawley rats were randomly divided into 4 groups (12/group), identified as autograft, ANA, ANA loaded with PRP (ANA+PRP), and ANA loaded with platelet-poor plasma (PPP, ANA+PPP). All grafts were implanted to bridge long-gap (15 mm) sciatic nerve defects. We found that PRP with a high platelet concentration exhibited a sustained release of growth factors. Twelve weeks after surgery, the autograft group displayed the highest level of reinnervation, followed by the ANA+PRP group. The ANA+PRP group showed a better electrophysiology response for amplitude and conduction velocity than the ANA and ANA+PPP groups. Based on histological evaluation, the ANA+PRP and autograft groups had higher numbers of regenerating nerve fibers. Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that PRP boosted expression of neurotrophins in the regenerated nerves. Moreover, the ANA+PRP and autograft groups showed excellent physiological outcomes in terms of the prevention of muscle atrophy. In conclusion, ANAs loaded with PRP as tissue-engineered scaffolds can enhance nerve regeneration and functional recovery after the repair of large nerve gaps nearly as well as autografts.
Collapse
Affiliation(s)
- Canbin Zheng
- 1 Department of Orthopedic and Microsurgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
28
|
In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett 2015; 37:2497-506. [DOI: 10.1007/s10529-015-1939-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
|
29
|
Ribeiro J, Pereira T, Caseiro AR, Armada-da-Silva P, Pires I, Prada J, Amorim I, Amado S, França M, Gonçalves C, Lopes MA, Santos JD, Silva DM, Geuna S, Luís AL, Maurício AC. Evaluation of biodegradable electric conductive tube-guides and mesenchymal stem cells. World J Stem Cells 2015; 7:956-975. [PMID: 26240682 PMCID: PMC4515438 DOI: 10.4252/wjsc.v7.i6.956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the therapeutic effect of three tube-guides with electrical conductivity associated to mesenchymal stem cells (MSCs) on neuro-muscular regeneration after neurotmesis.
METHODS: Rats with 10-mm gap nerve injury were tested using polyvinyl alcohol (PVA), PVA-carbon nanotubes (CNTs) and MSCs, and PVA-polypyrrole (PPy). The regenerated nerves and tibialis anterior muscles were processed for stereological studies after 20 wk. The functional recovery was assessed serially for gait biomechanical analysis, by extensor postural thrust, sciatic functional index and static sciatic functional index (SSI), and by withdrawal reflex latency (WRL). In vitro studies included cytocompatibility, flow cytometry, reverse transcriptase polymerase chain reaction and karyotype analysis of the MSCs. Histopathology of lung, liver, kidneys, and regional lymph nodes ensured the biomaterials biocompatibility.
RESULTS: SSI remained negative throughout and independently from treatment. Differences between treted groups in the severity of changes in WRL existed, showing a faster regeneration for PVA-CNTs-MSCs (P < 0.05). At toe-off, less acute ankle joint angles were seen for PVA-CNTs-MSCs group (P = 0.051) suggesting improved ankle muscles function during the push off phase of the gait cycle. In PVA-PPy and PVA-CNTs groups, there was a 25% and 42% increase of average fiber area and a 13% and 21% increase of the “minimal Feret’s diameter” respectively. Stereological analysis disclosed a significantly (P < 0.05) increased myelin thickness (M), ratio myelin thickness/axon diameter (M/d) and ratio axon diameter/fiber diameter (d/D; g-ratio) in PVA-CNT-MSCs group (P < 0.05).
CONCLUSION: Results revealed that treatment with MSCs and PVA-CNTs tube-guides induced better nerve fiber regeneration. Functional and kinematics analysis revealed positive synergistic effects brought by MSCs and PVA-CNTs. The PVA-CNTs and PVA-PPy are promising scaffolds with electric conductive properties, bio- and cytocompatible that might prevent the secondary neurogenic muscular atrophy by improving the reestablishment of the neuro-muscular junction.
