1
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024; 18:2871-2889. [PMID: 39148319 PMCID: PMC11619803 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Brain Tumour Centre, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Health NHS TrustLondonUK
| |
Collapse
|
2
|
Ordóñez-Rubiano EG, Rincón-Arias N, Espinosa S, Shelton WJ, Salazar AF, Cómbita A, Baldoncini M, Luzzi S, Payán-Gómez C, Gómez- Amarillo DF, Hakim F, Patiño-Gómez JG, Parra- Medina R. The potential of miRNA-based approaches in glioblastoma: An update in current advances and future perspectives. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100193. [PMID: 39055532 PMCID: PMC11268206 DOI: 10.1016/j.crphar.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant central nervous system tumor. The emerging field of epigenetics stands out as particularly promising. Notably, the discovery of micro RNAs (miRNAs) has paved the way for advancements in diagnosing, treating, and prognosticating patients with brain tumors. We aim to provide an overview of the emergence of miRNAs in GBM and their potential role in the multifaceted management of this disease. We discuss the current state of the art regarding miRNAs and GBM. We performed a narrative review using the MEDLINE/PUBMED database to retrieve peer-reviewed articles related to the use of miRNA approaches for the treatment of GBMs. MiRNAs are intrinsic non-coding RNA molecules that regulate gene expression mainly through post-transcriptional mechanisms. The deregulation of some of these molecules is related to the pathogenesis of GBM. The inclusion of molecular characterization for the diagnosis of brain tumors and the advent of less-invasive diagnostic methods such as liquid biopsies, highlights the potential of these molecules as biomarkers for guiding the management of brain tumors such as GBM. Importantly, there is a need for more studies to better examine the application of these novel molecules. The constantly changing characterization and approach to the diagnosis and management of brain tumors broaden the possibilities for the molecular inclusion of novel epigenetic molecules, such as miRNAs, for a better understanding of this disease.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Sebastian Espinosa
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | | | | | - Alba Cómbita
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina
- Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | | | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Javier G. Patiño-Gómez
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Rafael Parra- Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
3
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
4
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
5
|
The Use of Pro-Angiogenic and/or Pro-Hypoxic miRNAs as Tools to Monitor Patients with Diffuse Gliomas. Int J Mol Sci 2022; 23:ijms23116042. [PMID: 35682718 PMCID: PMC9181142 DOI: 10.3390/ijms23116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.
Collapse
|
6
|
MicroRNAs Regulate Cell Cycle and Cell Death Pathways in Glioblastoma. Int J Mol Sci 2021; 22:ijms222413550. [PMID: 34948346 PMCID: PMC8705881 DOI: 10.3390/ijms222413550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM), a grade IV brain tumor, is known for its heterogenicity and its resistance to the current treatment regimen. Over the last few decades, a significant amount of new molecular and genetic findings has been reported regarding factors contributing to GBM’s development into a lethal phenotype and its overall poor prognosis. MicroRNA (miRNAs) are small non-coding sequences of RNA that regulate and influence the expression of multiple genes. Many research findings have highlighted the importance of miRNAs in facilitating and controlling normal biological functions, including cell differentiation, proliferation, and apoptosis. Furthermore, miRNAs’ ability to initiate and promote cancer development, directly or indirectly, has been shown in many types of cancer. There is a clear association between alteration in miRNAs expression in GBM’s ability to escape apoptosis, proliferation, and resistance to treatment. Further, miRNAs regulate the already altered pathways in GBM, including P53, RB, and PI3K-AKT pathways. Furthermore, miRNAs also contribute to autophagy at multiple stages. In this review, we summarize the functions of miRNAs in GBM pathways linked to dysregulation of cell cycle control, apoptosis and resistance to treatment, and the possible use of miRNAs in clinical settings as treatment and prediction biomarkers.
Collapse
|
7
|
Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, Tang G, Jiang W, Yuan X, Wu M, Liu Q. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int 2021; 21:456. [PMID: 34454479 PMCID: PMC8399846 DOI: 10.1186/s12935-021-02153-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background The regulatory roles of long non-coding RNA (lncRNA) CRNDE in temozolomide (TMZ) chemoresistance to glioblastoma multiforme (GBM) are still poorly understood. Therefore, the function, characteristics, and possible mechanism of CRNDE in TMZ-induced chemoresistance to GBM were explored. Methods Firstly, the expression level of CRNDE in 58 cases of glioma tissue specimens and 30 cases of normal brain tissues were tested by qRT-PCR. Meanwhile, the correlation between CRNDE expression level, the clinicopathological characteristics, and survival time of patients with glioma were analyzed. Then, the CRNDE expression in various glioma cell lines was detected, and CRNDE knockdown cell models were constructed. Subsequently, to explore the effect of CRNDE on chemosensitivity to TMZ, cell viability was detected by the CCK-8 assay and IC50 values, and cell proliferation was detected by cell clone assay and EdU assay, as well as cell survival was detected by apoptosis with flow cytometry under TMZ treatment. Further, the expression of drug-resistance protein ABCG2, autophagy related proteins, and PI3K/Akt/mTOR pathway were measured by western blot or qRT-PCR in TMZ-treated glioma cells. Finally, the mouse tumor xenograft model was established and the tumor volume and weight were measured, and ABCG2 expression was conducted by immunohistochemistry assay. Results The integrated results demonstrated lncRNA CRNDE was a poor prognosis factor for GBM patient, which was upregulated in patients who were resistant to TMZ, and closely associated with chemotherapeutic response status to TMZ treatment. Further, functional assays revealed that knockdown of CRNDE could notably reduce glioma cell viability and proliferation, and elevate cell apoptosis to enhance the chemosensitivity to TMZ in vitro and in vivo. Mechanistically, the depression of CRNDE could diminish the expression of LC3 II/I, Beclin1 and Atg5 and increase the p62 expression level to inhibit autophagy due to the activation of PI3K/Akt/mTOR pathway as well as highly correlated with ABCG2 expression. Conclusions Overall, the study provided that lncRNA CRNDE is a reliable clinical predictor of outcome and prognosis and a potential biomarker for predicting TMZ treatment response in GBM by modulating the autophagy through PI3K/Akt/mTOR pathway and ABCG2 expression which may be a novel therapeutic target for regulating TMZ sensitivity to GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02153-x.
