1
|
Nguyen CD, Chen Y, Kaplan DL, Mallidi S. Multi-parametric Photoacoustic Imaging Combined with Acoustic Radiation Force Impulse Imaging for Applications in Tissue Engineering. Ann Biomed Eng 2025; 53:371-382. [PMID: 39294465 DOI: 10.1007/s10439-024-03617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
2
|
Feng Y, Niu L, Gao Z, Zhu L, Li M, Zhang Q, You R. Mild preparation of hyaluronic acid/silk fibroin sponges by modified crosslinking method. Int J Biol Macromol 2024; 272:132805. [PMID: 38825261 DOI: 10.1016/j.ijbiomac.2024.132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The composites composed of hyaluronic acid (HA) and silk fibroin (SF) exhibit great potential in diverse biomedical applications. However, the utilization of commercial crosslinkers such as 1,4-butanediol diglycidyl ether (BDDE) for crosslinking HA typically necessitates harsh conditions involving strong alkaline, which greatly limits its potential applications. In this study, a mild modified approach was developed to fabricate HA/SF blend sponges crosslinked by BDDE without alkaline conditions. The blend solutions were cryo-concentrated to induce crosslinking reactions. The mechanism of freezing crosslinking was elucidated by investigating the effects of ice crystal growth and HA molecular weight on the degree of crosslinking. The results revealed that HA achieved efficient crosslinking when its molecular weight exceeds 1000 kDa and freezing temperatures ranged from -40 °C to -20 °C. After introducing SF, multiple crosslinks were formed between SF and HA chains, producing water-stable porous sponges. The SEM results demonstrated that the introduction of SF effectively enhanced the interconnectivity between macropores through creating subordinate holes onto the pores wall. Raising the SF content significantly enhanced compression strength, resistance to enzymatic degradation and cell viability of blend sponges. This study provides a novel strategy for designing bioactive HA/SF blend sponges as substitutes for tissue repair and wound dressing.
Collapse
Affiliation(s)
- Yanfei Feng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Zixin Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Lin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China.
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China.
| |
Collapse
|
3
|
Nguyen CD, Chen Y, Kaplan DL, Mallidi S. Multi-spectral photoacoustic imaging combined with acoustic radiation force impulse imaging for applications in tissue engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590806. [PMID: 38712117 PMCID: PMC11071356 DOI: 10.1101/2024.04.23.590806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.
Collapse
|
4
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Zhang Y, Xie L, Jiao X, Yue X, Xu Y, Wang C, Li Y, Yang X, Yang G, Xu S, Wang Y, Weng X, Gou Z. Preferentially Biodegradable Gypsum Fibers Endowing Invisible Microporous Structures and Enhancing Osteogenic Capability of Calcium Phosphate Cements. ACS Biomater Sci Eng 2024; 10:1077-1089. [PMID: 38301150 DOI: 10.1021/acsbiomaterials.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 μm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The μCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Lijun Xie
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Xiaoyi Jiao
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Xusong Yue
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Yan Xu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Cong Wang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Yifan Li
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Sanzhong Xu
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Bahir MM, Rajendran A, Pattanayak D, Lenka N. Fabrication and characterization of ceramic-polymer composite 3D scaffolds and demonstration of osteoinductive propensity with gingival mesenchymal stem cells. RSC Adv 2023; 13:26967-26982. [PMID: 37692357 PMCID: PMC10485657 DOI: 10.1039/d3ra04360f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
The fabrication of biomaterial 3D scaffolds for bone tissue engineering applications involves the usage of metals, polymers, and ceramics as the base constituents. Notwithstanding, the composite materials facilitating enhanced osteogenic differentiation/regeneration are endorsed as the ideally suited bone grafts for addressing critical-sized bone defects. Here, we report the successful fabrication of 3D composite scaffolds mimicking the ECM of bone tissue by using ∼30 wt% of collagen type I (Col-I) and ∼70 wt% of different crystalline phases of calcium phosphate (CP) nanomaterials [hydroxyapatite (HAp), beta-tricalcium phosphate (βTCP), biphasic hydroxyapatite (βTCP-HAp or BCP)], where pH served as the sole variable for obtaining these CP phases. The different Ca/P ratio and CP nanomaterials orientation in these CP/Col-I composite scaffolds not only altered the microstructure, surface area, porosity with randomly oriented interconnected pores (80-450 μm) and mechanical strength similar to trabecular bone but also consecutively influenced the bioactivity, biocompatibility, and osteogenic differentiation potential of gingival-derived mesenchymal stem cells (gMSCs). In fact, BCP/Col-I, as determined from micro-CT analysis, achieved the highest surface area (∼42.6 m2 g-1) and porosity (∼85%), demonstrated improved bioactivity and biocompatibility and promoted maximum osteogenic differentiation of gMSCs among the three. Interestingly, the released Ca2+ ions, as low as 3 mM, from these scaffolds could also facilitate the osteogenic differentiation of gMSCs without even subjecting them to osteoinduction, thereby attesting these CP/Col-I 3D scaffolds as ideally suited bone graft materials.
Collapse
Affiliation(s)
- Manjushree M Bahir
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| | - Archana Rajendran
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| | - Deepak Pattanayak
- CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| |
Collapse
|
8
|
Liu Y, Guo Q, Zhang X, Wang Y, Mo X, Wu T. Progress in Electrospun Fibers for Manipulating Cell Behaviors. ADVANCED FIBER MATERIALS 2023; 5:1241-1272. [DOI: 10.1007/s42765-023-00281-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/08/2023] [Indexed: 01/06/2025]
|
9
|
Chauhan A, Bhatt AD. A review on design of scaffold for osteoinduction: Toward the unification of independent design variables. Biomech Model Mechanobiol 2023; 22:1-21. [PMID: 36121530 DOI: 10.1007/s10237-022-01635-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Biophysical stimulus quantifies the osteoinductivity of the scaffold concerning the mechanoregulatory mathematical models of scaffold-assisted cellular differentiation. Consider a set of independent structural variables ($) that comprises bulk porosity levels ([Formula: see text]) and a set of morphological features of the micro-structure ([Formula: see text]) associated with scaffolds, i.e., [Formula: see text]. The literature suggests that biophysical stimulus ([Formula: see text]) is a function of independent structural variables ($). Limited understanding of the functional correlation between biophysical stimulus and structural features results in the lack of the desired osteoinductivity in a scaffold. Consequently, it limits their broad applicability to assist bone tissue regeneration for treating critical-sized bone fractures. The literature indicates the existence of multi-dimensional independent design variable space as a probable reason for the general lack of osteoinductivity in scaffolds. For instance, known morphological features are the size, shape, orientation, continuity, and connectivity of the porous regions in the scaffold. It implies that the number of independent variables ([Formula: see text]) is more than two, i.e., [Formula: see text], which interact and influence the magnitude of [Formula: see text] in a unified manner. The efficiency of standard engineering design procedures to analyze the correlation between dependent variable ([Formula: see text]) and independent variables ($) in 3D mutually orthogonal Cartesian coordinate system diminishes proportionally with the increase in the number of independent variables ([Formula: see text]) (Deb in Optimization for engineering design-algorithms and examples, PHI Learning Private Limited, New Delhi, 2012). Therefore, there is an immediate need to devise a framework that has the potential to quantify the micro-structural's morphological features in a unified manner to increase the prospects of scaffold-assisted bone tissue regeneration.
