1
|
Kavakebian F, Rezapour A, Seyedebrahimi R, Eslami Farsani M, Jabbari Fakhr M, Zare Jalise S, Ababzadeh S. Intrinsic and extrinsic modulators of human dental pulp stem cells: advancing strategies for tissue engineering applications. Mol Biol Rep 2025; 52:190. [PMID: 39899148 DOI: 10.1007/s11033-025-10281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This review focuses on dental pulp stem cells (DPSCs) which are mesenchymal stem cells (MSCs) and originating from the neural crest. These cells possess a high capacity for self-renewal and multilineage differentiation. Because of these traits, they represent promising sources for tissue engineering, regenerative medicine, and clinical applications. The objective of this study was to assess the extrinsic and intrinsic factors influencing DPSC characteristics and their potential in tissue engineering. This review discusses the external and internal factors affecting DPSC properties, including proliferation, migration, differentiation, and gene expression post extraction. Additionally, it explores the impact of the microenvironment-its composition and physical properties-and genetic and epigenetic regulation on DPSC behavior. Variations in the microenvironment and genetic regulation play pivotal roles in modulating DPSC functions, including their proliferation and differentiation potential. Intrinsic and extrinsic factors are key barriers to realizing the full therapeutic potential of DPSCs. A deeper understanding of the extrinsic and intrinsic factors affecting DPSC behavior is critical for optimizing their use in regenerative medicine, particularly for dental and craniofacial applications. Although DPSCs hold significant promise, challenges remain, and this review provides insights into the current limitations and future directions for DPSC-based therapies. Researchers and clinicians are offered a comprehensive resource for advancing the field.
Collapse
Affiliation(s)
- Fatemeh Kavakebian
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Alireza Rezapour
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Massoumeh Jabbari Fakhr
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeedeh Zare Jalise
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Yortchan W, Puwanun S. Oscillatory fluid flow enhanced mineralization of human dental pulp cells. Front Bioeng Biotechnol 2025; 13:1500730. [PMID: 39886658 PMCID: PMC11774892 DOI: 10.3389/fbioe.2025.1500730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
The purpose of this study is to evaluate the optimum frequency of oscillatory fluid flow (OFF) for increasing osteogenesis in human dental pulp cells (DPCs) in an incubating rocking shaker. DPCs from 3 donors were cultured in an osteogenic induction medium (OIM) and mechanical stimulation was applied using an incubating rocking shaker at frequencies of 0 (control), 10, 20, 30, and 40 round per minute (RPM) for 1 h/day, 5 days/week. Cell proliferation was measured using total protein quantification, and osteogenic activity was measured by alkaline phosphatase (ALP) activity, calcium deposition, and collagen production on days 7, 14, and 21 of culture. Results of DPCs morphology in the 30 RPM group were more clustered and formed interconnections between cells. Results of DPC proliferation and collagen production showed no significant differences between the experiment groups. The ALP activity on day 7 and 14, and calcium deposition on day 21 of the 30 RPM group were significantly higher than the control groups. Thus 30 RPM is likely an effective frequency for increasing calcium deposition. This study uses strategies in Tissue Engineering followed the research topic about an application of human cells to stimulate oral and maxillofacial hard tissue regeneration. In the future, the mineralization of DPCs could be enhanced by using an incubating rocking shaker at 30 RPM in the lab to create a cell sheet. The mineralized cell sheet could then be implanted into the patient for bone repair of orofacial defects.
Collapse
Affiliation(s)
| | - Sasima Puwanun
- Department of Preventive Dentistry, Division of Pediatric Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Yang D, Jeong Y, Ortinau L, Solidum J, Park D. Mx1 -labeled pulp progenitor cells are main contributors to postnatal odontoblasts and pulp cells in murine molars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586156. [PMID: 38585950 PMCID: PMC10996506 DOI: 10.1101/2024.03.21.586156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regeneration of dentin and odontoblasts from dental pulp stem cells (DPSCs) is essential for permanent tooth maintenance. However, the in vivo identity and role of endogenous DPSCs in reparative dentinogenesis are elusive. Here, using pulp single-cell analysis before and after molar eruption, we revealed that endogenous DPSCs are enriched in Cxcl12- GFP + coronal papilla-like cells with Mx1- Cre labeling. These Mx1 + Cxcl12- GFP + cells are long-term repopulating cells that contribute to the majority of pulp cells and new odontoblasts after eruption. Upon molar injury, Mx1 + DPSCs localize into the injury site and differentiate into new odontoblasts, forming scleraxis -GFP + and osteocalcin -GFP + dentinal tubules and reparative dentin. Single-cell and FACS analysis showed that Mx1 + Cxcl12- GFP + DPSCs are the most primitive cells with stem cell marker expression and odontoblast differentiation. Taken together, our findings demonstrate that Mx1 labels postnatal DSPCs, which are the main source of pulp cells and new odontoblasts with reparative dentinogenesis in vivo .
