1
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Liang Y, Mi Z, Kuo PC. Differential MYC and PROM1 mRNA isoform expression in breast invasive carcinoma as biomarkers for subtyping and prognosis. Surgery 2025; 179:108798. [PMID: 39306567 DOI: 10.1016/j.surg.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND Cancer stem cells are a subpopulation of tumor cells with the ability to self-renew; evidence suggests that cancer stem cells are responsible for recurrence, metastasis, and resistance to therapy. MYC and CD133 (PROM1 gene) are clinical biomarkers for cancer stem cells, and their dysregulation is involved in the progression of many cancers. Alternative splicing of these genes may contribute to cancer stem cell differentiation. METHODS Transcriptional and clinical data of PROM1 and MYC mRNA isoforms in breast cancer samples were downloaded from the TCGA Splicing Variants Database site, a web-tool to explore mRNA alternative-splicing based on TCGA samples. Data include RSEM isoform expression, clinical sample types, survival data, and clinical receptor expression. Breast cancer subtypes (luminal A, luminal B, Her2 positive, triple negative) were assigned on the basis of estrogen, progesterone, and HER2 expression. RESULTS Expression of MYC isoforms uc003ysh.1 and uc003ysi.3 was significantly greater in triple-negative breast cancer compared with all other breast cancer subtypes (P < .001). Isoform uc003ysi.3 was associated with greater 5-year survival in luminal A breast cancer (hazard ratio, 0.79; 95% confidence interval, 0.65-0.96; P = .02). PROM1 isoforms uc003gop.2, uc003goq.3, uc003gos.2, and uc003gou.2 were expressed greatest in triple-negative breast cancer (P < .001). PROM1 isoform uc003gou.2 was associated with better 5-year survival in luminal A breast cancer (hazard ratio, 0.79; 95% confidence interval, 0.65-0.97; P = .02). CONCLUSIONS MYC and PROM1 isoforms are differentially expressed in breast cancer subtypes. Certain isoforms confer better survival prognosis. Further work should be done to study alternative splicing in cancer stem cells.
Collapse
Affiliation(s)
- Yifan Liang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Zhiyong Mi
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Paul C Kuo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL; Bay Pines Veterans Affairs Health Care System, Bay Pines, FL.
| |
Collapse
|
3
|
Zhang C, Chen Y, Han J, Liu R, Liu C, Zhao Y, Liu Y. Ultrasound nanobubble-based combinational strategies of loaded miR-107-3p and CD133 Ab for anti-PD-L1 and anti-hepatocellular cancer stem cells. Int J Pharm 2025; 670:125140. [PMID: 39756595 DOI: 10.1016/j.ijpharm.2024.125140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND CD133 is regarded as a marker and target for cancer stem cells (CSCs) in various types of tumors, including hepatocellular carcinoma (HCC). The expressions of CD133 and programmed cell death ligand 1 (PD-L1) in CSCs exhibit a positive feedback regulatory effect. This effect promotes CSC proliferation and immune escape, ultimately leading to tumor progression and poor prognosis. METHODS CD133-specific antibodies and miR-107-3p loaded nanobubbles (miR-107-3p/CD133 Ab-NBs) were assembled using various techniques, such as the biotin-avidin system and cationic lipid nanobubbles. The relationship between miR-107-3p and PD-L1 was established via a miR-107-3p mimic/inhibitor using RT-qPCR and Western blot methods. The miR-107-3p/CD133 Ab-NBs were characterized, and their pharmacokinetic attributes were studied in combination with ultrasound-targeted microbubble destruction (UTMD). Subsequently, the anti-tumor efficacy and mechanism were scrutinized both in vitro and in vivo. RESULTS miR-107-3p/CD133Ab NBs were successfully prepared through CD133Ab conjugation and miR-107-3p loading, yielding an average particle size of 342.0 ± 26.3 nm, and presenting as spherical particles with uniform size and distribution. By using a mouse subcutaneous transplanted tumor model, paired with UTMD, we found that miR-107-3p/CD133Ab-NBs could significantly accumulate at the tumor site, as observed through the IVIS Spectrum system. These nanoparticles showed considerable anti-tumor activity against HCC, both in vitro and in the xenograft mouse model. Further findings indicated that miR-107-3p/CD133Ab-NBs promoted lymphocyte proliferation enhanced the cytotoxic T lymphocyte (CTL) killing activity, and increased cytokine gene expression. This suggests that the combination of miR-107-3p/CD133Ab-NBs with UTMD could enhance anti-cancer immune responses by inhibiting PD-L1 with miR-107-3p and targeting CD133 on the CSCs of HCC. CONCLUSIONS Our study introduces a novel strategy for ultrasound-targeted microbubbles containing miR-107-3p and CD133Ab. This strategy demonstrated substantial anti-tumor activity against HCC by blocking the positive feedback of CD133 and PD-L1 expression in CSCs. Thus, it reveals a potential advantage of combined miR-107-3p/CD133 Ab-NBs therapy for HCC.
Collapse
Affiliation(s)
- Chujun Zhang
- Department of Ultrasound Imaging The First College of Clinical Medical Science China Three Gorges University Yichang China; Medical College China Three Gorges University No.8 Daxue Road Xiling District Yichang China
| | - Yezi Chen
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010 China
| | - Jiaxuan Han
- Medical College China Three Gorges University No.8 Daxue Road Xiling District Yichang China
| | - Rong Liu
- Department of Ultrasound Imaging The First College of Clinical Medical Science China Three Gorges University Yichang China
| | - Chaoqi Liu
- Medical College China Three Gorges University No.8 Daxue Road Xiling District Yichang China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yun Zhao
- Medical College China Three Gorges University No.8 Daxue Road Xiling District Yichang China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
| | - Yun Liu
- Department of Ultrasound Imaging The First College of Clinical Medical Science China Three Gorges University Yichang China.
| |
Collapse
|
4
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
6
|
Perelmuter VM, Grigoryeva ES, Alifanov VV, Kalinchuk AY, Andryuhova ES, Savelieva OE, Patskan IA, Bragina OD, Garbukov EY, Vostrikova MA, Zavyalova MV, Denisov EV, Cherdyntseva NV, Tashireva LA. Characterization of EpCAM-Positive and EpCAM-Negative Tumor Cells in Early-Stage Breast Cancer. Int J Mol Sci 2024; 25:11109. [PMID: 39456890 PMCID: PMC11508537 DOI: 10.3390/ijms252011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Most studies on CTCs have focused on isolating cells that express EpCAM. In this study, we emphasize the presence of EpCAM-negative and EpCAMlow CTCs, in addition to EpCAMhigh CTCs, in early BC. We evaluated stem cell markers (CD44/CD24 and CD133) and EMT markers (N-cadherin) in each subpopulation. Our findings indicate that all stemness variants were present in both EpCAMhigh and EpCAM-negative CTCs, whereas only one variant of stemness (nonCD44+CD24-/CD133+) was observed among EpCAMlow CTCs. Nearly all EpCAMhigh CTCs were represented by CD133+ stem cells. Notably, the hybrid EMT phenotype was more prevalent among EpCAM-negative CTCs. scRNA-seq of isolated CTCs and primary tumor partially confirmed this pattern. Therefore, further investigation is imperative to elucidate the prognostic significance of EpCAM-negative and EpCAMlow CTCs.
