1
|
Xu J, Niu X. Assessing the Therapeutic Value of Primary Tumor Resection in Colorectal Cancer Lung Metastases: A Dynamic Visualization Clinical Tool Constructed Based on the SEER Database. J Gastroenterol Hepatol 2025; 40:1157-1165. [PMID: 40001210 DOI: 10.1111/jgh.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The efficacy of primary tumor resection (PTR) for colorectal cancer lung metastases (CRLM) is unclear. This study used the SEER database to investigate if PTR improves prognosis in CRLM patients and developed a nomogram to predict the likelihood of benefiting from PTR. METHODS Patients with CRLM from the SEER database (2010-2019) were included. Propensity score matching (PSM) balanced PTR and non-PTR groups. Kaplan-Meier analysis compared overall and cancer-specific survival. Cox regression identified survival factors. The PTR group was divided into training and validation sets (7:3 ratio) for nomogram development using logistic regression. Nomogram performance was validated using ROC curves, calibration curves, and decision curve analysis. RESULTS A total of 3264 CRLM patients were included (2459 with PTR, 805 without). After 1:1 PSM, each group had 484 patients. PTR significantly improved survival (p < 0.001). Logistic regression identified age, race, T-stage, chemotherapy, and metastases to the liver, brain, and bone as risk factors. The nomogram showed excellent predictive performance and clinical utility. CONCLUSION PTR improves survival in CRLM patients, and the nomogram effectively predicts the benefit of PTR.
Collapse
Affiliation(s)
- Jinyi Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqiang Niu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Chou CL, Lin CY, Li WS, Lee SW, Yang CC, Tian YF, Shiue YL, Tsai HH, Lai HY. Low CXCL11 expression is indicative of poor prognosis in rectal cancer patients undergoing preoperative chemoradiotherapy: a retrospective cohort study. Virchows Arch 2025; 486:803-815. [PMID: 39592484 PMCID: PMC12018498 DOI: 10.1007/s00428-024-03974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Neoadjuvant concurrent chemoradiotherapy (CCRT) is routinely used before surgery in patients with locally advanced rectal cancer to reduce tumor size and decrease the risk of local recurrence. However, the disease-specific survival has not improved in most cases due to distant metastases. In selected individuals exhibiting a clinical complete response, non-operative management may be allowed; however, those who presented no or little response tend to have an inferior prognosis. Consequently, refined molecular characterization could aid in predicting which patients would benefit from neoadjuvant chemoradiotherapy. METHODS The mRNA level (by transcriptomic profiling) and protein expression (by immunohistochemical staining) of C-X-C motif chemokine ligand 11 (CXCL11) were integrated to predict neoadjuvant chemoradiotherapy efficacy. For survival analysis, clinicopathological features and CXCL11 immunoreactivity that were statistically significant in univariate analysis were included in multivariate analysis using the Cox proportional hazards regression model. RESULTS We identified that the CXCL11 level exhibits the most significant downregulation among neoadjuvant chemoradiotherapy non-responders. Using tumor samples from our rectal cancer cohort (n = 343) with immunohistochemistry validation, we demonstrated that low CXCL11 immunoexpression shows significant correlations with advanced disease and positive lymph nodes both prior to and following CCRT (all p < 0.001), vascular and perineural invasion (p < 0.001 and p = 0.006), and poor response to CCRT (p < 0.001). Moreover, low CXCL11 immunoexpression was an independent adverse prognostic factor significantly associated with patient survival. Additionally, we further identified pyroptotic cell death as an unrevealed role of CXCL11 in rectal cancer through bioinformatic analysis. CONCLUSION CXCL11 expression may serve as an early predictor of clinical outcomes and aid in therapeutic decision-making by identifying individuals likely to respond to neoadjuvant chemoradiotherapy in rectal cancer.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Cheng-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sung-Wei Lee
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, 736, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, 710, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, 717, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
3
|
