1
|
Haghwerdi F, Haririan I, Soleimani M. Chondrogenic potential of PMSCs cultured on chondroitin sulfate/gelatin-modified DBM scaffold. BIOIMPACTS : BI 2024; 15:30003. [PMID: 40161935 PMCID: PMC11954754 DOI: 10.34172/bi.2023.30003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 04/02/2025]
Abstract
Introduction Osteoarthritis is one of the most common orthopedic diseases that gradually causes wear and damage to the articular Subchondral bone due to the destruction of articular cartilage. One of the basic challenges in cartilage tissue engineering is the choice of scaffold. In the design of the cartilage scaffold, it is useful to consider parameters such as porosity, water absorption, high mechanical resistance, biocompatibility, and biodegradability. Therefore, in this study, demineralized bone matrix (DBM), which inherently has these characteristics to some extent, was chosen as the basic scaffold. Methods The gelatin/DBM (G/DBM) and the chondroitin sulfate-gelatin/DBM (GCS/DBM) scaffolds were prepared, respectively, by incorporating gelatin or chondroitin sulfate/gelatin solution inside DBM pores, freeze-drying and crosslinking with EDC/NHS. The physicochemical, biological characteristics and chondrogenic potential of scaffolds were studied. Results According to the SEM results, the size of the DBM pores in the G/DBM and GCS/DBM scaffolds decreased (from almost 100-1500 µm to less than 200 µm), which reduced cell escape compared to the DBM scaffold. Also, crosslinking the scaffolds has greatly increased their compressive E-modulus (more than 8 times). The cytocompatibility and non- toxicity of all scaffolds were confirmed by acridine orange/ethidium bromide (AO/EB) staining. The evaluation results of chondrogenic differentiation of placenta-derived mesenchymal stem cells (PMSCs) on modified scaffolds, using the real-time PCR method, showed that the presence of CS in the GCS/DBM scaffold improved the expression of chondrogenesis markers such as Aggrecan (AGC) (~4 times) and collagen 2 (COL-2) (~2.2 times) compared to the DBM scaffold. Also, Alcian blue staining and immunohistochemical analyses of the scaffolds showed denser and more coherent GAGs and COL-2 protein synthesis on the GCS/DBM than the G/DBM and DBM scaffolds. Conclusion According to the results, the GCS/DBM scaffold can be a suitable scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Fatemeh Haghwerdi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Aleynik DY, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Specific Features of the Functional Activity of Human Adipose Stromal Cells in the Structure of a Partial Skin-Equivalent. Int J Mol Sci 2024; 25:6290. [PMID: 38927998 PMCID: PMC11203524 DOI: 10.3390/ijms25126290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
3
|
Hermans EC, Donega V, Heijnen CJ, de Theije CGM, Nijboer CH. CXCL10 is a crucial chemoattractant for efficient intranasal delivery of mesenchymal stem cells to the neonatal hypoxic-ischemic brain. Stem Cell Res Ther 2024; 15:134. [PMID: 38715091 PMCID: PMC11077865 DOI: 10.1186/s13287-024-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.
Collapse
Affiliation(s)
- Eva C Hermans
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands
| | - Vanessa Donega
- Anatomy & Neurosciences, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cobi J Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Internal post: KC03.068.0, PO Box 85090, Utrecht, 3508 AB, The Netherlands.
| |
Collapse
|
4
|
Galera MR, Svalgaard J, Woetmann A. Therapeutic potential of adipose derived stromal cells for major skin inflammatory diseases. Front Med (Lausanne) 2024; 11:1298229. [PMID: 38463491 PMCID: PMC10921940 DOI: 10.3389/fmed.2024.1298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.