Collapse
Affiliation(s)
- Vladimir M. Perelmuter
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeniya S. Grigoryeva
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Vladimir V. Alifanov
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Anna Yu. Kalinchuk
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Elena S. Andryuhova
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Olga E. Savelieva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Ivan A. Patskan
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Olga D. Bragina
- The Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeniy Yu. Garbukov
- The Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Mariya A. Vostrikova
- The Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Marina V. Zavyalova
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeny V. Denisov
- The Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Nadezhda V. Cherdyntseva
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Liubov A. Tashireva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| |
Collapse
|
7
|
Yang D, Zhang P, Yang Z, Hou G, Yang Z. miR-4461 inhibits liver cancer stem cells expansion and chemoresistance via regulating SIRT1. Carcinogenesis 2024; 45:463-474. [PMID: 36437743 DOI: 10.1093/carcin/bgac093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 11/27/2022] [Indexed: 02/17/2024] Open
Abstract
MicroRNAs (miRNAs) were involved in tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. We show here that miR-4461 expression is reduced in liver cancer stem cells (CSCs) and predicts the poor prognosis of HCC patients. Knockdown of miR-4461 enhances the self-renewal and tumorigenicity of liver CSCs. Conversely, forced miR-4461 expression inhibits liver CSCs self-renewal and tumorigenesis. Mechanically, miR-4461 directly targets sirtuin 1 (SIRT1) via binding to its 3' untranslated region in liver CSCs. The correlation of miR-4461 and SIRT1 was confirmed in human HCC patients' tissues. Additionally, we found that miR-4461 overexpression hepatoma cells are more sensitive to cisplatin treatment. Patient-derived xenografts also showed that miR-4461 high HCC xenografts are sensitive to cisplatin treatment. Clinical cohort analysis further confirmed that HCC patients with high miR-4461 benefited more from transcatheter arterial chemoembolization treatment. In conclusion, our findings revealed the crucial role of miR-4461 in liver CSCs expansion and cisplatin response, rendering miR-4461 as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Daji Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ziting Yang
- Department of Emergency, The 964th Hospital of the Chinese People's Liberation Army, Changchun, China
| | - Guojun Hou
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Ziyu Yang
- Department of Integrative Medicine, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
8
|
Rahman MA, Apu EH, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Taleb SA, Shaikh MH, Jalouli M, Harrath AH, Kim B. Exploring Importance and Regulation of Autophagy in Cancer Stem Cells and Stem Cell-Based Therapies. Cells 2024; 13:958. [PMID: 38891090 PMCID: PMC11171866 DOI: 10.3390/cells13110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy is a globally conserved cellular activity that plays a critical role in maintaining cellular homeostasis through the breakdown and recycling of cellular constituents. In recent years, there has been much emphasis given to its complex role in cancer stem cells (CSCs) and stem cell treatment. This study examines the molecular processes that support autophagy and how it is regulated in the context of CSCs and stem cell treatment. Although autophagy plays a dual role in the management of CSCs, affecting their removal as well as their maintenance, the intricate interaction between the several signaling channels that control cellular survival and death as part of the molecular mechanism of autophagy has not been well elucidated. Given that CSCs have a role in the development, progression, and resistance to treatment of tumors, it is imperative to comprehend their biological activities. CSCs are important for cancer biology because they also show a tissue regeneration model that helps with organoid regeneration. In other words, the manipulation of autophagy is a viable therapeutic approach in the treatment of cancer and stem cell therapy. Both synthetic and natural substances that target autophagy pathways have demonstrated promise in improving stem cell-based therapies and eliminating CSCs. Nevertheless, there are difficulties associated with the limitations of autophagy in CSC regulation, including resistance mechanisms and off-target effects. Thus, the regulation of autophagy offers a versatile strategy for focusing on CSCs and enhancing the results of stem cell therapy. Therefore, understanding the complex interactions between autophagy and CSC biology would be essential for creating therapeutic treatments that work in both regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology and Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - S. M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Mushfiq H. Shaikh
- Department of Otolaryngology—Head and Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Shaban NZ, Hegazy WA, Abu-Serie MM, Talaat IM, Awad OM, Habashy NH. Seedless black Vitis vinifera polyphenols suppress hepatocellular carcinoma in vitro and in vivo by targeting apoptosis, cancer stem cells, and proliferation. Biomed Pharmacother 2024; 175:116638. [PMID: 38688169 DOI: 10.1016/j.biopha.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor and one of the most challenging cancers to treat. Here, we evaluated the in vitro and in vivo ameliorating impacts of seedless black Vitis vinifera (VV) polyphenols on HCC. Following the preparation of the VV crude extract (VVCE) from seedless VV (pulp and skin), three fractions (VVF1, VVF2, and VVF3) were prepared. The anticancer potencies of the prepared fractions, compared to 5-FU, were assessed against HepG2 and Huh7 cells. In addition, the effects of these fractions on p-dimethylaminoazobenzene-induced HCC in mice were evaluated. The predicted impacts of selected phenolic constituents of VV fractions on the activity of essential HCC-associated enzymes (NADPH oxidase "NADPH-NOX2", histone deacetylase 1 "HDAC1", and sepiapterin reductase "SepR") were analyzed using molecular docking. The results showed that VVCE and its fractions induced apoptosis and collapsed CD133+ stem cells in the studied cancer cell lines with an efficiency greater than 5-FU. VVF1 and VVF2 exhibited the most effective anticancer fractions in vitro; therefore, we evaluated their influences in mice. VVF1 and VVF2 improved liver morphology and function, induced apoptosis, and lowered the fold expression of various crucial genes that regulate cancer stem cells and other vital pathways for HCC progression. For most of the examined parameters, VVF1 and VVF2 had higher potency than 5-FU, and VVF1 showed more efficiency than VVF2. The selected phenolic compounds displayed competitive inhibitory action on NADPH-NOX2, HDAC1, and SepR. In conclusion, these findings declare that VV polyphenolic fractions, particularly VVF1, could be promising safe anti-HCC agents.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Walaa A Hegazy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Clinical Sciences Department, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Olfat M Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
10
|
Serambeque B, Mestre C, Correia-Barros G, Teixo R, Marto CM, Gonçalves AC, Caramelo F, Silva I, Paiva A, Beck HC, Carvalho AS, Botelho MF, Carvalho MJ, Matthiesen R, Laranjo M. Influence of Aldehyde Dehydrogenase Inhibition on Stemness of Endometrial Cancer Stem Cells. Cancers (Basel) 2024; 16:2031. [PMID: 38893151 PMCID: PMC11171353 DOI: 10.3390/cancers16112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one of the most common gynaecological malignancies. Although often diagnosed at an early stage, there is a subset of patients with recurrent and metastatic disease for whom current treatments are not effective. Cancer stem cells (CSCs) play a pivotal role in triggering tumorigenesis, disease progression, recurrence, and metastasis, as high aldehyde dehydrogenase (ALDH) activity is associated with invasiveness and chemotherapy resistance. Therefore, this study aimed to evaluate the effects of ALDH inhibition in endometrial CSCs. ECC-1 and RL95-2 cells were submitted to a sphere-forming protocol to obtain endometrial CSCs. ALDH inhibition was evaluated through ALDH activity and expression, sphere-forming capacity, self-renewal, projection area, and CD133, CD44, CD24, and P53 expression. A mass spectrometry-based proteomic study was performed to determine the proteomic profile of endometrial cancer cells upon N,N-diethylaminobenzaldehyde (DEAB). DEAB reduced ALDH activity and expression, along with a significant decrease in sphere-forming capacity and projection area, with increased CD133 expression. Additionally, DEAB modulated P53 expression. Endometrial cancer cells display a distinct proteomic profile upon DEAB, sharing 75 up-regulated and 30 down-regulated proteins. In conclusion, DEAB inhibits ALDH activity and expression, influencing endometrial CSC phenotype. Furthermore, ALDH18A1, SdhA, and UBAP2L should be explored as novel molecular targets for endometrial cancer.
Collapse
Affiliation(s)
- Beatriz Serambeque
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Catarina Mestre
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Gabriela Correia-Barros
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Ricardo Teixo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology (LOH) and University Clinics of Hematology and Oncology, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO) and Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Isabel Silva
- Cytometry Operational Management Unit, Clinical Pathology Department, Unidade de Saúde Local de Coimbra, 3004-561 Coimbra, Portugal;
| | - Artur Paiva
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Cytometry Operational Management Unit, Clinical Pathology Department, Unidade de Saúde Local de Coimbra, 3004-561 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Coimbra Health School, Laboratory Biomedical Sciences, 3045-043 Coimbra, Portugal
| | - Hans C. Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark;
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria João Carvalho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Universitary Clinic of Gynecology, Faculty of Medicine, 3004-561 Coimbra, Portugal
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (G.C.-B.); (R.T.); (C.M.M.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.C.G.); (F.C.); (A.P.)
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
11
|
Skurikhin E, Ermakova N, Zhukova M, Pan E, Widera D, Sandrikina L, Kogai L, Pershina O, Pakhomova A, Pan VY, Kushlinskii N, Kubatiev A, Morozov S, Dygai A. Effects of reprogrammed splenic CD8 + T-cells in vitro and in mice with spontaneous metastatic Lewis lung carcinoma. BMC Cancer 2024; 24:522. [PMID: 38664641 PMCID: PMC11046928 DOI: 10.1186/s12885-024-12203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Metastatic disease is a major and difficult-to-treat complication of lung cancer. Considering insufficient effectiveness of existing therapies and taking into account the current problem of lung cancer chemoresistance, it is necessary to continue the development of new treatments. METHODS Previously, we have demonstrated the antitumor effects of reprogrammed CD8+ T-cells (rCD8+ T-cells) from the spleen in mice with orthotopic lung carcinoma. Reprogramming was conducted by inhibiting the MAPK/ERK signalling pathway through MEKi and the immune checkpoint PD-1/PD-L1. Concurrently, CD8+ T-cells were trained in Lewis lung carcinoma (LLC) cells. We suggested that rCD8+ T-cells isolated from the spleen might impede the development of metastatic disease. RESULTS The present study has indicated that the reprogramming procedure enhances the survival and cytotoxicity of splenic CD8+ T-cells in LLC culture. In an LLC model of spontaneous metastasis, splenic rCD8 + T-cell therapy augmented the numbers of CD8+ T-cells and CD4+ T-cells in the lungs of mice. These changes can account for the partial reduction of tumors in the lungs and the mitigation of metastatic activity. CONCLUSIONS Our proposed reprogramming method enhances the antitumor activity of CD8+ T-cells isolated from the spleen and could be valuable in formulating an approach to treating metastatic disease in patients with lung cancer.