Al Amin M, Bouhenni H, Zehravi M, Sweilam SH, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Urs D, Shatu MM, Rab SO, Doukani K, Emran TB. Natural compounds and programmed necrosis: pioneering a new frontier in cancer treatments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04050-w. [PMID: 40137962 DOI: 10.1007/s00210-025-04050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Programmed necrosis, a controlled cell death method that bypasses resistance mechanisms that render apoptosis ineffective, is a potential cancer treatment target. Due to their diverse biological activities and low side effects, natural products are being explored as modulators of programmed necrosis pathways. This review highlights the potential of natural compounds to target cancer cells while preserving healthy tissues and their interaction with essential programmed necrosis mechanisms like ferroptosis and necroptosis. Recent developments have identified various types of programmable necrosis, including necroptosis, ferroptosis, pyroptosis, proptosis, mitochondrial permeability transition-driven necrosis, and oncosis. Natural compounds are increasingly being utilized as a primary source of anti-cancer medications, providing new cancer treatments. This review demonstrates the molecular mechanisms behind lipid peroxidation, mixed lineage kinase domain-like protein, and receptor-interacting protein kinases (RIPK1 and RIPK3) inducing cell death. Recent research has identified natural compounds like polyphenols, alkaloids, and terpenoids that can modulate pathways and benefit preclinical cancer models. The review underscores the potential of natural compounds in developing innovative cancer treatments by integrating pharmacology and cellular signaling knowledge. Integrating natural compound studies and programmed necrosis research presents a promising avenue for oncologists to overcome treatment resistance. Natural compounds have shown potential in developing programmed necrosis as a novel cancer treatment approach, enhancing therapeutic effectiveness and minimizing side effects through preclinical research, pharmacology, and molecular biology.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouhenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - M Akiful Haque
- School of Pharmacy, Anurag University, Venkatapur, Hyderabad, Telangana , 500088, India
| | - Rajeshwar Vodeti
- Deportment of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Centre, Kodagu, Karnataka, 571232, India
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, Faculty of Nature and Life Sciences, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| |
Collapse
|
4
|
Griffiths JI, Cosgrove PA, Medina EF, Nath A, Chen J, Adler FR, Chang JT, Khan QJ, Bild AH. Cellular interactions within the immune microenvironment underpins resistance to cell cycle inhibition in breast cancers. Nat Commun 2025; 16:2132. [PMID: 40032842 PMCID: PMC11876604 DOI: 10.1038/s41467-025-56279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Immune evasion by cancer cells involves reshaping the tumor microenvironment (TME) via communication with non-malignant cells. However, resistance-promoting interactions during treatment remain lesser known. Here we examine the composition, communication, and phenotypes of tumor-associated cells in serial biopsies from stage II and III high-risk estrogen receptor positive (ER+ ) breast cancers of patients receiving endocrine therapy (letrozole) as single agent or in combination with ribociclib, a CDK4/6-targeting cell cycle inhibitor. Single-cell RNA sequencing analyses on longitudinally collected samples show that in tumors overcoming the growth suppressive effects of ribociclib, first cancer cells upregulate cytokines and growth factors that stimulate immune-suppressive myeloid differentiation, resulting in reduced myeloid cell- CD8 + T-cell crosstalk via IL-15/18 signaling. Subsequently, tumors growing during treatment show diminished T-cell activation and recruitment. In vitro, ribociclib does not only inhibit cancer cell growth but also T cell proliferation and activation upon co-culturing. Exogenous IL-15 improves CDK4/6 inhibitor efficacy by augmenting T-cell proliferation and cancer cell killing by T cells. In summary, response to ribociclib in stage II and III high-risk ER + breast cancer depends on the composition, activation phenotypes and communication network of immune cells.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA.
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX, USA
| | - Qamar J Khan
- Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, USA.