Collapse
Affiliation(s)
- Atul Chauhan
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India.
| | - Amba D Bhatt
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
10
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Lin L, Huang X, Li Z, Zhang G, Yu H, Wan Y, Zhou C, Zhou L. Freeze-drying platforms design for batch fabrication of Haversian system mimicking scaffolds with enhanced osteogenesis. Front Bioeng Biotechnol 2022; 10:1013528. [PMID: 36304903 PMCID: PMC9593081 DOI: 10.3389/fbioe.2022.1013528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The Haversian system is one of the most important pathways to repair bone defects, and it is the basic guarantee for the repair of bone defects, which means that the formation of the Haversian system indicates repairing of the defects. The integration of structure and function for tissue engineering scaffolds is of great importance in mimicking native bone tissue. However, in contrast to the increasing demands, how to rapidly prepare various sizes of such Haversian system mimicking scaffolds in batch becomes a major challenge. In this study, we designed three types of platforms with different sizes in combination with the freeze-drying approach. Chitosan/type I collagen composite materials were used to study the structure, morphology, and performance of the production, and the effects of the controlled architecture on osteogenesis. Results showed that the physicochemical effects of the mass fabricated scaffolds of various sizes met the requirements of bone repair materials. In addition, the scaffolds had good cytocompatibility and excellent in vivo bone repair performance, which have potential clinical applications.
Collapse
Affiliation(s)
- Licheng Lin
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Xiuhong Huang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Zhentao Li
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Guiyin Zhang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Hongbo Yu
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Yi Wan
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai, China
| | - Lin Zhou
- Traumatology Department,The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lin Zhou,
| |
Collapse
|
12
|
Adumbumkulath A, Shin C, Acharya GS, Biswas P, Sirisala M, Johnson R, Gade P. 3D Printing of MgAl 2O 4 Spinel Mesh and Densification Through Pressure-Less Sintering and Hot Isostatic Pressing. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:405-410. [PMID: 36660291 PMCID: PMC9831561 DOI: 10.1089/3dp.2021.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
MgAl2O4 spinel mesh with micro-features of 410 and 250 μm unit cell length and rib thickness, respectively, was three-dimensional (3D) printed and sintered followed by Hot Isostatic Pressing (HIPing). A stable colloidal dispersion of spinel in polymer-water solution was prepared and 3D-printed using a 30-gauge needle (∼100 μm inner diameter) on a regenHU 3D-Discovery bioprinter. Samples were characterized for their density and microstructure. Samples with near theoretical density after HIPing was subjected to mechanical property evaluation such as hardness by Vickers indentation and elastic modulus using nanoindentation technique. Microstructure of sintered samples across the ribs have shown graded grain structure with finer grains near the edges (0.7 μm average) with occasional porosity and coarser grains toward the center of the rib (5.2 μm average). HIPing resulted in substantial grain growth and the average grain size was found to be 10.9 μm (with a variation in the grain size of 2.2 μm along the edges and 13.1 μm at the center of the rib) exhibiting close packed and dense microstructure. Finer grains toward the edges may probably be due to the flow behavior during printing process and lower distribution of the powder loading along the edges resulting in low green density. This relatively higher porosity pining the grain growth under the extremely low heating rate employed for the controlled shrinkage to maintain the integrity of the sample. 3D printed samples after HIPing exhibited a density of 3.57 g/cc and hardness of 12.95 GPa, which are at par with the samples processed through conventional ceramic processing techniques. Nanoindentation studies employing maximum load of 45 mN with depth have shown an elastic modulus of 238 ± 15 GPa. MgAl2O4 spinel mesh 3D printed in this study is a potential prospective candidate that can be explored for cranioplasty procedures and other biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Papiya Biswas
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
| | - Mamatha Sirisala
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
| | - Roy Johnson
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
| | - Padmanabham Gade
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India
| |
Collapse
|
13
|
Esmaeili J, Barati A, Charelli LE. Discussing the final size and shape of the reconstructed tissues in tissue engineering. J Artif Organs 2022:10.1007/s10047-022-01360-1. [PMID: 36125581 DOI: 10.1007/s10047-022-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.,Tissue Engineering Department, TISSUEHUB Co., Tehran, Iran
| | - Aboulfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.
| | - Letícia Emiliano Charelli
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Gao X, Hwang MP, Wright N, Lu A, Ruzbarsky JJ, Huard M, Cheng H, Mullen M, Ravuri S, Wang B, Wang Y, Huard J. The use of heparin/polycation coacervate sustain release system to compare the bone regenerative potentials of 5 BMPs using a critical sized calvarial bone defect model. Biomaterials 2022; 288:121708. [PMID: 36031459 PMCID: PMC10129760 DOI: 10.1016/j.biomaterials.2022.121708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model. The in vitro 3D osteogenic pellet cultures assays demonstrated that BMPs 2, 4, 6, 7 and 9 all enhanced mineralization in vitro compared to the control group. BMP2 resulted in higher mineralized volume than BMP4 and BMP6. All BMPs and the control group activated the pSMAD5 signaling pathway and expressed osterix (OSX). The binding of BMP2 with coacervate significantly increased the coacervate average particle size. BMP2, 4, 6, & 7 bound to coacervate significantly increased the Zeta potential of the coacervate while BMP9 binding showed insignificant increase. Furthermore, using a monolayer culture osteogenic assay, it was found that hMDSCs cultured in the coacervate BMP2 osteogenic medium expressed higher levels of RUNX2, OSX, ALP and COX-2 compared to the control and BMPs 4, 6, 7 & 9. Additionally, the coacervate complex can be loaded with up to 2 μg of BMP proteins for sustained release. In vivo, when BMPs were delivered using the coacervate sustained release system, BMP2 was identified to be the most potent BMP promoting bone regeneration and regenerated 10 times of new bone than BMPs 4, 6 & 9. BMP7 also stimulated robust bone regeneration when compared to BMPs 4, 6 & 9. The quality of the newly regenerated bone by all BMPs delivered by coacervate is equivalent to the host bone consisting of bone matrix and bone marrow with normal bone architecture. Although the defect was not completely healed at 6 weeks, coacervate sustain release BMPs, particularly BMP2 and BMP7, could represent a new strategy for treatment of bone defects and non-unions.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Mintai P Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aiping Lu
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Joseph J Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Sudheer Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA.
| |
Collapse
|
15
|
Hou C, Liu Y, Xu W, Lu X, Guo L, Liu Y, Tian S, Liu B, Zhang J, Wen C. Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. BIOMATERIALS ADVANCES 2022; 139:213018. [PMID: 35882159 DOI: 10.1016/j.bioadv.2022.213018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022]
Abstract
Graded porous titanium scaffolds are gaining increasing attention as dental implants due to their ability to mimic the mechanical and biological properties of human bone. In this study, we have developed titanium scaffolds with graded primitive structures with porosities of 50.7 %, 61.0 %, 70.5 %, and 80.3 % (denoted as P50, P60, P70, and P80, respectively) for dental applications. The simulation results in the oral environment showed that the maximum von Mises strains and stress of cortical bone tissue around P50, P60, and P70 were lower than 3000 με and 60 MPa, respectively, which was beneficial for bone regeneration. The elastic modulus and yield strength of P50, P60, and P70 ranged within 5.2-13.8 GPa and 88.6-217.8 MPa, respectively. Among these, P60 exhibited the most favorable mechanical properties with a compression yield strength of 163.2 MPa and an elastic modulus of 9.7 GPa, which are desirable mechanical properties for dental material applications. The tested permeabilities of the fabricated specimens were in the range 0.66-6.88 × 10-9 m2, which is within the range of human bone (0.01-12.10 × 10-9 m2). In vitro biocompatibility assay results showed that P60 and P70 had better potential for cell viability and osteogenesis than P50. It can be concluded that P60, which has a compatible elastic modulus, high yield strength, high permeability, good cytocompatibility, and osteogenesis properties, is a promising candidate for bone-tissue engineering applications in dentistry.