Collapse
Affiliation(s)
- Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Miaomiao Liu
- Department of Nuclear Medicine (PET-CT Central), Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Guodong Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Neurosurgical Medical Central, Central South University, Changsha, China.,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Neurosurgical Medical Central, Central South University, Changsha, China. .,Clinical Research Center For Skull Base Surgery and Neuro-Oncology In Hunan Province, Changsha, China.
| |
Collapse
|
8
|
Zhao Z, Zhang C, Li M, Yu X, Liu H, Chen Q, Wang J, Shen S, Jiang J. Integrative Analysis of miRNA-mediated Competing Endogenous RNA Network Reveals the lncRNAs-mRNAs Interaction in Glioblastoma Stem Cell Differentiation. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200511074226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Competing endogenous RNA (ceRNA) networks play a pivotal role in
tumor diagnosis and progression. Numerous studies have explored the functional landscape and
prognostic significance of ceRNA interaction within differentiated tumor cells.
Objective:
We propose a new perspective by exploring ceRNA networks in the process of
glioblastoma stem cell (GSC) differentiation.
Methods:
In this study, expression profiles of lncRNAs and mRNAs were compared between GSCs
and differentiated glioblastoma cells. Using a comprehensive computational method, miRNAmediated
and GSC differentiation-associated ceRNA crosstalk between lncRNAs and mRNAs was
identified. A ceRNA network was then established to select potential candidates that regulate GSC
differentiation.
Results:
Based on the specific ceRNA network related to GSC differentiation, we identified lnc
MYOSLID: 11 as a ceRNA that regulated the expression of the downstream gene PXN by
competitively binding with hsa-miR-149-3p. After Kaplan-Meier (KM) survival analysis, the
expression of PXN gene (PPXN = 0.0015) and lnc MYOSLID: 11 (PMYOSLID: 11=0.041) showed
significant correlation with glioblastoma in 160 patients from TCGA.
Conclusion:
This result sheds light on a potential way of studying the ceRNA network, which can
provide clues for developing new diagnostic methods and finding therapeutic targets for clinical
treatment of glioblastoma.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao tong University School of Medicine, Shanghai, China
| | - Mi Li
- Department of Mathematics & Statistics, Boston University, Boston, MA, United States
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hailong Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Qi Chen
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Shaopin Shen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jingjing Jiang
- Clinical Data and Specimen Repositories, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
10
|
Low SYY, Cheng H, Zou R, Ng LP, Kuick CH, Syed Sulaiman NB, Chang KTE, Low DCY, Zhou L, Seow WT. Molecular exploration of paediatric intracranial germinomas from multi-ethnic Singapore. BMC Neurol 2020; 20:415. [PMID: 33187494 PMCID: PMC7666528 DOI: 10.1186/s12883-020-01981-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Germinomas (IG) account for up to 50% of all intracranial germ cell tumours. These tumours are reputed to be more prevalent in Oriental populations in comparison to Western cohorts. Biological characteristics of IG in other ethnic groups are unknown. Singapore is a multi-ethnic country with diverse cultures. Owing to inter-racial heterogeneity, the authors hypothesize there are molecular differences between paediatric IG patients in our local population. The aims of this study are exploratory: firstly, to identify molecular characteristics in this tumour type and circulating CSF unique to different racial cohorts; and next, to corroborate our findings with published literature. Methods This is a single-institution, retrospective study of prospectively collected data. Inclusion criteria encompass all paediatric patients with histologically confirmed IG. Excess CSF and brain tumour tissues are collected for molecular analysis. Tumour tissues are subjected to a next generation sequencing (NGS) targeted panel for KIT and PDGRA. All CSF samples are profiled via a high-throughput miRNA multiplexed workflow. Results are then corroborated with existing literature and public databases. Results In our cohort of 14 patients, there are KIT exon variants in the tumour tissues and CSF miRNAs corroborative with published studies. Separately, there are also KIT exon variants and miRNAs not previously highlighted in IG. A subgroup analysis demonstrates differential CSF miRNAs between Chinese and Malay IG patients. Conclusion This is the first in-depth molecular study of a mixed ethnic population of paediatric IGs from a Southeast Asian cohort. Validation studies are required to assess the relevance of novel findings in our study. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-020-01981-0.
Collapse
Affiliation(s)
- Sharon Yin Yee Low
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore. .,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore. .,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 30843, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, Singapore, Singapore.