Collapse
|
30
|
Naghavi Alhosseini S, Moztarzadeh F, Kargozar S, Dodel M, Tahriri M. Development of Polyvinyl Alcohol Fibrous Biodegradable Scaffolds for Nerve Tissue Engineering Applications:In VitroStudy. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.977893] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Geuna S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 2015; 243:39-46. [PMID: 25629799 DOI: 10.1016/j.jneumeth.2015.01.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022]
Abstract
In the pre-clinical view, the study of peripheral nerve repair and regeneration still needs to be carried out in animal models due to the structural complexity of this organ which can be only partly simulated in vitro. The far most used experimental model is based on the injury of the sciatic nerve, the largest nerve trunk in mammals. In this paper, the potential application of the sciatic nerve injury model in pre-clinical research is critically reviewed. This paper is aimed at helping researchers in properly employing this in vivo model for the study of nerve repair and regeneration as well as interpreting the results in a clinical translation perspective.
Collapse
Affiliation(s)
- Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation & Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
32
|
Papalia I, Ronchi G, Muratori L, Mazzucco A, Magaudda L, Geuna S. Direct muscle neurotization after end-to end and end-to-side neurorrhaphy: An experimental study in the rat forelimb model. Neural Regen Res 2014; 7:2273-8. [PMID: 25538749 PMCID: PMC4268728 DOI: 10.3969/j.issn.1673-5374.2012.29.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023] Open
Abstract
The need for the continuous research of new tools for improving motor function recovery after nerve injury is justified by the still often unsatisfactory clinical outcome in these patients. It has been previously shown that the combined use of two reconstructive techniques, namely end-to-side neurorrhaphy and direct muscle neurotization in the rat hindlimb model, can lead to good results in terms of skeletal muscle reinnervation. Here we show that, in the rat forelimb model, the combined use of direct muscle neurotization with either end-to-end or end-to-side neurorrhaphy to reinnervate the denervated flexor digitorum muscles, leads to muscle atrophy prevention over a long postoperative time lapse (10 months). By contrast, very little motor recovery (in case of end-to-end neurorrhaphy) and almost no motor recovery (in case of end-to-side neurorrhaphy) were observed in the grasping activity controlled by flexor digitorum muscles. It can thus be concluded that, at least in the rat, direct muscle neurotization after both end-to-end and end-to-side neurorrhaphy represents a good strategy for preventing denervation-related muscle atrophy but not for regaining the lost motor function.
Collapse
Affiliation(s)
- Igor Papalia
- Department of Biomorphology and Biotechnologies, University of Messina, Messina 98100, Italy
| | - Giulia Ronchi
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Torino 10043, Italy
| | - Luisa Muratori
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Torino 10043, Italy
| | - Alessandra Mazzucco
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Torino 10043, Italy
| | - Ludovico Magaudda
- Department of Biomorphology and Biotechnologies, University of Messina, Messina 98100, Italy
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO) & Department of Clinical and Biological Sciences, University of Turin, Torino 10043, Italy
| |
Collapse
|
33
|
Gärtner A, Pereira T, Simões MJ, Armada-da-Silva PA, França ML, Sousa R, Bompasso S, Raimondo S, Shirosaki Y, Nakamura Y, Hayakawa S, Osakah A, Porto B, Luís AL, Varejão AS, Maurício AC. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model. Neural Regen Res 2014; 7:2247-58. [PMID: 25538746 PMCID: PMC4268725 DOI: 10.3969/j.issn.1673-5374.2012.29.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022] Open
Abstract
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced to form several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.
