1
|
Zafar S, Jamil M, Khan MI, Din FU, Seo EK, Khan S. 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN) attenuates inflammation and oxidative stress via MAPK, and Nrf2/HO-1 signaling in Traumatic brain injury. Chem Biol Interact 2025; 415:111510. [PMID: 40222441 DOI: 10.1016/j.cbi.2025.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/28/2024] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Traumatic brain injury (TBI) is an acquired neurological insult that has become a major cause of mortality.Hence, immediate and appropriate medical attention is essential. The present study investigated the neuroprotective effect of 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid against a weight drop model of traumatic brain injury (TBI). During the in-vitro analysis, ECN demonstrated neuroprotective potential by remarkably improving the cell viability and also provided significant protection in case of nitric oxide-evoked oxidative stress in HT22 cells. The administration of ECN significantly improved the neurological severity score, and mechanical/periorbital allodynia following TBI, when compared with the TBI-group. The level of brain edema and blood-brain barrier (BBB) disruption were also significantly reduced by ECN treatment. ECN also restored constitutional changes in the protein/lipid profile; simultaneous with histological changes in the brain in contrast to the TBI-group. It significantly ameliorated neuronal loss and also minimized the intracerebral hemorrhages arising from traumatic insult. ECN exhibited potent anti-inflammatory effects, by altering the expression of extracellular-signal-regulated kinase (ERK), p38, and activating protein-1 (AP-1) proteins. It also exhibited antioxidant effects by increasing the production levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, ECN also produced an anti-apoptotic effect by downregulation of caspase3 and upregulation of B-cell lymphoma 2 (Bcl-2). It also increased the levels of antioxidants while reducing the levels of oxidative stress and inflammatory markers in comparison to the TBI-group. In short, it was concluded that ECN exhibited protective anti-inflammatory, antioxidant, and anti-apoptotic effects against trauma-induced brain injury.
Collapse
Affiliation(s)
- Sana Zafar
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Maryam Jamil
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ibrar Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacology, Faculty of Pharmacy, Capital University of Science & Technology, Islamabad Expressway, Islamabad 747424, Pakistan.
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Saha P, van der Vlies AJ, Aditya T, Dighe K, Hicks SD, Pan D. Anti-miR oligo-mediated detection of human salivary microRNAs for mild traumatic brain injury. Biosens Bioelectron 2025; 278:117333. [PMID: 40056568 DOI: 10.1016/j.bios.2025.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Mild traumatic brain injury (mTBI), often resulting from traffic accidents, workplace incidents, sports, or recreational activities, is a neurological condition that significantly impacts the daily lives of many individuals. The absence of reliable biomarkers and the non-specific nature of mTBI symptoms pose challenges for accurate diagnosis, leading to undetected cases and potential long-term consequences. Current diagnostic approaches, including neuroimaging, serum biomarkers, and cognitive assessments, suffer from cost, invasiveness, and sensitivity limitations. To address this, we developed a novel electrochemical detection platform for salivary microRNAs (miRNAs), offering a rapid, non-invasive, and cost-effective alternative for mTBI diagnosis. Key challenges in point-of-care miRNA detection lie in low abundance, short length, sequence complementarity, degradation, and amplification-free detection with high sensitivity and specificity. This platform technology introduces a de novo-synthesized, conductive carboxyl-functionalized thiophene polymer (AAOT:PSS)-coated gold electrode, enabling the covalent attachment of streptavidin-linked, biotinylated anti-miRNAs with methylene blue as the electrochemical reporter. This system successfully detected picomolar concentrations of mTBI-associated miRNAs (miR-let7a, miR-30e, miR-21) in saliva, outperforming traditional methods and establishing salivary miRNAs as highly reliable biomarkers for mTBI. Our approach leverages the mTBI-induced upregulation of miR-let7a, miR-30e, miR-21 as proof-of-concept targets with scope of multiplexing while achieving 100% sensitivity and specificity in patient-derived samples validated via PCR and clinical assessments.
Collapse
Affiliation(s)
- Pranay Saha
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ketan Dighe
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Steven D Hicks
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA, 17033, USA
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, PA, 16802, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Kennemer AA, Gao Z, Wang L, Davis PB, Kaelber DC, Xu R. Psychiatric outcomes after mild concussion by treatment timing and age. J Psychiatr Res 2025; 187:233-237. [PMID: 40382945 DOI: 10.1016/j.jpsychires.2025.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Previous guidance for mild concussion treatment has recommended physical and cognitive rest. However, it remains unknown if patients who received treatment at different times had differential neuropsychiatric outcomes. We examined if patients who received immediate treatment less than one week after a mild concussion had a different risk for subsequent depression or anxiety compared with those who received delayed treatment greater than one week after the event, stratified by age groups. This multicenter retrospective cohort study used the TriNetX Analytics platform to access de-identified electronic health records of over 100 million patients, including both inpatient and outpatient visits, from 60 healthcare organizations across the United States. A total of 9881 patients with a diagnosis of mild concussion either received either immediate treatment, defined as within 1 week (n = 4053), or delayed treatment, defined as 1 week to 6 months (n = 5828) following the diagnosis of mild concussion. Each group was stratified by age:≤25, 26-64, and 65+ years. Patients who received early treatment had significantly lower risk of depression and anxiety compared with propensity-score matched patients who received delayed treatment during a 5-year follow-up after mild TBI diagnosis, with hazard ratios (HRs) of 0.74 (95 % CI, 0.65-0.84) and 0.75 (95 % CI, 0.68-0.84), respectively. These results are consistent across age groups, with strongest reduction in older adults aged 65 years and older. These findings suggest that timely treatment for concussion may mitigate subsequent adverse psychiatric outcomes.
Collapse
Affiliation(s)
- Austin A Kennemer
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lindsey Wang
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David C Kaelber
- Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Mortezaei A, Safari N, Gholamshahi H, Kazemzadeh K, Tafakhori A. Veterans Traumatic Brain Injuries and Neurosurgical Challenges: A Narrative Review. Health Sci Rep 2025; 8:e70863. [PMID: 40432705 PMCID: PMC12106348 DOI: 10.1002/hsr2.70863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/12/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background Veterans experience a high prevalence of traumatic brain injuries (TBIs) due to combat-related incidents such as explosive blasts, penetrating injuries, and blunt force trauma. These military TBIs are often more complex than civilian TBIs, leading to increased long-term neurological consequences. Over 414,000 service members have been diagnosed with TBI since 2000, highlighting the need to understand the implications of these injuries and the neurosurgical challenges in their treatment. Methods This narrative review examines the literature on TBIs in veterans, focusing on the characteristics, health impacts, and neurosurgical challenges associated with these injuries. The review synthesizes relevant articles to provide an overview of the topic. Results Veterans with TBIs commonly experience cognitive deficits, including impairments in memory, executive functioning, processing speed, and visual disturbances. Research explores the relationship between TBI and neurodegenerative diseases, with some studies indicating a correlation between TBI severity and an increased risk of all-cause and vascular dementia. Managing TBIs in veterans presents neurosurgical challenges such as timely diagnosis and intervention, tailored treatment approaches due to injury variability (blast vs. blunt trauma), and co-occurring conditions like PTSD and depression. Initial medical measures include osmotherapy, sedation, hyperventilation, oxygenation, control of temperature and infection. In specific scenarios, an external ventricular drain (EVD) may be necessary to drain cerebrospinal fluid (CSF). Conclusion Addressing TBIs in veterans necessitates a multidisciplinary approach with timely neurosurgical interventions, comprehensive rehabilitation, and mental health support. Future research should develop targeted treatments and explore novel technologies to improve recovery outcomes. Clinicians should prioritize early screening for TBI and co-occurring conditions, while policymakers should improve access to specialized TBI care, ultimately enhancing veterans' long-term quality of life.
Collapse
Affiliation(s)
- Ali Mortezaei
- Network of Neurosurgery and Artificial Intelligence (NONAI)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeGonabad University of Medical SciencesGonabadIran
| | - Negin Safari
- Network of Neurosurgery and Artificial Intelligence (NONAI)Universal Scientific Education and Research Network (USERN)TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Hediye Gholamshahi
- Network of Neurosurgery and Artificial Intelligence (NONAI)Universal Scientific Education and Research Network (USERN)TehranIran
- Students Research Committee (SRC)Dezful University of Medical SciencesDezfulIran
| | - Kimia Kazemzadeh
- Network of Neurosurgery and Artificial Intelligence (NONAI)Universal Scientific Education and Research Network (USERN)TehranIran
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Abbas Tafakhori
- Network of Neurosurgery and Artificial Intelligence (NONAI)Universal Scientific Education and Research Network (USERN)TehranIran
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Department of Neurology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Pope P, Hassan BA, Er S, Resnick E, Stein DM, Pan J, Grant MP, Lamaris GA. Traumatic Brain Injury in Patients With Mandibular Fractures. Ann Plast Surg 2025; 94:544-551. [PMID: 39945391 DOI: 10.1097/sap.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) associated with facial fractures is a major public health concern worldwide. The rate of TBI in patients with mandibular fractures ranges from 21.3% to 39.6%. However, the risk factors for TBI in patients with mandibular fractures remain unknown. Our study evaluates these risk factors. METHODS We retrospectively reviewed patients who presented with traumatic mandibular fractures in 2018 and 2019. Excluded were patients with no documentation of Glasgow Coma Scale. Our primary outcomes were: (1) prevalence of concomitant TBI on presentation defined as having a positive head computed tomography scan (hemorrhage, parenchymal contusion, diffuse axonal injury), or a negative scan with Glasgow Coma Scale < 15 or any neurologic symptom/sign; (2) prevalence of posttraumatic neurologic symptoms assessed at ≥4 weeks after injury. The mandibular injury severity score (MISS) was calculated for all patients. Bivariate analysis and multivariable logistic regression were performed. RESULTS Of 390 patients with mandibular fractures, 165 (42.3%) had concomitant TBI on presentation. Of those, 61% (n = 101) had mild TBI, 12% (n = 20) had moderate TBI, and 27% (n = 44) had severe TBI. Almost half of the mandibular fractures were due to assault (182 [47%]). Older age at injury and the presence of other facial fractures were associated with significantly greater odds of TBI on presentation (adjusted odds ratio 95% confidence interval [CI] 1.016 [1.001-1.032], P = 0.040; 2.457 [1.551-3.891], P < 0.001). Of 195 patients who were assessed at ≥4 weeks after injury, 99 (51%) had neurologic symptoms, most commonly facial numbness (74 [38%]). Mandibular body fracture and a high MISS were associated with significantly greater odds of having neurologic sequelae at ≥4 weeks after injury (adjusted odds ratio [95% CI] 3.12 [1.31-7.50], 1.12 [1.04-1.20]). CONCLUSIONS Older patients and those with mandibular body fractures and a high MISS may benefit from TBI screening and close longitudinal follow-up to identify and manage neurologic sequelae.