| |
Collapse
|
5
|
Zhou L, Li L, Yang J, Mansuer M, Deng X, Wang Y, Ren H, Cui D, Jiang Y, Gao L. TNFAIP3 affects ferroptosis after traumatic brain injury by affecting the deubiquitination and ubiquitination pathways of the HMOX1 protein and ACSL3. Free Radic Biol Med 2025; 228:221-239. [PMID: 39743027 DOI: 10.1016/j.freeradbiomed.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The occurrence and progression of traumatic brain injury involve a complex process. The pathophysiological mechanisms triggered by neuronal damage include various forms of programmed cell death, including ferroptosis. We observed upregulation of TNFAIP3 in mice after traumatic brain injury. Overexpression of TNFAIP3 inhibits HT-22 proliferation and cell viability through ferroptosis. Mechanistically, TNFAIP3 interacts with the HMOX1 protein and promotes its stability through the deubiquitination pathway. Additionally, TNFAIP3 can enhance lipoperoxidation, mitochondrial damage, and neuronal cell death by promoting ACSL3 degradation via NEDD4-mediated ubiquitination. Mice injected with AAV-shTNFAIP3 exhibited reduced neuronal degeneration and improved motor and cognitive function following cortical impact injury. In conclusion, our findings demonstrate that TNFAIP3 deficiency inhibits neuronal cell ferroptosis and ameliorates cognitive impairment caused by traumatic brain injury and demonstrate its potential applicability in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinghao Yang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Ren
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200435, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Bi S, Yang R, Ju H, Liu Y. Dynamic Nanostructure-Based DNA Logic Gates for Cancer Diagnosis and Therapy. Chembiochem 2025; 26:e202400754. [PMID: 39429047 DOI: 10.1002/cbic.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
DNA logic gates with dynamic nanostructures have made a profound impact on cancer diagnosis and treatment. Through programming the dynamic structure changes of DNA nanodevices, precise molecular recognition with signal amplification and smart therapeutic strategies have been reported. This enhances the specificity and sensitivity of cancer theranostics, and improves diagnosis precision and treatment outcomes. This review explores the basic components of dynamic DNA nanostructures and corresponding DNA logic gates, as well as their applications for cancer diagnosis and therapies. The dynamic DNA nanostructures would contribute to cancer early detection and personalized treatment.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruowen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Lei H, Hu J, Zhu J, Li R, Zhao Y, Zhao Y, He G, Song T, Lu C, Zheng W, Li L, Liu C, Chen H. Global research prospects and trends in TFH cells and tumors: a bibliometric analysis. Front Oncol 2025; 15:1443890. [PMID: 40027134 PMCID: PMC11867951 DOI: 10.3389/fonc.2025.1443890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Background T follicular helper (TFH) cells, a subset of CD4+Th cells, play a critical role in B cell activation, proliferation, and differentiation primarily within B follicles in secondary lymphoid organs, essential processes for effective antibody responses. TFH cells are also implicated in various conditions, including autoimmune diseases, cancer, infectious diseases, allergies, and vaccine reactions. Despite their broad impact, a review of the literature on TFH cells and tumors has not been conducted. We aimed to fill this gap by providing a detailed analysis of the research landscape concerning TFH cells and tumors. Method We conducted a bibliometric analysis of literature on TFH cells and tumors from 2012 to 2024 using the Web of Science Core Collection (WoSCC). For an analysis of the global research landscape, we employed VOSviewer (version 1.6.20), CiteSpace 6.2.R6 software, and the "bibliometric" package in R language (version 4.3.2) to evaluate data on countries/regions, authors and cited authors, institutions, journals, references, and keywords. We also conducted a systematic review to summarize the global research trends, prospects, and hotspots in this field. Results Our analysis included contributions from 60 countries/regions, 7,864 authors, 35,853 cited authors, 1,756 institutions, 385 academic journals, 50883 references, 222 keywords, and 1,181published papers. Over the past decade, the volume of research on TFH cells and tumors had consistently increased. China published the most papers, more than double that of the United States. The top 2 authors ranked by publication volume were Gaulard, Philippe (14 articles, 379 citations), and De leval, Laurence (12 articles, 236 citations) Notably, 9 of the top 10 most published institutions were from China. Frontiers in Immunology and Immunity were the leading journals in publications and citations. A cluster analysis revealed a shift in research focus from "expression","B cells" and "survival" to "tumor microenvironment", "tumor infiltrating immune cells" and "immune infiltration" in recent years. Conclusion This bibliometric analysis suggests that TFH cells hold significant research value and potential clinical applications in tumor immunotherapy. Moreover, the bibliometric analysis offers valuable references and guidance for related research endeavors. It also points out the prevailing issues and challenges in TFH cell research, and underscores the need for further basic and clinical research to advance the related fields.