Collapse
Affiliation(s)
- Chenjin Hou
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China.
| | - Xin Lu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China; Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Shiwei Tian
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Bowen Liu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiazhen Zhang
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne 3001, Australia
| |
Collapse
|
16
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Liu J, Zhou F, Zhou Q, Hu S, Chen H, Zhu X, Shi F, Yan J, Huang J, Sun J, Zhang F, Gu N. A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology. BIOMATERIALS ADVANCES 2022; 136:212777. [PMID: 35929315 DOI: 10.1016/j.bioadv.2022.212777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Granular scaffolds have been extensively used in the clinic to repair irregular maxillofacial defects. There remain some challenges for the repair of trabecular structures in cancellous bone due to the reticular lamella-like morphology. In this study, we fabricated a novel granular scaffold by rational design of components with different degradation rates so that the morphology of the novel scaffold can evolve to match the growth period of bone cells. Here, polycaprolactone (PCL) was used to fabricate porous microspheres as a skeleton with slow degradation. The macropores were filled with quick degraded gelatin to form complete microspheres. Asynchronous degradation of the two components altered the morphology of the evolutive scaffold from compact to porous, gradually exposing the ridge-like skeletons. This scaffold reversed the decline of cellular adhesion to simple porous skeletons during the initial adhesion. Furthermore, the cells were able to grow into the pores and adhere onto the skeletons with an elongated cellular morphology, facilitating osteogenic differentiation. This novel scaffold was experimentally proven to promote the regeneration of alveolar bone along with a good percentage of bone volume and the formation of trabecular structures. We believe this morphology-evolved scaffold is highly promising for regenerative applications in the clinic.
Collapse
Affiliation(s)
- Jun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fang Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qiao Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Xinchen Zhu
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi 214001, China
| | - Fan Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianli Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
18
|
Tang C, Liang D, Qiu Y, Zhu J, Tang G. Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Mol Med Rep 2022; 25:132. [PMID: 35179221 PMCID: PMC8867465 DOI: 10.3892/mmr.2022.12648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a bone-related disease that results from impaired bone formation and excessive bone resorption. The potential value of adipokines has been investigated previously, due to their influence on osteogenesis. However, the osteogenic effects induced by omentin-1 remain unclear. The aim of the present study was to determine the regulatory effects of omentin-1 on osteoblast viability and differentiation, as well as to explore the underlying molecular mechanism. The present study investigated the effects of omentin-1 on the viability and differentiation of mouse pre-osteoblast cells (MC3T3-E1) using quantitative and qualitative measures. A Cell Counting Kit-8 assay was used to assess the viability of MC3T3-E1 cells following treatment with different doses of omentin-1. Omentin-1 and bone morphogenetic protein (BMP) inhibitor were added to osteogenic induction mediums in different ways to assess their effect. The alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining of MC3T3-E1 cells treated with omentin-1 and/or BMP inhibitor were used to examine the effects of omentin-1 on differentiation and mineralization. Western blotting was used to further explore its potential mechanism, and to study the role of omentin-1 on the viability and differentiation of osteoblasts. The results showed that omentin-1 altered the viability of MC3T3-E1 cells in a dose-dependent manner. Omentin-1 treatment significantly increased the expression of members of the TGF-β/Smad signaling pathway. In the omentin-1 group, the ALP activity of the MC3T3-E1 cells was increased, and the ARS staining area was also increased. The mRNA and protein expression levels of BMP2, Runt-related transcription factor 2, collagen1, osteopontin, osteocalcin and osterix in the omentin-1 group were also significantly upregulated. All these effects were reversed following treatment with SIS3 HCl. These results demonstrated that omentin-1 can significantly promote osteoblast viability and differentiation via the TGF-β/Smad signaling pathway, thereby promoting bone formation and preventing osteoporosis.
Collapse
Affiliation(s)
- Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jingqi Zhu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangyu Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
19
|
Huang H, Yang A, Li J, Sun T, Yu S, Lu X, Guo T, Duan K, Zheng P, Weng J. Preparation of multigradient hydroxyapatite scaffolds and evaluation of their osteoinduction properties. Regen Biomater 2022; 9:rbac001. [PMID: 35529045 PMCID: PMC9071058 DOI: 10.1093/rb/rbac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Porous hydroxyapatite (HA) scaffolds are often used as bone repair materials, owing to their good biocompatibility, osteoconductivity and low cost. Vascularization and osteoinductivity of porous HA scaffolds were limited in clinical application, and these disadvantages were need to be improved urgently. We used water-in-oil gelation and pore former methods to prepare HA spheres and a porous cylindrical HA container, respectively. The prepared HA spheres were filled in container to assemble into composite scaffold. By adjusting the solid content of the slurry (solid mixture of chitin sol and HA powder) and the sintering temperature, the porosity and crystallinity of the HA spheres could be significantly improved; and mineralization of the HA spheres significantly improved the biological activity of the composite scaffold. The multigradient (porosity, crystallinity and mineralization) scaffold (HA-700) filled with the mineralized HA spheres exhibited a lower compressive strength; however, in vivo results showed that their vascularization ability were higher than those of other groups, and their osteogenic Gini index (Go: an index of bone mass, and inversely proportional to bone mass) showed a continuous decrease with the implantation time. This study provides a new method to improve porous HA scaffolds and meet the demands of bone tissue engineering applications.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Shangke Yu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| | - Ke Duan
- Southwest Medical University, Luzhou, 646000 P.R. China
| | - Pengfei Zheng
- Department of Orthopaedic surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008 P.R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 P.R. China
| |
Collapse
|
20
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
21
|
Wang Q, Zhou S, Wang L, You R, Yan S, Zhang Q, Li M. Bioactive silk fibroin scaffold with nanoarchitecture for wound healing. COMPOSITES PART B: ENGINEERING 2021; 224:109165. [DOI: 10.1016/j.compositesb.2021.109165] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Dikici S, Aldemir Dikici B, MacNeil S, Claeyssens F. Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomater Sci 2021; 9:7297-7310. [PMID: 34617526 PMCID: PMC8547328 DOI: 10.1039/d1bm01262b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing involves a complex series of events where cell–cell and cell-extracellular matrix (ECM) interactions play a key role. Wounding can be simple, such as the loss of the epithelial integrity, or deeper and more complex, reaching to subcutaneous tissues, including blood vessels, muscles and nerves. Rapid neovascularisation of the wounded area is crucial for wound healing as it has a key role in supplying oxygen and nutrients during the highly demanding proliferative phase and transmigration of inflammatory cells to the wound area. One approach to circumvent delayed neovascularisation is the exogenous use of pro-angiogenic factors, which is expensive, highly dose-dependent, and the delivery of them requires a very well-controlled system to avoid leaky, highly permeable and haemorrhagic blood vessel formation. In this study, we decorated polycaprolactone (PCL)-based polymerised high internal phase emulsion (PolyHIPE) scaffolds with fibroblast-derived ECM to assess fibroblast, endothelial cell and keratinocyte activity in vitro and angiogenesis in ex ovo chick chorioallantoic membrane (CAM) assays. Our results showed that the inclusion of ECM in the scaffolds increased the metabolic activity of three types of cells that play a key role in wound healing and stimulated angiogenesis in ex ovo CAM assays over 7 days. Herein, we demonstrated that fibroblast-ECM functionalised PCL PolyHIPE scaffolds appear to have great potential to be used as an active wound dressing to promote angiogenesis and wound healing. Decellularisation of in vitro generated extracellular matrix (ECM) provides an effective way to stimulate angiogenesis and wound healing.![]()
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey. .,Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Betül Aldemir Dikici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, 35430, Turkey. .,Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield, S3 7HQ, UK.