| | - He Cheng
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore.,MiRXES Pte Ltd, 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Ruiyang Zou
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore.,MiRXES Pte Ltd, 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Lee Ping Ng
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Nurfarhanah Bte Syed Sulaiman
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, Singapore, Singapore
| | - Kenneth Tou En Chang
- VIVA-KKH Paediatric Brain and Solid Tumours Laboratory, Singapore, Singapore.,Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - David Chyi Yeu Low
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 30843, Singapore
| | - Lihan Zhou
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore.,MiRXES Pte Ltd, 10 Biopolis Road, Chromos, Singapore, 138670, Singapore
| | - Wan Tew Seow
- Neurosurgical Service, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore, 30843, Singapore
| |
Collapse
|
11
|
Long L, Zeng C, Chen H, Zhou T, Wu L, Cai X. ADNCR modulates neural stem cell differentiation and proliferation through the regulation of TCF3 expression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:927. [PMID: 32953727 PMCID: PMC7475390 DOI: 10.21037/atm-20-1068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Neural stem cells (NSCs) are undifferentiated precursor cells that have the ability to self-renew and proliferate and have the capacity to become either glia (oligodendrocytes and astrocytes) or neurons. NSCs can act as beneficial adjuncts for many neurological disorders, such as cerebral infarction, spinal cord injuries, Alzheimer's disease, and Parkinson's disease. Long noncoding RNAs (lncRNAs) play essential roles during cell differentiation, proliferation, and metabolism. This study aimed to explore the role played by adipocyte differentiation-associated long noncoding RNA (ADNCR) in the self-renewal and multipotency of NSCs. Methods In this study, we identified NSCs and verified that these cells were able to regenerate and differentiate into both astrocytes and neurons. Then we studied the relation between expression of ADNCR and transcription factor 3 (TCF3) and proliferation of NSCs. Results ADNCR and TCF3 expression have been shown to decrease during the differentiation of NSCs into both neurons and astrocyte induction cells. However, the expression of the microRNA miR-204-5p increased over time during the differentiation of NSCs into both neurons and astrocyte induction cells. ADNCR acts as a competing endogenous RNA (ceRNA) for miR-204-5p, and the overexpression of ADNCR suppressed miR-204-5p expression and enhanced TCF3 expression in NSCs, which resulted in enhanced proliferation and suppressed neural differentiation. Conclusions These data suggested that the use of ADNCR may represent a new strategy for expanding the interventions used to treat neurological disorders.
Collapse
Affiliation(s)
- Ling Long
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Zeng
- Department of Pathology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Honglei Chen
- Department of Gastrointestinal Endoscopy, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Wu
- Department of Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Cai
- Department of Neurology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Recent Trends of microRNA Significance in Pediatric Population Glioblastoma and Current Knowledge of Micro RNA Function in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21093046. [PMID: 32349263 PMCID: PMC7246719 DOI: 10.3390/ijms21093046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system tumors are a significant problem for modern medicine because of their location. The explanation of the importance of microRNA (miRNA) in the development of cancerous changes plays an important role in this respect. The first papers describing the presence of miRNA were published in the 1990s. The role of miRNA has been pointed out in many medical conditions such as kidney disease, diabetes, neurodegenerative disorder, arthritis and cancer. There are several miRNAs responsible for invasiveness, apoptosis, resistance to treatment, angiogenesis, proliferation and immunology, and many others. The research conducted in recent years analyzing this group of tumors has shown the important role of miRNA in the course of gliomagenesis. These particles seem to participate in many stages of the development of cancer processes, such as proliferation, angiogenesis, regulation of apoptosis or cell resistance to cytostatics.
Collapse
|
13
|
Guda MR, Labak CM, Omar SI, Asuthkar S, Airala S, Tuszynski J, Tsung AJ, Velpula KK. GLUT1 and TUBB4 in Glioblastoma Could be Efficacious Targets. Cancers (Basel) 2019; 11:cancers11091308. [PMID: 31491891 PMCID: PMC6771132 DOI: 10.3390/cancers11091308] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and deadly brain tumor, portending a median 13-month survival even following gross total resection with adjuvant chemotherapy and radiotherapy. This prognosis necessitates improved therapies for the disease. A target of interest for novel chemotherapies is the Warburg Effect, which describes the tumor's shift away from oxidative phosphorylation towards glycolysis. Here, we elucidate GLUT1 (Glucose transporter 1) and one of its associated binding partners, TUBB4 (Tubulin 4), as potentially druggable targets in GBM. Using data mining approach, we demonstrate that GLUT1 is overexpressed as a function of tumor grade in astrocytoma's and that its overexpression is associated with poorer prognosis. Using both mass spectrometry performed on hGBM (human glioblastoma patient specimen) and in silico modeling, we show that GLUT1 interacts with TUBB4, and more accurately demonstrates GLUT1's binding with fasentin. Proximity ligation assay (PLA) and immunoprecipitation studies confirm GLUT1 interaction with TUBB4. Treatment of GSC33 and GSC28 cells with TUBB4 inhibitor, CR-42-24, reduces the expression of GLUT1 however, TUBB4 expression is unaltered upon fasentin treatment. Using human pluripotent stem cell antibody array, we demonstrate reduced levels of Oct3/4, Nanog, Sox2, Sox17, Snail and VEGFR2 (Vascular endothelial growth factor receptor 2) upon CR-42-24 treatment. Overall, our data confirm that silencing TUBB4 or GLUT1 reduce GSC tumorsphere formation, self-renewal and proliferation in vitro. These findings suggest GLUT1 and its binding partner TUBB4 as druggable targets that warrant further investigation in GBM.
Collapse
Affiliation(s)
- Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Collin M Labak
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Sara Ibrahim Omar
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Subra Airala
- Department of Health Professions, Rollins College, Winter Park, FL 32789, USA
| | - Jack Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Illinois Neurological Institute, Peoria, IL 61605, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| |
Collapse
|
14
|
Giunti L, Da Ros M, De Gregorio V, Magi A, Landini S, Mazzinghi B, Buccoliero AM, Genitori L, Giglio S, Sardi I. A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation. Mol Clin Oncol 2019; 10:331-338. [PMID: 30847170 PMCID: PMC6388501 DOI: 10.3892/mco.2019.1795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a novel class of gene regulators that may be involved in tumor chemoresistance. Recently, specific miRNA expression profiles have been identified in adult glioblastoma (aGBM), but there are only limited data available on the role of miRNAs in pediatric GBM (pGBM). In the present study, the expression profile of miRNAs was examined in seven pGBMs and three human GBM cell lines (U87MG, A172 and T98G), compared with a non-tumoral pool of pediatric cerebral cortex samples by microarray analysis. A set of differentially expressed miRNAs was identified, including miR-490, miR-876-3p, miR-876-5p, miR-448 and miR-137 (downregulated), as well as miR-501-3p (upregulated). Through bioinformatics analysis, a series of target genes was predicted. In addition, similar gene expression patterns in pGBMs and cell lines was confirmed. Of note, drug resistant T98G cells had upregulated nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) expression, a protein overexpressed in many tumors that serves an important role in cell proliferation and progression. On the basis of the present preliminary report, it could be intriguing to further investigate the relationship between each of the identified differentially expressed miRNAs and NUCKS1, in order to clarify their involvement in the multi-drug resistance mechanism of pGBMs.