Collapse
Affiliation(s)
- Andrea Gärtner
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Tiago Pereira
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Maria João Simões
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Paulo As Armada-da-Silva
- Faculty of Human Kinetics, Technical University of Lisbon, Cruz Quebrada - Dafundo, 1499-002, Portugal
| | - Miguel L França
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Rosa Sousa
- Institute of Biomedical Sciences Abel Salazar, Cytogenetic Department, Porto University, Porto 4099-003, Portugal
| | - Simone Bompasso
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano 10043, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Orbassano 10010, Turin, Italy
| | - Stefania Raimondo
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano 10043, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Orbassano 10010, Turin, Italy
| | - Yuki Shirosaki
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yuri Nakamura
- Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Satoshi Hayakawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Akiyoshi Osakah
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Beatriz Porto
- Institute of Biomedical Sciences Abel Salazar, Cytogenetic Department, Porto University, Porto 4099-003, Portugal
| | - Ana Lúcia Luís
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Artur Sp Varejão
- Department of Veterinary Sciences, Research Centre in Sports, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real 5001-801, Portugal
| | - Ana Colette Maurício
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| |
Collapse
|
34
|
Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells Int 2014; 2014:376918. [PMID: 25379040 PMCID: PMC4212633 DOI: 10.1155/2014/376918] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.
Collapse
|
35
|
Li G, Zhao X, Zhao W, Zhang L, Wang C, Jiang M, Gu X, Yang Y. Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials 2014; 35:8503-13. [DOI: 10.1016/j.biomaterials.2014.05.093] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
36
|
JOÃO FILIPA, VELOSO ANTÓNIO, AMADO SANDRA, ARMADA-DA-SILVA PAULO, MAURÍCIO ANAC. CAN GLOBAL OPTIMIZATION TECHNIQUE COMPENSATE FOR MARKER SKIN MOVEMENT IN RAT KINEMATICS? J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The motion of the skeletal estimated from skin attached marker-based motion capture(MOCAP) systems is known to be affected by significant bias caused by anatomical landmarks mislocation but especially by soft tissue artifacts (such as skin deformation and sliding, inertial effects and muscle contraction). As a consequence, the error associated with this bias can propagate to joint kinematics and kinetics data, particularly in small rodents. The purpose of this study was to perform a segmental kinematic analysis of the rat hindlimb during locomotion, using both global optimization as well as segmental optimization methods. Eight rats were evaluated for natural overground walking and motion of the right hindlimb was captured with an optoeletronic system while the animals walked in the track. Three-dimensional (3D) biomechanical analyses were carried out and hip, knee and ankle joint angular displacements and velocities were calculated. Comparison between both methods demonstrated that the magnitude of the kinematic error due to skin movement increases in the segmental optimization when compared with the global optimization method. The kinematic results assessed with the global optimization method matches more closely to the joint angles and ranges of motion calculated from bone-derived kinematics, being the knee and hip joints with more significant differences.
Collapse
Affiliation(s)
- FILIPA JOÃO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - ANTÓNIO VELOSO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - SANDRA AMADO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - PAULO ARMADA-DA-SILVA
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - ANA C. MAURÍCIO
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University (UP), P-4050-313, Porto, Portugal
| |
Collapse
|
37
|
Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly: in vitro and in vivo analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:302659. [PMID: 25121094 PMCID: PMC4119891 DOI: 10.1155/2014/302659] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
In peripheral nerves MSCs can modulate Wallerian degeneration and the overall regenerative response by acting through paracrine mechanisms directly on regenerating axons or upon the nerve-supporting Schwann cells. In the present study, the effect of human MSCs from Wharton's jelly (HMSCs), differentiated into neuroglial-like cells associated to poly (DL-lactide-ε-caprolactone) membrane, on nerve regeneration, was evaluated in the neurotmesis injury rat sciatic nerve model. Results in vitro showed successful differentiation of HMSCs into neuroglial-like cells, characterized by expression of specific neuroglial markers confirmed by immunocytochemistry and by RT-PCR and qPCR targeting specific genes expressed. In vivo testing evaluated during the healing period of 20 weeks, showed no evident positive effect of HMSCs or neuroglial-like cell enrichment at the sciatic nerve repair site on most of the functional and nerve morphometric predictors of nerve regeneration although the nociception function was almost normal. EPT on the other hand, recovered significantly better after HMSCs enriched membrane employment, to values of residual functional impairment compared to other treated groups. When the neurotmesis injury can be surgically reconstructed with an end-to-end suture or by grafting, the addition of a PLC membrane associated with HMSCs seems to bring significant advantage, especially concerning the motor function recovery.