| |
Collapse
|
23
|
Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ Sci B 2021; 21:871-884. [PMID: 33150771 DOI: 10.1631/jzus.b2000355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanofibers can mimic natural tissue structure by creating a more suitable environment for cells to grow, prompting a wide application of nanofiber materials. In this review, we include relevant studies and characterize the effect of nanofibers on mesenchymal stem cells, as well as factors that affect cell adhesion and osteogenic differentiation. We hypothesize that the process of bone regeneration in vitro is similar to bone formation and healing in vivo, and the closer nanofibers or nanofibrous scaffolds are to natural bone tissue, the better the bone regeneration process will be. In general, cells cultured on nanofibers have a similar gene expression pattern and osteogenic behavior as cells induced by osteogenic supplements in vitro. Genes involved in cell adhesion (focal adhesion kinase (FAK)), cytoskeletal organization, and osteogenic pathways (transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP), mitogen-activated protein kinase (MAPK), and Wnt) are upregulated successively. Cell adhesion and osteogenesis may be influenced by several factors. Nanofibers possess certain physical properties including favorable hydrophilicity, porosity, and swelling properties that promote cell adhesion and growth. Moreover, nanofiber stiffness plays a vital role in cell fate, as cell recruitment for osteogenesis tends to be better on stiffer scaffolds, with associated signaling pathways of integrin and Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). Also, hierarchically aligned nanofibers, as well as their combination with functional additives (growth factors, HA particles, etc.), contribute to osteogenesis and bone regeneration. In summary, previous studies have indicated that upon sensing the stiffness of the nanofibrous environment as well as its other characteristics, stem cells change their shape and tension accordingly, regulating downstream pathways followed by adhesion to nanofibers to contribute to osteogenesis. However, additional experiments are needed to identify major signaling pathways in the bone regeneration process, and also to fully investigate its supportive role in fabricating or designing the optimum tissue-mimicking nanofibrous scaffolds.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jin Wang
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ke-Jia Qian
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
24
|
Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021; 9:697981. [PMID: 34239865 PMCID: PMC8259510 DOI: 10.3389/fbioe.2021.697981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body's inherent regenerative potential.
Collapse
Affiliation(s)
- Dakshi Kochhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
26
|
Ai C, Liu L, Goh JCH. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112088. [PMID: 33947578 DOI: 10.1016/j.msec.2021.112088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Porous scaffolds have been widely used for bone tissue engineering (BTE), and the pore structure of scaffolds plays an important role in osteogenesis. Silk fibroin (SF) is a favorable biomaterial for BTE due to its excellent mechanical property, biocompatibility, and biodegradation, but the lack of cell attachment sites in SF chemical structure resulted in poor cell-material interactions. In this study, SF scaffolds were coated with fibronectin/gelatin (Fn/G) to improve cell adhesion. Furthermore, the effect of pore size in Fn/G coated SF scaffolds on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were investigated in vitro. Scaffolds with average pore diameters of 384.52, 275.23, and 173.8 μm were prepared by salt leaching method, labelled as Large, Medium, and Small group. Porcine BMSCs were seeded on scaffolds and cultured in osteogenic medium for 21 days to evaluate cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, gene expression of osteogenic markers, and histological performance. The results showed Fn/G coating effectively improved cell adhesion on SF scaffolds. Cell metabolic rate in each group increased significantly with time, but there was no statistical difference at each time point among the three groups. On day 21, ALP/DNA and calcium/DNA in the Small group were significantly higher than those in the Large group. Among the three pore sizes, the Small group showed higher mRNA expression of COl I on day 7, OPN on day 14, and OCN on day 21. Immunohistochemical staining on day 21 showed that Col I and OCN in Small group were more highly expressed. In conclusion, the Fn/G coated SF scaffolds with a mean pore diameter of 173.8 μm was optimal for osteogenic differentiation of BMSC in vitro.
Collapse
Affiliation(s)
- Chengchong Ai
- NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Ling Liu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review. Int J Biol Macromol 2020; 163:2145-2161. [DOI: 10.1016/j.ijbiomac.2020.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
28
|
Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE, Lee JH, Byun SH. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Int J Mol Sci 2020; 21:E6942. [PMID: 32971749 PMCID: PMC7555666 DOI: 10.3390/ijms21186942] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the mechanical properties and bone regeneration ability of 3D-printed pure hydroxyapatite (HA)/tricalcium phosphate (TCP) pure ceramic scaffolds with variable pore architectures. A digital light processing (DLP) 3D printer was used to construct block-type scaffolds containing only HA and TCP after the polymer binder was completely removed by heat treatment. The compressive strength and porosity of the blocks with various structures were measured; scaffolds with different pore sizes were implanted in rabbit calvarial models. The animals were observed for eight weeks, and six animals were euthanized in the fourth and eighth weeks. Then, the specimens were evaluated using radiological and histological analyses. Larger scaffold pore sizes resulted in enhanced bone formation after four weeks (p < 0.05). However, in the eighth week, a correlation between pore size and bone formation was not observed (p > 0.05). The findings showed that various pore architectures of HA/TCP scaffolds can be achieved using DLP 3D printing, which can be a valuable tool for optimizing bone-scaffold properties for specific clinical treatments. As the pore size only influenced bone regeneration in the initial stage, further studies are required for pore-size optimization to balance the initial bone regeneration and mechanical strength of the scaffold.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Seok-Jin Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Sun-Ju Byeon
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | | | - Sung-Woon On
- Department of Oral and Maxillofacial Surgery, Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea;
| | - Byoung-Eun Yang
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea;
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
| | - Jong-Ho Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Soo-Hwan Byun
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea;
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| |
Collapse
|
29
|
Shalchy F, Lovell C, Bhaskar A. Hierarchical porosity in additively manufactured bioengineering scaffolds: Fabrication & characterisation. J Mech Behav Biomed Mater 2020; 110:103968. [PMID: 32745973 DOI: 10.1016/j.jmbbm.2020.103968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Biomedical scaffolds with a high degree of porosity are known to facilitate the growth of healthy functioning tissues. In this study, scaffolds with hierarchical porosity are manufactured and their mechanical and thermal properties are characterised. Multi-scale porosity is achieved in scaffolds fabricated by Fused Deposition Modelling (FDM) in a novel way. Random intrinsic porosity at micron length scale obtained from particulate leaching is combined with the structured extrinsic porosity at millimeter length scales afforded by controlling the spacing between the struts. Polylactic acid (PLA) is blended with Polyvinyl alcohol (PVA) and an inorganic sacrificial phase, sodium chloride (NaCl), to produce pores at length scales of up to two orders of magnitude smaller than the inter-filament voids within 3D printed lattices. The specific elastic modulus and specific strength are maximised by optimising the polymer blends. The porosity level and pore size distribution of the foamy filaments within lattices are quantified statistically. Compression tests are performed on the porous samples and the observed mechanical response is attributed to the microstructure and density. Simple cellular solid models that possess power law are used to explain the measured trends and the dependence is associated with various mechanisms of elastic deformation of the cell walls. The relationship between pore architecture, pore connectivity, the blend material composition, and mechanical response of produced foams is brought out. Foams obtained using the PLA:PVA:NaCl 42%-18%-40% material blends show relatively high specific elastic modulus, specific strength and strain at failure. A quadratic power law relating the Young's modulus with the relative density is experimentally obtained, which is consistent with theoretical models for open-cell foams. 3D printing with blends, followed by leaching, produces structures with cumulative intrinsic and extrinsic porosity as high as 80%, in addition to good mechanical integrity.