Collapse
Affiliation(s)
- E Skurikhin
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia.
| | - N Ermakova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - M Zhukova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia.
| | - E Pan
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - D Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, Whiteknights Campus, RG6 6AP, Reading, UK
| | - L Sandrikina
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - L Kogai
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
- Ministry of Health of the Russian Federation, Siberian State Medical University, Moskovski, 2, 634050, Tomsk, Russia
| | - O Pershina
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - A Pakhomova
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - V Yu Pan
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - N Kushlinskii
- Blokhin National Medical Research Center of Oncology, 115522, Moscow, Russia
| | - A Kubatiev
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - S Morozov
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - A Dygai
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| |
Collapse
|
12
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
13
|
Thepthanee C, Ei ZZ, Benjakul S, Zou H, Petsri K, Innets B, Chanvorachote P. Shrimp Lipids Inhibit Migration, Epithelial-Mesenchymal Transition, and Cancer Stem Cells via Akt/mTOR/c-Myc Pathway Suppression. Biomedicines 2024; 12:722. [PMID: 38672078 PMCID: PMC11048134 DOI: 10.3390/biomedicines12040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp is a rich source of bioactive molecules that provide health benefits. However, the high cholesterol content in shrimp oil may pose a risk. We utilized the cholesterol elimination method to obtain cholesterol-free shrimp lipids (CLs) and investigated their anticancer potential, focusing on cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT). Our study focused on CSCs and EMT, as these factors are known to contribute to cancer metastasis. The results showed that treatment with CLs at doses ranging from 0 to 500 µg/mL significantly suppressed the cell migration ability of human lung cancer (H460 and H292) cells, indicating its potential to inhibit cancer metastasis. The CLs at such concentrations did not cause cytotoxicity to normal human keratinocytes. Additionally, CL treatment was found to significantly reduce the levels of Snail, Slug, and Vimentin, which are markers of EMT. Furthermore, we investigated the effect of CLs on CSC-like phenotypes and found that CLs could significantly suppress the formation of a three-dimensional (3D) tumor spheroid in lung cancer cells. Furthermore, CLs induced apoptosis in the CSC-rich population and significantly depleted the levels of CSC markers CD133, CD44, and Sox2. A mechanistic investigation demonstrated that exposing lung cancer cells to CLs downregulated the phosphorylation of Akt and mTOR, as well as c-Myc expression. Based on these findings, we believe that CLs may have beneficial effects on health as they potentially suppress EMT and CSCs, as well as the cancer-potentiating pathway of Akt/mTOR/c-Myc.
Collapse
Affiliation(s)
- Chorpaka Thepthanee
- Department of Food Science, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkhla University, Songkhla 90110, Thailand;
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Korrakod Petsri
- Department of Pharmacology, Faculty of Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Geng D, Zhou Y, Wang M. Advances in the role of GPX3 in ovarian cancer (Review). Int J Oncol 2024; 64:31. [PMID: 38299269 PMCID: PMC10836493 DOI: 10.3892/ijo.2024.5619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Ovarian cancer (OC) is the 5th most common malignancy in women, and the leading cause of death from gynecologic malignancies. Owing to tumor heterogeneity, lack of reliable early diagnostic methods and high incidence of chemotherapy resistance, the 5‑year survival rate of patients with advanced OC remains low despite considerable advances in detection and therapeutic approaches. Therefore, identifying novel therapeutic targets to improve the prognosis of patients with OC is crucial. The expression of glutathione peroxidase 3 (GPX3) plays a crucial role in the growth, proliferation and differentiation of various malignant tumors. In OC, GPX3 is the only antioxidant enzyme the high expression of which is negatively correlated with the overall survival of patients. GPX3 may affect lipid metabolism in tumor stem cells by influencing redox homeostasis in the tumor microenvironment. The maintenance of stemness in OC stem cells (OCSCs) is strongly associated with poor prognosis and recurrence in patients. The aim of the present study was to review the role of GPX3 in OC and investigate the potential factors and effects of GPX3 on OCSCs. The findings of the current study offer novel potential targets for drug therapy in OC, enhance the theoretical foundation of OC drug therapy and provide valuable references for clinical treatment.
Collapse
Affiliation(s)
- Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
15
|
Hoyos-Gonzalez N, Ochoa-Leyva A, Benitez-Cardoza CG, Brieba LG, Lukaszewicz G, Trasviña-Arenas CH, Sotelo-Mundo RR. Identification of a cryptic functional apolipophorin-III domain within the Prominin-1 gene of Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110928. [PMID: 38043730 DOI: 10.1016/j.cbpb.2023.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The Apolipophorin-III (apoLp-III) is reported as an essential protein element in lipids transport and incorporation in lepidopterans. Structurally, apoLp-III has an α-helix bundle structure composed of five α-helices. Interestingly, classic studies proposed a structural switch triggered by its interaction with lipids, where the α-helix bundle opens. Currently, the study of the apoLp-III has been limited to insects, with no homologs identified in other arthropods. By implementing a structure-based search with the Phyre2 algorithm surveying the shrimp Litopenaeus vannamei's transcriptome, we identified a putative apoLp-III in this farmed penaeid (LvApoLp-III). Unlike canonical apoLp-III, the LvApoLp-III was identified as an internal domain within the transmembrane protein Prominin-1. Structural modeling using the template-based Phyre2 and template-free AlphaFold algorithms rendered two distinct structural topologies: the α-helix bundle and a coiled-coil structure. Notably, the secondary structure composition on both models was alike, with differences in the orientation and distribution of the α-helices and hydrophobic moieties. Both models provide insights into the classical structural switch induced by lipids in apoLp-III. To corroborate structure/function inferences, we cloned the synthetic LvApoLp-III domain, overexpressed, and purified the recombinant protein. Circular dichroism measurements with the recombinant LvApoLp-III agreed with the structural models. In vitro liposome interaction demonstrated that the apoLp-III domain within the PROM1 of L.vannamei associated similarly to exchangeable apolipoproteins. Altogether, this work reports the presence of an apolipophorin-III domain in crustaceans for the first time and opens questions regarding its function and importance in lipid metabolism or the immune system.
Collapse
Affiliation(s)
- Nallely Hoyos-Gonzalez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, Mexico. https://twitter.com/uga_langebio
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico. https://twitter.com/ibt_unam
| | - Claudia G Benitez-Cardoza
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico. https://twitter.com/IPN_mx
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, Mexico. https://twitter.com/uga_langebio
| | - German Lukaszewicz
- Instituto de Investigaciones Marinas y Costeras, IIMyC, FCEyN, UNMdP, CONICET, Mar del Plata B7608FBY, Argentina. https://twitter.com/fceyn_unmdp
| | - Carlos H Trasviña-Arenas
- Centro de Investigación sobre Envejecimiento, Centro de Investigación y de Estudios Avanzados (CINVESTAV) Unidad Sede Sur, Tlalpan, 14330 Mexico City, Mexico.
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Ejido La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
16
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Masadah R, Ikram D, Riadi R, Tangdiung Y, Nelwan BJ, Ghaznawie M, Rauf S, Faruk M. CD133, CD47, and PD-L1 Expression in Ovarian High-grade Serous Carcinoma and Its Association with Metastatic Disease: A Cross-sectional Study. Asian Pac J Cancer Prev 2024; 25:249-255. [PMID: 38285791 PMCID: PMC10911714 DOI: 10.31557/apjcp.2024.25.1.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Ovarian cancer is a primary cause of cancer-related death in women. At the time of diagnosis, the majority of ovarian malignancies had metastasized. It is believed that cancer stem cells (CSCs) and immune evasion play a crucial role in the metastatic process. The objective of this study was to describe the expression profiles of cluster of differentiation (CD)133, CD47, and programmed death ligand 1 (PD-L1) in high-grade serous ovarian cancer (HGSC) as commonly utilized markers for CSCs and immune evasion. MATERIAL AND METHODS Using an immunohistochemical procedure, 51 HGSC tissue samples were stained with anti-CD133, anti-CD47, and anti-PDL1 antibodies. The samples contained 31 HGSC with metastases and 20 HGSC absent metastases. The expression of CD133, CD47, and PD-L1 was compared between groups. RESULTS Strong expression of CD133 and CD47 was seen in 52% and 66% of tissue samples, respectively. Twenty of the thirty-one patients with metastases had a significant level of CD133 expression, with a p-value of 0.039. CD47 expression was increased in 26 of 31 samples with metastatic disease. A 62.7 percent of samples were negative for PD-L1 expression, significantly inversely correlated with HGSC metastatic disease (p=0.023). Although there was no significant association between CD133, CD47, or PD-L1 expression and age, Tumor Infiltrating Lymphocytes demonstrated a significantly varied relationship. CONCLUSION Our findings suggested that expression of CD133, CD47, and PD-L1 may have dynamically increased as the primary lesion progressed to the metastatic lesion, implying that these proteins may be involved in the progression of high-grade serous ovarian cancer from the primary to the metastatic stage.