Collapse
|
4
|
Djamgoz MB, Pchelintseva E. Mechanosensitive Ion Channels and Stem Cell Differentiation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Centre, Cyprus International University, Nicosia, TRNC, Mersin 10, Turkey
| | | |
Collapse
|
5
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
6
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs' heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
7
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Sui B, Wu D, Xiang L, Fu Y, Kou X, Shi S. Dental Pulp Stem Cells: From Discovery to Clinical Application. J Endod 2020; 46:S46-S55. [DOI: 10.1016/j.joen.2020.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Marrelli M, Codispoti B, Shelton RM, Scheven BA, Cooper PR, Tatullo M, Paduano F. Dental Pulp Stem Cell Mechanoresponsiveness: Effects of Mechanical Stimuli on Dental Pulp Stem Cell Behavior. Front Physiol 2018; 9:1685. [PMID: 30534086 PMCID: PMC6275199 DOI: 10.3389/fphys.2018.01685] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Dental pulp is known to be an accessible and important source of multipotent mesenchymal progenitor cells termed dental pulp stem cells (DPSCs). DPSCs can differentiate into odontoblast-like cells and maintain pulp homeostasis by the formation of new dentin which protects the underlying pulp. DPSCs similar to other mesenchymal stem cells (MSCs) reside in a niche, a complex microenvironment consisting of an extracellular matrix, other local cell types and biochemical stimuli that influence the decision between stem cell (SC) self-renewal and differentiation. In addition to biochemical factors, mechanical factors are increasingly recognized as key regulators in DPSC behavior and function. Thus, microenvironments can significantly influence the role and differentiation of DPSCs through a combination of factors which are biochemical, biomechanical and biophysical in nature. Under in vitro conditions, it has been shown that DPSCs are sensitive to different types of force, such as uniaxial mechanical stretch, cyclic tensile strain, pulsating fluid flow, low-intensity pulsed ultrasound as well as being responsive to biomechanical cues presented in the form of micro- and nano-scale surface topographies. To understand how DPSCs sense and respond to the mechanics of their microenvironments, it is essential to determine how these cells convert mechanical and physical stimuli into function, including lineage specification. This review therefore covers some aspects of DPSC mechanoresponsivity with an emphasis on the factors that influence their behavior. An in-depth understanding of the physical environment that influence DPSC fate is necessary to improve the outcome of their therapeutic application for tissue regeneration.
Collapse
Affiliation(s)
- Massimo Marrelli
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Bruna Codispoti
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Richard M. Shelton
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Ben A. Scheven
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Marco Tatullo
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Francesco Paduano
- Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| |
Collapse
|
10
|
Rahman SU, Oh JH, Cho YD, Chung SH, Lee G, Baek JH, Ryoo HM, Woo KM. Fibrous Topography-Potentiated Canonical Wnt Signaling Directs the Odontoblastic Differentiation of Dental Pulp-Derived Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17526-17541. [PMID: 29741358 DOI: 10.1021/acsami.7b19782] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanofibrous engineered matrices have significant potential in cellular differentiation and tissue regeneration. Stem cells require specific extracellular signals that lead to the induction of different lineages. However, the mechanisms by which the nanofibrous matrix promotes mesenchymal stem cell (MSC) differentiation are largely unknown. Here, we investigated the mechanisms that underlie nanofibrous matrix-induced odontoblastic differentiation of human dental pulp MSCs (DP-MSCs). An electrospun polystyrene nanofibrous (PSF) matrix was prepared, and the cell responses to the PSF matrix were assessed in comparison with those on conventional tissue culture dishes. The PSF matrix promoted the expression of Wnt3a, Wnt5a, Wnt10a, BMP2, BMP4, and BMP7 in the DP-MSCs, concomitant with the induction of odontoblast/osteoblast differentiation markers, dentin sialophosphoprotein (DSPP), osteocalcin, and bone sialoprotein, whose levels were further enhanced by treatment with recombinant Wnt3a. The DP-MSCs cultured on the PSF matrix also exhibited a high alkaline phosphatase activity and intense Alizarin Red staining, indicating that the PSF matrix promotes odontoblast differentiation. Besides inducing the expression of Wnt3a, the PSF matrix maintained high levels of β-catenin protein and enhanced its translocation to the nucleus, leading to its transcriptional activity. Forced expression of LEF1 or treatments with LiCl further enhanced the DSPP expression. Blocking the Wnt3a-initiated signaling abrogated the PSF-induced DSPP expression. Furthermore, the cells on the PSF matrix increased the DSPP promoter activity. The β-catenin complex was bound to the conserved motifs on the DSPP promoter dictating its transcription. Transplantations of the preodontoblast-seeded PSF matrix to the subcutaneous tissues of nude mice confirmed the association of the PSF matrix with the Wnt3a and DSPP expressions in vivo. Taken together, these results demonstrate the nanofibrous engineered matrix strongly supports odontoblastic differentiation of DP-MSCs by enhancing Wnt/β-catenin signaling.