Collapse
Affiliation(s)
- Hao Lei
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junpeng Zhu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runze Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisheng He
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Song
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chong Lu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Hamakawa Y, Hirahara A, Hayashi A, Ito K, Shinohara H, Shiba A, Higashi Y, Aga M, Miyazaki K, Taniguchi Y, Misumi Y, Agemi Y, Nakamura Y, Shimokawa T, Okamoto H. Prognostic value of systemic immune-inflammation index in patients with small-cell lung cancer treated with immune checkpoint inhibitors. BMC Cancer 2025; 25:17. [PMID: 39762819 PMCID: PMC11706134 DOI: 10.1186/s12885-025-13440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION The systemic immune-inflammation index (SII) has emerged as a promising prognostic marker in various malignancies. However, its prognostic significance in patients with small-cell lung cancer (SCLC) treated with immune checkpoint inhibitors (ICIs) remains unclear. In this study, we evaluated the prognostic impact of the SII in patients with SCLC after ICI use. METHODS Of 62 patients with SCLC who received chemoimmunotherapy at our institution between September 2019 and July 2024, we retrospectively analyzed 36 patients who subsequently received ICI maintenance therapy following the initial chemoimmunotherapy treatment. The SII was calculated at the start of the second cycle of the ICI maintenance therapy. Patients were stratified into high (≥ 570) and low (< 570) SII groups. Overall survival (OS) and progression-free survival (PFS) were compared between the groups using the Kaplan-Meier method and log-rank test. Multivariate analysis using the Cox proportional hazards model was performed to identify independent prognostic factors. RESULTS The high SII group exhibited a significantly shorter OS (median 12.1 vs. 24.1 months, P = 0.010) and PFS (median 5.2 vs. 8.1 months, P = 0.026) than those in the low SII group. A multivariate analysis identified SII ≥ 570 as an independent negative prognostic factor for OS (hazard ratio 3.83, 95% confidence interval 1.38-10.6, P = 0.010). CONCLUSIONS Elevated SII in the initial phase of ICI maintenance therapy was associated a with poor prognosis in patients with SCLC, supporting its utility as a prognostic biomarker in this setting. Therefore, prospective validation is required to confirm these findings.
Collapse
Affiliation(s)
- Yusuke Hamakawa
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan.
| | - Ayumi Hirahara
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Akiko Hayashi
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Kota Ito
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Hiroyuki Shinohara
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Aya Shiba
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Yuko Higashi
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Masaharu Aga
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Kazuhito Miyazaki
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Yuri Taniguchi
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Yuki Misumi
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Yoko Agemi
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Yukiko Nakamura
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Tsuneo Shimokawa
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| | - Hiroaki Okamoto
- Department of Respiratory Medicine and Oncology, Yokohama Municipal Citizen's Hospital, 1-1, Mitsuzawa Nishimachi, Kanagawa Ku, Yokohama, 221-0855, Japan
| |
Collapse
|
10
|
Dimopoulou K, Tiniakos D, Arkadopoulos N, Foukas PG. Landscape of B lymphocytes and plasma cells in digestive tract carcinomas. Ann Gastroenterol 2025; 38:1-11. [PMID: 39802286 PMCID: PMC11724378 DOI: 10.20524/aog.2024.0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 01/16/2025] Open
Abstract
Digestive tract carcinomas are the most commonly occurring cancers worldwide, but their prognosis with traditional treatments remains poor. T lymphocytes are well-recognized as crucial components of effective anti-tumor immunity, and current immunotherapeutic strategies concentrate mainly on T-cell-mediated immunity reinforcement, whereas the role of B lymphocytes and plasma cells (PCs) has been neglected in the past, and it is only recently that these cells have been considered as key players in the tumor microenvironment (TME). In this review, we describe the complex dual role of B lymphocytes and PCs in promoting and inhibiting tumor progression in the TME of digestive tract carcinomas, and we demonstrate their prognostic value. Furthermore, we highlight their controversial function in cancer and nominate them as additional therapeutic targets for the development of new treatment interventions that might alter the dismal prognosis of digestive tract tumors.
Collapse
Affiliation(s)
- Konstantina Dimopoulou
- Department of Gastroenterology, “Hippokration” General Hospital of Athens, Greece (Konstantina Dimopoulou)
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Dina Tiniakos)
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK (Dina Tiniakos)
| | - Nikolaos Arkadopoulos
- 4 Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Nikolaos Arkadopoulos)
| | - Periklis G. Foukas
- 2 Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Periklis G. Foukas)
| |
Collapse
|
11
|
Lin F, Yin S, Zhang Z, Yu Y, Fang H, Liang Z, Zhu R, Zhou H, Li J, Cao K, Guo W, Qin S, Zhang Y, Lu C, Li H, Liu S, Zhang H, Ye B, Lin J, Li Y, Kang X, Xi JJ, Chen PR. Multimodal targeting chimeras enable integrated immunotherapy leveraging tumor-immune microenvironment. Cell 2024; 187:7470-7491.e32. [PMID: 39504957 DOI: 10.1016/j.cell.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Although immunotherapy has revolutionized cancer treatment, its efficacy is affected by multiple factors, particularly those derived from the complexity and heterogeneity of the tumor-immune microenvironment (TIME). Strategies that simultaneously and synergistically engage multiple immune cells in TIME remain highly desirable but challenging. Herein, we report a multimodal and programmable platform that enables the integration of multiple therapeutic modules into single agents for tumor-targeted co-engagement of multiple immune cells within TIME. We developed the triple orthogonal linker (T-Linker) technology to integrate various therapeutic small molecules and biomolecules as multimodal targeting chimeras (Multi-TACs). The EGFR-CD3-PDL1 Multi-TAC facilitated T-dendritic cell co-engagement to target solid tumors with excellent efficacy, as demonstrated in vitro, in several humanized mouse models and in patient-derived tumor models. Furthermore, Multi-TACs were constructed to coordinate T cells with other immune cell types. The highly modular and programmable feature of our Multi-TACs may find broad applications in immunotherapy and beyond.