Collapse
Affiliation(s)
- Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Martina Da Ros
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Veronica De Gregorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, University of Florence, I-50139 Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences 'Mario Serio', University of Florence, I-50139 Florence, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | | | - Lorenzo Genitori
- Neurosurgery Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, I-50139 Florence, Italy.,Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences 'Mario Serio', University of Florence, I-50139 Florence, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| |
Collapse
|
15
|
Velpula KK, Guda MR, Sahu K, Tuszynski J, Asuthkar S, Bach SE, Lathia JD, Tsung AJ. Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget 2018; 8:35639-35655. [PMID: 28410193 PMCID: PMC5482605 DOI: 10.18632/oncotarget.16767] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 01/15/2023] Open
Abstract
Glioblastomas are characterized by amplification of EGFR. Approximately half of tumors with EGFR over-expression also express a constitutively active ligand independent EGFR variant III (EGFRvIII). While current treatments emphasize surgery followed by radiation and chemotherapy with Temozolomide (TMZ), acquired chemoresistance is a universal feature of recurrent GBMs. To mimic the GBM resistant state, we generated an in vitro TMZ resistant model and demonstrated that dichloroacetate (DCA), a metabolic inhibitor of pyruvate dehydrogenase kinase 1 (PDK1), reverses the Warburg effect. Microarray analysis conducted on the TMZ resistant cells with their subsequent treatment with DCA revealed PDK1 as its sole target. DCA treatment also induced mitochondrial membrane potential change and apoptosis as evidenced by JC-1 staining and electron microscopic studies. Computational homology modeling and docking studies confirmed DCA binding to EGFR, EGFRvIII and PDK1 with high affinity. In addition, expression of EGFRvIII was comparable to PDK1 when compared to EGFR in GBM surgical specimens supporting our in silico prediction data. Collectively our current study provides the first in vitro proof of concept that DCA reverses the Warburg effect in the setting of EGFRvIII positivity and TMZ resistance leading to GBM cytotoxicity, implicating cellular tyrosine kinase signaling in cancer cell metabolism.
Collapse
Affiliation(s)
- Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kamlesh Sahu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jack Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Sarah E Bach
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Justin D Lathia
- Department of Cellular and Molecular medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Illinois Neurological Institute, Peoria, IL, USA
| |
Collapse
|
16
|
Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression. Sci Rep 2016; 6:32972. [PMID: 27595933 PMCID: PMC5011744 DOI: 10.1038/srep32972] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNA) are believed to play an important role in glioblastoma multiforme (GBM)chemotherapy. Our study aims to investigate potential miRNA biomarkers in GBM. Sixty GBM patients, which were given temozolomide (TMZ) chemotherapy and recurrent radiotherapy, were recruited. miRNA array was performed in cancerous and in paired normal tissues. Microarray results were further validated by a quantitative real-time PCR in selected tissues and GBM cell lines. TMZ resistance cells were developed and cell proliferation along with colony formation assays was determined. Our study employed H2AX formation and flow cytometry to analyse the role of miRNA in DNA damage and apoptosis. Our study illustrated 16 miRNA in which 9 were up-regulated and 7 down-regulated. and their differential expression were demonstrated in a recurrent GBM tissue. Among them, miRNA-370-3p demonstrated the highest level of down- regulation in tissues and in TMZ resistance cells. miRNA-370-3p mimic increased its expression and sensitivity of GBM cells to TMZ by suppressing the self-reparative ability of tumour cell DNA. O6-methylguanine-DNA methyltransferase (MGMT) was identified as the direct target gene of miR-370-3p, and it was found to be inversely correlated with miR-370-3p expression in tissue samples obtained. Thus, our study demonstrated a critical clinical role of an up-regulated miR-370-3p expression in glioblastoma multiforme chemotherapy sensitivity.
Collapse
|
17
|
Abstract
Objective: This overview seeked to bring together the microRNA (miRNA) researches on biogenesis and bio-function in these areas of clinical diagnosis and therapy for malignant glioma. Data Sources: Using the keyword terms “glioma” and “miRNA,” we performed the literature search in PubMed, Ovid, and web.metstr.com databases from their inception to October 2014. Study Selection: In screening out the quality of the articles, factors such as clinical setting of the study, the size of clinical samples were taken into consideration. Animal studied for verification and reviews article were also included in our data collection. Results: Despite many advance in miRNA for malignant glioma, further studies were still required to focus on the following aspects: (i) Improving the understanding about biogenesis of miRNA and up-down regulation; (ii) utilizing high-throughput miRNA expression analysis to screen out the core miRNA for glioma; (iii) Focusing related miRNAs on the signal transduction pathways that regulate the proliferation and growth of glioma. Conclusions: We discussed the most promising miRNA, correlative signaling pathway and their relation with gliomas in the way of prompting miRNA target into being a clinical therapeutic strategy.
Collapse
Affiliation(s)
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai JiaoTong University, Shanghai 200092, China
| |
Collapse
|
18
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Emerging targets for glioblastoma stem cell therapy. J Biomed Res 2015; 30:19-31. [PMID: 26616589 PMCID: PMC4726830 DOI: 10.7555/jbr.30.20150100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells.
Collapse
Affiliation(s)
- Ahmad R Safa
- Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology.