Collapse
Affiliation(s)
- Faezeh Shalchy
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| | | | - Atul Bhaskar
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
30
|
Wu T, Li B, Wang W, Chen L, Li Z, Wang M, Zha Z, Lin Z, Xia H, Zhang T. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater Sci 2020; 8:4603-4615. [PMID: 32627770 DOI: 10.1039/d0bm00523a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The strontium-substituted hydroxyapatite (SrHA) is a commonly used material in bone regeneration for its good osteoconductivity and high alkaline phosphatase (ALP) activity. Scaffolds used in bone defects require a high compressive modulus. However, the SrHA nanoparticle-doped scaffold cannot properly fit the required mechanical properties. Therefore, a lot of effort has been used to fabricate synthetic bone scaffolds with biocompatibility, suitable mechanical properties, antibacterial ability and osteoconductivity. Here, we used a facile hydrothermal method to synthesize graphene oxide (GO)-reinforced SrHA nanoparticles. The incorporation of GO can be used as nucleation and growth active sites of hydroxyapatite. In addition, GO is easy to self-assemble into a layered structure in the dispersion, which can effectively regulate the deposition of hydroxyapatite on the surface of GO. The scaffold was fabricated using a freeze-drying method by incorporating SrHA/GO nanoparticles into chitosan (CS) and quaternized chitosan (QCS) mixed solutions. The compressive modulus of the CS/QCS/SrHA/GO scaffold reached 438.5 kPa, which was 4-fold higher than that of the CS/QCS scaffold. The CS/QCS/SrHA/GO scaffold exhibited significantly higher in vitro mineralization levels and ALP activity. In vivo rat skull repair indicated that the CS/QCS/SrHA/GO scaffold had a significant role in promoting bone regeneration. This study provides a new strategy for modifying hydroxyapatite to satisfy the biomedical demand of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang L, Kang Y, Chen S, Mo X, Jiang J, Yan X, Zhu T, Zhao J. Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomater Sci Eng 2020; 7:904-915. [PMID: 33715366 DOI: 10.1021/acsbiomaterials.0c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The postoperative retear rate of direct repair of massive rotator cuff tear has risen up to 40% because of the dissatisfied tendon-to-bone healing and poor regenerative potential of remnant rotator cuff tissue. A biological scaffold that connects the remnant rotator cuff tissue and bone might be a promising substitute. In the present study, we have developed a macroporous three-dimensional scaffold poly(ester-urethane)urea (PEUU), with self-fitting capability employing thermally induced phase separation (TIPS) technique. The scaffold provides oriented connected macropores for cells migration, and promoted tendon-to-bone healing on the basis of surgical repair. The scaffolds were characterized by scanning electron microscopy, stress-strain test and cell biocompatibility study. In vitro studies exhibited that PEUU scaffold with suitable elastic mechanical properties can better support proliferation and migration of rabbit bone mesenchymal stem cells (RBMSCs). After three months postreconstruction of massive rotator cuff tear in a rabbit model using PEUU scaffold, there was complete regeneration of rotator cuff with physical tendon-to-bone interface and continuous tendon tissue, as observed from histological analysis. Further, biomechanical testing demonstrated that rotator cuff induced by PEUU scaffold had no significant difference as compared to normal rotator cuff. This macroporous, mechanically matched scaffold is potentially suitable for the application in massive rotator cuff repair. In conclusion, this study demonstrates the high efficiency of the macroporous 3D scaffold with self-fitting capability in facilitating rotator cuff regeneration.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Sihao Chen
- Multidisciplinary Center for Advanced Materials, Advanced Research Institute, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
32
|
Aldemir Dikici B, Reilly GC, Claeyssens F. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12510-12524. [PMID: 32100541 PMCID: PMC7146758 DOI: 10.1021/acsami.9b23100] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Gwendolen C. Reilly
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Frederik Claeyssens
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
33
|
Hayashi K, Munar ML, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110848. [PMID: 32279778 DOI: 10.1016/j.msec.2020.110848] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
The pore architecture of scaffolds is a critical factor for angiogenesis and bone regeneration. Although the effects of scaffold macropore size have been investigated, most scaffolds feature macropores with poor uniformity and interconnectivity, and other parameters (e.g., microporosity, chemical composition, and strut thickness) differ among scaffolds. To clarify the threshold of effective macropore size, we fabricated honeycomb scaffolds (HCSs) with distinct macropore (i.e., channel) sizes (~100, ~200, and ~300 μm). The HCSs were composed of AB-type carbonate apatite with ~8.5% carbonate ions, i.e., the same composition as human bone mineral. Their honeycomb architecture displayed uniformly sized and orderly arranged channels with extremely high interconnectivity, and all the HCSs displayed ~100-μm-thick struts and 0.06 cm3 g-1 of micropore volume. The compressive strengths of HCSs with ~100-, ~200-, and ~300-μm channels were higher than those of reported scaffolds, and decreased with increasing channel size: 62 ± 6, 55 ± 9, and 43 ± 8 MPa, respectively. At four weeks after implantation in rabbit femur bone defects, new bone and blood vessels were formed in all the channels of these HCSs. Notably, the ~300-μm channels were extensively occupied by new bone. We demonstrated that high interconnectivity and uniformity of channels can decrease the threshold of effective macropore size, enabling the scaffolds to maintain high mechanical properties and osteogenic ability and serve as implants for weight-bearing areas.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Melvin L Munar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Lv J, Liu W, Shi G, Zhu F, He X, Zhu Z, Chen H. Human cardiac extracellular matrix-chitosan-gelatin composite scaffold and its endothelialization. Exp Ther Med 2020; 19:1225-1234. [PMID: 32010293 PMCID: PMC6966153 DOI: 10.3892/etm.2019.8349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
The present study developed a cardiac extracellular matrix-chitosan-gelatin (cECM-CG) composite scaffold that can be used as a tissue-engineered heart patch and investigated its endothelialization potential by incorporating CD34+ endothelial progenitor cells (EPCs). The cECM-CG composite scaffold was prepared by blending cardiac extracellular matrix (cECM) with biodegradable chitosan-gelatin (CG). The mixture was lyophilized using vacuum freeze-drying. CD34+ EPCs were isolated and seeded on the scaffolds, and then the endothelialization effect was subsequently investigated. Effects of the scaffolds on CD34+ EPCs survival and proliferation were evaluated by immunofluorescence staining and MTT assay. Cell differentiation into endothelial cells and the influence of the scaffolds on cell differentiation were investigated by reverse transcription-quantitative PCR (RT-qPCR), immunofluorescence staining and tube formation assay. The present results indicated that most cells were removed after decellularization, but the main extracellular matrix components were retained. Scanning electron microscopy imaging illustrated three-dimensional and porous scaffolds. The present results suggested the cECM-CG composite scaffold had a higher water absorption ability compared with the CG scaffold. Additionally, compared with the CG scaffold, the cECM-CG composite scaffold significantly increased cell survival and proliferation, which suggested its non-toxicity and biocompatibility. Furthermore, RT-qPCR, immunofluorescence and tube formation assay results indicated that CD34+ EPCs differentiated into endothelial cells, and the cECM-CG composite scaffold promoted this differentiation process. In conclusion, the present results indicated that the human cECM-CG composite scaffold generated in the present study was a highly porous, biodegradable three-dimensional scaffold which supported endothelialization of seeded CD34+ EPCs. The present results suggested that this cECM-CG composite scaffold may be a promising heart patch for use in heart tissue engineering for congenital heart disease.