Collapse
Affiliation(s)
- Marina Ramírez Galera
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Khandan-Nasab N, Mahdipour E, Askarian S, Kalantari MR, Ramezanian N, Oskuee RK. Design and characterization of adipose-derived mesenchymal stem cell loaded alginate/pullulan/hyaluronic acid hydrogel scaffold for wound healing applications. Int J Biol Macromol 2023; 241:124556. [PMID: 37088191 DOI: 10.1016/j.ijbiomac.2023.124556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Recently, significant attention has been focused on the progression of skin equivalents to facilitate faster wound healing and thereby skin restoration. The main aim of this study was the design and characterization of a novel polysaccharide-based hydrogel scaffold by using alginate, pullulan, and hyaluronic acid polymers to provide an appropriate microenvironment to deliver Adipose-derived mesenchymal Stem Cells (ASC) in order to promote wound healing in an animal model. Characterization of synthesized hydrogel was done by using a field emission scanning electron microscope (FE-SEM), Fourier Transform-Infrared spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). Also, contact angle analysis, the swelling and mechanical tests were performed. As a result of in vitro studies, cells can be attached, alive, and migrate through the prepared hydrogel scaffold. Finally, the therapeutic effect of the cell-seeded hydrogels was tested in the full-thickness animal wound model. Based on obtained results, the hydrogel-ASC treatment improved the healing process and accelerated wound closure.
Collapse
Affiliation(s)
- Niloofar Khandan-Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeede Askarian
- Non communicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahmoud Reza Kalantari
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
CRISPR/Cas9-engineered mesenchymal stromal/stem cells and their extracellular vesicles: A new approach to overcoming cell therapy limitations. Biomed Pharmacother 2022; 156:113943. [DOI: 10.1016/j.biopha.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
|
7
|
Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int 2022; 2022:2454168. [PMID: 35035489 PMCID: PMC8758292 DOI: 10.1155/2022/2454168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Collapse
|
9
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
10
|
Hassanshahi G, Roohi MA, Esmaeili SA, Pourghadamyari H, Nosratabadi R. Involvement of various chemokine/chemokine receptor axes in trafficking and oriented locomotion of mesenchymal stem cells in multiple sclerosis patients. Cytokine 2021; 148:155706. [PMID: 34583254 DOI: 10.1016/j.cyto.2021.155706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a specific type of chronic immune-mediated disease in which the immune responses are almost run against the central nervous system (CNS). Despite intensive research, a known treatment for MS disease yet to be introduced. Thus, the development of novel and safe medications needs to be considered for the disease management. Application of mesenchymal stem cells (MSCs) as an emerging approach was recruited forthe treatment of MS. MSCs have several sources and they can be derived from the umbilical cord, adipose tissue, and bone marrow. Chemokines are low molecular weight proteins that their functional activities are achieved by binding to the cell surface G protein-coupled receptors (GPCRs). Chemokine and chemokine receptors are of the most important and effective molecules in MSC trafficking within the different tissues in hemostatic and non-hemostatic circumstances. Chemokine/chemokine receptor axes play a pivotal role in the recruitment and oriented trafficking of immune cells both towards and within the CNS and it appears that chemokine/chemokine receptor signaling may be the most important leading mechanisms in the pathogenesis of MS. In this article, we hypothesized that the chemokine/chemokine receptor axes network have crucial and efficacious impacts on behavior of the MSCs, nonetheless, the exact responsibility of these axes on the targeted tropism of MSCs to the CNS of MS patients yet remained to be fully elucidated. Therefore, we reviewed the ability of MSCs to migrate and home into the CNS of MS patients via expression of various chemokine receptors in response to chemokines expressed by cells of CNS tissue, to provide a great source of knowledge.