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center.,Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine
| | - Aaron A Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine
| | - Karen E Pollok
- Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology.,Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
19
|
Xu J, Liu Y, Guo S, Ma S, Xiao L, Wei N, Xue R. Expression Profile of MiR-128 in the Astrocytoma Patients and Cell Lines. Mol Neurobiol 2015; 53:4631-7. [PMID: 26307612 DOI: 10.1007/s12035-015-9401-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Malignant astrocytomas are the most common primary brain tumors. The critical characterizes of astrocyomas are their aggressive and infiltrative in the brain, which leads to uncontrollable by conventional forms of therapy. MicroRNAs are small RNAs that had been found to regulate their targets by specific binding to the 3'-untranslated region (3'UTR) of mRNA. Recent advances in understanding the molecular biology of these tumors have revealed that microRNA (miRNA) disruption may play important roles in the pathogenesis of astrocytomas. And some of the miRNA alterations were found in the serum of astrocytoma patients. In this study, we studied the expression profile of miR-128, in the different stages of astrocytoma tissues and two human astrocytoma cell lines, A172 and T98G cells. We found that the levels of miR-128 are decreased in the A172 and T98G cells when compared to normal human astrocyte (NHA). Furthermore, the levels of miR-128 decreased gradually to the pathological stages of astrocytomas. We also identified that TROVE2 is a novel target of miR-128 by the luciferase reporter system. Furthermore, the expression levels of TROVE2 are dramatically increased with the pathological stages increasing. Finally, the levels of TROVE2 are negatively correlated with miR-128 in astrocytoma tissues. Our data provided novel evidence for the miR-128 and TROVE2 in the development of human astrocytomas.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Guo
- Clinical Laboratory, Henan Provincial People's Hospital, 7 Wei Wu Road, Zhengzhou, 450000, China
| | - Shengli Ma
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Xue
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
20
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2015; 2:152-163. [PMID: 26137500 PMCID: PMC4484766 DOI: 10.1016/j.gendis.2015.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) or cancer initiating cells (CICs) maintain self-renewal and multilineage differentiation properties of various tumors, as well as the cellular heterogeneity consisting of several subpopulations within tumors. CSCs display the malignant phenotype, self-renewal ability, altered genomic stability, specific epigenetic signature, and most of the time can be phenotyped by cell surface markers (e.g., CD133, CD24, and CD44). Numerous studies support the concept that non-stem cancer cells (non-CSCs) are sensitive to cancer therapy while CSCs are relatively resistant to treatment. In glioblastoma stem cells (GSCs), there is clonal heterogeneity at the genetic level with distinct tumorigenic potential, and defined GSC marker expression resulting from clonal evolution which is likely to influence disease progression and response to treatment. Another level of complexity in glioblastoma multiforme (GBM) tumors is the dynamic equilibrium between GSCs and differentiated non-GSCs, and the potential for non-GSCs to revert (dedifferentiate) to GSCs due to epigenetic alteration which confers phenotypic plasticity to the tumor cell population. Moreover, exposure of the differentiated GBM cells to therapeutic doses of temozolomide (TMZ) or ionizing radiation (IR) increases the GSC pool both in vitro and in vivo. This review describes various subtypes of GBM, discusses the evolution of CSC models and epigenetic plasticity, as well as interconversion between GSCs and differentiated non-GSCs, and offers strategies to potentially eliminate GSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron A. Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Hale JS, Sinyuk M, Rich JN, Lathia JD. Decoding the cancer stem cell hypothesis in glioblastoma. CNS Oncol 2015; 2:319-30. [PMID: 24379973 DOI: 10.2217/cns.13.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Our understanding of the complexity of nervous system cancers has been enhanced through the incorporation of cellular heterogeneity into tumor models, with cellular subsets displaying stem cell characteristics. Advanced cancers such as glioblastoma are organized in a hierarchy with cancer stem cells at the apex. Cancer stem cells are functionally defined by their ability to self-renew and propagate tumors similar to the parental tumors from which they are derived. We will discuss advances in cancer stem cells, including the ability to prospectively isolate and interrogate cancer stem cells, by defining molecular mechanisms responsible for the tumor maintenance and growth. While the field of cancer stem cell biology is relatively young, continued elucidation of the tumor hierarchy holds promise for the development of novel patient therapies.
Collapse
|
22
|
Differential expression of microRNAs in postoperative radiotherapy sensitive and resistant patients with glioblastoma multiforme. Tumour Biol 2015; 36:4723-30. [PMID: 25758051 DOI: 10.1007/s13277-015-3121-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/14/2015] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and more resistant to radiotherapy. However, hetero-radiosensitivity occurs in different patients. MicroRNAs (miRNAs) play important roles in the initiation and progression of a multitude of tumors. The study aims to examine the different microRNAs expression profiles of postoperative radiotherapy sensitive and resistant patients with GBM, to make an inquiry about their potential role and discover a certain set of radio-sensitivity markers. Three paired samples from six GBM patients who had only been treated with postoperative radiotherapy were selected, and then, they were divided into radiotherapy sensitive group and resistant group according to their overall survivals, local recurrence rates, and Karnofsky Performance Scale scores. Expression profiles of miRNAs in these two groups were determined by the method of microarray assay. Comparing with resistant patients, 13 miRNAs were significantly upregulated and 10 miRNAs were greatly downregulated in sensitive group. Among them, four miRNAs were validated by quantitative RT-PCR. The differentially expressed miRNAs and their putative target genes were revealed by bioformatic analysis to play a role in cell signaling, proliferation, aging, and death. High-enrichment pathway analysis identified that some classical pathways participated in numerous metabolic processes, especially in cell cycle regulation, such as mTOR, MAPK, TGF-beta, and PI3K-Akt signaling pathways. Our research will contribute to identifying clinical diagnostic markers and therapeutic targets in the treatment of GBM by postoperative radiotherapy.