Collapse
Affiliation(s)
- Pharibe Pope
- From the University of Maryland School of Medicine, Baltimore, MD
| | - Bashar A Hassan
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Seray Er
- From the University of Maryland School of Medicine, Baltimore, MD
| | - Eric Resnick
- From the University of Maryland School of Medicine, Baltimore, MD
| | | | - Judy Pan
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Michael P Grant
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Gregory A Lamaris
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Mele C, De Marchi L, Pitino R, Costantini L, Cavigiolo B, Caputo M, Marzullo P, Aimaretti G. The interplay between thyrotropic axis, neurological complications, and rehabilitation outcomes in patients with traumatic brain injury. Best Pract Res Clin Endocrinol Metab 2025:102001. [PMID: 40307077 DOI: 10.1016/j.beem.2025.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term disability, with its pathophysiology encompassing both primary mechanical damage and secondary neuroinflammatory, metabolic, and biochemical alterations. These complex mechanisms contribute to the observed heterogeneous clinical outcomes, including neuroendocrine dysfunctions, post-traumatic seizures, and disorders of consciousness (DoC). Thyroid hormones (THs) play essential roles in synaptic plasticity, neurogenesis and neuronal homeostasis, and the hypothalamic-pituitary-thyroid (HPT) axis has recently emerged as a potential acute and chronic modulator of neurological and functional recovery following TBI, thereby hinting at the potential involvement of THs in post-TBI outcomes. While evidence suggests that alterations in the HPT axis may influence susceptibility to seizures, progression of DoC, and rehabilitation outcomes, an increased blood-brain barrier permeability in concert with dysregulated deiodinase activity and expanding oxidative stress have all been proposed as mechanisms linking THs to post-TBI neurological complications. This review aims to summarize current evidence on the potential role of the thyrotropic axis in neurological and rehabilitation outcomes following TBI.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| | - Lucrezia De Marchi
- Department of Endocrinology, UZ Brussel, Laarbeeklaan, Brussels, Belgium
| | - Rosa Pitino
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luisa Costantini
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Beatrice Cavigiolo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Division of Endocrinology and Diabetology, Sant'Andrea Hospital, Azienda Sanitaria Locale (ASL) Vercelli, Vercelli, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Liu MW, Li H, Xiong GF, Zhang BR, Zhang QJ, Gao SJ, Zhu YL, Zhang LM. Mesenchymal stem cell exosomes therapy for the treatment of traumatic brain injury: mechanism, progress, challenges and prospects. J Transl Med 2025; 23:427. [PMID: 40217480 PMCID: PMC11987214 DOI: 10.1186/s12967-025-06445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disease characterized by brain damage and functional impairment caused by external forces. Under the influence of multiple mechanisms, TBI can cause synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammatory cascade reactions, resulting in a high disability and mortality rate for patients and a heavy burden on families and society. Exosomes are cell-derived vesicles that encapsulate a variety of molecules, including proteins, lipids, mRNAs, and other small biomolecules. Among these, exosomes derived from mesenchymal stem cells (MSCs) have garnered significant attention owing to their therapeutic potential in the nervous system, offering broad clinical applicability. Recent studies have demonstrated that MSC-derived exosome injections in traumatic brain injury models effectively mitigate local inflammatory damage and promote nerve regeneration following injury. Owing to their small size, challenging replication, ease of preservation, and low immunogenicity, MSC exosomes are emerging as a promising therapeutic strategy for traumatic brain injury. This review explores the pathogenesis of traumatic brain injury, the underlying mechanisms of MSC exosome action, and the potential clinical applications of MSC exosomes in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, China.
| | - Hua Li
- Department of Emergency, The Third People's Hospital of Yunnan Province, Kunming, China, 650200
| | - Gui-Fei Xiong
- Department of Pain Management, Kaiyuan City People's Hospital of Hani-Yi Autonomous Prefecture of Honghe, KaiYuan, 661600, China
| | - Bin-Ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qiu-Juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shu-Ji Gao
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan-Lin Zhu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin-Ming Zhang
- Department of Neurology, The First Hospital Affiliated to Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
8
|
Zhang X, Cai Y, Chen M, Chen L, Mao Y, He R, Yang P, Xu M, Yan H, Zhao Q. Danshen-Chuanxiong-Honghua ameliorates neurological function and inflammation in traumatic brain injury in rats via modulating Ghrelin/GHSR. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119625. [PMID: 40074098 DOI: 10.1016/j.jep.2025.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxin II, proposed by Chen Keji (National master of traditional Chinese medicine), possesses neuroprotective effect. Interestingly, its simplified prescription Danshen-Chuanxiong-Honghua (DCH) can also clinically ameliorate cerebral impairment and improve spatial cognitive deficits, similar to the function of original formula. AIM OF THE STUDY We aimed to elucidate the rationality of DCH's natural existence, qualitatively identify DCH-derived phytochemicals, thereby to validate cerebral protective effect, and expose the potential mechanism of DCH and its main absorbed compound ferulic acid (FA). MATERIALS AND METHODS The natural rationality of DCH's existence for treating TBI was verified using data mining. The qualitative analysis of DCH extract-derived phytochemicals was conducted through liquid chromatography with mass spectrometry (LC-MS). Controlled cortical impact (CCI) was chosen to establish TBI model. Neurological behavior tests, blood-brain barrier (BBB) permeability test, brain water content measurement, and proinflammatory factors consisting of IL-6, IL-1β, and TNF-α of plasma, and HPA axis-related hormone levels of DA, NA, 5-HT, ghrelin, and BDNF in hippocampus were analyzed by enzyme-linked immunosorbent assay. Network pharmacology was employed to predict potential targets and pathways of DCH intervening TBI. Growth hormone secretagogue receptor (GHSR) antagonist [D-Lys3]-GHRP-6 (D-Lys3) was injected intraperitoneally in TBI rats after waking up. Molecular docking and pharmacological experiment with D-Lys3 were used to verify the pathway. RESULTS Twenty-six phytochemicals were identified based on LC-MS. FA, as the primary contributor of DCH, alleviated disruption of BBB and reduced brain edema, suppressed the secretion of proinflammatory factors, such as IL-6, IL-1β, TNF-α, as well as HPA axis-related hormones such as DA, NA, and 5-HT, and ghrelin, and BDNF by regulating the Ghrelin/GHSR pathway. These results were validated by GHSR receptor antagonist, as well as molecule docking. CONCLUSIONS Taken together, DCH, when prescribed for the treatment of TBI, has a certain degree of reasonableness. FA, as the main absorbed component, demonstrated a similar function to DCH in improving the blood-brain barrier, promoting neural recovery, and anti-inflammatory effects in TBI rats, primarily via modulating Ghrelin/GHSR.
Collapse
Affiliation(s)
- Xiaohang Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yawen Cai
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Chen
- Hukou County Chinese Medicine Hospital, Jiujiang, 332500, China
| | - Yaqing Mao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Runtian He
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peishan Yang
- Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Min Xu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hui Yan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiulong Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China.
| |
Collapse
|
9
|
Mallas EJ, De Simoni S, Jenkins PO, David MCB, Bourke NJ, Sharp DJ. Methylphenidate differentially alters corticostriatal connectivity after traumatic brain injury. Brain 2025; 148:1360-1373. [PMID: 39432756 PMCID: PMC11969465 DOI: 10.1093/brain/awae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024] Open
Abstract
Traumatic brain injury commonly impairs attention and executive function and disrupts the large-scale brain networks that support these cognitive functions. Abnormalities of functional connectivity are seen in corticostriatal networks, which are associated with executive dysfunction and damage to neuromodulatory catecholaminergic systems caused by head injury. Methylphenidate, a stimulant medication that increases extracellular dopamine and noradrenaline, can improve cognitive function following traumatic brain injury. In this experimental medicine add-on study to a randomized, double-blind, placebo-controlled clinical trial, we test whether administration of methylphenidate alters corticostriatal network function and influences drug response. Forty-three moderate-severe traumatic brain injury patients received 0.3 mg/kg of methylphenidate or placebo twice a day in 2-week blocks. Twenty-eight patients were included in the neuropsychological and functional imaging analysis (four females, mean age 40.9 ± 12.7 years, range 20-65 years) and underwent functional MRI and neuropsychological assessment after each block. 123I-Ioflupane single-photon emission computed tomography dopamine transporter scans were performed, and specific binding ratios were extracted from caudate subdivisions. Functional connectivity and the relationship to cognition were compared between drug and placebo conditions. Methylphenidate increased caudate to anterior cingulate cortex functional connectivity compared with placebo and decreased connectivity from the caudate to the default mode network. Connectivity within the default mode network was also decreased by methylphenidate administration, and there was a significant relationship between caudate functional connectivity and dopamine transporter binding during methylphenidate administration. Methylphenidate significantly improved executive function in traumatic brain injury patients, and this was associated with alterations in the relationship between executive function and right anterior caudate functional connectivity. Functional connectivity is strengthened to brain regions, including the anterior cingulate, that are activated when attention is focused externally. These results show that methylphenidate alters caudate interactions with cortical brain networks involved in executive control. In contrast, caudate functional connectivity reduces to default mode network regions involved in internally focused attention and that deactivate during tasks that require externally focused attention. These results suggest that the beneficial cognitive effects of methylphenidate might be mediated through its impact on the caudate. Methylphenidate differentially influences how the caudate interacts with large-scale functional brain networks that exhibit co-ordinated but distinct patterns of activity required for attentionally demanding tasks.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London W12 0BZ, UK
| | - Sara De Simoni
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Brain Injury Service, Royal Hospital for Neuro-disability, London SW15 3SW, UK
| | - Peter O Jenkins
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Neurology, Hampshire Hospitals NHS Foundation Trust, Basingstoke RG24 9NA, UK
| | - Michael C B David
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London W12 0BZ, UK
| | - Niall J Bourke
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London W12 0BZ, UK
- Department of Bioengineering, Royal British Legion Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Zheng L, Pang Q, Huang R, Xu H, Guo H, Gao C, Chen X, Wang Y, Cao Q, Gao Y, Gu Z, Wang Z, Luo C, Tao L, Wang T. Stress-mediated Activation of Ferroptosis, Pyroptosis, and Apoptosis Following Mild Traumatic Brain Injury Exacerbates Neurological Dysfunctions. Mol Neurobiol 2025; 62:4055-4075. [PMID: 39388040 DOI: 10.1007/s12035-024-04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Nearly half of mild traumatic brain injury (mTBI) patients continue to experience residual neurological dysfunction, which may be attributed to exposure to stress. Ferroptosis, a newly discovered form of cell death, is increasingly recognized for its involvement in the pathophysiology of TBI. Understanding the mechanisms by which stress influences mTBI, particularly through ferroptosis, is crucial for the effective treatment and prevention of mTBI patients who are sensitive to stressful events. In our study, a mouse mTBI model was established. An acute restraint stress (RS) and a chronic unpredictable mild stress (CUMS) model then were applied to make acute and chronic stress, respectively. We found acute RS significantly delayed the recovery of reduced body weight and short-term motor dysfunctions and exacerbated cell insults and blood-brain barrier leakage caused by mTBI. Further studies revealed that acute RS exacerbates neuronal ferroptosis, pyroptosis, and apoptosis by promoting iron overloading in the neocortex following mTBI. Interestingly, the inhibition of ferroptosis with iron chelators, including deferoxamine and ciclopirox, reversed pyroptosis and apoptosis. Moreover, CUMS aggravated neurological dysfunctions (motor function, cognitive function, and anxiety-like behavior) and exacerbated brain lesion volume. CUMS also exacerbates ferroptosis, pyroptosis, and apoptosis by intensifying iron deposition, along with decreasing the expression of neuronal brain-derived neurotrophic factor and glucocorticoid receptor in the neocortex post mTBI. These effects were also mitigated by iron chelators. Our findings suggest that alleviating ferroptosis induced by iron deposition may represent a promising therapeutic approach for mTBI patients who have experienced stressful events.