Collapse
Affiliation(s)
- Rina Masadah
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Dzul Ikram
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
- Department of Histology, Faculty of Medicine, Universitas Muslim Indonesia, Makassar, Indonesia.
| | - Riadi Riadi
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Yemima Tangdiung
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Berti Julian Nelwan
- Department of Patology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Mahmud Ghaznawie
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Muhammadiyah Makassar, Indonesia.
| | - Syahrul Rauf
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| |
Collapse
|
18
|
Liu Y, Wang H. Biomarkers and targeted therapy for cancer stem cells. Trends Pharmacol Sci 2024; 45:56-66. [PMID: 38071088 PMCID: PMC10842814 DOI: 10.1016/j.tips.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cancer cells with capabilities of self-renewal, differentiation, and tumorigenicity, and play a critical role in driving tumor heterogeneity that evolves insensitivity to therapeutics. For these reasons, extensive efforts have been made to identify and target CSCs to potentially improve the antitumor efficacy of therapeutics. While progress has been made to uncover certain CSC-associated biomarkers, the identification of CSC-specific markers, especially the targetable ones, remains a significant challenge. Here we provide an overview of the unique signaling and metabolic pathways of CSCs, summarize existing CSC biomarkers and CSC-targeted therapies, and discuss strategies to further differentiate CSCs from non-stem cancer cells and healthy cells for the development of enhanced CSC-targeted therapies.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
Dalmasso G, Cougnoux A, Faïs T, Bonnin V, Mottet-Auselo B, Nguyen HTT, Sauvanet P, Barnich N, Jary M, Pezet D, Delmas J, Bonnet R. Colibactin-producing Escherichia coli enhance resistance to chemotherapeutic drugs by promoting epithelial to mesenchymal transition and cancer stem cell emergence. Gut Microbes 2024; 16:2310215. [PMID: 38374654 PMCID: PMC10880512 DOI: 10.1080/19490976.2024.2310215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Human colorectal cancers (CRCs) are readily colonized by colibactin-producing E. coli (CoPEC). CoPEC induces DNA double-strand breaks, DNA mutations, genomic instability, and cellular senescence. Infected cells produce a senescence-associated secretory phenotype (SASP), which is involved in the increase in tumorigenesis observed in CRC mouse models infected with CoPEC. This study investigated whether CoPEC, and the SASP derived from CoPEC-infected cells, impacted chemotherapeutic resistance. Human intestinal epithelial cells were infected with the CoPEC clinical 11G5 strain or with its isogenic mutant, which is unable to produce colibactin. Chemotherapeutic resistance was assessed in vitro and in a xenograft mouse model. Expressions of cancer stem cell (CSC) markers in infected cells were investigated. Data were validated using a CRC mouse model and human clinical samples. Both 11G5-infected cells, and uninfected cells incubated with the SASP produced by 11G5-infected cells exhibited an increased resistance to chemotherapeutic drugs in vitro and in vivo. This finding correlated with the induction of the epithelial to mesenchymal transition (EMT), which led to the emergence of cells exhibiting CSC features. They grew on ultra-low attachment plates, formed colonies in soft agar, and overexpressed several CSC markers (e.g. CD133, OCT-3/4, and NANOG). In agreement with these results, murine and human CRC biopsies colonized with CoPEC exhibited higher expression levels of OCT-3/4 and NANOG than biopsies devoid of CoPEC. Conclusion: CoPEC might aggravate CRCs by inducing the emergence of cancer stem cells that are highly resistant to chemotherapy.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antony Cougnoux
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Virginie Bonnin
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Hang TT Nguyen
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Nicolas Barnich
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marine Jary
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Denis Pezet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Julien Delmas
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Richard Bonnet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
20
|
Quartieri M, Puspitasari A, Vitacchio T, Durante M, Tinganelli W. The role of hypoxia and radiation in developing a CTCs-like phenotype in murine osteosarcoma cells. Front Cell Dev Biol 2023; 11:1222809. [PMID: 38033871 PMCID: PMC10687637 DOI: 10.3389/fcell.2023.1222809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Cancer treatment has evolved significantly, yet concerns about tumor recurrence and metastasis persist. Within the dynamic tumor microenvironment, a subpopulation of mesenchymal tumor cells, known as Circulating Cancer Stem Cells (CCSCs), express markers like CD133, TrkB, and CD47, making them radioresistant and pivotal to metastasis. Hypoxia intensifies their stemness, complicating their identification in the bloodstream. This study investigates the interplay of acute and chronic hypoxia and radiation exposure in selecting and characterizing cells with a CCSC-like phenotype. Methods: LM8 murine osteosarcoma cells were cultured and subjected to normoxic (21% O2) and hypoxic (1% O2) conditions. We employed Sphere Formation and Migration Assays, Western Blot analysis, CD133 Cell Sorting, and CD133+ Fluorescent Activated Cell Sorting (FACS) analysis with a focus on TrkB antibody to assess the effects of acute and chronic hypoxia, along with radiation exposure. Results: Our findings demonstrate that the combination of radiation and acute hypoxia enhances stemness, while chronic hypoxia imparts a cancer stem-like phenotype in murine osteosarcoma cells, marked by increased migration and upregulation of CCSC markers, particularly TrkB and CD47. These insights offer a comprehensive understanding of the interactions between radiation, hypoxia, and cellular responses in the context of cancer treatment. Discussion: This study elucidates the complex interplay among radiation, hypoxia, and cellular responses, offering valuable insights into the intricacies and potential advancements in cancer treatment.
Collapse
Affiliation(s)
- Martina Quartieri
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Anggraeini Puspitasari
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Biology Division, Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tamara Vitacchio
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
21
|
Hao Q, Zhang M, Wu Y, Guo Y, Zheng Y, Wu L, Feng L, Wang Z. Hsa_circRNA_001676 accelerates the proliferation, migration and stemness in colorectal cancer through regulating miR-556-3p/G3BP2 axis. Sci Rep 2023; 13:18353. [PMID: 37884630 PMCID: PMC10603078 DOI: 10.1038/s41598-023-45164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Circular RNAs (circRNAs) play key roles in colorectal cancer (CRC) progression, but little is known about the biological functions of hsa_circRNA_001676 in CRC. Therefore, we explored the potential role of hsa_circRNA_001676 in CRC development. RT-qPCR was performed to determine hsa_circRNA_001676, miR-556-3p and Ras-GTPase-activating SH3 domain-binding-proteins 2 (G3BP2) levels in CRC tissues. Meanwhile, to evaluate the roles of hsa_circRNA_001676, miR-556-3p and G3BP2 on CRC, functional analysis of cell proliferation, migration and stemness were then performed. Our results showed that compared to normal tissues, hsa_circRNA_001676 and G3BP2 level was elevated, but miR-556-3p level was reduced in CRC tissues. Additionally, luciferase reporter results showed that hsa_circRNA_001676 was shown to target miR-556-3p, and G3BP2 was targeted by miR-556-3p. Hsa_circRNA_001676 or G3BP2 overexpression promoted CRC cell proliferation and migration. Conversely, miR-556-3p overexpression suppressed CRC cell proliferation and migration. Moreover, deficiency of hsa_circRNA_001676 or G3BP2 repressed the CRC cell proliferation, migration and stemness. Meanwhile, hsa_circRNA_001676 deficiency obviously reduced tumor growth and stemness in a CRC mouse xenograft model. Furthermore, hsa_circRNA_001676 deficiency notably reduced G3BP2 level, but elevated miR-556-3p level in tumor tissues from tumor-bearing mice. Mechanistically, hsa_circRNA_001676 targeted miR-556-3p to increase G3BP2 level, contributing to the progression of CRC. Collectively, hsa_circRNA_001676 was able to accelerate proliferation, migration and stemness in CRC through regulating miR-556-3p/G3BP2 axis, suggesting that hsa_circRNA_001676 may become a potential therapeutic target in treating CRC.