Collapse
|
38
|
Carvalho M, Costa LM, Pereira JE, Shirosaki Y, Hayakawa S, Santos JD, Geuna S, Fregnan F, Cabrita AM, Maurício AC, Varejão AS. The role of hybrid chitosan membranes on scarring process following lumbar surgery: post-laminectomy experimental model. Neurol Res 2014; 37:23-9. [PMID: 24965895 DOI: 10.1179/1743132814y.0000000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Post-operative scarring process on lumbar surgery is object of several studies mainly because of the epidural fibrosis formation. Hybrid chitosan have shown promising effect on fibrosis prevention. The aim of this study was to determine the influence of chitosan-silane membrane on the lumbar surgery scarring process. These membranes have improved mechanical strength which makes them suitable to maintain a predefined shape. METHODS A two level lumbar laminectomy was performed in 14 New Zealand male rabbits. Laminectomy sites were randomly selected for biomaterial or control. Chitosan membranes were prepared and care was taken in order to make it adapted to the bone defect dimensions covering the totality of the defect including the bone margins. Histological analysis was performed by haematoxylin/eosin and by Masson's trichrome staining four weeks after laminectomy. RESULTS Microscope observations revealed the presence of a well-organized regenerating tissue, integrated in the surrounding vertebral bone tissue with a regular and all-site interface on the chitosan sites, in clear contrast with the presence of a disorganized regenerating tissue with aspects consistent with the persistence of a chronic inflammatory condition, on control sites. DISCUSSION The results of this study clearly demonstrated that hybrid chitosan had an organizing effect on post-operative scarring process. The presence of the hybrid chitosan membrane resulted on a well-organized tissue integrated in the surrounding vertebral bone tissue with signs of regenerative bone tissue in continuity with native bone. This can be a major feature on the dynamics of epidural fibrosis formation.
Collapse
|
39
|
Challenges for nerve repair using chitosan-siloxane hybrid porous scaffolds. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153808. [PMID: 25054129 PMCID: PMC4087280 DOI: 10.1155/2014/153808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/02/2023]
Abstract
The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.
Collapse
|
40
|
Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC. Perspectives of employing mesenchymal stem cells from the Wharton's jelly of the umbilical cord for peripheral nerve repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 108:79-120. [PMID: 24083432 DOI: 10.1016/b978-0-12-410499-0.00004-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) from Wharton's jelly present high plasticity and low immunogenicity, turning them into a desirable form of cell therapy for the injured nervous system. Their isolation, expansion, and characterization have been performed from cryopreserved umbilical cord tissue. Great concern has been dedicated to the collection, preservation, and transport protocols of the umbilical cord after the parturition to the laboratory in order to obtain samples with higher number of viable MSCs without microbiological contamination. Different biomaterials like chitosan-silicate hybrid, collagen, PLGA90:10, poly(DL-lactide-ɛ-caprolactone), and poly(vinyl alcohol) loaded with electrical conductive materials, associated to MSCs have also been tested in the rat sciatic nerve in axonotmesis and neurotmesis lesions. The in vitro studies of the scaffolds included citocompatibility evaluation of the biomaterials used and cell characterization by imunocytochemistry, karyotype analysis, differentiation capacity into neuroglial-like cells, and flow cytometry. The regeneration process follow-up has been performed by functional analysis and the repaired nerves processed for stereological studies permitted the morphologic regeneration evaluation. The MSCs from Wharton's jelly delivered through tested biomaterials should be regarded a potentially valuable tool to improve clinical outcome especially after trauma to sensory nerves. In addition, these cells represent a noncontroversial source of primitive mesenchymal progenitor cells, which can be harvested after birth, cryogenically stored, thawed, and expanded for therapeutic uses. The importance of a longitudinal study concerning tissue engineering of the peripheral nerve, which includes a multidisciplinary team able to develop biomaterials associated to cell therapies, to perform preclinical trials concerning animal welfare and the appropriate animal model is here enhanced.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto (UP), Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gärtner A, Pereira T, Armada-da-Silva P, Amado S, Veloso A, Amorim I, Ribeiro J, Santos J, Bárcia R, Cruz P, Cruz H, Luís A, Santos J, Geuna S, Maurício A. Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries. J Stem Cells Regen Med 2014. [PMID: 25075157 PMCID: PMC4112274 DOI: 10.46582/jsrm.1001004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx® alone or UCX® administered with Floseal®. Overall, the UCX® application presented positive effects in functional and morphologic recovery, in both the acute and chronic phases of the regeneration process. Kinematics analysis has revealed positive synergistic effects brought by Floseal® as vehicle for MSCs.