Collapse
|
23
|
Swartling FJ, Bolin S, Phillips JJ, Persson AI. Signals that regulate the oncogenic fate of neural stem cells and progenitors. Exp Neurol 2014; 260:56-68. [PMID: 23376224 PMCID: PMC3758390 DOI: 10.1016/j.expneurol.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Neurology, Sandler Neurosciences Center, University of California, San Francisco, USA.
| |
Collapse
|
24
|
Aleynik A, Gernavage KM, Mourad YSH, Sherman LS, Liu K, Gubenko YA, Rameshwar P. Stem cell delivery of therapies for brain disorders. Clin Transl Med 2014; 3:24. [PMID: 25097727 PMCID: PMC4106911 DOI: 10.1186/2001-1326-3-24] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) poses a problem to deliver drugs for brain malignancies and neurodegenerative disorders. Stem cells such as neural stem cells (NSCs) and mesenchymal stem cells (MSCs) can be used to delivery drugs or RNA to the brain. This use of methods to bypass the hurdles of delivering drugs across the BBB is particularly important for diseases with poor prognosis such as glioblastoma multiforme (GBM). Stem cell treatment to deliver drugs to neural tumors is currently in clinical trial. This method, albeit in the early phase, could be an advantage because stem cells can cross the BBB into the brain. MSCs are particularly interesting because to date, the experimental and clinical evidence showed 'no alarm signal' with regards to safety. Additionally, MSCs do not form tumors as other more primitive stem cells such as embryonic stem cells. More importantly, MSCs showed pathotropism by migrating to sites of tissue insult. Due to the ability of MSCs to be transplanted across allogeneic barrier, drug-engineered MSCs can be available as off-the-shelf cells for rapid transplantation. This review discusses the advantages and disadvantages of stem cells to deliver prodrugs, genes and RNA to treat neural disorders.
Collapse
Affiliation(s)
| | | | | | - Lauren S Sherman
- Graduate School of Biomedical Sciences, Texas, USA
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| | - Katherine Liu
- Department of Anesthesiology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| | - Yuriy A Gubenko
- Department of Anesthesiology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio 2014; 4:485-95. [PMID: 24944883 PMCID: PMC4060015 DOI: 10.1016/j.fob.2014.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/07/2014] [Accepted: 05/10/2014] [Indexed: 12/03/2022] Open
Abstract
miR-34a was decreased in both glioma and glioma stem cell-lines as compared to normal brain tissues. Glioma stem cell-lines HNGC-2 and NSG-K16 possess the mesenchymal glioblastoma phenotype. miR-34a over-expression in these cell lines decreased their proliferative and migratory potential, and induced apoptosis. Rictor, a part of the mTORC2 complex, is a novel target for miR-34a in glioma stem cells. The tumor suppressive function of miR-34a is mediated via Rictor and affects the AKT/mTOR pathway and Wnt signaling. MiRNA-34a is considered as a potential prognostic marker for glioma, as studies suggest that its expression negatively correlates with patient survival in grade III and IV glial tumors. Here, we show that expression of miR-34a was decreased in a graded manner in glioma and glioma stem cell-lines as compared to normal brain tissues. Ectopic expression of miR-34a in glioma stem cell-lines HNGC-2 and NSG-K16 decreased the proliferative and migratory potential of these cells, induced cell cycle arrest and caused apoptosis. Notably, the miR-34a glioma cells formed significantly smaller xenografts in immuno-deficient mice as compared with control glioma stem cell-lines. Here, using a bioinformatics approach and various biological assays, we identify Rictor, as a novel target for miR-34a in glioma stem cells. Rictor, a defining component of mTORC2 complex, is involved in cell survival signaling. mTORC2 lays downstream of Akt, and thus is a direct activator of Akt. Our earlier studies have elaborated on role of Rictor in glioma invasion (Das et al., 2011). Here, we demonstrate that miR34a over-expression in glioma stem cells profoundly decreased levels of p-AKT (Ser473), increased GSK-3β levels and targeted for degradation β-catenin, an important mediator of Wnt signaling pathway. This led to diminished levels of the Wnt effectors cyclin D1 and c-myc. Collectively, we show that the tumor suppressive function of miR-34a in glioblastoma is mediated via Rictor, which through its effects on AKT/mTOR pathway and Wnt signaling causes pronounced effects on glioma malignancy.
Collapse
Key Words
- Beta-catenin
- CNS, central nervous system
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- EV, empty vector
- GBM, glioblastoma multiforme
- GIC, glioma initiating cell
- GSC, glioma stem cell
- GSK-3β, glycogen synthase kinase 3β
- Glioblastoma
- Heterogeneity
- Mesenchymal
- NOD/SCID, nonobese diabetic/severe combined immunodeficiency
- PARP, poly ADP-ribose polymerases
- PDGFRA, platelet-derived growth factor receptor-α
- Rictor
- TCGA, the cancer genome atlas database
- bFGF, basic fibroblast growth factor
- qRT-PCR, quantitative real time PCR
Collapse
|
26
|
Bayin NS, Modrek AS, Placantonakis DG. Glioblastoma stem cells: Molecular characteristics and therapeutic implications. World J Stem Cells 2014; 6:230-238. [PMID: 24772249 PMCID: PMC3999780 DOI: 10.4252/wjsc.v6.i2.230] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/25/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a grade IV astrocytoma, with a median survival of 14.6 mo. Within GBM, stem-like cells, namely glioblastoma stem cells (GSCs), have the ability to self-renew, differentiate into distinct lineages within the tumor and initiate tumor xenografts in immunocompromised animal models. More importantly, GSCs utilize cell-autonomous and tumor microenvironment-mediated mechanisms to overcome current therapeutic approaches. They are, therefore, very important therapeutic targets. Although the functional criteria defining GSCs are well defined, their molecular characteristics, the mechanisms whereby they establish the cellular hierarchy within tumors, and their contribution to tumor heterogeneity are not well understood. This review is aimed at summarizing current findings about GSCs and their therapeutic importance from a molecular and cellular point of view. A better characterization of GSCs is crucial for designing effective GSC-targeted therapies.