Collapse
Affiliation(s)
- Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Amin Roohi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Heirani-Tabasi A, Hosseinzadeh S, Rabbani S, Ahmadi Tafti SH, Jamshidi K, Soufizomorrod M, Soleimani M. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Biomed Mater 2021; 16. [PMID: 34144542 DOI: 10.1088/1748-605x/ac0cbf] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) on injectable hydrogels are mostly used to regenerate articular cartilage, which would have a variety of outcomes. Chondrocyte extracellular vesicles (EVs) have attracted many attentions for their chondrogenic differentiation capacity; however, the roles of EVs in both chondrogenic differentiation of MSCs and cartilage regeneration are poorly understood yet. In the current study, to investigate the differentiation effects of human articular chondrocyte EVs on adipose-derived MSCs, they were cultured in injectable chitosan-hyaluronic acid (CS-HA) hydrogel and then treated with chondrocyte EVs for 21 days. The continuous treatment of EVs performed on MSCs increased chondrogenic genes' expressions ofSOX9andCOL2A1and induced expression of Col II protein. In addition, glycosaminoglycans secretion was detected in the EV-treated MSCs after about 14 days. The therapeutic efficiency of this hydrogel and EVs was studied in a rabbit osteochondral defect model. MRI results revealed that the cartilage regeneration capacity of EV-treated MSCs with CS-HA hydrogel was greater than the untreated MSCs or the EV-treated MSCs without hydrogel. Moreover, histological results showed hyaline-like cartilage in the CS-HA/MSC and CS-HA/EV/MSC groups in the cartilage defect sites. These findings suggested that the chondrocyte-EVs and CS-HA hydrogel could provide the preferable niche for chondrogenic differentiation of MSCs and cartilage regeneration in osteoarthritis cartilage injuries.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khodamorad Jamshidi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Soufizomorrod
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, Ramakrishna S, Behravan J. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int J Mol Sci 2021; 22:ijms22126203. [PMID: 34201385 PMCID: PMC8228022 DOI: 10.3390/ijms22126203] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are known as water-swollen networks formed from naturally derived or synthetic polymers. They have a high potential for medical applications and play a crucial role in tissue repair and remodeling. MSC-derived exosomes are considered to be new entities for cell-free treatment in different human diseases. Recent progress in cell-free bone tissue engineering via combining exosomes obtained from human mesenchymal stem cells (MSCs) with hydrogel scaffolds has resulted in improvement of the methodologies in bone tissue engineering. Our research has been actively focused on application of biotechnological methods for improving osteogenesis and bone healing. The following text presents a concise review of the methodologies of fabrication and preparation of hydrogels that includes the exosome loading properties of hydrogels for bone regenerative applications.
Collapse
Affiliation(s)
- Elham Pishavar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Mahshid Naserifar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Maryam Hashemi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Correspondence: (S.R.); (J.B.)
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Correspondence: (S.R.); (J.B.)
| |
Collapse
|
13
|
Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6. Cell Tissue Bank 2021; 23:237-246. [PMID: 34013429 DOI: 10.1007/s10561-021-09935-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are important in regenerative medicine and tissue engineering and will be a very sensible choice for repair and regeneration of tendon. New biological practices, such as cellular therapy using stem cells, are promising for facilitating or expediting tendon therapy. Before using these cells clinically, it is best to check and confirm the optimal conditions for differentiation of these cells in the laboratory. Hence, in the present study, the impacts of PDGF-BB and GDF-6 supplementation on adipose-derived MSCs (ASCs) culture were studied. The frozen ASC were recovered and expanded in basic culture medium (DMEM with 10%FBS). The cells after passage five (P5) were treated with basic medium containing L-Prolin, Ascorbic Acid and only PDGF-BB or GDF-6 (20 ng/ml) or both of them (mix) as 3 groups for 14 days to investigate efficiency of ASCs differentiation towards tenocytes. The cells culturing in basic medium were used as control group. To validate tenogenic differentiation, H&E and Sirius Red staining were used to assess cell morphology and collagen production, respectively. In addition, mRNA levels of collagen I and III, Scleraxis and Tenomodulin as tenogenic markers were analyzed using qPCR. In all test groups, cells appeared slenderer, elongated cytoplasmic attributes compared to the control cells. The intensity of Sirius Red staining was significantly higher in GDF-6, PDGF-BB alone, than in group without supplements. The optical density was higher in the GDF-6 than PDGF-BB and mix-group. QPCR results showed that Col I and III gene expression was increased in all groups compared to the control. SCX expression was significantly increased only in the PDGF-BB group. TNMD mRNA expression was not significant among groups. In this study, we have corroborated that human ASCs are reactionary to tenogenic induction by GDF-6 and PDGF-BB alone or in combination. These outcomes will help greater insight into GDF-6 and PDGF-BB driven tenogenesis of ASCs and new directions of discovery in the design of ASC-based treatments for tendon healing.