Collapse
Affiliation(s)
- Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Shenyi Yin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zijian Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Ying Yu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Haoming Fang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Rujie Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haitao Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Kunxia Cao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiming Guo
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Heng Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Buqing Ye
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| | - Yan Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210061, China; National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China.
| | - Xiaozheng Kang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Nakabayashi Y, Kiuchi J, Kubota T, Ohashi T, Nishibeppu K, Imamura T, Nanishi K, Shimizu H, Arita T, Yamamoto Y, Konishi H, Morimura R, Komatsu S, Shiozaki A, Ikoma H, Kuriu Y, Fujiwara H, Tsuda H, Otsuji E. A novel semi-quantitative scoring method for CD8+ tumor-infiltrating lymphocytes based on infiltration sites in gastric cancer. Am J Cancer Res 2024; 14:5965-5986. [PMID: 39803654 PMCID: PMC11711524 DOI: 10.62347/jkcu5881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
No established method currently exists for evaluating tumor-infiltrating lymphocytes (TILs) in gastric cancer (GC), and their clinical significance based on infiltration site in GC remains unclear. In this study, we developed a method to evaluate TILs according to their infiltration site as a prognostic marker for GC. We retrospectively analyzed 103 patients with advanced GC who underwent curative resection. TILs located at the invasive margin (TILIM) and the center of tumors (TILCT) were scored semi-quantitatively using immunohistochemical staining of CD8+ T cells. The sum of the TILIM and TILCT scores was defined as the TILs score. Based on this score, patients were classified into low and high TILs groups. Quantitative TILs were also assessed to validate the semi-quantitative scoring method. Furthermore, we confirmed a tumor suppressive effect due to CD8+ T cells co-cultured in GC cell lines in vitro. In the univariate analysis, patients with low TILIM were significantly more likely to be female, younger, and have undifferentiated histological types and deeper tumor invasion compared to those with high TILIM. Similarly, patients with low TILCT had significantly more positive lymph node metastases than those with high TILCT. In the multivariate analysis, deeper tumor invasion and positive lymph node metastasis were identified as independent risk factors for patients with low TILIM and low TILCT, respectively. According to our semi-quantitative TILs scoring method, the low TILs group had significantly poorer prognoses compared to the high TILs group. This group had significantly larger tumor diameters, deeper tumor invasion, and more positive lymph node metastases. Additionally, deeper tumor invasion was an independent risk factor for the low TILs group. Quantitative TILs analysis revealed that the low TILs group had significantly lower TIL levels compared to the high TILs group. In vitro, CD8+ T cells induced apoptosis in GC cells in a concentration-dependent manner. Furthermore, these cells significantly suppressed the proliferative, migratory, and invasive capacities of GC cells. Our simple and versatile semi-quantitative scoring method for CD8+ TILs indicates that CD8+ TILs are sensitive prognostic markers. The low TILs group accurately reflects the low quantitative TIL levels and is associated with poor oncological prognosis.