Collapse
|
27
|
Tamim S, Vo DT, Uren PJ, Qiao M, Bindewald E, Kasprzak WK, Shapiro BA, Nakaya HI, Burns SC, Araujo PR, Nakano I, Radek AJ, Kuersten S, Smith AD, Penalva LOF. Genomic analyses reveal broad impact of miR-137 on genes associated with malignant transformation and neuronal differentiation in glioblastoma cells. PLoS One 2014; 9:e85591. [PMID: 24465609 PMCID: PMC3899048 DOI: 10.1371/journal.pone.0085591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/05/2013] [Indexed: 02/05/2023] Open
Abstract
miR-137 plays critical roles in the nervous system and tumor development; an increase in its expression is required for neuronal differentiation while its reduction is implicated in gliomagenesis. To evaluate the potential of miR-137 in glioblastoma therapy, we conducted genome-wide target mapping in glioblastoma cells by measuring the level of association between PABP and mRNAs in cells transfected with miR-137 mimics vs. controls via RIPSeq. Impact on mRNA levels was also measured by RNASeq. By combining the results of both experimental approaches, 1468 genes were found to be negatively impacted by miR-137--among them, 595 (40%) contain miR-137 predicted sites. The most relevant targets include oncogenic proteins and key players in neurogenesis like c-KIT, YBX1, AKT2, CDC42, CDK6 and TGFβ2. Interestingly, we observed that several identified miR-137 targets are also predicted to be regulated by miR-124, miR-128 and miR-7, which are equally implicated in neuronal differentiation and gliomagenesis. We suggest that the concomitant increase of these four miRNAs in neuronal stem cells or their repression in tumor cells could produce a robust regulatory effect with major consequences to neuronal differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Saleh Tamim
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dat T. Vo
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philip J. Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Mei Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Wojciech K. Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, California
| | - Helder I. Nakaya
- Department of Clinical Analyses and Toxicology, Institute of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suzanne C. Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Patricia R. Araujo
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ichiro Nakano
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Agnes J. Radek
- Epicentre (An Illumina Company), Madison, Wisconsin, United States of America
| | - Scott Kuersten
- Epicentre (An Illumina Company), Madison, Wisconsin, United States of America
| | - Andrew D. Smith
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Luiz O. F. Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
28
|
MicroRNA as potential modulators in chemoresistant high-grade gliomas. J Clin Neurosci 2013; 21:395-400. [PMID: 24411131 DOI: 10.1016/j.jocn.2013.07.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/15/2013] [Accepted: 07/16/2013] [Indexed: 01/09/2023]
Abstract
Gliomas account for 70% of human malignant primary brain tumours. The most common form is glioblastoma multiforme, World Health Organization grade IV. Despite the implementation of post-operative adjuvant radiotherapy with concurrent temozolomide (TMZ), the disease's overall prognosis remains dismal. TMZ is currently the only mono-chemotherapeutic agent for newly-diagnosed high-grade glioma patients and acquired resistance inevitably occurs in the majority of such patients, further limiting treatment options. Therefore, there is an urgent need to better understand the underlying mechanisms involved in TMZ resistance, a critical step to developing effective, targeted treatments. An emerging body of evidence suggests the intimate involvement of a novel class of nucleic acid, microRNA (miRNA), in tumorigenesis and disease progression for a number of human malignancies, including primary brain tumours. miRNA are short, single-stranded, non-coding RNA (∼22 nucleotides) that function as post-transcriptional regulators of gene expression. This review provides an overview of the key treatment obstacles faced in patients with high-grade gliomas, especially in the context of recurrent, chemoresistant tumours and the potential roles of miRNA in chemoresistance and management of this disease.
Collapse
|
29
|
Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med 2013; 39:82-101. [PMID: 23831316 DOI: 10.1016/j.mam.2013.06.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most prevalent primary brain tumor and ranks among the most lethal of human cancers with conventional therapy offering only palliation. Great strides have been made in understanding brain cancer genetics and modeling these tumors with new targeted therapies being tested, but these advances have not translated into substantially improved patient outcomes. Multiple chemotherapeutic agents, including temozolomide, the first-line treatment for glioblastoma, have been developed to kill cancer cells. However, the response to temozolomide in GBM is modest. Radiation is also moderately effective but this approach is plagued by limitations due to collateral radiation damage to healthy brain tissue and development of radioresistance. Therapeutic resistance is attributed at least in part to a cell population within the tumor that possesses stem-like characteristics and tumor propagating capabilities, referred to as cancer stem cells. Within GBM, the intratumoral heterogeneity is derived from a combination of regional genetic variance and a cellular hierarchy often regulated by distinct cancer stem cell niches, most notably perivascular and hypoxic regions. With the recent emergence as a key player in tumor biology, cancer stem cells have symbiotic relationships with the tumor microenvironment, oncogenic signaling pathways, and epigenetic modifications. The origins of cancer stem cells and their contributions to brain tumor growth and therapeutic resistance are under active investigation with novel anti-cancer stem cell therapies offering potential new hope for this lethal disease.