Collapse
|
14
|
Oladnabi M, Mishan MA, Rezaeikanavi M, Zargari M, Sadeghi RN, Bagheri A. Correlation between ELF-PEMF exposure and Human RPE Cell Proliferation, Apoptosis and Gene Expression. J Ophthalmic Vis Res 2021; 16:202-211. [PMID: 34055258 PMCID: PMC8126745 DOI: 10.18502/jovr.v16i2.9084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Emerging evidence implies that electromagnetic fields (EMFs) can negatively affect angiogenesis. In this regard, the effects of extremely low frequency pulsed electromagnetic field (ELF-PEMF) exposure on the relative expression level of angiogenic factors involved in the pathogenesis of ocular disorders were evaluated in human retinal pigment epithelial (hRPE) cells in order to investigate a noninvasive therapeutic method for patients with several ocular diseases associated with neovascularization. Methods After separating hRPE cells from globes, hRPE cells were exposed to 15 mT of ELF-PEMF (120 Hz) at 5, 10, and 15 min for seven days. Cell proliferation and apoptosis of treated cells were evaluated via ELISA assay. Moreover, relative expression changes of HIF-1α, CTGF, VEGFA, MMP-2, cathepsin D, and E2F3 were performed using real-time RT-PCR. Results ELF-PEMF exposure had no significant effects on the apoptosis and proliferation rate of hRPE cells. Expression level of HIF-1α, CTGF, VEGFA, MMP-2, cathepsin D, and E2F3 was downregulated following 5 min of ELF-PEMF exposure. Conclusion As ELF-PEMF showed inhibitory effects on the expression of angiogenic genes in hRPE cells with no cytotoxic or proliferative side effects, it can be introduced as a useful procedure for managing angiogenesis induced by retinal pathogenesis, although more studies with adequate follow-up in animal models are needed.
Collapse
Affiliation(s)
- Morteza Oladnabi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Both authors contributed equally to the manuscript
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Both authors contributed equally to the manuscript
| | - Mozhgan Rezaeikanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rouhallah Najjar Sadeghi
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Cuesta-Gomez N, Graham GJ, Campbell JDM. Chemokines and their receptors: predictors of the therapeutic potential of mesenchymal stromal cells. J Transl Med 2021; 19:156. [PMID: 33865426 PMCID: PMC8052819 DOI: 10.1186/s12967-021-02822-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are promising cellular therapeutics for the treatment of inflammatory and degenerative disorders due to their anti-inflammatory, immunomodulatory and regenerative potentials. MSCs can be sourced from a variety of tissues within the body, but bone marrow is the most frequently used starting material for clinical use. The chemokine family contains many regulators of inflammation, cellular function and cellular migration-all critical factors in understanding the potential potency of a novel cellular therapeutic. In this review, we focus on expression of chemokine receptors and chemokine ligands by MSCs isolated from different tissues. We discuss the differential migratory, angiogenetic and immunomodulatory potential to understand the role that tissue source of MSC may play within a clinical context. Furthermore, this is strongly associated with leukocyte recruitment, immunomodulatory potential and T cell inhibition potential and we hypothesize that chemokine profiling can be used to predict the in vivo therapeutic potential of MSCs isolated from new sources and compare them to BM MSCs.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John D M Campbell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK. .,Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, Research Avenue North, Edinburgh, UK.