Collapse
Affiliation(s)
- A Gärtner
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; These authors contributed equally for the results present in this research work
| | - T Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; These authors contributed equally for the results present in this research work
| | - Pas Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (UL) , Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal. ; CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH) , Universidade de Lisboa (UL), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - S Amado
- CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH) , Universidade de Lisboa (UL), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal. ; UIS-IPL: Unidade de Investigação em Saúde da Escola Superior de Saúde de Leiria , Instituto Politécnico de Leiria, Portugal
| | - Ap Veloso
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (UL) , Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal. ; CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH) , Universidade de Lisboa (UL), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - I Amorim
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Instituto Português de Patologia e Imunologia Molecular da niversidade do Porto (IPATIMUP) , Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - J Ribeiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Jd Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia , Universidade do Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Rn Bárcia
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - P Cruz
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - H Cruz
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - Al Luís
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Jm Santos
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - S Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation , Turin, Italy. ; Department of Clinical and Biological Sciences , University of Turin, Italy
| | - Ac Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| |
Collapse
|
42
|
Alexandre N, Ribeiro J, Gärtner A, Pereira T, Amorim I, Fragoso J, Lopes A, Fernandes J, Costa E, Santos-Silva A, Rodrigues M, Santos JD, Maurício AC, Luís AL. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies. J Biomed Mater Res A 2014; 102:4262-75. [PMID: 24488670 DOI: 10.1002/jbm.a.35098] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/08/2022]
Abstract
Polyvinyl alcohol hydrogel (PVA) is a synthetic polymer with an increasing application in the biomedical field that can potentially be used for vascular grafting. However, the tissue and blood-material interactions of such gels and membranes are unknown in detail. The objectives of this study were to: (a) assess the biocompatibility and (b) hemocompatibility of PVA-based membranes in order to get some insight into its potential use as a vascular graft. PVA was evaluated isolated or in copolymerization with dextran (DX), a biopolymer with known effects in blood coagulation homeostasis. The effects of the mesenchymal stem cells (MSCs) isolated from the umbilical cord Wharton's jelly in the improvement of PVA biocompatibility and in the vascular regeneration were also assessed. The biocompatibility of PVA was evaluated by the implantation of membranes in subcutaneous tissue using an animal model (sheep). Histological samples were assessed and the biological response parameters such as polymorphonuclear neutrophilic leucocytes and macrophage scoring evaluated in the implant/tissue interface by International Standards Office (ISO) Standard 10993-6 (annex E). According to the scoring system based on those parameters, a total value was obtained for each animal and for each experimental group. The in vitro hemocompatibility studies included the classic hemolysis assay and both human and sheep bloods were used. Relatively to biocompatibility results, PVA was slightly irritant to the surrounding tissues; PVA-DX or PVA plus MSCs groups presented the lowest score according to ISO Standard 10993-6. Also, PVA was considered a nonhemolytic biomaterial, presenting the lowest values for hemolysis when associated to DX.