Collapse
|
11
|
Yoo JH, Lee SM, Bae MK, Lee DJ, Ko CC, Kim YI, Kim HJ. Effect of orthodontic forces on the osteogenic differentiation of human periodontal ligament stem cells. J Oral Sci 2018; 60:438-445. [DOI: 10.2334/josnusd.17-0310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ji Hyun Yoo
- Department of Oral Physiology, BK21 PLUS Project, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University
| | - Seung-Min Lee
- Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital
| | - Moon Kyoung Bae
- Department of Oral Physiology, BK21 PLUS Project, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University
| | - Dong Joon Lee
- Department of Orthodontics, University of North Carolina
| | - Ching-Chang Ko
- Department of Orthodontics, University of North Carolina
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital
- Institute of Translational Dental Sciences, Pusan National University
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University
| |
Collapse
|
12
|
Gao Q, Walmsley AD, Cooper PR, Scheven BA. Ultrasound Stimulation of Different Dental Stem Cell Populations: Role of Mitogen-activated Protein Kinase Signaling. J Endod 2016; 42:425-31. [PMID: 26830427 DOI: 10.1016/j.joen.2015.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) from dental tissues may respond to low-intensity pulsed ultrasound (LIPUS) treatment, potentially providing a therapeutic approach to promoting dental tissue regeneration. This work aimed to compare LIPUS effects on the proliferation and MAPK signaling in MSCs from rodent dental pulp stem cells (DPSCs) compared with MSCs from periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). METHODS Isolated MSCs were treated with 1-MHz LIPUS at an intensity of 250 or 750 mW/cm2 for 5 or 20 minutes. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) staining after 24 hours of culture following a single LIPUS treatment. Specific ELISAs were used to determine the total and activated p38, ERK1/2, and JNK MAPK signaling proteins up to 4 hours after treatment. Selective MAPK inhibitors PD98059 (ERK1/2), SB203580 (p38), and SP600125 (JNK) were used to determine the role of activation of the particular MAPK pathways. RESULTS The proliferation of all MSC types was significantly increased after LIPUS treatment. LIPUS at a 750-mW/cm2 dose induced the greatest effects on DPSCs. BMSC proliferation was stimulated in equal measures by both intensities, whereas 250 mW/cm2 LIPUS exposure exerted maximum effects on PDLSCs. ERK1/2 was activated immediately in DPSCs after treatment. Concomitantly, DPSC proliferation was specifically modulated by ERK1/2 inhibition, whereas p38 and JNK inhibition exerted no effects. In BMSCs, JNK MAPK signaling was LIPUS activated, and the increase in proliferation was blocked by specific inhibition of the JNK pathway. In PDLSCs, JNK MAPK signaling was activated immediately after LIPUS, whereas p-p38 MAPK increased significantly in these cells 4 hours after exposure. Correspondingly, JNK and p38 inhibition modulated LIPUS-stimulated PDLSC proliferation. CONCLUSIONS LIPUS promoted MSC proliferation in an intensity and cell-specific dependent manner via activation of distinct MAPK pathways.
Collapse
Affiliation(s)
- Qianhua Gao
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - A Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R Cooper
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ben A Scheven
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
13
|
Woloszyk A, Holsten Dircksen S, Bostanci N, Müller R, Hofmann S, Mitsiadis TA. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds. PLoS One 2014; 9:e111010. [PMID: 25354351 PMCID: PMC4213001 DOI: 10.1371/journal.pone.0111010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.