Collapse
Affiliation(s)
| | | | | | - Heng Xu
- Soochow University, Suzhou, China
| | | | | | | | | | - Qun Cao
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuan Gao
- Soochow University, Suzhou, China
| | - Zhiya Gu
- Soochow University, Suzhou, China
| | | | | | | | - Tao Wang
- Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Fiorin FDS, Godinho DB, Dos Santos EB, Aguiar AS, Schuch FB, de Mello MT, Radak Z, Fighera MR, Royes LFF. Relationship among depression, fatigue, and sleep after traumatic brain injury: The role of physical exercise as a non-pharmacological therapy. Exp Neurol 2025; 386:115156. [PMID: 39864790 DOI: 10.1016/j.expneurol.2025.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Traumatic brain injury (TBI) is a burdensome condition frequently associated with an increased risk of psychiatric disorders. Although the exact molecular signaling pathways have not yet been fully defined, the compromised integrity of functional brain networks in regions such as the prefrontal cortex and anterior cingulate cortex has been linked to persistent symptoms, including depression, fatigue, and sleep disorders. Understanding how TBI affects neural physiology enables the development of effective interventions. One such strategy may be physical exercise, which promotes neural repair and behavioral rehabilitation after TBI. However, there are caveats to consider when interpreting the effects of physical exercise on TBI-induced mental health issues. This review will highlight the main findings from the literature investigating how different physical exercise protocols affect the progression of TBI-induced depression, fatigue, and sleep disturbances. Furthermore, we aim to explore potential neurobiological pathways that explain how physical exercise influences depression, fatigue, and sleep following TBI.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - Douglas Buchmann Godinho
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Aderbal S Aguiar
- Biology of Exercise Laboratory, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| | - Felipe Barreto Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil; Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile; Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Túlio de Mello
- Sports Training Centre, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michele Rechia Fighera
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil; Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
12
|
Zhao W, Zhu X, Chu X, Wang H, Chen D, Zhao Y, Yao Y, Liao Z, Xiang H, Dai W, Xie J, Chen X, Li S, Wu P, Zhao H. Dynamic proteomic and phosphoproteomic analysis reveals key pathways and targets in the early stages of high-altitude traumatic brain injury. Exp Neurol 2025; 386:115147. [PMID: 39826752 DOI: 10.1016/j.expneurol.2025.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Traumatic brain injury (TBI), particularly at high altitudes (HA-TBI), is a leading cause of mortality and disability, yet clear diagnostic and treatment protocols are lacking. This study explores the early pathophysiological changes occurring within 24 h following HA-TBI, with a focus on differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Using a low-pressure hypoxic chamber to simulate high-altitude conditions combined with a controllable cortical impact (CCI) model, we established a rat model of HA-TBI. Neurological function was evaluated using the modified Neurologic Severity Score (mNSS), while neuropathological and inflammatory responses following HA-TBI were evaluated through hematoxylin and eosin (HE) staining, immunofluorescence, Western blot (WB), and Enzyme-Linked Immunosorbent Assay (ELISA). In-depth proteomic and phosphoproteomic analyses were performed on the cerebral cortex at 6, 12, and 24 h post-injury. Bioinformatic analysis identified time-dependent DEPs, revealing dynamic changes in mRNA metabolism, ATP metabolism, and MAPK signaling during the early stages of HA-TBI. Common DEPs at 6, 12, and 24 h post-injury were linked to complement and coagulation cascades. Time-dependent DEPPs influenced synaptic structure and neurotransmission, with early changes in glutamatergic synapses being especially pronounced. Key pathways, including the complement and coagulation cascades and dopaminergic synapses, emerged as central to the injury response. Furthermore, proteins such as AHSG, APOA1, GRIN2B, phospho-GSK3β-S9, and CAMK2G were identified as critical regulators in these pathways. WB validated these findings, offering new insights into the mechanisms underlying HA-TBI and highlighting potential therapeutic targets for early intervention in high-altitude trauma.
Collapse
Affiliation(s)
- Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Chu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Diyou Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yibo Zhao
- Pharmacy Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Yishan Yao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhikang Liao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongyi Xiang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Dai
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingru Xie
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Li
- Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China.
| | - Hui Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
Liu MW, Ma ZQ, Liao RL, Chen WM, Zhang BR, Zhang QJ, Zhu YL, Gao SJ, Chen YE. Incidence and mortality related risk factors in patients with severe traumatic brain injury: A meta‑analysis. Exp Ther Med 2025; 29:84. [PMID: 40084190 PMCID: PMC11904872 DOI: 10.3892/etm.2025.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 03/16/2025] Open
Abstract
The present study aimed to clarify the onset of traumatic brain injury (TBI) and identify mortality-related risk factors in patients with severe TBI, to enable the early identification of high-risk individuals and timely implementation of prevention and treatment strategies to minimize mortality rates. Comprehensive database searches were conducted across Web of Science, PubMed, CINAHL and EMBASE, covering publications from database inception until October 17, 2023. Search terms in English included 'head trauma', 'brain trauma', 'mortality', 'death' and 'risk factor'. In total, two independent researchers screened and extracted the data on mortality onset and associated risk factors in patients with severe TBI. Meta-analysis was performed using R 4.2.2. A total of 33 cohort studies, including 71,718 patients with severe TBI, were selected for meta-analysis. The data indicated an overall mortality rate of 27.8% (95%CI: 22.5-33.2%) from database inception until October 17, 2023. Subgroup analysis revealed a mortality rate of 25.2% (95%CI: 20.2-30.1%) in developed countries, compared with 38.0% (95%CI: 21.4-54.7%) in developing countries. Additionally, the mean age of deceased patients was significantly higher compared with that of survivors (41.53±16.47). Key risk factors found to be associated with mortality included anemia [relative risk (RR), 1.42; 95%CI, 1.04-1.93], diabetes mellitus (RR, 1.40; 95%CI, 1.00-1.96), coagulopathy (RR, 4.31; 95%CI, 2.31-8.05), shock (RR, 3.41; 95%CI, 2.31-5.04) and systolic blood pressure≤90 mmHg (RR, 2.32; 95%CI, 1.65-3.27). Furthermore, pre-hospital intubation (RR, 1.48; 95%CI, 1.13-1.92),hypotension (RR, 2.04; 95%CI: 1.58, 2.63), hypoxemia (RR, 1.42; 95%CI: 1.13, 1.79), subdural hemorrhage (RR, 1.99; 95%CI: 1.50, 2.62), subarachnoid hemorrhage (RR, 1.64; 95%CI: 1.09, 2.47) and subdural hematoma (SDH; RR, 1.50; 95%CI: 1.04, 2.17). was identified to be a significant risk factor during hospitalization treatment. These results suggest that various factors, such as age, anemia, diabetes, shock, hypotension, hypoxemia, trauma scores and brain injury types, can all contribute to mortality risk in patients with severe TBI. Addressing these risk factors will likely be important for reducing mortality in this patient population.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Zhi-Qiang Ma
- Department of Laboratory, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Ren-Li Liao
- Department of Spine Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Wu-Mei Chen
- Department of Medical Affairs, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan 671000, P.R. China
| | - Bing-Ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiu-Juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan-Lin Zhu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shu-Ji Gao
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan-E Chen
- Department of Human Resources, Science and Education, Second People's Hospital of Baoshan City, Baoshan, Yunnan 678000, P.R. China
| |
Collapse
|
14
|
Zhang X, Li M, Xu Y, Wu J, Yuan R, Sun Y, Chen X, Lv M, Jin B, Chen X, Liang W. Gal-3 activates Tyro3 to ameliorate ferroptosis of hippocampal neurons after traumatic brain injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102433. [PMID: 39902149 PMCID: PMC11788728 DOI: 10.1016/j.omtn.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025]
Abstract
Traumatic brain injury (TBI) leads to significant hippocampal neuronal loss, contributing to cognitive dysfunction. Our bioinformatics analysis of single-cell RNA sequencing data from hippocampal tissue following TBI revealed persistent neuronal loss and activation of ferroptosis-related pathways. Notably, Tyro3 expression was significantly upregulated, suggesting its potential role in neuronal ferroptosis. This finding was further validated in both in vivo and in vitro studies using a controlled cortical impact (CCI) model. We observed that Tyro3 knockdown exacerbated ferroptosis, while Tyro3 overexpression mitigated it. Moreover, treatment with the Tyro3 agonist Gal-3 conferred protective effects, improving both motor and cognitive functions through Tyro3 activation. These results highlight Tyro3 as a promising therapeutic target for TBI.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Jingting Wu
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yihan Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Bo Jin
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiameng Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| |
Collapse
|
15
|
Chang CH, Wasser T, Hemtasilpa S. Factors Associated With Rehabilitation Length of Stay in Patients With Traumatic Brain Injury: A Retrospective Cohort Study. BRAIN & NEUROREHABILITATION 2025; 18:e3. [PMID: 40191223 PMCID: PMC11966006 DOI: 10.12786/bn.2025.18.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 04/09/2025] Open
Abstract
This retrospective cohort study aimed to identify predictive factors for patients with traumatic brain injury (TBI) requiring short (≤ 14 days) or long (≥ 15 days) rehabilitation length of stays (LOSs).The study was conducted in an acute rehabilitation hospital associated with a community-based tertiary medical center. Patients who were admitted to the acute inpatient rehabilitation unit with TBI between January 2020 and September 2022 were included (n = 197). The mean rehabilitation LOS of the 197 patients was 16.73 ± 9.4 days. A long rehabilitation LOS was associated with a higher rate of urinary tract infection in the rehabilitation facility (p = 0.002), a higher rate of lung infection in the inpatient rehabilitation facility (p = 0.003), unplanned readmission to acute care (p < 0.001), a longer LOS in acute care before admission to rehabilitation (p < 0.001), and a lower Section GG score on admission to rehabilitation (p < 0.001). The logistic regression model revealed having lower Section GG scores on admission to rehabilitation as the only factor predictive of a long rehabilitation LOS (odds ratio, 0.91; p < 0.001). Our study revealed that the Section GG score at admission to inpatient rehabilitation facilities is a predictor of rehabilitation LOS.