Collapse
Affiliation(s)
- Jingjing Lv
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Wei Liu
- Department of Pediatric Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Guocheng Shi
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Fang Zhu
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Xiaomin He
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Zhongqun Zhu
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| | - Huiwen Chen
- Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
35
|
Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:1290-1310. [DOI: 10.1021/acsbiomaterials.9b01781] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Umuhoza
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
- Commercial Insect Program, Sericulture, Rwanda Agricultural Board, 5016 Kigali, Rwanda
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Jing Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
36
|
Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev 2020; 153:28-53. [PMID: 31678360 DOI: 10.1016/j.addr.2019.09.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Several synthetic and natural materials are used in soft tissue engineering and regenerative medicine with varying degrees of success. Among them, silkworm silk protein fibroin, a naturally occurring protein-based biomaterial, exhibits many promising characteristics such as biocompatibility, controllable biodegradability, tunable mechanical properties, aqueous preparation, minimal inflammation in host tissue, low cost and ease of use. Silk fibroin is often used alone or in combination with other materials in various formats and is also a promising delivery system for bioactive compounds as part of such repair scenarios. These properties make silk fibroin an excellent biomaterial for skin tissue engineering and repair applications. This review focuses on the promising characteristics and recent advances in the use of silk fibroin for skin wound healing and/or soft-tissue repair applications. The benefits and limitations of silk fibroin as a scaffolding biomaterial in this context are also discussed. STATEMENT OF SIGNIFICANCE: Silk protein fibroin is a natural biomaterial with important biological and mechanical properties for soft tissue engineering applications. Silk fibroin is obtained from silkworms and can be purified using alkali or enzyme based degumming (removal of glue protein sericin) procedures. Fibroin is used alone or in combination with other materials in different scaffold forms, such as nanofibrous mats, hydrogels, sponges or films tailored for specific applications. The investigations carried out using silk fibroin or its blends in skin tissue engineering have increased dramatically in recent years due to the advantages of this unique biomaterial. This review focuses on the promising characteristics of silk fibroin for skin wound healing and/or soft-tissue repair applications.
Collapse
|
37
|
Wang L, Fang M, Xia Y, Hou J, Nan X, Zhao B, Wang X. Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. RSC Adv 2020; 10:10118-10128. [PMID: 35498577 PMCID: PMC9050210 DOI: 10.1039/c9ra09710d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/24/2020] [Indexed: 11/21/2022] Open
Abstract
A novel SF/nHAp/GO hybrid scaffold with oriented channel-like structure in bone tissue engineering.
Collapse
Affiliation(s)
- Lu Wang
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Min Fang
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Yijing Xia
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Jiaxin Hou
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Xiaoru Nan
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Bin Zhao
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Xiangyu Wang
- School and Hospital of Stomatology
- Shanxi Medical University
- Taiyuan 030001
- China
| |
Collapse
|
38
|
Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int 2019; 2019:2180925. [PMID: 31949436 PMCID: PMC6948329 DOI: 10.1155/2019/2180925] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lang Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Cheng Long
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| |
Collapse
|
39
|
Zheng W, Chen Q, Zhang Y, Xia R, Gu X, Hao Y, Yu Z, Sun X, Hu D. BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway. J Cell Biochem 2019; 121:2851-2863. [PMID: 31680322 DOI: 10.1002/jcb.29519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Synovial mesenchymal stem cells (SMSCs) with high proliferation and multi differentiation ability, and low immunogenicity have attracted research attention for their potential application in tissue engineering. Once their ability of osteogenesis is strengthened, it will be of practical value to apply the SMSCs in the field of bone regeneration. The current study aimed to investigate the osteogenic characteristics of SMSCs induced by bone morphogenetic protein 9 (BMP9) both in vitro and in vivo and to elucidate the mechanism underlying these characteristics. Specifically, different BMPs were assessed to determine the protein that would be the most favorable for stimulating osteogenic differentiation of SMSCs following their separation. The BMP9-enhanced osteogenesis of SMSCs was fully investigated in vitro and in vivo, and the c-Jun N-terminal kinase (JNK)/Smad2/3 signaling pathway stimulated by BMP9 was further explored. Our data suggested that BMP9 could significantly promote gene and protein expression of runt-related transcription factor 2, alkaline phosphatase, osteopontin, and osteocalcin, and SP600125, a JNK-specific inhibitor, could effectively decrease this tendency. Similar results were also confirmed in rats with cranial defects. In conclusion, our study indicated that BMP9 promotes bone formation both in vitro and in vivo possibly by activating the JNK/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Chen
- Laboratory Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueping Gu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zepeng Yu
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Hu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
40
|
Tang J, Gu Y, Zhang H, Wu L, Xu Y, Mao J, Xin T, Ye T, Deng L, Cui W, Santos HA, Chen L. Outer-inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. NANOSCALE 2019; 11:15794-15803. [PMID: 31432854 DOI: 10.1039/c9nr03264a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomimetic scaffolds have been extensively studied for guiding osteogenesis through structural cues. Inspired by the natural bone growth process, we have employed a hierarchical outer-inner dual reinforcing strategy, which relies on the interfacial ionic bond interaction between amine/calcium and carboxyl groups, to build a nanofiber/particle dual strengthened hierarchical silk fibroin scaffold. This scaffold can provide an applicable form of osteogenic structural cue and mimic the natural bone forming process. Owing to the active interaction between compositions located in the outer pore space and the inner pore wall, the scaffold has over 4 times improvement in the mechanical properties, followed by a significant alteration of the cell-scaffold interaction pattern, demonstrated by over 2 times elevation in the spreading area and enhanced osteogenic activity potentially involving the activities of integrin, vinculin and Yes-associated protein (YAP). The in vivo performance of the scaffold identified the inherent osteogenic effect of the structural cue, which promotes rapid and uniform regeneration. Overall, the hierarchical scaffold is promising in promoting uniform bone regeneration through its specific structural cue endowed by its micro-nano construction.