Collapse
Affiliation(s)
- Nuno Alexandre
- Departamento de Zootecnia, Universidade de Évora (UE), Pólo da Mitra, Apartado 94, 7002-554, Évora, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora (UE), Pólo da Mitra, Apartado 94, 7002-554, Évora, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Connell LS, Romer F, Suárez M, Valliant EM, Zhang Z, Lee PD, Smith ME, Hanna JV, Jones JR. Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J Mater Chem B 2014; 2:668-680. [DOI: 10.1039/c3tb21507e] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL. Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci 2014; 11:979-87. [PMID: 25076843 PMCID: PMC4115236 DOI: 10.7150/ijms.9139] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023] Open
Abstract
The healing process of the skin is a dynamic procedure mediated through a complex feedback of growth factors secreted by a variety of cells types. Despite the most recent advances in wound healing management and surgical procedures, these techniques still fail up to 50%, so cellular therapies involving mesenchymal stem cells (MSCs) are nowadays a promising treatment of skin ulcers which are a cause of high morbidity. The MSCs modulate the inflammatory local response and induce cell replacing, by a paracrine mode of action, being an important cell therapy for the impaired wound healing. The local application of human MSCs (hMSCs) isolated from the umbilical cord Wharton's jelly together with a poly(vinyl alcohol) hydrogel (PVA) membrane, was tested to promote wound healing in two dogs that were referred for clinical examination at UPVET Hospital, showing non-healing large skin lesions by the standard treatments. The wounds were infiltrated with 1000 cells/µl hMSCs in a total volume of 100 µl per cm(2) of lesion area. A PVA membrane was applied to completely cover the wound to prevent its dehydration. Both animals after the treatment demonstrated a significant progress in skin regeneration with decreased extent of ulcerated areas confirmed by histological analysis. The use of Wharton's jelly MSCs associated with a PVA membrane showed promising clinical results for future application in the treatment of chronic wounds in companion animals and humans.
Collapse
Affiliation(s)
- Jorge Ribeiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| | - Tiago Pereira
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Irina Amorim
- 3. Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 4. Instituto Português de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Rita Caseiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Maria A Lopes
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Lima
- 7. LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Andrea Gartner
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paulo J Bártolo
- 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Jorge Manuel Rodrigues
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 8. Hospital de S. João, Universidade do Porto (UP), Porto, Portugal. ; 9. Departmento de Dentistria, Universidade Fernando Pessoa (UFP), Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Ana Colette Mauricio
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Ana Lúcia Luís
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| |
Collapse
|
45
|
Xu H, Holzwarth JM, Yan Y, Xu P, Zheng H, Yin Y, Li S, Ma PX. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 2013; 35:225-35. [PMID: 24138830 DOI: 10.1016/j.biomaterials.2013.10.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/01/2013] [Indexed: 12/26/2022]
Abstract
The significant drawbacks and lack of success associated with current methods to treat critically sized nerve defects have led to increased interest in neural tissue engineering. Conducting polymers show great promise due to their electrical properties, and in the case of polypyrrole (PPY), its cell compatibility as well. Thus, the goal of this study is to synthesize a conducting composite nerve conduit with PPY and poly(d, l-lactic acid) (PDLLA), assess its ability to support the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro, and determine its ability to promote nerve regeneration in vivo. Different amounts of PPY (5%, 10%, and 15%) are used to synthesize the conduits resulting in different conductivities (5.65, 10.40, and 15.56 ms/cm, respectively). When PC12 cells are seeded on these conduits and stimulated with 100 mV for 2 h, there is a marked increase in both the percentage of neurite-bearing cells and the median neurite length as the content of PPY increased. More importantly, when the PPY/PDLLA nerve conduit was used to repair a rat sciatic nerve defect it performed similarly to the gold standard autologous graft. These promising results illustrate the potential that this PPY/PDLLA conducting composite conduit has for neural tissue engineering.