Collapse
Affiliation(s)
- Chin-Hen Chang
- Department of Physical Medicine and Rehabilitation, Reading Hospital, Tower Health System, Wyomissing, PA, USA
| | | | - Somkiat Hemtasilpa
- Department of Physical Medicine and Rehabilitation, Reading Hospital, Tower Health System, Wyomissing, PA, USA
| |
Collapse
|
16
|
Mofidi SA, Rajai Firouzabadi S, Mohammadi I, Aarabi A, Alinejadfard M, Sadraei S, Soltani SM, Izadi N, Goodarzi S, Shafiee A. Regional and National Burden of Traumatic Brain Injury and Spinal Cord Injury in North Africa and Middle East Regions, 1990-2021: A Systematic Analysis for The Global Burden of Disease Study 2021. J Epidemiol Glob Health 2025; 15:33. [PMID: 40016567 PMCID: PMC11868010 DOI: 10.1007/s44197-025-00372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and spinal cord injury (SCI) are significant central nervous system injuries with epidemiological importance, particularly in the North Africa and the Middle East (NAME) region, which is diverse in public health aspects across its 21 countries. OBJECTIVE This study aims to present an up-to-date assessment of the regional and national TBI and SCI burden and their causes in the NAME region from 1990 to 2021. METHODS We utilized the Global Burden of Disease (GBD) results tool to gather relevant data. The analysis included TBI and SCI incidence, prevalence, and years lived with disability (YLDs) rates, along with absolute numbers and percent change trends by gender, age, and country from 1990 to 2021. We also examined the causes of TBI and SCI and identified the most common causes for each country. RESULTS In 2021, TBI age-standardized rates of incidence, prevalence, and YLDs were 333 (293, 380), 593 (553, 642), and 87 (63, 114) per 100,000 people, respectively. For SCI, the rates were 10 (7, 13), 256 (200, 344), and 78 (51, 115). Since 1990, incidence rates of TBI and SCI have decreased in most countries. Saudi Arabia, Afghanistan, and Yemen experienced increasing incidence rates for both injuries. Transport injuries and unintentional injuries were the primary causes of TBI and SCI, respectively, in most countries. CONCLUSION Despite global trends showing a decreased burden of TBI and SCI, the NAME region's public health systems should remain vigilant. Both injuries are epidemiologically significant and require continued public health interventions to manage and control them in this particular region.
Collapse
Affiliation(s)
- Seyed Ali Mofidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Neda Izadi
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saba Goodarzi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Arman Shafiee
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
17
|
Bindels H, Sommer S, Ohmann T, Seddigh S, Schuler M. How Are TBI Symptoms Interconnected? A Network Analysis Approach. Brain Behav 2025; 15:e70316. [PMID: 39957078 PMCID: PMC11830752 DOI: 10.1002/brb3.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Many patients with traumatic brain injury (TBI) across all levels of severity experience persistent psycho-emotional, cognitive, and somatic symptoms. Psychological network theory views disorders as intricate systems rather than discrete diseases. This study employs an exploratory network analysis method to uncover potential causal links among long-term TBI symptoms. METHODS We examined persistent symptoms using secondary data from 250 TBI patients undergoing an inpatient "brain check" procedure. We constructed two partial correlation networks: one for the entire sample and another for a mild TBI subgroup, each consisting of 14 symptoms and three covariates. The symptoms and their connections were visualized in network graphs to identify potential causal, and structural indicators and centrality indices were calculated. RESULTS The analysis revealed two dense networks characterized by multiple complex connections. In the overall network, symptoms are clustered into psycho-emotional and cognitive communities, with attention deficits serving as a crucial link between them. One finding was that self-reported cognitive impairments do not align with objectively measured deficits. Within the mild TBI subgroup, PTSD emerges as a central node in the network. CONCLUSION Network analysis reveals the multidimensional and reciprocal nature of long-term TBI symptoms. Attention deficits bridge cognitive and psycho-emotional areas, whereas psycho-emotional symptoms influence self-perceived performance. Self-reported cognitive impairments should be emphasized in therapy as they are linked rather to sleep, visual disturbances, and anxiety than to objective deficits. Network analysis is valuable for understanding TBI symptom complexity and exploring treatment options. Future research should utilize longitudinal designs to validate our findings.
Collapse
Affiliation(s)
- Helen Bindels
- Department of Nursing, Midwifery and Therapy SciencesBochum University of Applied SciencesBochumGermany
| | - Sascha Sommer
- Department of Nursing, Midwifery and Therapy SciencesBochum University of Applied SciencesBochumGermany
| | - Tobias Ohmann
- Research DepartmentBG Klinikum DuisburgDuisburgGermany
| | | | - Michael Schuler
- Department of Nursing, Midwifery and Therapy SciencesBochum University of Applied SciencesBochumGermany
| |
Collapse
|
18
|
Yan L, Gu L, Lv X, Ni Z, Qian W, Chen Z, Yang S, Zhuge Q, Yuan L, Ni H. Butylphthalide mitigates traumatic brain injury by activating anti-ferroptotic AHR-CYP1B1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118758. [PMID: 39222762 DOI: 10.1016/j.jep.2024.118758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Increasing evidence suggests that ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation, may play a substantial role in the traumatic brain injury (TBI) pathophysiology. 3-n-butylphthalide (NBP), a compound extracted from the seeds of Apium graveolens Linn (Chinese celery) and used in China to treat ischemic stroke, has demonstrated encouraging anti-reactive oxygen species (ROS) effects. Ascertaining whether NBP can inhibit ferroptosis and its mechanism could potentially expand its use in models of neurological injury and neurodegenerative diseases. METHODS AND RESULTS In this study, we used erastin-induced in vitro ferroptosis models (HT22 cells, hippocampal slices, and primary neurons) and an in vivo controlled cortical impact mouse model. Our study revealed that NBP administration mitigated erastin-induced death in HT-22 cells and decreased ROS levels, lipid peroxidation, and mitochondrial superoxide indicators, resulting in mitochondrial protection. Moreover, the ability of NBP to inhibit ferroptosis was confirmed in organotypic hippocampal slice cultures and a TBI mouse model. NBP rescued neurons, inhibited microglial activation, and reduced iron levels in the brain tissue. The protective effect of NBP can be partly attributed to the inhibition of the AHR-CYP1B1 axis, as evidenced by RNA-seq and CYP1B1 overexpression/inhibition experiments in HT22 cells and primary neurons. CONCLUSIONS Our study underscores that NBP inhibition of the AHR-CYP1B1 axis reduces ferroptosis in neuronal damage and ameliorates brain injury.
Collapse
Affiliation(s)
- Lin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, Fujian, China.
| | - Liuqing Gu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xinhuang Lv
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhihui Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Wenqi Qian
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhibo Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Lin Yuan
- Institute of Biomedical Sciences, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
19
|
Li S, Li H, Wu B, Pan R, Liu Y, Wang J, Wei D, Gao H. Construction of an Interpretable Model of the Risk of Post-Traumatic Brain Infarction Based on Machine Learning Algorithms: A Retrospective Study. J Multidiscip Healthc 2025; 18:157-170. [PMID: 39834511 PMCID: PMC11745068 DOI: 10.2147/jmdh.s498420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Background Post-traumatic cerebral infarction (PTCI) is a severe complication resulting from traumatic brain injury (TBI), which can lead to permanent neurological damage or death. The investigation of the factors associated with PTCI and the establishment of predictive models are crucial for clinical practice. Methods We made a retrospective analysis of clinical data from 1484 TBI patients admitted to the Neurosurgery Department of a provincial hospital from January 2018 to December 2023. Predictive factors were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and multivariable logistic regression analysis. Several machine learning (ML) classification models were developed and compared. The interpretations of the ML models' predictions were provided by SHAP values. Results Key predictors included age, bilateral brain contusions, platelet count, uric acid, glucose, traumatic subarachnoid hemorrhage, and surgical treatment. The logistic regression (LR) model outperformed other ML algorithms, demonstrating superior performance in the test set with an AUC of 0.821, accuracy of 0.845, Matthews correlation coefficient (MCC) of 0.264, area under the receiver operating characteristic curve (AUROC) of 0.711, precision of 0.56, and specificity of 0.971. It had stable performance in the ten-fold cross-validation. Conclusion ML algorithms, integrating demographic and clinical factors, accurately predicted the risk of PTCI occurrence. Interpretations using the SHAP method offer guidance for personalized treatment of different patients, filling gaps between complex clinical data and actionable insights.
Collapse
Affiliation(s)
- Shaojie Li
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Hongjian Li
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 634700, People’s Republic of China
| | - Baofang Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Rujun Pan
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People’s Republic of China
| | - Yuqi Liu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Jiayin Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - De Wei
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, People’s Republic of China
| | - Hongzhi Gao
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| |
Collapse
|
20
|
Astakhova O, Ivanova A, Komoltsev I, Gulyaeva N, Enikolopov G, Lazutkin A. Traumatic Brain Injury Promotes Neurogenesis and Oligodendrogenesis in Subcortical Brain Regions of Mice. Cells 2025; 14:92. [PMID: 39851520 PMCID: PMC11764027 DOI: 10.3390/cells14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention. Here, we investigated cell division and differentiation in non-neurogenic brain regions during the acute and delayed phases of TBI-induced neurodegeneration. We subjected mice to lateral fluid percussion injury (LFPI) to model TBI and analyzed them 1 or 7 weeks later. To assess cellular proliferation and differentiation, we administered 5-ethinyl-2'-deoxyuridine (EdU) and determined the number and identity of dividing cells 2 h later using markers of neuronal precursors and astro-, micro-, and oligodendroglia. Our results demonstrated a significant proliferative response in several brain regions at one week post-injury that notably diminished by seven weeks, except in the optic tract. In addition to active astro- and microgliosis, we detected oligodendrogenesis in the striatum and optic tract. Furthermore, we observed trauma-induced neurogenesis in the striatum. These findings suggest that subcortical structures, particularly the striatum and optic tract, may possess a potential for self-repair through neuronal regeneration and axon remyelination.
Collapse
Affiliation(s)
- Olga Astakhova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Anna Ivanova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Ilia Komoltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Natalia Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexander Lazutkin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia; (O.A.)