| |
Collapse
|
16
|
|
17
|
Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268:118932. [PMID: 33400933 DOI: 10.1016/j.lfs.2020.118932] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
The sophisticated chain of cellular and molecular episodes during wound healing includes cell migration, cell proliferation, deposition of extracellular matrix, and remodelling and are onerous to replicate. Encapsulation of growth factors (GFs) and Stem cell-based (SCs) has been proclaimed to accelerate healing by transforming every phase associated with wound healing to enhance skin regeneration. Therapeutic application of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) provides aid in wound fixing, tissue integrity restoration and function of impaired tissue. Several scientific studies have established the essential role GFs in wound healing and their reduced degree in the chronic wound. The overall limitation includes half-life, unfriendly microhabitat abundant with protease, and inadequate delivery approaches results in decreased delivery of effective amounts in a suitable time-based fashion. Advancements in the area of reformative medicine as well as tissue engineering have offered techniques competent of dispensing SCs and GFs in site-oriented manner. The progress in nanotechnology-based approaches attracts researcher to study and evaluate the potential of this SCs and GFs based therapy in chronic wounds. These techniques embrace the polymeric regime viz., nano-formulations, hydrogels, liposomes, scaffolds, nanofibers, metallic nanoparticles, lipid-based nanoparticles and dendrimers that have established better retort through targeting tissues when GFs and SCs are transported via these humans made devices. Assumed the current problems, improvements in delivery approaches and difficulties offered by chronic wounds, we hope to show that encapsulation of SCs and GFs loaded nanoformulations therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
18
|
Shahabipour F, Oskuee RK, Shokrgozar MA, Naderi-Meshkin H, Goshayeshi L, Bonakdar S. CRISPR/Cas9 mediated GFP-human dentin matrix protein 1 (DMP1) promoter knock-in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation. J Gene Med 2020; 22:e3288. [PMID: 33047833 DOI: 10.1002/jgm.3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone, playing a critical role in mineralization and phosphate metabolism. One important role for the expression of DMP1 in the nucleus of preosteoblasts is the up-regulation of osteoblast-specific genes such as osteocalcin and alkaline phosphatase1 . The present study aimed to investigate the potential application of human DMP1 promoter as an indicator marker of osteoblastic differentiation. METHODS In the present study, we developed DMP1 promoter-DsRed-GFP knock-in mesenchymal stem cell (MSCs) via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system that enabled automatic detection of osteoblast differentiation. With the application of a homology-directed knock-in strategy, a 2-kb fragment of DMP1 promoter, which was inserted upstream of the GFP and DsRed reporter cassette, was integrated into the human ROSA locus to generate double fluorescent cells. We further differentiated MSCs under osteogenic media to monitor the fate of MSCs. First, cells were transfected using CRISPR/Cas9 plasmids, which culminated in MSCs with a green fluorescence intensity, then GFP-positive cells were selected using puromycin. Second, the GFP-positive MSCs were differentiated toward osteoblasts, which demonstrated an increased red fluorescence intensity. The osteoblast differentiation of MSCs was also verified by performing alkaline phosphatase and Alizarin Red assays. RESULTS We have exploited the DMP1 promoter as a predictive marker of MSC differentiation toward osteoblasts. Using the CRISPR/Cas9 technology, we have identified a distinctive change in the fluorescence intensities of GFP knock-in (green) and osteoblast differentiated MSCs 2 . CONCLUSIONS The data show that DMP1-DsRed-GFP knock-in MSCs through CRISPR/Cas9 technology provide a valuable indicator for osteoblast differentiation. Moreover, The DMP1 promoter might be used as a predictive marker of MSCs differentiated toward osteoblasts.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lena Goshayeshi