Collapse
Affiliation(s)
- Anna Woloszyk
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Yang C, Lee JS, Jung UW, Seo YK, Park JK, Choi SH. Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs. J Periodontal Implant Sci 2013; 43:315-22. [PMID: 24455445 PMCID: PMC3891864 DOI: 10.5051/jpis.2013.43.6.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. METHODS Five dogs were used in this study. Bilateral 4 mm×2 mm (depth×mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLC-cultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. RESULTS There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cell-seeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. CONCLUSIONS These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration.
Collapse
Affiliation(s)
- Cheryl Yang
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology, Dongguk University, Seoul, Korea
| | - Jung-Keug Park
- Department of Medical Biotechnology, Dongguk University, Seoul, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
15
|
Undisz A, Geuther E, Völpel A, Watts DC, Rettenmayr M, Sigusch BW. Substrate-free multi-cellular aggregates of human gingival fibroblasts-fabrication, biomechanics and significance for tissue regeneration. Dent Mater 2013; 29:332-8. [PMID: 23287407 DOI: 10.1016/j.dental.2012.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We fabricate multi-cellular aggregates of human gingival fibroblasts (hGFs) using a novel in vivo method that omits supportive flexible substrates. On the basis of the multi-cellular aggregates, constructive and destructive effects of mechanical stimulation are investigated. METHODS hGFs were seeded onto aligned glass slides (one fixed, one mobile) with an initial gap <30 μm between their connecting edges. After the cells adhere, one of the glass slides is displaced using high precision threads and a piezoelectric element, widening the gap gradually. RESULTS After several days of gradually widening the gap, multiple multi-cellular hGF aggregates formed, bridging the gap between the glass slides. The effects of discrete displacement events on previously established multi-cellular aggregates ranged from considerable growth and consolidation to collapse and disintegration. A quantitative criterion for assessing the probability for collapse/disintegration of hGF multi-cellular aggregates based on evaluating the meniscus curvature at the free edges before and after displacement is presented and discussed. The curvature is suggested as a representative parameter to characterize the mechanical condition of multi-cellular aggregates, as it is affected by adhesion of cells to the glass slides, cohesion inside the multi-cellular aggregate and the external mechanical load generated by the displacement of the glass slides. SIGNIFICANCE The presented results clarify the potential and limitations of using mechanical stimulation for initiating and controlling regeneration of (gingival) tissue. Further potential applications include usage as biological substrate for co-culturing hierarchical tissue with multiple cell types (e.g. for vessels) and bio-membranes for filters (e.g. in microfluidics).
Collapse
Affiliation(s)
- Andreas Undisz
- Institute of Materials Science and Technology, Friedrich-Schiller-University Jena, Loebdergraben 32, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Hata M, Naruse K, Ozawa S, Kobayashi Y, Nakamura N, Kojima N, Omi M, Katanosaka Y, Nishikawa T, Naruse K, Tanaka Y, Matsubara T. Mechanical stretch increases the proliferation while inhibiting the osteogenic differentiation in dental pulp stem cells. Tissue Eng Part A 2012; 19:625-33. [PMID: 23153222 DOI: 10.1089/ten.tea.2012.0099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dental pulp stem cells (DPSCs), which can differentiate into several types of cells, are subjected to mechanical stress by jaw movement and occlusal forces. In this study, we evaluated how the uniaxial mechanical stretch influences proliferation and differentiation of DPSCs. DPSCs were isolated and cultured from male Sprague-Dawley rats. Cultured DPSCs were identified by surface markers and the differentiation capabilities as adipocytes or osteoblasts. To examine the response to mechanical stress, uniaxial stretch was exposed to cultured DPSCs. We evaluated the impact of stretch on the intracellular signaling, proliferation, osteogenic differentiation, and gene expressions of DPSCs. Stretch increased the phosphorylation of Akt, ERK1/2, and p38 MAP kinase as well as the proliferation of DPSCs. The stretch-induced proliferation of DPSCs was abolished by the inhibition of the ERK pathway. On the other hand, stretch significantly decreased the osteogenic differentiation of DPSCs, but did not affect the adipogenic differentiation. We also confirmed mRNA expressions of osteocalcin and osteopontin were significantly suppressed by stretch. In conclusion, uniaxial stretch increased the proliferation of DPSCs, while suppressing osteogenic differentiation. These results suggest a crucial role of mechanical stretch in the preservation of DPSCs in dentin. Furthermore, mechanical stretch may be a useful tool for increasing the quantity of DPSCs in vitro for regenerative medicine.