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
21
|
Lee Y, Choi Y, Jeon J, Leigh JH, Kim DK, Oh BM. Impact of mild traumatic brain injury on health behaviors. Sci Rep 2025; 15:1585. [PMID: 39794413 PMCID: PMC11723977 DOI: 10.1038/s41598-024-83920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Health-related behavioral changes may occur following traumatic brain injury. We focused on understanding the impact of mild traumatic brain injury (TBI) on health-related behaviors and identifying factors associated with such changes. We utilized health check-up records from the Korean National Health Insurance Service database spanning January 1, 2009, to December 31, 2017. The sample included 49,212 patients diagnosed with mild TBI and 1:1 matched controls who participated in national health check-ups in 2009-2010, 2011-2012, and 2016-2017. Multivariable logistic regression analysis was utilized to examine the association between mild TBI and short- and long-term health-related behavioral changes. Mild TBI was significantly associated with an increased risk of insufficient physical activity at the short- [odds ratio (OR), 1.04; 95% confidence interval (CI), 1.01 - 1.07] and long-term (OR, 1.06; 95% CI, 1.03 - 1.09) follow-ups. Age ≥ 65 years and female sex were significant effect modifiers for insufficient physical activity (OR, 1.11; 95% CI, 1.02 - 1.21) and smoking (OR, 1.31; 95% CI, 1.14 - 1.51), respectively. Mild TBI may lead to detrimental health-related behavioral changes, varying by age and sex. Thus, age- and sex-specific interventions may be needed to address these changes.
Collapse
Affiliation(s)
- Yookyung Lee
- Department of Physical and Rehabilitation Medicine, Chung-ang University Gwang-Myeong Hospital, 110 Deokan-ro, Gwang-Myeong, Gyeonggi-do, Republic of Korea
| | - Yoonjeong Choi
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
| | - Jooeun Jeon
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ja-Ho Leigh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
| | - Don-Kyu Kim
- Department of Physical and Rehabilitation Medicine, Chung-ang University Gwang-Myeong Hospital, 110 Deokan-ro, Gwang-Myeong, Gyeonggi-do, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Hemlata, Sharma S, Vasudeva N, Hooda T. Neuroprotective effects of oleanolic acid against secondary cascades of traumatic brain injury in mice. BRAIN DISORDERS 2024; 16:100173. [DOI: 10.1016/j.dscb.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
23
|
Gao TX, Liang Y, Li J, Zhao D, Dong BJ, Xu C, Zhao WD, Li X, Zhao CS. Knockout of neutrophil cytosolic factor 1 ameliorates neuroinflammation and motor deficit after traumatic brain injury. Exp Neurol 2024; 382:114983. [PMID: 39357591 DOI: 10.1016/j.expneurol.2024.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Traumatic brain injury (TBI) is a predominant cause of long-term disability in adults, yet the molecular mechanisms underpinning the neuropathological processes associated with it remain inadequately understood. Neutrophil cytosolic factor 1 (NCF1, also known as p47phox) is one of the cytosolic components of NADPH oxidase NOX2. In this study, we observed a reduction in the volume of TBI-induced brain lesions in NCF1-knockout mice compared to controls. Correspondingly, the neuronal loss induced by TBI was mitigated in the NCF1-knockout mice. Behavioral analysis also demonstrated that the motor coordination deficit following TBI was mitigated by the depletion of NCF1. Mechanistically, our findings revealed that NCF1 deficiency attenuated TBI-induced inflammatory responses by inhibiting the release of proinflammatory factors and reducing neutrophil infiltration into the brain parenchyma. Additionally, our results indicated that NCF1 deficiency significantly decreased the levels of reactive oxygen species in neutrophils. Taken together, our findings indicate that NCF1 plays a crucial role in the regulation of brain injury and secondary inflammation post-TBI.
Collapse
Affiliation(s)
- Tian-Xu Gao
- Department of Neurology, First Affiliated Hospital, China Medical University, Shenyang 110001, China; Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yu Liang
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Jian Li
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Dan Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Bai-Jun Dong
- School of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Chen Xu
- Department of Laboratory, Xilinguole Central Hospital, Xilinhot 026000, China.
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| | - Xia Li
- Department of Gynecology and Obstetrics, Hohhot Maternal and Child Health Care Hospital, Hohhot 110000, China.
| | - Chuan-Sheng Zhao
- Department of Neurology, First Affiliated Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
24
|
Li Y, Wang H, Liu Z, Deng Z, Huang K, Li G, Liu Y, Zhou L. Neutrophil-albumin ratio serves as a superior prognostic biomarker for traumatic brain injury. Sci Rep 2024; 14:27563. [PMID: 39528673 PMCID: PMC11555416 DOI: 10.1038/s41598-024-78362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Traumatic brain injury (TBI) represents a common and severe medical condition necessitating prompt risk stratification to enhance patient outcomes. Although substantial research has been conducted on the prognostic utility of various biomarkers for TBI, no single biomarker has been definitively recognized as the most precise predictor of disease outcomes. In comparison to other markers, the neutrophil-albumin ratio (NAR) has emerged as a cost-effective and reproducible inflammatory biomarker, demonstrating potential in evaluating the severity of inflammation and prognosticating outcomes in infections and cerebrovascular diseases. This study evaluated the prognostic significance of the NAR in comparison to two other readily accessible and cost-effective composite indices: the Neutrophil-Lymphocyte Ratio (NLR) and the Platelet-Lymphocyte Ratio (PLR) in individuals with TBI. We conducted a retrospective cohort analysis involving 297 hospitalized TBI patients, gathering comprehensive demographic, anthropometric, medical, clinical, laboratory, and imaging data to assess the expression changes of these biomarkers. Our findings suggest that both the NAR and the NLR possess predictive value regarding prognosis following TBI. However, receiver operating characteristic (ROC) curve analysis revealed that NAR outperformed NLR as a prognostic predictor. In conclusion, our examination of blood biochemistry composite indicators indicates that, while both NAR and NLR serve as significant prognostic markers, NAR is a more effective predictor of outcomes in patients with TBI.
Collapse
Affiliation(s)
- Yuanyou Li
- Department of Pediatric Neurosurgery West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiyong Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziang Deng
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gaowei Li
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Neurosurgery, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, 621000, Sichuan, People's Republic of China.
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, Ningxia, People's Republic of China.
| |
Collapse
|
25
|
Aljboor GS, Tulemat A, Al-Saedi AR, Radoi MP, Toader C, Papacocea TM. Acute and chronic hypopituitarism following traumatic brain injury: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:841. [PMID: 39527353 PMCID: PMC11554839 DOI: 10.1007/s10143-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is associated with various endocrine abnormalities, including pituitary axis dysfunction. Understanding the prevalence and temporal patterns of these dysfunctions is crucial for effective clinical management. This study aimed to systematically review the literature and conduct a meta-analysis to determine the prevalence of pituitary axis dysfunction following TBI, assess temporal patterns across different post-injury durations, and identify potential contributing factors. A comprehensive search was conducted across multiple electronic databases between 1st of January 2000 until 31st March 2024. Studies reporting the prevalence of pituitary axis dysfunction post-TBI were included. Pooled estimates with 95% confidence intervals (CIs) were calculated using random-effects models in the R statistical software. Subgroup analyses were performed based on duration post-TBI (< 3 months, 3-6 months, 6-12 months, > 12 months) to explore temporal variations. Heterogeneity was assessed using the I^2 statistic. A total of 52 studies were included in the meta-analysis, encompassing 7367 participants. The pooled estimate for the prevalence of any pituitary axis dysfunction post-TBI was 33% (95% CI [28%; 37%]). Subgroup analysis by duration revealed varying prevalence rates: < 3 months (40%, 95% CI [27%; 53%]), 3-6 months (31%, 95% CI [15%; 47%]), 6-12 months (26%, 95% CI [19%; 33%]), and > 12 months (32%, 95% CI [26%; 38%]). Prevalence of multiple axes affection was 7% (95% CI [6%; 9%]), with varying rates across durations. Specific axes affection varied: Growth Hormone (GH) deficiency was 18% (95% CI [14%; 21%]), adrenocorticotropic hormone (ACTH) deficiency was 10% (95% CI [8%; 13%]), pituitary-gonadal axis hormones deficiency was 16% (95% CI [12%; 19%]), and thyroid-stimulating hormone (TSH) deficiency was 6% (95% CI [5%; 7%]). This meta-analysis highlights a significant prevalence of pituitary axis dysfunction following TBI, with temporal variations observed across different post-injury durations. The findings underscore the importance of tailored clinical management strategies based on the duration and type of dysfunction. Further research addressing potential contributing factors is warranted to enhance understanding and management of these conditions.
Collapse
Affiliation(s)
- Ghaith S Aljboor
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania.
- Neurosurgical Department, . Pantelimon Emergency Hospital, Bucharest, Romania.
| | - Aoun Tulemat
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Ali Ridha Al-Saedi
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020021, Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020021, Bucharest, Romania
| | - Toma Marius Papacocea
- Department of Neurosurgery. 020021, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Neurosurgical Department, . Pantelimon Emergency Hospital, Bucharest, Romania
| |
Collapse
|
26
|
Yadav P, Nasir F, Sivanandam TM. Neuroprotective effect of vitamin B 12 supplementation on cognitive functions and neuronal morphology at different time intervals after traumatic brain injury in male Swiss albino mice. Neurochem Int 2024; 180:105869. [PMID: 39332530 DOI: 10.1016/j.neuint.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Traumatic brain injury is a highly irreversible process that consists of primary as well as secondary injury which develops and progresses over months to years, leading to cognitive dysfunctions. Vitamin B12 received considerable interest due to its potential therapeutic properties. The pathways of vitamin B12 are closely related to neuronal survival but its effects on the pathophysiology of injury with respect to cognition is a relatively unexplored area of research. In this study, we investigated, the effect of vitamin B12 and its involvement in neuroprotection on TBI-induced pathophysiology in male Swiss albino mice. Our findings suggested that vitamin B12 supplementation improves TBI-mediated neurological impairments, spatial and recognition memory, and anxiety-like behavior. Furthermore, the oxidative stress was reduced by declined homocysteine level with vitamin B12 supplementation validating declined expression of astrocytes and TBI biomarkers. The studies on neuronal morphology revealed that vitamin B12 supplementation increases the dendritic arborization and density of mushroom and filopodia-shaped spines and further increases the expression of synaptic plasticity-related genes and proteins. Taken together, our findings reveal that, supplementation of vitamin B12 restored the TBI-induced downregulation of dendritic arborization, and spine density which ultimately increases synaptic plasticity, cell survival, and recovery of cognitive dysfunctions.
Collapse
Affiliation(s)
- Priyanka Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Farheen Nasir
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Joseph CR. Assessing Mild Traumatic Brain Injury-Associated Blood-Brain Barrier (BBB) Damage and Restoration Using Late-Phase Perfusion Analysis by 3D ASL MRI: Implications for Predicting Progressive Brain Injury in a Focused Review. Int J Mol Sci 2024; 25:11522. [PMID: 39519073 PMCID: PMC11547134 DOI: 10.3390/ijms252111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to usual activities is relegated to clinical evaluation-particularly in sports injuries. Advanced structural imaging is rarely performed due to the usual absence of associated acute anatomic/hemorrhagic changes. This review targets physiologic imaging techniques available to identify subtle blood-brain barrier dysfunction and white matter tract shear injury and their association with chronic traumatic encephalopathy. These techniques provide needed objective measures to assure recovery from injury in those patients with persistent cognitive/emotional symptoms and in the face of repetitive mTBI.