- Division of Biotechnology, Faculty of veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Heirani-Tabasi A, Mirahmadi M, Mishan MA, Naderi-Meshkin H, Toosi S, Matin MM, Bidkhori HR, Bahrami AR. Comparison the effects of hypoxia-mimicking agents on migration-related signaling pathways in mesenchymal stem cells. Cell Tissue Bank 2020; 21:643-653. [PMID: 32815062 DOI: 10.1007/s10561-020-09851-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Adipose-derived mesenchymal stem cells (Ad-MSCs) have been designated as the promising agents for clinical applications for easy accessibility, multi-linage differentiation and immunomodulation capacity. Despite this, optimal cell delivery conditions have remained as a clinical challenge and improvement of stem cell homing to the target organs is being considered as a major strategy in cell therapy systemic injection. It has been shown that homing of mesenchymal stem cells are increased when treated with physical or chemical hypoxia-mimicking factors, however, efficiency of different agents remained to be determined. In this study, hypoxia-mimicking agents, including valproic acid (VPA), cobalt chloride (CoCl2) and deferoxamine (DFX) were examined to determine whether they are able to activate signaling molecules involved in migration of Ad-MSCs in vitro. We report that Ad-MSCs treated by DFX resulted in a significantly enhanced mRNA expression of MAPK4 (associated with MAPK signaling pathway), INPP4B (associated with Inositol polyphosphate pathway), VEGF-A and VEGF-C (associated with cytokine-cytokine receptor pathways), IL-8 and its receptor, CXCR2 (associated with IL-8 signaling pathway). While the cells treated with VPA did not show such effects and CoCl2 only upregulated VEGF-A and VEGF-C gene expression. Furthermore, results of wound-healing assays showed migration capacity of Ad-MSCs treated with DFX significantly increased 8 and 24 h of the treatment. This study provides credible evidence around DFX, which might be an effective drug for pharmacological preconditioning of Ad-MSCs to boost their homing capacity and regeneration of damaged tissues though, activation of the migration-related signaling pathways.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Shirin Toosi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran. .,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran. .,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
20
|
Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020; 46:326-340. [PMID: 31854489 DOI: 10.1002/biof.1598] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Bone is one of the most frequently transplanted tissues. The bone structure and its physiological function and stem cells biology were known to be closely related to each other for many years. Bone is considered a home to the well-known systems of postnatal mesenchymal stem cells (MSCs). These bone resident MSCs provide a range of growth factors (GF) and cytokines to support cell growth following injury. These GFs include a group of proteins and peptides produced by different cells which are regulators of important cell functions such as division, migration, and differentiation. GF signaling controls the formation and development of the MSCs condensation and plays a critical role in regulating osteogenesis, chondrogenesis, and bone/mineral homeostasis. Thus, a combination of both MSCs and GFs receives high expectations in regenerative medicine, particularly in bone repair applications. It is known that the delivery of exogenous GFs to the non-union bone fracture site remarkably improves healing results. Here we present updated information on bone tissue engineering with a specific focus on GF characteristics and their application in cellular functions and tissue healing. Moreover, the interrelation of GFs with the damaged bone microenvironment and their mechanistic functions are discussed.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- Food and Drug Administration, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Mazini L, Rochette L, Admou B, Amal S, Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int J Mol Sci 2020; 21:E1306. [PMID: 32075181 PMCID: PMC7072889 DOI: 10.3390/ijms21041306] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue derived stem cells (ADSCs) are mesenchymal stem cells identified within subcutaneous tissue at the base of the hair follicle (dermal papilla cells), in the dermal sheets (dermal sheet cells), in interfollicular dermis, and in the hypodermis tissue. These cells are expected to play a major role in regulating skin regeneration and aging-associated morphologic disgraces and structural deficits. ADSCs are known to proliferate and differentiate into skin cells to repair damaged or dead cells, but also act by an autocrine and paracrine pathway to activate cell regeneration and the healing process. During wound healing, ADSCs have a great ability in migration to be recruited rapidly into wounded sites added to their differentiation towards dermal fibroblasts (DF), endothelial cells, and keratinocytes. Additionally, ADSCs and DFs are the major sources of the extracellular matrix (ECM) proteins involved in maintaining skin structure and function. Their interactions with skin cells are involved in regulating skin homeostasis and during healing. The evidence suggests that their secretomes ensure: (i) The change in macrophages inflammatory phenotype implicated in the inflammatory phase, (ii) the formation of new blood vessels, thus promoting angiogenesis by increasing endothelial cell differentiation and cell migration, and (iii) the formation of granulation tissues, skin cells, and ECM production, whereby proliferation and remodeling phases occur. These characteristics would be beneficial to therapeutic strategies in wound healing and skin aging and have driven more insights in many clinical investigations. Additionally, it was recently presented as the tool key in the new free-cell therapy in regenerative medicine. Nevertheless, ADSCs fulfill the general accepted criteria for cell-based therapies, but still need further investigations into their efficiency, taking into consideration the host-environment and patient-associated factors.