Collapse
Affiliation(s)
- Haixing Xu
- Department of Pharmaceutical Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; School of Chemical Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center, Wuhan University of Technology, Wuhan 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chitosan–silane sol–gel hybrid thin films with controllable layer thickness and morphology. Carbohydr Polym 2013; 93:285-90. [DOI: 10.1016/j.carbpol.2012.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/03/2012] [Accepted: 04/11/2012] [Indexed: 01/12/2023]
|
47
|
Gnavi S, Barwig C, Freier T, Haastert-Talini K, Grothe C, Geuna S. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 109:1-62. [PMID: 24093605 DOI: 10.1016/b978-0-12-420045-6.00001-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various biomaterials have been proposed to build up scaffolds for promoting neural repair. Among them, chitosan, a derivative of chitin, has been raising more and more interest among basic and clinical scientists. A number of studies with neuronal and glial cell cultures have shown that this biomaterial has biomimetic properties, which make it a good candidate for developing innovative devices for neural repair. Yet, in vivo experimental studies have shown that chitosan can be successfully used to create scaffolds that promote regeneration both in the central and in the peripheral nervous system. In this review, the relevant literature on the use of chitosan in the nervous tissue, either alone or in combination with other components, is overviewed. Altogether, the promising in vitro and in vivo experimental results make it possible to foresee that time for clinical trials with chitosan-based nerve regeneration-promoting devices is approaching quickly.
Collapse
Affiliation(s)
- Sara Gnavi
- Department of Clinical and Biological Sciences, Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of Turin, Ospedale San Luigi, Regione Gonzole 10, Orbassano (TO), Italy
| | | | | | | | | | | |
Collapse
|
48
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Tsuru K, Shirosaki Y, Hayakawa S, Osaka A. Sol–Gel-Derived Silicate Nano-Hybrids for Biomedical Applications. Biol Pharm Bull 2013; 36:1683-7. [DOI: 10.1248/bpb.b13-00526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuki Shirosaki
- Frontier Research Academy, Kyushu Institute of Technology
| | - Satoshi Hayakawa
- Graduate School of Natural Science and Technology, Okayama University
| | - Akiyoshi Osaka
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
50
|
Khanbabaie R, Jahanshahi M. Revolutionary impact of nanodrug delivery on neuroscience. Curr Neuropharmacol 2012; 10:370-92. [PMID: 23730260 PMCID: PMC3520046 DOI: 10.2174/157015912804143513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
Brain research is the most expanding interdisciplinary research that is using the state of the art techniques to overcome limitations in order to conduct more accurate and effective experiments. Drug delivery to the target site in the central nervous system (CNS) is one of the most difficult steps in neuroscience researches and therapies. Taking advantage of the nanoscale structure of neural cells (both neurons and glia); nanodrug delivery (second generation of biotechnological products) has a potential revolutionary impact into the basic understanding, visualization and therapeutic applications of neuroscience. Current review article firstly provides an overview of preparation and characterization, purification and separation, loading and delivering of nanodrugs. Different types of nanoparticle bioproducts and a number of methods for their fabrication and delivery systems including (carbon) nanotubes are explained. In the second part, neuroscience and nervous system drugs are deeply investigated. Different mechanisms in which nanoparticles enhance the uptake and clearance of molecules form cerebrospinal fluid (CSF) are discussed. The focus is on nanodrugs that are being used or have potential to improve neural researches, diagnosis and therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Reza Khanbabaie
- Nanotechnology Research Institute, Babol University of Technology, Babol, Iran
- Faculty of Basic Science, Department of Physics, Babol University of Technology, Babol, Iran
- Department of Physics, University of Ottawa, Ottawa, Canada
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Babol University of Technology, Babol, Iran
- Faculty of Chemical Engineering, Babol University of Technology, Babol, Iran
| |
Collapse
|