Collapse
Affiliation(s)
- Charles R Joseph
- Department of Neurology and Internal Medicine, College of Osteopathic Medicine, Liberty University, Lynchburg, VA 24502, USA
| |
Collapse
|
29
|
Kumari D, Kaur S, Dandekar MP. Intricate Role of the Cyclic Guanosine Monophosphate Adenosine Monophosphate Synthase-Stimulator of Interferon Genes (cGAS-STING) Pathway in Traumatic Brain Injury-Generated Neuroinflammation and Neuronal Death. ACS Pharmacol Transl Sci 2024; 7:2936-2950. [PMID: 39416963 PMCID: PMC11475349 DOI: 10.1021/acsptsci.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The secondary insult in the aftermath of traumatic brain injury (TBI) causes detrimental and self-perpetuating alteration in cells, resulting in aberrant function and the death of neuronal cells. The secondary insult is mainly driven by activation of the neuroinflammatory pathway. Among several classical pathways, the cGAS-STING pathway, a primary neuroinflammatory route, encompasses the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptor. Recently, the cGAS-STING research domain has gained exponential attention. The aberrant stimulation of cGAS-STING machinery and corresponding neuroinflammation have also been reported after TBI. In addition to the critical contribution to neuroinflammation, the cGAS-STING signaling also provokes neuronal cell death through various cell death mechanisms. This review highlights the structural and molecular mechanisms of the cGAS-STING machinery associated with TBI. We also focus on the intricate relationship and framework between cGAS-STING signaling and cell death mechanisms (autophagy, apoptosis, pyroptosis, ferroptosis, and necroptosis) in the aftermath of TBI. We suggest that the targeting of cGAS-STING signaling may open new therapeutic strategies to combat neuroinflammation and neurodegeneration in TBI.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Simranjit Kaur
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Manoj P. Dandekar
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
30
|
Machado CA, Oliveira BDS, de Barros JLVM, Fernandes HDB, de Brito Toscano EC, Kangussu LM, Guimarães PPG, Simões E Silva AC, Teixeira AL, de Miranda AS. Involvement of Renin-Angiotensin system (RAS) components in mild traumatic brain injury. Brain Res 2024; 1846:149266. [PMID: 39374839 DOI: 10.1016/j.brainres.2024.149266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
The Renin Angiotensin System (RAS) plays a pathophysiological role in traumatic brain injury (TBI) but the evidence of its involvement in mild TBI (mTBI) is still limited. We aimed at investigating the levels of components from both the classical and counter-regulatory axis of the RAS in a mTBI animal model. Mice with mTBI displayed enhanced ACE/Ang II/AT1R axis ipsilateral- and contralaterally to the trauma in the hippocampus and prefrontal cortex during acute (24 and 72 h) and later (30 days) timepoints. Increase in Ang-(1-7) levels alongside reduction in Mas receptor expression in hippocampus and prefrontal cortex was also observed after injury. Conversely, mTBI-mice presented higher expression of AT2 receptor in the contralateral hippocampus and the ipsilateral prefrontal cortex. Importantly, treatment with telmisartan, an AT1R blocker, and perindopril, an ACE inhibitor, were able to prevent mTBI-associated locomotor activity impairment and anxiety-like behavior, corroborating the involvement of RAS in the pathophysiology of mTBI. We provided original evidence that components of classical and alternative RAS axes undergo alterations in key brain areas following a mTBI in a time and hemisphere dependent manner. Our findings also open new avenues for investigating the therapeutic potential of RAS components in mTBI.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Bruna da Silva Oliveira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Heliana de Barros Fernandes
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Lucas Miranda Kangussu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aline Silva de Miranda
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
31
|
Zhi SM, Cui Y, Liu Y, Zhang JT, Li XJ, Sheng B, Chen XX, Yan CL, Li W, Mao JN, Yan HY, Jin W. Paeoniflorin suppresses ferroptosis after traumatic brain injury by antagonizing P53 acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155940. [PMID: 39128303 DOI: 10.1016/j.phymed.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown. PURPOSE To investigate the mechanism by which Pae regulates ferroptosis after TBI. METHODS The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI. RESULTS Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53. CONCLUSION Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Si-Min Zhi
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Cui
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao-Long Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian-Nan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hui-Ying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
32
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
33
|
Kim HH, Jang W, Kim CW, Choi JY. Longitudinal investigation of optic chiasm in patients with traumatic brain injury. BMC Ophthalmol 2024; 24:422. [PMID: 39334049 PMCID: PMC11437778 DOI: 10.1186/s12886-024-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) often precipitates a cascade of neurophysiological alterations, impacting structures such as the optic nerve and ocular motor system. However, the literature lacks expansive investigations into the longitudinal changes in the optic chiasm and its relationship with the clinical recovery of visual processing. This study aimed to scrutinize longitudinal changes in optic chiasm volume (OCV) and establish the relationship of OCV with process speed index at 12 months post-injury. Process speed index is derived from Wechsler Adult Intelligence Scale IV. METHODS Thorough cross-sectional and longitudinal analyses were executed, involving 42 patients with moderate to severe TBI and 35 healthy controls. OCV was acquired at 3, 6, and 12 months post-injury using T1-weighted images. OCV of healthy controls and that of patients with TBI at 3, 6, and 12 months post-injury were compared using a Mann-Whitney U test. A multiple linear regression model was constructed to assess the association between OCV and PSI and to predict PSI at 12 months post-injury using OCV at 3 months post-injury. RESULTS OCV of patients with TBI was significantly larger compared to healthy controls, persisting from 3 to 12 months post-injury (p < 0.05). This increased OCV negatively correlated with PSI at 12 months post-injury, indicating that larger OCV sizes were associated with decreased PSI (p = 0.031). Furthermore, the multiple linear regression model was significant in predicting PSI at 12 months post-injury utilizing OCV at 3 months post-injury (p = 0.024). CONCLUSION For the first time, this study elucidates the increased OCV and the significant association between OCV in sub-chronic stage and PSI at 12 months post-injury, potentially providing clinicians with a tool for anticipatory cognitive rehabilitation strategies following TBI.
Collapse
Affiliation(s)
- Hyun-Ho Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
- School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Mongji Hospital, Goyang, Republic of Korea
| | - Wonpil Jang
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Cheol-Woon Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Joon Yul Choi
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea.
| |
Collapse
|
34
|
Laskowitz S, Baird CL, Huggins A, Nadareishvili N, Bride J, Wagner HR, Briggs M, Morey RA, Turner RW. Effects of mTBI with loss of consciousness on neurobehavioral symptoms, depression, and insomnia in former collegiate and NFL football athletes. Brain Inj 2024; 38:869-879. [PMID: 38727539 PMCID: PMC11323146 DOI: 10.1080/02699052.2024.2347552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Considering that diagnostic decisions about mTBI are often predicated on clinical symptom criteria, it is imperative to determine which initial presentation features of mTBI have prognostic significance for identifying those at high risk for long-term functional impairment. SETTING Zoom interview Participants: Male, former NCAA Division I, and professional-level National Football League (NFL) athletes (n = 177) between the ages of 27 and 85 (M = 54.1, SD = 14.7). DESIGN Cross-sectional case-control. Main Measures: History of mild TBI, history of loss of consciousness (LOC), depression symptoms, insomnia, neurobehavioral symptoms. RESULTS Number of mTBI exposures did not predict neurobehavioral symptoms (B = 0.21, SE = 0.18, p = 0.23), but number of mTBI + LOC events did (B = 2.27, SE = 0.64, p = <.001). Further analysis revealed that the number of mTBI + LOC events predicted neurobehavioral symptoms indirectly through both depression (B = 0.85, 95% CI = [0.27, 1.52) and insomnia (B = 0.81, 95% CI = [0.3, 1.4]). Further, the direct effect of mTBI + LOC events on neurobehavioral symptoms became non-significant when depression and insomnia were added to the model (B = 0.78, SE = 0.45, p = 0.08). CONCLUSIONS Findings support LOC at time of injury as an important predictor of long-term outcomes. Additionally, results suggest depression and insomnia as potential mediators in the association between mTBI + LOC and neurobehavioral symptoms. These findings provide justification for early depression and insomnia symptom monitoring following mTBI + LOC.
Collapse
Affiliation(s)
- Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley Huggins
- Department of Psychology, The University of Arizona, Tucson, Arizona, USA
| | - Nino Nadareishvili
- School of Medicine and Health Sciences, Department of Clinical Research and Leadership, George Washington University, Washington, District of Columbia, USA
| | - Jessica Bride
- School of Medicine and Health Sciences, Department of Clinical Research and Leadership, George Washington University, Washington, District of Columbia, USA
| | - H Ryan Wagner
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Rajendra A Morey
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert W Turner
- Department of Clinical Research & Leadership, School of Medicine & Health Sciences, The George Washington University, Washington, USA
| |
Collapse
|
35
|
Guo R, Yang Q, Zhou X, Li S, Liu Y. Characteristic of clinical trials related to traumatic brain injury registered on ClinicalTrials.gov over the past two decades (2004-2023). Front Med (Lausanne) 2024; 11:1435762. [PMID: 39351009 PMCID: PMC11439763 DOI: 10.3389/fmed.2024.1435762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Objective The aim of this report is to provide a comprehensive overview of clinical trials and protocols related to traumatic brain injury over the past two decades. Methods We collected information on clinical trials related to traumatic brain injury (TBI) from the ClinicalTrials.gov database, identified key categorical variables, and assessed their characteristics. Results A total of 367 TBI-related trials were identified for analysis. All identified trials were interventional clinical trials. Most trials were small-scale, with 75.2% enrolling 1-100 participants, and only about 20% were funded by industry or the National Institutes of Health (NIH). In most trials, participants were gender-neutral (96.5%), and the primary age group was adults and older adults (56.9%). Of all identified TBI trials, 78.2% were randomized, and 69.4% were blinded. Additionally, the primary purpose of 297 trials (80.9%) was treatment, with drug therapy as the most common intervention. A total of 153 trials (41.7%) were completed; however, only 58 trials submitted results to the registry. Furthermore, 81 trials (22.1%) were discontinued early, primarily due to recruitment problems. Clinical trials started between 2004 and 2013 reported a higher proportion of results compared with those started between 2014 and 2023 (35.1% vs. 11.1%, p < 0.001). In addition, between 2014 and 2023, there was an increase in trials for diagnostic purposes (2.4% vs. 6.5%, p < 0.001). Conclusion Based on the data collected from the ClinicalTrials.gov, our study reveals that most clinical trials related to TBI focus on drug-related treatments, underreporting remains a significant concern, and greater emphasis should be placed on improving the publication and dissemination of clinical trial results.