Collapse
Affiliation(s)
- Qin Hao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010051, China
| | - Miao Zhang
- Graduate School, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Yingcai Wu
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Yuchen Guo
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Yanling Zheng
- Graduate School, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Lijuan Wu
- Graduate School, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Li Feng
- Department A of Abdominal surgery, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China.
| |
Collapse
|
22
|
Wu Z, Liu Z, Sun Y, Yuan Y, Zou Q, Wen Y, Luo J, Liu R. APEX1 predicts poor prognosis of gallbladder cancer and affects biological properties of CD133 + GBC-SD cells via upregulating Jagged1. J Cancer 2023; 14:1443-1457. [PMID: 37283798 PMCID: PMC10240672 DOI: 10.7150/jca.83356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Although APEX1 is associated with the tumorigenesis and progression of some human cancer types, the function of APEX1 in gallbladder cancer (GBC) is unclear. In this study, we found that APEX1 expression is up-regulated in GBC tissues, and APEX1 positive expression is related to aggressive clinicopathological features and poor prognosis of GBC. APEX1 was an independent risk factor of GBC prognosis, and presented some pathological diagnostic significance in GBC. Furthermore, APEX1 was overexpressed in CD133+ GBC-SD cells in comparison with GBC-SD cells. APEX1 knockdown increased the sensitivity of CD133+ GBC-SD cells to 5-Fluorouracil via facilitating cell necrosis and apoptosis. APEX1 knockdown in CD133+ GBC-SD cells dramatically inhibited cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. APEX1 knockdown in CD133+ GBC-SD cells accelerated tumor growth in the xenograft models. Mechanistically, APEX1 affected these malignant properties via upregulating Jagged1 in CD133+ GBC-SD cells. Thus, APEX1 is a promising prognostic biomarker, and a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Zhengchun Wu
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan410013, China
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Ziru Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Yi Sun
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Yun Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan410013, China
| | - Rushi Liu
- Laboratory of Medical Molecular and Immunological Diagnostics, School of medicine, Hunan Normal University, Changsha, Hunan 410013, China
| |
Collapse
|
23
|
Bubin R, Uljanovs R, Strumfa I. Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087030. [PMID: 37108193 PMCID: PMC10138709 DOI: 10.3390/ijms24087030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The first discovery of cancer stem cells (CSCs) in leukaemia triggered active research on stemness in neoplastic tissues. CSCs represent a subpopulation of malignant cells, defined by unique properties: a dedifferentiated state, self-renewal, pluripotency, an inherent resistance to chemo- and radiotherapy, the presence of certain epigenetic alterations, as well as a higher tumorigenicity in comparison with the general population of cancer cells. A combination of these features highlights CSCs as a high-priority target during cancer treatment. The presence of CSCs has been confirmed in multiple malignancies, including pancreatic ductal adenocarcinoma, an entity that is well known for its dismal prognosis. As the aggressive course of pancreatic carcinoma is partly attributable to treatment resistance, CSCs could contribute to adverse outcomes. The aim of this review is to summarize the current information regarding the markers and molecular features of CSCs in pancreatic ductal adenocarcinoma and the therapeutic options to remove them.
Collapse
Affiliation(s)
- Roman Bubin
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Romans Uljanovs
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
24
|
Taib N, Merhi M, Inchakalody V, Mestiri S, Hydrose S, Makni-Maalej K, Raza A, Sahir F, Azizi F, Nizamuddin PB, Fernandes Q, Yoosuf ZSKM, Almoghrabi S, Al-Zaidan L, Shablak A, Uddin S, Maccalli C, Al Homsi MU, Dermime S. Treatment with decitabine induces the expression of stemness markers, PD-L1 and NY-ESO-1 in colorectal cancer: potential for combined chemoimmunotherapy. J Transl Med 2023; 21:235. [PMID: 37004094 PMCID: PMC10067322 DOI: 10.1186/s12967-023-04073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug. METHODS We compared the effect of DAC in primary 1076 Col and metastatic 1872 Col cell lines isolated and generated from patients' tumor tissues. Both cell lines were treated with DAC, and the expression of the NY-ESO-1 cancer-testis antigen, the PD-L1 immunoinhibitory marker, and the CD44, Nanog, KLF-4, CD133, MSI-1 stemness markers were analyzed using different molecular and immunological assays. RESULTS DAC treatment significantly upregulated stemness markers in both primary 1076 Col and meta-static 1872 Col cell lines, although a lower effect occurred on the latter: CD44 (7.85 fold; ***p = 0.0001 vs. (4.19 fold; *p = 0.0120), Nanog (4.1 fold; ***p < 0.0001 vs.1.69 fold; ***p = 0.0008), KLF-4 (4.33 fold; ***p < 0.0001 vs.2.48 fold; ***p = 0.0005), CD133 (16.77 fold; ***p = 0.0003 vs.6.36 fold; *p = 0.0166), and MSI-1 (2.33 fold; ***p = 0.0003 vs.2.3 fold; ***p = 0.0004), respectively. Interestingly, in the metastatic 1872 Col cells treated with DAC, the expression of both PD-L1 and NY-ESO-1 was increased tenfold (*p = 0.0128) and fivefold (***p < 0.0001), respectively. CONCLUSIONS We conclude that the upregulation of both stemness and immune checkpoint markers by DAC treatment on CRC cells might represent a mechanism of immune evasion. In addition, induction of NY-ESO-1 may represent an immuno-therapeutic option in metastatic CRC patients. Finally, the combination of DAC and anti-PD-1/anti-PD-L1 antibodies treatment should represent a potential therapeutic intervention for this group of patients.
Collapse
Affiliation(s)
- Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Karama Makni-Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Fairooz Sahir
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Fouad Azizi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Parveen B Nizamuddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- College of Medicine, Qatar University, 2713, Doha, Qatar
| | - Zeenath Safira K M Yoosuf
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, 34110, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, 2713, Doha, Qatar
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Human Immunology Department, Research Branch, Sidra Medicine, 26999, Doha, Qatar
| | | | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar.
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, 34110, Doha, Qatar.
| |
Collapse
|
25
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
26
|
Zhong A, Short C, Xu J, Fernandez GE, Malkoff N, Noriega N, Yeo T, Wang L, Mavila N, Asahina K, Wang KS. Prominin-1 promotes restitution of the murine extrahepatic biliary luminal epithelium following cholestatic liver injury. Hepatol Commun 2023; 7:e0018. [PMID: 36662671 PMCID: PMC10019165 DOI: 10.1097/hc9.0000000000000018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIMS Restitution of the extrahepatic biliary luminal epithelium in cholangiopathies is poorly understood. Prominin-1 (Prom1) is a key component of epithelial ciliary body of stem/progenitor cells. Given that intrahepatic Prom1-expressing progenitor cells undergo cholangiocyte differentiation, we hypothesized that Prom1 may promote restitution of the extrahepatic bile duct (EHBD) epithelium following injury. APPROACH AND RESULTS Utilizing various murine biliary injury models, we identified Prom1-expressing cells in the peribiliary glands of the EHBD. These Prom1-expressing cells are progenitor cells which give rise to cholangiocytes as part of the normal maintenance of the EHBD epithelium. Following injury, these cells proliferate significantly more rapidly to re-populate the biliary luminal epithelium. Null mutation of Prom1 leads to significantly >10-fold dilated peribiliary glands following rhesus rotavirus-mediated biliary injury. Cultured organoids derived from Prom1 knockout mice are comprised of biliary progenitor cells with altered apical-basal cellular polarity, significantly fewer and shorter cilia, and decreased organoid proliferation dynamics consistent with impaired cell motility. CONCLUSIONS We, therefore, conclude that Prom1 is involved in biliary epithelial restitution following biliary injury in part through its role in supporting cell polarity.