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Centre interface Applications Médicales (CIAM), Université Mohammed VI Polytechnique, Ben-Guerir 43 150, Morocco;
| | - Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France;
| | - Brahim Admou
- Laboratoire d’immunologie, Centre de Recherche Clinique, Faculté de Médecine et Pharmacie, Université Cadi Ayyad, Centre Hospitalier Universitaire, Marrakech 40 000, Morocco;
| | - Said Amal
- Service de dermatologie, Faculté de Médecine et Pharmacie, Université Cadi Ayyad, Centre hospitalier universitaire, Marrakech 40000, Morocco;
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Centre interface Applications Médicales (CIAM), Université Mohammed VI Polytechnique, Ben-Guerir 43 150, Morocco;
| |
Collapse
|
22
|
García-Sánchez D, Fernández D, Rodríguez-Rey JC, Pérez-Campo FM. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells 2019; 11:748-763. [PMID: 31692976 PMCID: PMC6828596 DOI: 10.4252/wjsc.v11.i10.748] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing. MSC-based treatments are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and osteogenic differentiation. Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells. Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation. These strategies could range from a simple modification of the culture conditions, known as cell-preconditioning, to the genetic modification of the cells to avoid cellular senescence. Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation, mainly by the use of bioactive or biomimetic scaffolds, although alternative approaches will also be discussed. This review aims to summarize several of the most recent approaches, providing an up-to-date view of the main developments in MSC-based regenerative techniques.
Collapse
Affiliation(s)
- Daniel García-Sánchez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
| | - Darío Fernández
- Laboratorio de Biología Celular y Molecular, Facultad de Odontología, Universidad Nacional del Nordeste, Corrientes W3400, Argentina
| | - José C Rodríguez-Rey
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain.
| |
Collapse
|
23
|
Jervis M, Huaman O, Cahuascanco B, Bahamonde J, Cortez J, Arias JI, Torres CG, Peralta OA. Comparative analysis of in vitro proliferative, migratory and pro-angiogenic potentials of bovine fetal mesenchymal stem cells derived from bone marrow and adipose tissue. Vet Res Commun 2019; 43:165-178. [PMID: 31201618 DOI: 10.1007/s11259-019-09757-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) are found in virtually all tissues, where they self-renew and differentiate into multiple cell types. Cumulative data indicate that MSCs secrete paracrine factors that may play key roles in the treatment of various acute and chronic pathological conditions in diverse animal species including cattle. The aim of the present study was to compare the potentials for proliferation, migration and pro-angiogenesis of bovine fetal BM-MSCs and AT-MSCs under in vitro conditions. Growth curves and population doubling time (PDT) were determined for BM-MSCs and AT-MSCs in order to compare in vitro cell proliferation potentials. The ability of BM-MSCs and AT-MSCs to migrate was evaluated by scratch plate and transwell migration assays. The pro-angiogenic potential of conditioned medium from BM-MSCs and AT-MSCs was compared using an endothelial cell (EC) tubule formation assay. BM-MSCs displayed higher proliferation curves and doubled their populations in fewer days compared to AT-MSCs. No significant differences were detected in the number of migrant cells between BM-MSCs and AT-MSCs; however, a higher migration value was detected for BM-MSCs compared to fibroblasts (FBs), and a higher number of migrant cells were attracted by DMEM supplemented with 5% fetal bovine serum (FBS) compared to stromal cell-derived factor-1 (SDF-1). More tubules of ECs were formed after exposure to concentrated conditioned medium from AT-MSCs compared to BM-MSCs, FBs or DMEM controls. Despite common mesodermal origin, BM-MSCs display higher proliferative capacity and lower pro-angiogenic potential compared to AT-MSCs; however, both cell types possess similar migratory ability.