Collapse
Affiliation(s)
- Ruili Guo
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qingya Yang
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuan Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shining Li
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yao Liu
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
37
|
Oh TK, Song IA, Jeon YT. Reduced income, joblessness, and disability among traumatic brain injury survivors: A national cohort study in South Korea. Clin Neurol Neurosurg 2024; 244:108405. [PMID: 38968814 DOI: 10.1016/j.clineuro.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of traumatic brain injury (TBI) on employment status, household income, and the development of new disabilities among survivors, as well as its correlation with mortality rates over a 2-year period. METHODS In this nationwide population-based cohort study, we screened all patients admitted to the intensive care unit (ICU) because of TBI between January 1, 2010, and December 31, 2018, in South Korea. Among them, patients who were alive for > 1 year were considered TBI survivors. Changes in unemployment, decreased household income, and newly acquired disabilities were evaluated one year after the date of ICU admission due to TBI. RESULTS In total, 78,420 TBI survivors were included in this study. Among them, 5.4 %, 22.5 %, and 8.6 % of the TBI survivors experienced unemployment, decreased household income, and newly acquired disabilities within one year after the date of ICU admission, respectively. A longer ICU stay, comorbidities, hospital admission through the emergency room, increased total cost of hospitalization, and mechanical ventilatory support were associated with unemployment, decreased household income, and newly acquired disabilities. Among the three factors, the newly acquired disability was associated with a 27 % increase in 2-year all-cause mortality (hazard ratio: 1.27, 95 % confidence interval: 1.17-1.39; P < 0.001), while unemployment and decreased household income were not significantly associated (P = 0.371 and P = 0.105, respectively). CONCLUSIONS A significant number of individuals in South Korea who survived TBI faced challenges such as unemployment, reduced household income, and the acquisition of new disabilities within a year of being admitted to the ICU. In addition, the study found that individuals who developed a new disability after TBI had a higher risk of mortality within two years.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; Interdepartment of Critical Care Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; Interdepartment of Critical Care Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; Interdepartment of Critical Care Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
38
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 PMCID: PMC11040311 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
39
|
Tate DF, Wade BSC, Velez CS, Bigler ED, Davenport ND, Dennis EL, Esopenko C, Hinds SR, Kean J, Kennedy E, Kenney K, Mayer AR, Newsome MR, Philippi CL, Pugh MJ, Scheibel RS, Taylor BA, Troyanskaya M, Werner JK, York GE, Walker W, Wilde EA. Persistent MRI Findings Unique to Blast and Repetitive Mild TBI: Analysis of the CENC/LIMBIC Cohort Injury Characteristics. Mil Med 2024; 189:e1938-e1946. [PMID: 38401164 PMCID: PMC11363162 DOI: 10.1093/milmed/usae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024] Open
Abstract
INTRODUCTION MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT 84604, USA
| | - Benjamin S C Wade
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carmen S Velez
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
| | - Erin D Bigler
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT 84604, USA
- Departments of Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Nicholas D Davenport
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emily L Dennis
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sidney R Hinds
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Jacob Kean
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Eamonn Kennedy
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico Health Science Center, Albuquerque, NM 87106, USA
| | - Mary R Newsome
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63121, St. Louis
| | - Mary J Pugh
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Randall S Scheibel
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian A Taylor
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maya Troyanskaya
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Gerald E York
- Imaging Associates of Alaska, Anchorage, AK 99508, USA
| | - William Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elisabeth A Wilde
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
40
|
Upadhyay K, Jagani R, Giovanis DG, Alshareef A, Knutsen AK, Johnson CL, Carass A, Bayly PV, Shields MD, Ramesh KT. Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-Based Machine Learning Approach. Mil Med 2024; 189:608-617. [PMID: 38739497 PMCID: PMC11332275 DOI: 10.1093/milmed/usae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are "average" models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. MATERIALS AND METHODS Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. RESULTS An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. CONCLUSIONS Head shape has a considerable influence on the injury predictions of computational head injury models. Available "average" head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.
Collapse
Affiliation(s)
- Kshitiz Upadhyay
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Roshan Jagani
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dimitris G Giovanis
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ahmed Alshareef
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD 20817, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Philip V Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael D Shields
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - K T Ramesh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
41
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
42
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MDLÁ, Diaz-Ruiz A, Rios C, Navarro L. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci 2024; 18:1447688. [PMID: 39176379 PMCID: PMC11338874 DOI: 10.3389/fnins.2024.1447688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México, Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
43
|
McCabe C, Sica A, Fortune DG. Awareness through relationships in individuals undergoing rehabilitation following acquired brain injury. Neuropsychol Rehabil 2024; 34:1005-1033. [PMID: 37903181 DOI: 10.1080/09602011.2023.2273578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
AIM This cross-sectional study investigated the association between self-awareness and quality of therapeutic relationships following acquired brain injury (ABI) while controlling for the potential impact of cognitive problems. It also aimed to investigate attachment as a potential moderator. METHOD 83 adults with ABI were recruited alongside a key member of their community neurorehabilitation team. The Scale to Assess Therapeutic Relationships (STAR) was used to measure therapeutic relationship quality and attachment was measured using the Experiences in Close Relationships - Relationship Structure (ECR-RS) questionnaire. Awareness was measured using the Patient Competency Rating Scale (PCRS) and the Mayo-Portland Adaptability Inventory (MPAI-4) provided a measure of cognitive problems. The MPAI-4 also provided an additional measure of awareness. RESULTS A significant association between self-awareness and therapeutic relationships was found in some regression models such that higher-quality relationships were associated with better awareness, after controlling for the impact of cognitive problems. Neither childhood parental attachment nor participants' attachment towards their rehabilitation staff were moderators. CONCLUSION The observed associations between awareness in clients and therapeutic relationships with rehabilitation staff may have importance for rehabilitation in this context. Results highlight the value of continuing to prioritize the therapeutic relational environment in ABI rehabilitation and research.
Collapse
Affiliation(s)
- Corinne McCabe
- Department of Psychology, University of Limerick, Co Limerick, Ireland
| | - Andrea Sica
- Acquired Brain Injury Ireland, Co Dublin, Ireland
| | - Donal G Fortune
- Department of Psychology, University of Limerick, Co Limerick, Ireland
- HSE CHO 3 Mid West, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
44
|
Gerhalter T, Chen AM, Dehkharghani S, Peralta R, Gajdosik M, Zarate A, Bushnik T, Silver JM, Im BS, Wall SP, Madelin G, Kirov II. Longitudinal changes in sodium concentration and in clinical outcome in mild traumatic brain injury. Brain Commun 2024; 6:fcae229. [PMID: 39035416 PMCID: PMC11258572 DOI: 10.1093/braincomms/fcae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Ionic imbalances and sodium channel dysfunction, well-known sequelae of traumatic brain injury (TBI), promote functional impairment in affected subjects. Therefore, non-invasive measurement of sodium concentrations using 23Na MRI has the potential to detect clinically relevant injury and predict persistent symptoms. Recently, we reported diffusely lower apparent total sodium concentrations (aTSC) in mild TBI patients compared to controls, as well as correlations between lower aTSC and worse clinical outcomes. The main goal of this study was to determine whether these aTSC findings, and their changes over time, predict outcomes at 3- and 12-month from injury. Twenty-seven patients previously studied with 23Na MRI and outcome measures at 22 ± 10 days (average ± standard deviation) after injury (visit-1, v1) were contacted at 3- (visit-2, v2) and 12-month after injury (visit-3, v3) to complete the Rivermead post-concussion symptoms questionnaire (RPQ), the extended Glasgow outcome scale (GOSE), and the brief test of adult cognition by telephone (BTACT). Follow-up 1H and 23Na MRI were additionally scheduled at v2. Linear regression was used to calculate aTSC in global grey and white matters. Six hypotheses were tested in relation to the serial changes in outcome measures and in aTSC, and in relation to the cross-sectional and serial relationships between aTSC and outcome. Twenty patients contributed data at v2 and fifteen at v3. Total RPQ and composite BTACT z-scores differed significantly for v2 and v3 in comparison to v1 (each P < 0.01), reflecting longitudinally reduced symptomatology and improved performance on cognitive testing. No associations between aTSC and outcome were observed at v2. Previously lower grey and white matter aTSC normalized at v2 in comparison to controls, in line with a statistically detectable longitudinal increase in grey matter aTSC between v1 and v2 (P = 0.0004). aTSC values at v1 predicted a subset of future BTACT subtest scores, but not future RPQ scores nor GOSE-defined recovery status. Similarly, aTSC rates of change correlated with BTACT rates of change, but not with those of RPQ. Tissue aTSC, previously shown to be diffusely decreased compared to controls at v1, was no longer reduced by v2, suggesting normalization of the sodium ionic equilibrium. These changes were accompanied by marked improvement in outcome. The results support the notion that early aTSC from 23Na MRI predicts future BTACT, but not RPQ scores, nor future GOSE status.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Seena Dehkharghani
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Gajdosik
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alejandro Zarate
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan M Silver
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Brian S Im
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen P Wall
- Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
45
|
Zhang J, Liu J, Huang Y, Yan L, Xu S, Zhang G, Pei L, Yu H, Zhu X, Han X. Current role of magnetic resonance imaging on assessing and monitoring the efficacy of phototherapy. Magn Reson Imaging 2024; 110:149-160. [PMID: 38621553 DOI: 10.1016/j.mri.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Phototherapy, also known as photobiological therapy, is a non-invasive and highly effective physical treatment method. Its broad use in clinics has led to significant therapeutic results. Phototherapy parameters, such as intensity, wavelength, and duration, can be adjusted to create specific therapeutic effects for various medical conditions. Meanwhile, Magnetic Resonance Imaging (MRI), with its diverse imaging sequences and excellent soft-tissue contrast, provides a valuable tool to understand the therapeutic effects and mechanisms of phototherapy. This review explores the clinical applications of commonly used phototherapy techniques, gives a brief overview of how phototherapy impacts different diseases, and examines MRI's role in various phototherapeutic scenarios. We argue that MRI is crucial for precise targeting, treatment monitoring, and prognosis assessment in phototherapy. Future research and applications will focus on personalized diagnosis and monitoring of phototherapy, expanding its applications in treatment and exploring multimodal imaging technology to enhance diagnostic and therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, PR China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Huachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China.