Collapse
Affiliation(s)
- Allen Zhong
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Celia Short
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Jiabo Xu
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - G. Esteban Fernandez
- Cellular Imaging Core, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Nicolas Malkoff
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Nicolas Noriega
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Theresa Yeo
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Larry Wang
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Nirmala Mavila
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Kinji Asahina
- Central Research Laboratory, Shiga University of Medical Science, Ōtsu, Shiga Prefecture, Japan
| | - Kasper S. Wang
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| |
Collapse
|
27
|
Abd El-Fattah EE. Tumor lysis syndrome promotes cancer chemoresistance and relapse through AMPK inhibition. Int Immunopharmacol 2023; 114:109568. [PMID: 36527883 DOI: 10.1016/j.intimp.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Cancer is a disease caused when cells divide uncontrollably and spread into surrounding tissues. There are different therapeutic modalities that control cancer growth, of which surgery, chemotherapy, and radiotherapy. Chemotherapy is a cancer treatment approach in which medications are used to inhibit cell proliferation and tumor multiplication, thus avoiding invasion and metastasis and thus eradicate cancer. One of the common complications associated with cancer chemotherapy is rapid lysis of expanding tumor cells, known as tumor lysis syndrome (TLS). TLS is associated with number of metabolic changes such as hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia. Among the consequences of hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia is the inhibition of 5' AMP-activated protein kinase (AMPK). Inhibition of AMPK induced different cancer chemo-resistance mechanisms such as cancer stem cells (CSCs), p-glycoproteins, Octamer-binding transcription factor 4 (OCT-4), homeobox protein NANOG, Krüppel-like factor 4 (KLF4) and immune microenvironment and thus leads to poor response to chemotherapy and even relapses after treatment. Our review aims to uncover new mechanisms underlying the metabolic consequences of tumor lysis on AMPK in tumor microenvironment. In this review, we also investigated the effect of AMPK on different cancer chemo-resistance mechanisms such as cancer stem cells, p-glycoproteins, OCT-4, NANOG, KLF4 and immune microenvironment.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
28
|
Shen M, Kang Y. Cancer fitness genes: emerging therapeutic targets for metastasis. Trends Cancer 2023; 9:69-82. [PMID: 36184492 DOI: 10.1016/j.trecan.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Development of cancer therapeutics has traditionally focused on targeting driver oncogenes. Such an approach is limited by toxicity to normal tissues and treatment resistance. A class of 'cancer fitness genes' with crucial roles in metastasis have been identified. Elevated or altered activities of these genes do not directly cause cancer; instead, they relieve the stresses that tumor cells encounter and help them adapt to a changing microenvironment, thus facilitating tumor progression and metastasis. Importantly, as normal cells do not experience high levels of stress under physiological conditions, targeting cancer fitness genes is less likely to cause toxicity to noncancerous tissues. Here, we summarize the key features and function of cancer fitness genes and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Michigan, MI, USA; Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Michigan, MI, USA.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
29
|
Kim CW, Lee HK, Nam MW, Choi Y, Choi KC. Overexpression of KiSS1 Induces the Proliferation of Hepatocarcinoma and Increases Metastatic Potential by Increasing Migratory Ability and Angiogenic Capacity. Mol Cells 2022; 45:935-949. [PMID: 36572562 PMCID: PMC9794555 DOI: 10.14348/molcells.2022.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 12/28/2022] Open
Abstract
Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of β-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)-related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
30
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
31
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
32
|
Polyethylenimine, an Autophagy-Inducing Platinum-Carbene-Based Drug Carrier with Potent Toxicity towards Glioblastoma Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14205057. [PMID: 36291841 PMCID: PMC9599868 DOI: 10.3390/cancers14205057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.
Collapse
|
33
|
Wang LL, Tang X, Zhou G, Liu S, Wang Y, Chen F, Li T, Wen F, Liu S, Mai H. PROM1 and CTGF Expression in Childhood MLL-Rearrangement Acute Lymphoblastic Leukemia. JOURNAL OF ONCOLOGY 2022; 2022:5896022. [PMID: 36276286 PMCID: PMC9586771 DOI: 10.1155/2022/5896022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
The prognosis of over 90% of infant acute lymphoblastic leukemia (ALL) remains poor because of harboring the mixed-lineage leukemia gene (MLL) fusion. To give insight into the critical coexpressed genes related to the MLL-rearrangement (MLL-R) gene in childhood acute lymphoblastic leukemia, we integrated different bioinformatic methods. First, the gene expression data of MLL-R ALL and normal samples from GSE13159 and GSE13164 were analyzed using "compare" function in the Oncomine database. The top 150 overexpressed and 150 underexpressed genes were identified by the Oncomine website. Then, we employed the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to define functional genes for the 300 DEGs. The Cytoscape identified two important networks for overexpressed genes, including 35 functional genes, among which PROM1, FLT3, CTGF, LGALS1, IGFBP7, ZNRF1, and RUNX2 were considered as the key genes because of their high expression in MLL-R ALL compared to the expression in other subclassification of leukemia in the MILE dataset. Further analysis of GSE68720, GSE19475, and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) ALL (phase I) database confirmed the robust expression of 7 key genes in MLL-R compared to MLL-germline (MLL-G) childhood ALL. Kaplan-Meier analysis indicated that childhood ALL patients with high PROM1 and CTGF expression had significantly poor overall survival. These findings suggest that PROM1 and CTGF represent two potential therapeutic targets for childhood MLL-R ALL.
Collapse
Affiliation(s)
- Lu-lu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Xue Tang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Guichi Zhou
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Shilin Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ying Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Tonghui Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Huirong Mai
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| |
Collapse
|
34
|
Grandi F, Miot HA, Rocha RM, Gomes CMS, Queiroz‐Hazarbassanov N, Montoya‐Florez LM, Cogliati B, Rocha NS. Immunophenotypic and molecular profile of cancer stem‐cell markers in ex vivo canine transmissible venereal tumour (CTVT). Vet Med Sci 2022; 8:2297-2306. [DOI: 10.1002/vms3.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fabrizio Grandi
- Department of Pathology, Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiotherapy Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| | | | | | | | | | - Bruno Cogliati
- Department of Pathology School of Veterinary Medicine and Animal Science University of Sao Paulo São Paulo Brazil
| | - Noeme Sousa Rocha
- Department of Pathology, Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| |
Collapse
|
35
|
Raina K, Kandhari K, Jain AK, Ravichandran K, Maroni P, Agarwal C, Agarwal R. Stage-Specific Effect of Inositol Hexaphosphate on Cancer Stem Cell Pool during Growth and Progression of Prostate Tumorigenesis in TRAMP Model. Cancers (Basel) 2022; 14:4204. [PMID: 36077751 PMCID: PMC9455012 DOI: 10.3390/cancers14174204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we assessed the stage-specific efficacy of inositol hexaphosphate (IP6, phytic acid), a bioactive food component, on prostate cancer (PCa) growth and progression in a transgenic mouse model of prostate cancer (TRAMP). Starting at 4, 12, 20, and 30 weeks of age, male TRAMP mice were fed either regular drinking water or 2% IP6 in water for ~8-15 weeks. Pathological assessments at study endpoint indicated that tumor grade is arrested at earlier stages by IP6 treatment; IP6 also prevented progression to more advanced forms of the disease (~55-70% decrease in moderately and poorly differentiated adenocarcinoma incidence was observed in advanced stage TRAMP cohorts). Next, we determined whether the protective effects of IP6 are mediated via its effect on the expansion of the cancer stem cells (CSCs) pool; results indicated that the anti-PCa effects of IP6 are associated with its potential to eradicate the PCa CSC pool in TRAMP prostate tumors. Furthermore, in vitro assays corroborated the above findings as IP6 decreased the % of floating PC-3 prostaspheres (self-renewal of CSCs) by ~90%. Together, these findings suggest the multifaceted chemopreventive-translational potential of IP6 intervention in suppressing the growth and progression of PCa and controlling this malignancy at an early stage.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anil K. Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kameswaran Ravichandran
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
36
|
E J, Kang Z, Yuan J, Wang Z, Tong D, Xing J. ZNF516 suppresses stem cell-like characteristics by regulating the transcription of Sox2 in colorectal cancer. Am J Cancer Res 2022; 12:3745-3759. [PMID: 36119845 PMCID: PMC9442021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023] Open
Abstract
This study aimed to explore the biological function and the molecular mechanism of the action of zinc-finger protein 516 (ZNF516) in suppressing stem cell-like characteristics and tumor progression in colorectal cancer (CRC). The expression profiles of ZNF516 in clinical samples and from The Cancer Genome Atlas (TCGA) CRC database were analyzed. Cell transfection was used to overexpress and knockdown ZNF516 in CRC cells. Cell counting kit-8 (CCK8) assays, transwell assays and flow cytometry were used to study cell proliferation, invasion and stem cell-like characteristics, respectively. Cycloheximide (CHX) was used to examine the effect of ZNF516 expression on Sox2 degradation. Finally, the effects of ZNF516 on tumor growth and metastasis were tested on xenograft tumor models and lung metastasis models in immunocompromised mice. We found that the expression level of ZNF516 was lower in TCGA CRC tissue and clinical CRC samples compared with that in normal colorectal mucosal cells. Overexpression of ZNF516 in CRC cells inhibited cell proliferation, colony formation, migration and invasion, whereas ZNF516 knockdown showed the opposite effects. In addition, ZNF516 overexpression inhibited the sphere-forming ability of CRC cells and suppressed the expression of CD133, CD44 and Oct4 in CRC cells. ZNF516 decreased the stability of Sox2 through a mechanism mediated by EGFR. By in vivo experiments using mouse tumor models, we further confirmed that ZNF516 attenuated tumor growth and alleviated lung metastasis in mice. In conclusion, ZNF516 functions as a tumor suppressor by regulating the transcription of Sox2 to inhibit cell proliferation, invasion, and the development of stem cell-like characteristics in CRC cells.