Collapse
Affiliation(s)
- Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang X, Song X, Li T, Chen J, Cheng G, Yang L, Chen C. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Am J Sports Med 2019; 47:2316-2326. [PMID: 31233332 DOI: 10.1177/0363546519856355] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recruitment of endogenous stem cells has been considered an alternative to cell injection/implantation in articular cartilage repair. PURPOSE (1) To develop a cartilage tissue-engineering scaffold with clinically available biomaterials and functionalize the scaffold with an aptamer (Apt19s) that specifically recognizes pluripotent stem cells. (2) To determine whether this scaffold could recruit joint-resident mesenchymal stem cells (MSCs) when implanted into an osteochondral defect in a rabbit model and to examine the effects of cartilage regeneration. STUDY DESIGN Controlled laboratory study. METHODS The reinforced scaffold was fabricated by embedding a silk fibroin sponge into silk fibroin/hyaluronic acid-tyramine hydrogel and characterized in vitro. A cylindrical osteochondral defect (3.2 mm wide × 4 mm deep) was created in the trochlear grooves of rabbit knees. The rabbits were randomly assigned into 3 groups: Apt19s-functionalized scaffold group, scaffold-only group, and control group. Animals were sacrificed at 6 and 12 weeks after transplantation. Repaired tissues were evaluated via gross examination, histologic examination, and immunohistochemistry. RESULTS In vitro, this aptamer-functionalized scaffold could recruit bone marrow-derived MSCs and support cell adhesion. In vivo, the aptamer-functionalized scaffold enhanced cell homing in comparison with the aptamer-free scaffold. The aptamer-functionalized scaffold group also exhibited superior cartilage restoration when compared with the scaffold-only group and the control group. CONCLUSION The Apt19s-functionalized scaffold exhibited the ability to recruit MSCs both in vitro and in vivo and achieved a better outcome of cartilage repair than the scaffold only or control in an osteochondral defect model. CLINICAL RELEVANCE The findings demonstrate a promising strategy of using aptamer-functionalized bioscaffolds for restoration of chondral/osteochondral defects via aptamer-introduced homing of MSCs.
Collapse
Affiliation(s)
- Xin Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Guotao Cheng
- College of Biotechnology, Southwest University, Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
42
|
Medina-Fernandez I, Celiz AD. Acellular biomaterial strategies for endodontic regeneration. Biomater Sci 2019; 7:506-519. [PMID: 30569918 DOI: 10.1039/c8bm01296b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dental decay is treated by removing infected dental tissues such as dentine and restoring the tooth with a material. However, the vast majority of these materials have been designed to be mechanically robust and bioinert, whereas the potential regenerative properties of a biomaterial have not been considered. In endodontics for example, materials are used to seal the pulp cavity to avoid bacterial colonisation of the tooth and prevent further infection. While these treatments are effective in the short term, many of these materials have not been designed to interface with the pulp tissue in a biocompatible manner and are often cytotoxic. This can lead to less favourable long-term outcomes such as devitalisation of the tooth via root-canal therapy or extraction of the tooth. Clinical outcomes could be improved if regenerative approaches were followed whereby the biology of the tooth is engineered for repair and regeneration often with the support of a biomaterial. Within these, acellular or cell homing approaches are particularly interesting, as some regulatory hurdles associated with cellular therapies could be circumvented which may aid their clinical translation. In this review, we highlight progress in regenerative dentistry and focus on exciting developments using acellular biomaterials for regenerating dental tissues.
Collapse
|
43
|
Voga M, Drnovsek N, Novak S, Majdic G. Silk fibroin induces chondrogenic differentiation of canine adipose-derived multipotent mesenchymal stromal cells/mesenchymal stem cells. J Tissue Eng 2019; 10:2041731419835056. [PMID: 30899447 PMCID: PMC6419250 DOI: 10.1177/2041731419835056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
Under appropriate culture conditions, mesenchymal stem cells (MSC), also called more properly multipotent mesenchymal stromal cells (MMSC), can be induced toward differentiation into different cell lineages. In order to guide stem cell fate within an environment resembling the stem cell niche, different biomaterials are being developed. In the present study, we used silk fibroin (SF) as a biomaterial supporting the growth of MMSC and studied its effect on chondrogenesis of canine adipose–derived MMSC (cADMMSC). Adipose tissue was collected from nine privately owned dogs. MMSC were cultured on SF films and SF scaffolds in a standard cell culture medium. Cell morphology was evaluated by scanning electron microscopy (SEM). Chondrogenic differentiation was evaluated by alcian blue staining and mRNA expression of collagen type 1, collagen type 2, Sox9, and Aggrecan genes. cADMMSC cultured on SF films and SF scaffolds stained positive using alcian blue. SEM images revealed nodule-like structures with matrix vesicles and fibers resembling chondrogenic nodules. Gene expression of chondrogenic markers Sox9 and Aggrecan were statistically significantly upregulated in cADMMSC cultured on SF films in comparison to negative control cADMMSC. This result suggests that chondrogenesis of cADMMSC could occur when cells were grown on SF films in a standard cell culture medium without specific culture conditions, which were previously considered necessary for induction of chondrogenic differentiation.
Collapse
Affiliation(s)
- Metka Voga
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Natasa Drnovsek
- Department for Nanostructured Materials, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Sasa Novak
- Department for Nanostructured Materials, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Gregor Majdic
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.,Institute of Physiology, Medical School, University of Maribor, Maribor, Slovenia
| |
Collapse
|
44
|
Lin TH, Wang HC, Cheng WH, Hsu HC, Yeh ML. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Int J Mol Sci 2019; 20:ijms20020326. [PMID: 30650528 PMCID: PMC6359257 DOI: 10.3390/ijms20020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Repairing damaged articular cartilage is challenging due to the limited regenerative capacity of hyaline cartilage. In this study, we fabricated a bilayered poly (lactic-co-glycolic acid) (PLGA) scaffold with small (200–300 μm) and large (200–500 μm) pores by salt leaching to stimulate chondrocyte differentiation, cartilage formation, and endochondral ossification. The scaffold surface was treated with tyramine to promote scaffold integration into native tissue. Porcine chondrocytes retained a round shape during differentiation when grown on the small pore size scaffold, and had a fibroblast-like morphology during transdifferentiation in the large pore size scaffold after five days of culture. Tyramine-treated scaffolds with mixed pore sizes seeded with chondrocytes were pressed into three-mm porcine osteochondral defects; tyramine treatment enhanced the adhesion of the small pore size scaffold to osteochondral tissue and increased glycosaminoglycan and collagen type II (Col II) contents, while reducing collagen type X (Col X) production in the cartilage layer. Col X content was higher for scaffolds with a large pore size, which was accompanied by the enhanced generation of subchondral bone. Thus, chondrocytes seeded in tyramine-treated bilayered scaffolds with small and large pores in the upper and lower parts, respectively, can promote osteochondral regeneration and integration for articular cartilage repair.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Wen-Hui Cheng
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, 2 Yude Rd., Taichung 40447, Taiwan.