Collapse
Affiliation(s)
- M Jervis
- Department of Animal Production Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile
| | - O Huaman
- Department of Animal Production Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile
| | - B Cahuascanco
- Department of Animal Production Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile
| | - J Bahamonde
- Department of Animal Production Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.,Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Austral University of Chile, 5110566, Valdivia, Chile
| | - J Cortez
- Department of Animal Production Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile
| | - J I Arias
- Department of Clinical Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile
| | - C G Torres
- Department of Clinical Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile
| | - O A Peralta
- Department of Animal Production Science, Faculty of Veterinary Sciences, University of Chile, 8820808, Santiago, Chile. .,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
24
|
Sung GH, Chang H, Lee JY, Song SY, Kim HS. Pancreatic-cancer-cell-derived trefoil factor 2 impairs maturation and migration of human monocyte-derived dendritic cells in vitro. Anim Cells Syst (Seoul) 2018; 22:368-381. [PMID: 30533259 PMCID: PMC6282439 DOI: 10.1080/19768354.2018.1527721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a challenging disease with a high mortality rate. While the importance of crosstalk between cancer and immune cells has been well documented, the understanding of this complex molecular network is incomplete. Thus, identification of the secreted proteins contributing to the immunosuppressive microenvironment in pancreatic cancer is crucial for effective diagnosis and/or therapy. We utilized a public microarray dataset (GSE16515) from the Gene Expression Omnibus database to identify genes for secreted proteins in pancreatic cancer. RT-PCR and ELISA of the pancreatic cancer cell lines validated the cellular origin of the selected genes. For functional assay of the selected proteins, we utilized human-monocyte-derived dendritic cells (DCs). From the list of the secreted proteins, trefoil factor 2 (TFF2) was further examined as a potential chemokine/cytokine. While TFF2 did not significantly affect the phenotypic maturation and the allostimulatory capacity of DCs, TFF2 preferentially attracted immature (but not mature) DCs and inhibited their endocytic activity. Our data suggest that TFF2 from pancreatic cancer cells may attract immature DCs and affect the initial stage of DC maturation, thereby contributing to the induction of immune tolerance against pancreatic cancer.
Collapse
Affiliation(s)
- Gi-Ho Sung
- Institute for Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do, Republic of Korea
| | - Hyun Chang
- Hematology and Medical Oncology, International St Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Ji-Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Si Young Song
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Soo Kim
- Institute for Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| |
Collapse
|
25
|
Kim G, Jin YM, Yu Y, Kim HY, Jo SA, Park YJ, Park YS, Jo I. Double intratibial injection of human tonsil-derived mesenchymal stromal cells recovers postmenopausal osteoporotic bone mass. Cytotherapy 2018; 20:1013-1027. [PMID: 30072298 DOI: 10.1016/j.jcyt.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Osteoporosis, which is a disease characterized by weakening of the bone, affects a large portion of the senior population. The current therapeutic options for osteoporosis have side effects, and there is no effective treatment for severe osteoporosis. Thus, we urgently need new treatment strategies, such as topical therapies and/or safe and effective stem cell therapies. METHODS We investigated the therapeutic potential of directly injecting human tonsil-derived mesenchymal stem cells (TMSC) into the right proximal tibias of ovariectomized postmenopausal osteoporosis model mice. Injections were given once (1×) or twice (2×) during the 3-month experimental period. At the end of the experiment, micro-computed tomographic images revealed some improvement in the proximal tibias and more significant improvement in the femoral heads of treated mice. RESULTS Osteogenic effect was qualitatively and quantitatively more pronounced in TMSC/2×-treated mice. Furthermore, TMSC/2× mice exhibited significant recovery of the serum osteocalcin level, which is pathologically elevated in osteoporosis, and increased serum alkaline phosphatase, which indicates bone formation. TMSC therapy was generally well tolerated and caused no apparent toxicity in the experimental mice. Moreover, TMSC therapy reduced visceral fat. CONCLUSION Our results demonstrate that double injection of TMSC directly into the proximal tibia triggers recovery of osteoporosis, and thus could be a potential therapeutic approach for severe bone loss.
Collapse
Affiliation(s)
- Gyungah Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yeonsil Yu
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea; Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea; Department of Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|