Collapse
|
30
|
Koshkin PA, Chistiakov DA, Chekhonin VP. Role of microRNAs in mechanisms of glioblastoma resistance to radio- and chemotherapy. BIOCHEMISTRY (MOSCOW) 2013; 78:325-34. [DOI: 10.1134/s0006297913040019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Treatment of aganglionic megacolon mice via neural stem cell transplantation. Mol Neurobiol 2013; 48:429-37. [PMID: 23512482 DOI: 10.1007/s12035-013-8430-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
To explore a potential methodology for treating aganglionic megacolon, neural stem cells (NSCs) expressing engineered endothelin receptor type B (EDNRB) and glial cell-derived neurotrophic factor (GDNF) genes were transplanted into the aganglionic megacolon mice. After transplantation, the regeneration of neurons in the colon tissue was observed, and expression levels of differentiation-related genes were determined. Primary culture of NSCs was obtained from the cortex of postnatal mouse brain and infected with recombinant adenovirus expressing EDNRB and GDNF genes. The mouse model of aganglionic megacolon was developed by treating the colon tissue with 0.5 % benzalkonium chloride (BAC) to selectively remove the myenteric nerve plexus that resembles the pathological changes in the human congenital megacolon. The NSCs stably expressing the EDNRB and GDNF genes were transplanted into the benzalkonium chloride-induced mouse aganglionic colon. Survival and differentiation of the implanted stem cells were assessed after transplantation. Results showed that the EDNRB and GDNF genes were able to be expressed in primary culture of NSCs by adenovirus infection. One week after implantation, grafted NSCs survived and differentiated into neurons. Compared to the controls, elevated expression of EDNRB and GDNF was determined in BAC-induced aganglionic megacolon mice with partially improved intestinal function. Those founding indicated that the genes transfected into NSCs were expressed in vivo after transplantation. Also, this study provided favorable support for the therapeutic potential of multiple gene-modified NSC transplantation to treat Hirschsprung's disease, a congenital disorder of the colon in which ganglion cells are absent.
Collapse
|
32
|
Low YYS, Ng WH. A promising light for an impossible disease: miRNAs in malignant gliomas. CNS Oncol 2013; 2:107-9. [PMID: 25057971 PMCID: PMC6169481 DOI: 10.2217/cns.13.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yin Yee Sharon Low
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
33
|
Aguda BD. Modeling microRNA-transcription factor networks in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:149-67. [PMID: 23377973 DOI: 10.1007/978-94-007-5590-1_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An increasing number of transcription factors (TFs) and microRNAs (miRNAs) is known to form feedback loops (FBLs) of interactions where a TF positively or negatively regulates the expression of a miRNA, and the miRNA suppresses the translation of the TF messenger RNA. FBLs are potential sources of instability in a gene regulatory network. Positive FBLs can give rise to switching behaviors while negative FBLs can generate periodic oscillations. This chapter presents documented examples of FBLs and their relevance to stem cell renewal and differentiation in gliomas. Feed-forward loops (FFLs) are only discussed briefly because they do not affect network stability unless they are members of cycles. A primer on qualitative network stability analysis is given and then used to demonstrate the network destabilizing role of FBLs. Steps in model formulation and computer simulations are illustrated using the miR-17-92/Myc/E2F network as an example. This example possesses both negative and positive FBLs.
Collapse
Affiliation(s)
- Baltazar D Aguda
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Nikaki A, Piperi C, Papavassiliou AG. Role of microRNAs in gliomagenesis: targeting miRNAs in glioblastoma multiforme therapy. Expert Opin Investig Drugs 2012; 21:1475-88. [PMID: 22809292 DOI: 10.1517/13543784.2012.710199] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gliomas consist of a very heterogeneous group of malignant tumors, accounting for 50 - 60% of primary brain tumors. Despite all the efforts of cytoreductive surgery in combination with intense chemoradiotherapy, glioblastoma multiforme (GBM, glioma grade IV) still has a dismal prognosis. Current research is focused on molecular targeting to overcome resistance to conventional therapy. MicroRNAs (miRNAs), small non-coding RNAs, represent endogenous agents of RNA interference, dramatically changing expression of target proteins. Their role in brain physiology as well as GBM development has attracted intense research efforts pointing toward therapeutic potential and immediate targeting for sensitization of glioma cells to chemo and/or radiotherapy. AREAS COVERED This review is focused on the variable role of miRNAs in gliomagenesis and their possible clinical relevance in patient's survival and prognosis. It further addresses the potential application of selected miRNAs as therapeutic targets or agents in GMB, including data from clinical studies in other central nervous system tumors. EXPERT OPINION Although miRNA-targeted therapy is still in its initial stage and clinical trials with glioma/brain tumor patients are under recruitment or currently running, several miRNAs have been selected as promising tumor biomarkers, with increased potential to reduce disease progression in combination to conventional first-line therapy for gliomas.
Collapse
Affiliation(s)
- Alexandra Nikaki
- University of Athens, Medical School, Department of Biological Chemistry, Athens, Greece
| | | | | |
Collapse
|
35
|
Chistiakov DA, Chekhonin VP. Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. Eur J Pharmacol 2012; 684:8-18. [PMID: 22484336 DOI: 10.1016/j.ejphar.2012.03.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 12/17/2022]
Abstract
Glioblastomas, particularly high grade brain tumors such as glioblastoma multiforme, are characterized by increased anaplasy, malignancy, proliferation, and invasion. These tumors exhibit high resistance to radiation therapy and treatment with anti-cancer drugs. The radio- and chemoresistance of gliomas is attributed to cancer stem cells (CSCs) that are considered as major contributors for maintenance and propagation of tumor cell mass, cancer malignancy and invasiveness, and tumor cell survival after courses of radiotherapy and medical interventions. MicroRNAs (miRNAs), key post-transcriptional gene regulators, have altered expression profiles in gliomas. Some of miRNAs whose expression is markedly up-regulated in brain tumors are likely to have a pro-oncogenic role through supporting growth, proliferation, migration, and survival of cancer stem and non-stem cells. In contrast, a population of miRNA possessing anti-tumor effects is suppressed in gliomas. In this review, we will consider miRNAs and their influence on radio- and chemoresistance of gliomas. These miRNAs harbor a great therapeutic significance as potent agents in future targeted anti-cancer therapy to sensitize glioma tumor cells and CSCs to cytotoxic effects of radiation exposure and treatment with anti-cancer drugs.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow, Russia.
| | | |
Collapse
|