Collapse
Affiliation(s)
- Jifu E
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical UniversityShanghai, China
| | - Zhengchun Kang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical UniversityShanghai, China
| | - Jie Yuan
- Department of Rehabilitation, Beidaihe Rehabilitation and Recuperation Center for PLA Joint Logistics Support ForceQinhuangdao, China
| | - Zhaoming Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical UniversityShanghai, China
| | - Dafeng Tong
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical UniversityShanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical UniversityShanghai, China
| |
Collapse
|
37
|
Fath MK, Ebrahimi M, Nourbakhsh E, Hazara AZ, Mirzaei A, Shafieyari S, Salehi A, Hoseinzadeh M, Payandeh Z, Barati G. PI3K/Akt/mTOR Signaling Pathway in Cancer Stem Cells. Pathol Res Pract 2022; 237:154010. [DOI: 10.1016/j.prp.2022.154010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
|
38
|
GLIS1-3: Links to Primary Cilium, Reprogramming, Stem Cell Renewal, and Disease. Cells 2022; 11:cells11111833. [PMID: 35681527 PMCID: PMC9180737 DOI: 10.3390/cells11111833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The GLI-Similar 1-3 (GLIS1-3) genes, in addition to encoding GLIS1-3 Krüppel-like zinc finger transcription factors, also generate circular GLIS (circGLIS) RNAs. GLIS1-3 regulate gene transcription by binding to GLIS binding sites in target genes, whereas circGLIS RNAs largely act as miRNA sponges. GLIS1-3 play a critical role in the regulation of many biological processes and have been implicated in various pathologies. GLIS protein activities appear to be regulated by primary cilium-dependent and -independent signaling pathways that via post-translational modifications may cause changes in the subcellular localization, proteolytic processing, and protein interactions. These modifications can affect the transcriptional activity of GLIS proteins and, consequently, the biological functions they regulate as well as their roles in disease. Recent studies have implicated GLIS1-3 proteins and circGLIS RNAs in the regulation of stemness, self-renewal, epithelial-mesenchymal transition (EMT), cell reprogramming, lineage determination, and differentiation. These biological processes are interconnected and play a critical role in embryonic development, tissue homeostasis, and cell plasticity. Dysregulation of these processes are part of many pathologies. This review provides an update on our current knowledge of the roles GLIS proteins and circGLIS RNAs in the control of these biological processes in relation to their regulation of normal physiological functions and disease.
Collapse
|
39
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
40
|
Swanson ER, Köse E, Zollinger EA, Elliott SL. Mathematical Modeling of Tumor and Cancer Stem Cells Treated with CAR-T Therapy and Inhibition of TGF-
β
. Bull Math Biol 2022; 84:58. [PMID: 35429288 DOI: 10.1007/s11538-022-01015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
The stem cell hypothesis suggests that there is a small group of malignant cells, the cancer stem cells, that initiate the development of tumors, encourage its growth, and may even be the cause of metastases. Traditional treatments, such as chemotherapy and radiation, primarily target the tumor cells leaving the stem cells to potentially cause a recurrence. Chimeric antigen receptor (CAR) T-cell therapy is a form of immunotherapy where the immune cells are genetically modified to fight the tumor cells. Traditionally, the CAR T-cell therapy has been used to treat blood cancers and only recently has shown promising results against solid tumors. We create an ordinary differential equations model which allows for the infusion of trained CAR-T cells to specifically attack the cancer stem cells that are present in the solid tumor microenvironment. Additionally, we incorporate the influence of TGF-β which inhibits the CAR-T cells and thus promotes the growth of the tumor. We verify the model by comparing it to available data and then examine combinations of CAR-T cell treatment targeting both non-stem and stem cancer cells and a treatment that reduces the effectiveness of TGF-β to determine the scenarios that eliminate the tumor.
Collapse
Affiliation(s)
- Ellen R Swanson
- Department of Mathematics, Centre College, Danville, KY, USA.
| | - Emek Köse
- Department of Mathematics and Computer Science, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Elizabeth A Zollinger
- Department of Mathematics and Computer Science, St. Joseph's College, Brooklyn, NY, USA
| | - Samantha L Elliott
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| |
Collapse
|
41
|
Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. Int J Pharm 2022; 620:121751. [DOI: 10.1016/j.ijpharm.2022.121751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
|
42
|
Haghshenas MR, Erfani N, Khansalar S, Khademi B, Ashraf MJ, Razmkhah M, Ghaderi A. Proteomics Study of Mesenchymal Stem Cell-Like Cells Obtained from Tumor Microenvironment of Patients with Malignant and Benign Salivary Gland Tumors. CELL JOURNAL 2022; 24:196-203. [PMID: 35674025 PMCID: PMC9124444 DOI: 10.22074/cellj.2022.7844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Salivary gland tumors (SGTs) show some aggressive and peculiar clinicopathological behaviors that might be related to the components of the tumor microenvironment, especially mesenchymal stem cells (MSCs)-associated proteins. However, the role of MSCs-related proteins in SGTs tumorigenesis is poorly understood. This study aimed to isolate and characterize MSCs from malignant and benign tumor tissues and to identify differentially expressed proteins between these two types of MSCs. MATERIALS AND METHODS In this experimental study, MSC-like cells derived from benign (pleomorphic adenoma, n=5) and malignant (mucoepidermoid carcinoma, n=5) tumor tissues were verified by fluorochrome antibodies and flow cytometric analysis. Differentially expressed proteins were identified using two-dimensional polyacrylamide gel electrophoresis (2DE) and Mass spectrometry. RESULTS Results showed that isolated cells strongly expressed characteristic MSCs markers such as CD44, CD73, CD90, CD105, and CD166, but they did not express or weakly expressed CD14, CD34, CD45 markers. Furthermore, the expression of CD24 and CD133 was absent or near absent in both isolated cells. Results also discovered overexpression of Annexin A4 (Anxa4), elongation factor 1-delta (EF1-D), FK506 binding protein 9 (FKBP9), cytosolic platelet-activating factor acetylhydrolase type IB subunit beta (PAFAH1B), type II transglutaminase (TG2), and s-formylglutathione hydrolase (FGH) in MSCs isolated from the malignant tissues. Additionally, heat shock protein 70 (Hsp70), as well as keratin, type II cytoskeletal 7 (CK-7), were found to be overexpressed in MSCs derived from the benign ones. CONCLUSION Malignant and benign SGTs probably exhibit a distinct pattern of tissue proteins that are most likely related to the metabolic pathway. However, further studies in a large number of patients are required to determine the applicability of identified proteins as new targets for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soolmaz Khansalar
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Khademi
- Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Ashraf
- Department of Pathology, Khalili Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Hu B, Gong Y, Wang Y, Xie J, Cheng J, Huang Q. Comprehensive Atlas of Circulating Rare Cells Detected by SE-iFISH and Image Scanning Platform in Patients With Various Diseases. Front Oncol 2022; 12:821454. [PMID: 35311070 PMCID: PMC8924462 DOI: 10.3389/fonc.2022.821454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Circulating rare cells (CRCs) are known as a crucial nucleated cellular response to pathological conditions, yet the landscape of cell types across a wide variety of diseases lacks comprehensive understanding. This study aimed at detecting and presenting a full spectrum of highly heterogeneous CRCs in clinical practice and further explored the characterization of CRC subtypes in distinct biomarker combinations and aneuploid chromosomes among various disease groups. Methods Peripheral blood was obtained from 2,360 patients with different cancers and non-neoplastic diseases. CRC capture and identification were accomplished using a novel platform integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy with a high-throughput automated image scanning system, on which hemocyte, tumor, epithelial, endothelial, mesenchymal, and stemness biomarkers were immunostained and displayed simultaneously. Double chromosome enumeration probe (CEP8 and CEP12) co-detection was performed on isolated CRCs from an extended trial for two chromosome ploidy patterns. Results A comprehensive atlas categorizing the diverse CRCs into 71 subtypes outlining was mapped out. The presence of epithelial-mesenchymal transition (EMT) or endothelial-mesenchymal transition (EndoMT), the cells with progenitor property, hematologic CRCs expressing multiple biomarkers, CRCs at "naked nuclei" status, and the rarely reported aneuploid mesenchymal epithelial-endothelial fusion cluster were described. Circulating tumor cells (CTCs) were detected in 2,157 (91.4%) patients; the total numbers of CTCs and circulating tumor-derived endothelial cells (CTECs) were relatively higher in several digestive system cancer types and non-neoplastic infectious diseases (p < 0.05). Co-detection combining CEP8 and CEP12 showed a higher diagnostic specificity on account of 57.27% false negativity of CRC detection through a single probe of CEP8. Conclusions The alternative biomarkers and chromosomes to be targeted by SE-iFISH and the image scanning platform, along with the comprehensive atlas, offer insight into the heterogeneity of CRCs and reveal potential contributions to specific disease diagnosis and therapeutic target cell discovery.