| |
Collapse
|
46
|
Pope P, Hassan B, Oslin K, Shikara M, Liang F, Vakharia K, Hebert A, Stein DM, Pan J, Justicz N, P Grant M. Traumatic Brain Injury in Patients With Frontal Sinus Fractures. J Craniofac Surg 2024:00001665-990000000-01728. [PMID: 38940592 DOI: 10.1097/scs.0000000000010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/11/2024] [Indexed: 06/29/2024] Open
Abstract
Traumatic brain injury (TBI) is an insult to the brain from an external mechanical force that may lead to short or long-term impairment. Traumatic brain injury has been reported in up to 83% of craniofacial fractures involving the frontal sinus. However, the risk factors for TBI at presentation and persistent neurological sequelae in patients with frontal sinus fractures remain largely unstudied. The authors aim to evaluate the prevalence and risk factors associated with TBI on presentation and neurological sequelae in these patients. The authors retrospectively reviewed patients who presented with traumatic frontal sinus fractures in 2019. The authors' primary outcome was the prevalence of concomitant TBI on presentation, which authors defined as any patient with neurological symptoms/signs on presentation and/or patients with a Glasgow Coma Scale <15 with no acute drug or alcohol intoxication or history of dementia or other neurocognitive disorder. The authors' secondary outcome was the incidence of neurological sequelae after 1 month of injury. Bivariate analysis and multivariate logistic regression were performed. A total of 56 patients with frontal sinus fractures were included. Their median (interquartile range) age was 47 (31-59) years, and the median (interquartile range) follow-up was 7.3 (1.3-76.5) weeks. The majority were males [n = 48 (85.7%)] and non-Hispanic whites [n = 35 (62.5%)]. Fall was the most common mechanism of injury [n = 15 (26.8%)]. Of the 56 patients, 46 (82.1%) had concomitant TBI on presentation. All patients who had combined anterior and posterior table frontal sinus fractures [n = 37 (66.1%)] had TBI on presentation. These patients had 13 times the odds of concomitant TBI on presentation [adjusted odds ratio (95% CI): 12.7 (2.3-69.0)] as compared with patients with isolated anterior or posterior table fractures. Of 34 patients who were followed up more than 1 month after injury, 24 patients (70.6%) had persistent neurological sequelae, most commonly headache [n = 16 (28.6%)]. Patients who had concomitant orbital roof fractures had 32 times the odds of neurological sequelae after 1 month of injury [adjusted odds ratio (95% CI): 32 (2.4->100)]. Emergency physicians and referring providers should maintain a high degree of suspicion of TBI in patients with frontal sinus fractures. Head computed tomography at presentation and close neurological follow-up are recommended for patients with frontal sinus fracture with combined anterior and posterior table fractures, as well as those with concomitant orbital roof fractures.
Collapse
Affiliation(s)
| | - Bashar Hassan
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine
| | | | - Meryam Shikara
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine
| | - Fan Liang
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine
| | - Kalpesh Vakharia
- University of Maryland School of Medicine
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine
| | - Andrea Hebert
- University of Maryland School of Medicine
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine
| | - Deborah M Stein
- Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Judy Pan
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine
| | - Natalie Justicz
- University of Maryland School of Medicine
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine
| | - Michael P Grant
- Division of Plastic and Reconstructive Surgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine
| |
Collapse
|
47
|
Kabatas S, Civelek E, Boyalı O, Sezen GB, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Safety and efficiency of Wharton's Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study. World J Stem Cells 2024; 16:641-655. [PMID: 38948099 PMCID: PMC11212551 DOI: 10.4252/wjsc.v16.i6.641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. Stem cell transplantation has evolved as a novel treatment modality in the management of TBI, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have recently shown beneficial effects in the functional recovery of neurological deficits. AIM To evaluate the safety and efficiency of MSC therapy in TBI. METHODS We present 6 patients, 4 male and 2 female aged between 21 and 27 years who suffered a TBI. These 6 patients underwent 6 doses of intrathecal, intramuscular (i.m.) and intravenous transplantation of WJ-MSCs at a target dose of 1 × 106/kg for each application route. Spasticity was assessed using the Modified Ashworth scale (MAS), motor function according to the Medical Research Council Muscle Strength Scale, quality of life was assessed by the Functional Independence Measure (FIM) scale and Karnofsky Performance Status scale. RESULTS Our patients showed only early, transient complications, such as subfebrile fever, mild headache, and muscle pain due to i.m. injection, which resolved within 24 h. During the one year follow-up, no other safety issues or adverse events were reported. These 6 patients showed improvements in their cognitive abilities, muscle spasticity, muscle strength, performance scores and fine motor skills when compared before and after the intervention. MAS values, which we used to assess spasticity, were observed to statistically significantly decrease for both left and right sides (P < 0.001). The FIM scale includes both motor scores (P < 0.05) and cognitive scores (P < 0.001) and showed a significant increase in pretest posttest analyses. The difference observed in the participants' Karnofsky Performance Scale values pre and post the intervention was statistically significant (P < 0.001). CONCLUSION This study showed that cell transplantation has a safe, effective and promising future in the management of TBI.
Collapse
Affiliation(s)
- Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34255, Türkiye.
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Gülseli Berivan Sezen
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Türkiye
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Türkiye
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Türkiye
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Türkiye
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul 34010, Türkiye
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Türkiye
| |
Collapse
|
48
|
Kabatas S, Civelek E, Boyalı O, Sezen GB, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Safety and efficiency of Wharton’s Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: First results of a phase I study. World J Stem Cells 2024; 16:640-654. [DOI: 10.4252/wjsc.v16.i6.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. Stem cell transplantation has evolved as a novel treatment modality in the management of TBI, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. Wharton’s Jelly-derived mesenchymal stem cells (WJ-MSCs) have recently shown beneficial effects in the functional recovery of neurological deficits.
AIM To evaluate the safety and efficiency of MSC therapy in TBI.
METHODS We present 6 patients, 4 male and 2 female aged between 21 and 27 years who suffered a TBI. These 6 patients underwent 6 doses of intrathecal, intramuscular (i.m.) and intravenous transplantation of WJ-MSCs at a target dose of 1 × 106/kg for each application route. Spasticity was assessed using the Modified Ashworth scale (MAS), motor function according to the Medical Research Council Muscle Strength Scale, quality of life was assessed by the Functional Independence Measure (FIM) scale and Karnofsky Performance Status scale.
RESULTS Our patients showed only early, transient complications, such as subfebrile fever, mild headache, and muscle pain due to i.m. injection, which resolved within 24 h. During the one year follow-up, no other safety issues or adverse events were reported. These 6 patients showed improvements in their cognitive abilities, muscle spasticity, muscle strength, performance scores and fine motor skills when compared before and after the intervention. MAS values, which we used to assess spasticity, were observed to statistically significantly decrease for both left and right sides (P < 0.001). The FIM scale includes both motor scores (P < 0.05) and cognitive scores (P < 0.001) and showed a significant increase in pretest posttest analyses. The difference observed in the participants’ Karnofsky Performance Scale values pre and post the intervention was statistically significant (P < 0.001).
CONCLUSION This study showed that cell transplantation has a safe, effective and promising future in the management of TBI.
Collapse
Affiliation(s)
- Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34255, Türkiye
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Gülseli Berivan Sezen
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Türkiye
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Türkiye
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Türkiye
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Türkiye
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Türkiye
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Türkiye
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul 34010, Türkiye
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Türkiye
| |
Collapse
|
49
|
Laaksonen J, Ponkilainen V, Möttönen J, Mattila VM, Kuitunen I. Paediatric traumatic brain injury and attention-deficit/hyperactivity disorder medication in Finland: a nationwide register-based cohort study. BMJ MENTAL HEALTH 2024; 27:e301083. [PMID: 39093719 PMCID: PMC11141179 DOI: 10.1136/bmjment-2024-301083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/18/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The association between paediatric traumatic brain injury (pTBI) and post-traumatic attention-deficit/hyperactivity disorder (ADHD) medication usage remains understudied subject. OBJECTIVE We aimed to evaluate the association between pTBI and subsequent ADHD medication. METHODS A nationwide retrospective cohort study in Finland from 1998 to 2018 included 66 594 patients with pTBI and 61 412 references with distal extremity fractures. ADHD medication data were obtained from the Finnish Social Insurance Institution. The primary outcome was post-traumatic pediatric ADHD medication. A 1-year washout period was applied, and follow-up started 1 year post-pTBI. FINDINGS Kaplan-Meier analyses showed higher ADHD medication usage in patients with pTBI, especially post-operatively. Both sex groups exhibited elevated rates compared with the reference group. Over 10 years, cumulative incidence rates were 3.89% (pTBI) vs 1.90% (reference). HR for pTBI was 1.89 (95% CI 1.70 to 2.10) after 4 years and 6.31 (95% CI 2.80 to 14.20) for the operative group after the initial follow-up year. After 10 years, cumulative incidence in females increased to 2.14% (pTBI) vs 1.07% (reference), and in males, to 5.02% (pTBI) vs 2.35% (reference). HR for pTBI was 2.01 (95% CI 1.72 to 2.35) in females and 2.23 (95% CI 2.04 to 2.45) in males over 1-20 years. CONCLUSIONS A substantial association between pTBI and post-traumatic ADHD medication was evidenced over a 20-year follow-up period. CLINICAL IMPLICATIONS These results stress the need for preventive measures for pTBI and highlight the potential impact of long-term post-traumatic monitoring and psychoeducation.
Collapse
Affiliation(s)
- Juho Laaksonen
- Department of Clinical Medicine, University of Tampere, Tampere, Finland
| | - Ville Ponkilainen
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Julius Möttönen
- Department of Clinical Medicine, University of Tampere, Tampere, Finland
| | - Ville M Mattila
- Department of Clinical Medicine, University of Tampere, Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Ilari Kuitunen
- Department of Pediatrics, University of Eastern Finland, Joensuu, Finland
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
50
|
Li D, He X, Li Y, Wu S, Liu J. The effects of hyperbaric oxygen therapy on neuroprotection and recovery after brain resuscitation. Int J Neurosci 2024:1-7. [PMID: 38646692 DOI: 10.1080/00207454.2024.2346172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Analyze the impact of hyperbaric oxygen therapy on neuroprotection and recovery post severe traumatic brain injury (sTBI) resuscitation. METHODS Retrospective analysis of clinical data from 83 sTBI patients admitted between January 2022 to January 2024. Patients were divided into control (n = 41) and observation (n = 42) groups based on treatment received. Control received standard therapy, while the observation group received hyperbaric oxygen therapy. Effects on clinical outcomes, neuroinjury markers (S100β, GFAP, UCH-L1, NSE), neurotrophic factors (NGF, BDNF), neurological function indicators (NIHSS, CSS), and adverse reactions were compared. RESULTS The observation group showed a higher total effective rate (80.95%) compared to control (60.98%) (p < 0.05). Neuroinjury markers decreased post-treatment in both groups, with the observation group lower (p < 0.05). NGF and BDNF levels increased post-treatment in both groups, with the observation group higher (p < 0.05). NIHSS and CSS scores decreased post-treatment in both groups, with the observation group lower (p < 0.05). No significant difference in adverse reactions between groups (p > 0.05). CONCLUSION Hyperbaric oxygen therapy effectively treats sTBI by improving brain resuscitation success, reducing neuroinjury factors, enhancing neurotrophic factors, and promoting neurological function recovery, without increasing adverse reaction risk.
Collapse
Affiliation(s)
- Di Li
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Xiaoqin He
- Department of Laboratory, Weihai Municipal Hospital, Weihai, China
| | - Yan Li
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Shubiao Wu
- Department of Orthopaedics, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Jianhui Liu
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Handan, China
| |
Collapse
|