Collapse
Affiliation(s)
- Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chung CR, Kim HN, Park Y, Kim MJ, Oh YJ, Shin SJ, Choi YJ, Kim KH. Morphological evaluation duringin vitrochondrogenesis of dental pulp stromal cells. Restor Dent Endod 2012. [DOI: 10.5395/rde.2012.37.1.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Choo-Ryung Chung
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
- Institute of Craniofacial deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Ha-Na Kim
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Yeul Park
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Min-Jeong Kim
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Young-Ju Oh
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Yoon-Jeong Choi
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
- Institute of Craniofacial deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Kyung-Ho Kim
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
- Institute of Craniofacial deformity, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
18
|
Kang MN, Yoon HH, Seo YK, Park JK. Effect of mechanical stimulation on the differentiation of cord stem cells. Connect Tissue Res 2011; 53:149-59. [PMID: 22149641 DOI: 10.3109/03008207.2011.619284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we evaluated the effect of mechanical stimulation on the differentiation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in osteogenic medium using a Flexcell system that imposed cyclic uniaxial mechanical stimulation at a strain of 0%, 5%, or 10% (5 s of stretch and 15 s of relaxation) for 10 days. The expression of MSC surface antigens (CD73, CD90, and CD105) was significantly decreased as strain increased. Mechanical stimulation inhibited the growth of UC-MSCs and slightly raised lactate dehydrogenase production. Mechanically stimulated groups produced more elastin and sulfated glycosaminoglycan than unstimulated groups and these increases were in proportion to the degree of strain. Reverse transcription-polymerase chain reaction analysis revealed that mechanical stimulation induced a significant increase in the mRNA expression of osteoblast differentiation markers. The mRNA levels of osteopontin, osteonectin, and type I collagen in the 5% and 10% strained groups were significantly higher than those in the 0% strained group. From the Western blot analysis, UC-MSCs produced bone sialoprotein and vimentin in a mechanical strain-dependent manner. Thus, cyclic mechanical loading was able to enhance the differentiation of human UC-MSCs into osteoblast-like cells as determined by osteogenic gene and protein expression. Furthermore, this finding has important implications for the use of the combination of mechanical and osteogenic differentiation media for UC-MSCs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mi-Na Kang
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Upregulation of bone-like extracellular matrix expression in human dental pulp stem cells by mechanical strain. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0102-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Kraft DCE, Bindslev DA, Melsen B, Klein-Nulend J. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy 2010; 13:214-26. [PMID: 20491534 DOI: 10.3109/14653249.2010.487897] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. METHODS Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. RESULTS We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. CONCLUSIONS These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.
Collapse
|
21
|
Kraft DCE, Bindslev DA, Melsen B, Abdallah BM, Kassem M, Klein-Nulend J. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci 2010; 118:29-38. [PMID: 20156262 DOI: 10.1111/j.1600-0722.2009.00709.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For engineering bone tissue, mechanosensitive cells are needed for bone (re)modelling. Local bone mass and architecture are affected by mechanical loading, which provokes a cellular response via loading-induced interstitial fluid flow. We studied whether human dental pulp-derived mesenchymal stem cells (PDSCs) portraying mature (PDSC-mature) or immature (PDSC-immature) bone cell characteristics are responsive to pulsating fluid flow (PFF) in vitro. We also assessed bone formation by PDSCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Cultured PDSC-mature exhibited higher osteocalcin and alkaline phosphatase gene expression and activity than PDSC-immature. Pulsating fluid flow (PFF) stimulated nitric oxide production within 5 min by PDSC-mature but not by PDSC-immature. In PDSC-mature, PFF induced prostaglandin E(2) production, and cyclooxygenase 2 gene expression was higher than in PDSC-immature. Implantation of PDSC-mature resulted in more osteoid deposition and lamellar bone formation than PDSC-immature. We conclude that PDSCs with a mature osteogenic phenotype are more responsive to pulsating fluid shear stress than osteogenically immature PDSCs and produce more bone in vivo. These data suggest that PDSCs with a mature osteogenic phenotype might be preferable for bone tissue engineering to restore, for example, maxillofacial defects, because they might be able to perform mature bone cell-specific functions during bone adaptation to mechanical loading in vivo.
Collapse
Affiliation(s)
- David C E Kraft
- Department of Orthodontics, School of Dentistry, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Min WK, Cho YJ, Park JB, Bae YH, Kim EJ, Park K, Park YC, Seo JH. Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1. Bioprocess Biosyst Eng 2009; 33:109-15. [DOI: 10.1007/s00449-009-0350-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 06/23/2009] [Indexed: 11/28/2022]
|