Collapse
Affiliation(s)
- Binjie Hu
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Gong
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulan Wang
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianzhu Xie
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Molecular Diagnostics Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Li J, Fang R, Wu J, Si Y, Bai J, Wang Q. The NOP14 nucleolar protein suppresses the function and stemness of melanoma stem-like cells through Wnt/beta-catenin signaling inactivation. Bioengineered 2022; 13:7648-7658. [PMID: 35282769 PMCID: PMC9208496 DOI: 10.1080/21655979.2022.2050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cancer stem cells (CSCs) are closely related to tumor occurrence, development, metastasis, drug resistance, and recurrence. The role of CSCs in melanoma is poorly understood. Our previous studies suggested that the NOP14 nucleolar protein (NOP14) is involved in melanoma pathogenesis regulation. Importantly, NOP14 overexpression inhibits the Wnt/beta (β)-catenin signaling pathway, an important mechanism regulating CSCs stemness. Therefore, in this study, we aimed to explore the role of NOP14 in the stemness and function of CSCs in melanoma in vitro. CD133, a stem cell marker, was used to identify melanoma stem-like cells (SLCs). NOP14 overexpression subsequently decreased the proportion of CD133+ SLCs, impaired the colony-forming capabilities, and downregulated the expression of Nanog, SOX2, and OCT4 stem cell markers in A375 and A875 cells, suggesting that NOP14 suppresses the stemness of melanoma SLCs. NOP14 overexpression suppressed the migration, invasion, and angiogenesis-inducing ability of A375-SLCs and A875-SLCs. NOP14 overexpression also inactivated Wnt/β-catenin signaling in melanoma CD133+ SLCs. The Wnt signaling activator BML-284 alleviated the effect of NOP14 overexpression on the stemness and function of melanoma CSCs. In conclusion, NOP14 suppresses the stemness and function of melanoma SLCs by inactivating Wnt/β-catenin signaling. Thus, NOP14 is a novel target for CSC treatment in melanoma. Abbreviations: CSCs, cancer stem cells; SLCs, stem-like cells; NOP14, NOP14 nucleolar protein; SCID, severe combined immunodeficiency; β-catenin, beta-catenin; lv-NOP14, lentivirals expressing NOP14; PBS, phosphate buffer saline; HUVECs, human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Jingrong Li
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, Guangdong Province, China
| | - Ruihua Fang
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, Guangdong Province, China
| | - Jiang Wu
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, Guangdong Province, China
| | - Yuan Si
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, Guangdong Province, China
| | - Jingzhu Bai
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
45
|
Weidle UH, Nopora A. MicroRNAs and Corresponding Targets in Esophageal Cancer as Shown In Vitro and In Vivo in Preclinical Models. Cancer Genomics Proteomics 2022; 19:113-129. [PMID: 35181582 DOI: 10.21873/cgp.20308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Squamous cell carcinoma of the esophagus is associated with a dismal prognosis. Therefore, identification of new targets and implementation of new treatment modalities are issues of paramount importance. Based on a survey of the literature, we identified microRNAs conferring antitumoral activity in preclinical in vivo experiments. In the category of miRs targeting secreted factors and transmembrane receptors, four miRs were up-regulated and 10 were down-regulated compared with five out of nine in the category transcription factors, and six miRs were down-regulated in the category enzymes, including metabolic enzymes. The down-regulated miRs have targets which can be inhibited by small molecules or antibody-related entities, or re-expressed by reconstitution therapy. Up-regulated miRs have targets which can be reconstituted with small molecules or inhibited with antagomirs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
46
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
47
|
Rabelo ACS, Borghesi J, Noratto GD. The role of dietary polyphenols in osteosarcoma: A possible clue about the molecular mechanisms involved in a process that is just in its infancy. J Food Biochem 2021; 46:e14026. [PMID: 34873724 DOI: 10.1111/jfbc.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor mainly affecting children, teenagers and young adults, being associated with early metastasis and poor prognosis. The beneficial effects of polyphenols have been investigated in different areas, including their potential to fight OS. Polyphenols are believed to reduce morbidity and/or slow down the development of cancer. This review aimed to assess the effect of polyphenols in OS and investigate their molecular mechanisms. It was observed that the broad spectrum of health-promoting properties of plant polyphenols in OS occurs mainly due to modulation of reactive oxygen species, anti-inflammatory activity, anti-angiogenesis, apoptosis inducer, inhibition of invasion and metastasis. However, it is worth mentioning that although the promising effects of polyphenols in the fight against OS, most of the studies have been performed using in vitro and in vivo animal models. Therefore, studies in humans are needed to validate the effectiveness of polyphenols in OS treatment. PRACTICAL APPLICATIONS: Polyphenols are widely used for various diseases, however, until now, their real role in the treatment of osteosarcoma remains unknown. This review provides a broad spectrum of research conducted with polyphenols and their potential as adjuvant therapy in the treatment of osteosarcoma. However, prior to their clinical application for osteosarcoma treatment, there is a need to isolate and identify specific polyphenolic compounds with high antitumor activity, increase their oral bioavailability, and to investigate their interactions with chemotherapeutic drugs being used in clinical practice.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Department of Food and Experimental Nutrition, Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Jéssica Borghesi
- Department of Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Giuliana D Noratto
- Departament of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
48
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
49
|
Cancerous and non-neoplastic stem cells in the stomach similarly express CD44 and CD133. Acta Histochem 2021; 123:151787. [PMID: 34517259 DOI: 10.1016/j.acthis.2021.151787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/14/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
CD44 and CD133 have been considered as cancer stem cell (CSC) markers. Stem cell markers are rarely described in healthy stomach tissues. However, the clinicopathological and prognostic value of CD44 and CD133 in gastric cancer remains controversial. This study investigated the expression of CD44 and CD133 in gastric cancer and non-neoplastic gastric mucosa. We used samples of primary gastric adenocarcinomas (n = 69), metastatic lymph nodes (n = 30), intestinal metaplasia (n = 17), and histologically normal gastric tissues of surgical margins (n = 54). The expression of CD44 and CD133 were studied in samples by immunohistochemistry. Fisher's exact test and a logistic regression model were used in this study. CD44 expression was observed in 12% of samples with intestinal metaplasia, 20% with lymph node metastases, 22% with normal mucosa, to 30% of samples with primary tumors. Most of these positive tumors showed immunostaining in less than 4% of cancerous cells, mainly in the diffuse type. CD133 expression was observed in 7% (intestinal metaplasia) to 46% (normal mucosa). In the positive cases of cancer (24%), in most of them, less than 3% of cells were marked. CD44 and CD133 expression in the histologically normal gastric mucosa was restricted to the deeper regions of the gastric crypts at the level where stem cells and progenitor cells are usually found. CD44 and CD133 expression occurs in few gastric cancer cells, mainly in diffuse carcinomas, and are expressed in histologically normal gastric mucosae. None of the markers are specific for cancer and are also present in intestinal metaplasia and the normal mucosa.
Collapse
|
50
|
Cui X, Liu R, Duan L, Cao D, Zhang Q, Zhang A. CAR-T therapy: Prospects in targeting cancer stem cells. J Cell Mol Med 2021; 25:9891-9904. [PMID: 34585512 PMCID: PMC8572776 DOI: 10.1111/jcmm.16939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), a group of tumour cells with stem cell characteristics, have the ability of self-renewal, multi-lineage differentiation and tumour formation. Since CSCs are resistant to conventional radiotherapy and chemotherapy, their existence may be one of the root causes of cancer treatment failure and tumour progression. The elimination of CSCs may be effective for eventual tumour eradication. Because of the good therapeutic effects without major histocompatibility complex (MHC) restriction and the unique characteristics of CSCs, chimeric antigen receptor T-cell (CAR-T) therapy is expected to be an important method to eliminate CSCs. In this review, we have discussed the feasibility of CSCs-targeted CAR-T therapy for cancer treatment, summarized current research and clinical trials of targeting CSCs with CAR-T cells and forecasted the challenges and future direction from the perspectives of toxicity, persistence and potency, trafficking, infiltration, immunosuppressive tumour microenvironment, and tumour heterogeneity.
Collapse
Affiliation(s)
- Xiaoyue Cui
- Basic Laboratory, Suining Central Hospital, Suining, China
| | - Rui Liu
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, China
| | - Lian Duan
- Basic Laboratory, Suining Central Hospital, Suining, China
| | - Dan Cao
- Basic Laboratory, Suining Central Hospital, Suining, China.,Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China
| | - Qiaoling Zhang
- Basic Laboratory, Suining Central Hospital, Suining, China.,Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China
| | - Aijie Zhang
- Basic Laboratory, Suining Central Hospital, Suining, China
| |
Collapse
|