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| |
Collapse
|
45
|
Amirikia M, Ali Jorsaraei SG, Ali Shariatzadeh SM, Mehranjani MS. Differentiation of stem cells from the apical papilla into osteoblasts by the elastic modulus of porous silk fibroin scaffolds. Biologicals 2019; 57:1-8. [DOI: 10.1016/j.biologicals.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
|
46
|
Bone morphogenetic protein‐7 incorporated polycaprolactone scaffold has a great potential to improve survival and proliferation rate of the human embryonic kidney cells. J Cell Biochem 2018; 120:9859-9868. [DOI: 10.1002/jcb.28268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
|
47
|
Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, Mao C, Wang Y. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model. Adv Healthc Mater 2018; 7:e1800441. [PMID: 30044555 PMCID: PMC6355155 DOI: 10.1002/adhm.201800441] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Due to the difficulty in fabricating bioceramic scaffolds with smaller pore sizes by the current 3D printing technique, the effect of smaller pore sizes (below 400 µm) of 3D printed bioceramic scaffolds on the bone regeneration and biomechanical behavior is never studied. Herein beta-tricalcium phosphate (β-TCP) scaffolds with interconnected smaller pores of three different sizes (100, 250, and 400 µm) are fabricated by 3D plotting. The resultant scaffolds are then implanted into rat critical-sized calvarial defects without any seeded cells. A custom-designed device is developed to investigate the biomechanical properties of the scaffolds after surgical implantation for 4, 8, and 12 weeks. The scaffolds with the 100 µm pore size are found to present the highest maximum load and stiffness, comparable to those of the autogenous bone, after being implanted for 12 weeks. Micro-computed tomography (micro-CT) and histological analysis further indicate that the scaffolds with the 100 µm pore size achieve the highest percentage of new bone ingrowth, which correlates to their best in vivo biomechanical properties. This study demonstrates that tailoring the pore size of β-TCP scaffolds to a smaller range by 3D-plotting can be a facile and efficient approach to enhanced bone regeneration and biomechanical behaviors in bone repair.
Collapse
Affiliation(s)
- Jingjing Diao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun OuYang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, 510515, China
| | - Ting Deng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanting Feng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, 510515, China
| | - Naru Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Room 3310, Norman, OK, 73019-5300, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Nation Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
48
|
Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:456-469. [DOI: 10.1016/j.msec.2018.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
49
|
Bonartsev AP, Zharkova II, Voinova VV, Kuznetsova ES, Zhuikov VA, Makhina TK, Myshkina VL, Potashnikova DM, Chesnokova DV, Khaydapova DD, Bonartseva GA, Shaitan KV. Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech 2018; 8:328. [PMID: 30073113 PMCID: PMC6051946 DOI: 10.1007/s13205-018-1350-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Development of biocompatible 3D scaffolds is one of the most important challenges in tissue engineering. In this study, we developed polymer scaffolds of different design and microstructure to study cell growth in them. To obtain scaffolds of various microstructure, e.g., size of pores, we used double- and one-stage leaching methods using porogens with selected size of crystals. A composite of poly(3-hydroxybutyrate) (PHB) with poly(ethylene glycol) (PEG) (PHB/PEG) was used as polymer biomaterial for scaffolds. The morphology of scaffolds was analyzed by scanning electron microscopy; the Young modulus of scaffolds was measured by rheometry. The ability to support growth of mesenchymal stem cells (MSCs) in scaffolds was studied using the XTT assay; the phenotype of MSC was preliminarily confirmed by flow cytometry and the activity of alkaline phosphatase and expression level of CD45 marker was studied to test possible MSC osteogenic differentiation. The obtained scaffolds had different microstructure: the scaffolds with uniform pore size of about 125 µm (normal pores) and 45 µm (small pores) and scaffolds with broadly distributed pores size from about 50-100 µm. It was shown that PHB/PEG scaffolds with uniform pores of normal size did not support MSCs growth probably due to their marked spontaneous osteogenic differentiation in these scaffolds, whereas PHB/PEG scaffolds with diverse pore size promoted stem cells growth that was not accompanied by pronounced differentiation. In scaffolds with small pores (about 45 µm), the growth of MSC was the lowest and cell growth suppression was only partially related to stem cells differentiation. Thus, apparently, the broadly distributed pore size of PHB/PEG scaffolds promoted MSC growth in them, whereas uniform size of scaffold pores stimulated MSC osteogenic differentiation.
Collapse
Affiliation(s)
- A. P. Bonartsev
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - I. I. Zharkova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - V. V. Voinova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - E. S. Kuznetsova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - V. A. Zhuikov
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - T. K. Makhina
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - V. L. Myshkina
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - D. M. Potashnikova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - D. V. Chesnokova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - D. D. Khaydapova
- Faculty of Soil Science, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - K. V. Shaitan
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| |
Collapse
|
50
|
Sheik S, Sheik S, Nairy R, Nagaraja GK, Prabhu A, Rekha PD, Prashantha K. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Int J Biol Macromol 2018; 116:45-53. [PMID: 29733927 DOI: 10.1016/j.ijbiomac.2018.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
The current study delineates the preparation of novel chitosan grafted silk fibre reinforced Poly (vinyl alcohol) (PVA) composite films with desirable properties. Although silk fibroin has been extensively used for various biomedical applications, its properties could be further re-tailored for its suitability in the field of regenerative medicine. Chitosan was successfully grafted over silk, via acylation with succinic anhydride and thereby the fibres were incised and used for the preparation of the films. The grafted silk fibre reinforced PVA films were subjected to FTIR studies, microscopic analysis by atomic force microscopy (AFM) and optical microscopy techniques, X-ray diffraction (XRD) analysis and further evaluated for in vitro biocompatibility studies. The composite films demonstrated improved surface roughness with increasing concentration of the fibre and its dispersion in the polymer matrix was observed. Furthermore, in vitro biocompatibility and cellular behaviour such as adhesion and proliferation of mouse fibroblasts as well as astrocyte cells was studied and the results showed improved proliferative activity, when compared to the pristine PVA films. These results were further supported by the results confirmed by MTT assay demonstrating the films to be non-toxic. The efficiency and feasibility of the films to be used for tissue engineering, was further evaluated by haemocompatibility studies using human erythrocytes, thus making them a potential material to be used for biomedical applications.
Collapse
Affiliation(s)
- Sareen Sheik
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (D.K.), Karnataka, India
| | - Sana Sheik
- Department of Applied Botany, Mangalore University, Mangalagangothri, 574199, (D.K.), Karnataka, India
| | - Rajesha Nairy
- Department of Physics, P.A. College of Engineering, Mangalore, 574153, (D.K.), Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (D.K.), Karnataka, India.
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya University, University Road Deralakatte, Mangalore, 575018, (D.K.), Karnataka, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, University Road Deralakatte, Mangalore, 575018, (D.K.), Karnataka, India
| | - Kalappa Prashantha
- IMT Lille Douai, Institut Mines-Télécom, Polymers and Composites Technology & Mechanical Engineering Department, 941 rue Charles Bourseul, 59508 Douai, France; Université de Lille, 59000 Lille, France
| |
Collapse
|