Collapse
Affiliation(s)
- Yudai Nakabayashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kenji Nanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical CollegeTokorozawa, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Obeagu EI, Obeagu GU. Lymphocyte infiltration in breast cancer: A promising prognostic indicator. Medicine (Baltimore) 2024; 103:e40845. [PMID: 39654199 PMCID: PMC11631027 DOI: 10.1097/md.0000000000040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, necessitating the identification of reliable prognostic markers to guide treatment and improve patient outcomes. Recent research has highlighted the prognostic significance of tumor-infiltrating lymphocytes (TILs) in breast cancer, with high levels of TILs being associated with improved survival rates and better responses to therapy. This review delves into the mechanisms driving lymphocyte infiltration, its clinical implications, and the potential for TILs to serve as predictive biomarkers in breast cancer management. The presence of TILs within the tumor microenvironment reflects a dynamic interplay between tumor cells and the host immune system. Chemokine signaling, antigen presentation, and immune checkpoint interactions are key mechanisms that facilitate the recruitment and activity of lymphocytes at the tumor site. Clinically, the density of TILs varies across breast cancer subtypes, with the most significant prognostic value observed in triple-negative and HER2-positive breast cancers. High TIL levels correlate with improved overall survival and disease-free survival, underscoring their potential as a valuable prognostic indicator. Therapeutically, the role of TILs has opened new avenues in breast cancer treatment, particularly in the realm of immunotherapy. Immune checkpoint inhibitors, adoptive cell therapy, and combination therapies leveraging TILs are being explored to enhance antitumor responses. As research progresses, the integration of TIL assessment into routine clinical practice could revolutionize personalized treatment strategies, ultimately improving prognostic accuracy and patient outcomes in breast cancer care.
Collapse
|
14
|
Fiorin A, López Pablo C, Lejeune M, Hamza Siraj A, Della Mea V. Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2996-3008. [PMID: 38806950 PMCID: PMC11612116 DOI: 10.1007/s10278-024-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
The field of immunology is fundamental to our understanding of the intricate dynamics of the tumor microenvironment. In particular, tumor-infiltrating lymphocyte (TIL) assessment emerges as essential aspect in breast cancer cases. To gain comprehensive insights, the quantification of TILs through computer-assisted pathology (CAP) tools has become a prominent approach, employing advanced artificial intelligence models based on deep learning techniques. The successful recognition of TILs requires the models to be trained, a process that demands access to annotated datasets. Unfortunately, this task is hampered not only by the scarcity of such datasets, but also by the time-consuming nature of the annotation phase required to create them. Our review endeavors to examine publicly accessible datasets pertaining to the TIL domain and thereby become a valuable resource for the TIL community. The overall aim of the present review is thus to make it easier to train and validate current and upcoming CAP tools for TIL assessment by inspecting and evaluating existing publicly available online datasets.
Collapse
Affiliation(s)
- Alessio Fiorin
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Carlos López Pablo
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain.
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Pathology, Hospital de Tortosa Verge de la Cinta (HTVC), Institut Català de la Salut (ICS), C/Esplanetes no 14, 43500, Tortosa, Spain
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Ameer Hamza Siraj
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Vincenzo Della Mea
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| |
Collapse
|
15
|
Wei Z, Gong B, Li X, Chen C, Zhao Q. Event-free survival in neuroblastoma with MYCN amplification and deletion of 1p or 11q may be associated with altered immune status. BMC Cancer 2024; 24:1279. [PMID: 39407175 PMCID: PMC11481459 DOI: 10.1186/s12885-024-13044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Neuroblastoma exhibits substantial heterogeneity, which is intricately linked to various genetic alterations. We aimed to explore immune status in the peripheral blood and prognosis of patients with neuroblastoma with different genetic characteristics. METHODS We enrolled 31 patients with neuroblastoma and collected samples to detect three genetic characteristics. Peripheral blood samples were tested for immune cells and cytokines by fluorescent microspheres conjugated with antibodies and flow cytometry. Event-free survival (EFS) was analyzed using the Kaplan‒Meier method. RESULTS Twenty-two patients had genetic aberrations, including MYCN amplification in 6 patients, chromosome 1p deletion in 9 patients, and chromosome 11q deletion in 14 patients. Two genetic alterations were present in seven patients. The EFS was worse in patients with MYCN amplification or 1p deletion than in the corresponding group, whereas 11q deletion was a prognostic factor only in patients with unamplified MYCN. Changes in immune status revealed a decrease in the proportion of T cells in blood, and an increase in regulatory T cells and immunosuppression-related cytokines such as interleukin (IL)-10. The EFS of the IL-10 high-level group was lower than that of the low-level group. Patients with concomitant genetic alterations and a high level of IL-10 had worse EFS than other patients. CONCLUSIONS Patients with neuroblastoma characterized by these genetic characteristics often have suppressed T cell response and an overabundance of immunosuppressive cells and cytokines in the peripheral blood. This imbalance is significantly associated with poor EFS. Moreover, if these patients show an elevated levels of immunosuppressive cytokines such as IL-10, the prognosis will be worse.
Collapse
Affiliation(s)
- Zixuan Wei
- Department of Pediatric Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, 300060, Tianjin, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baocheng Gong
- Department of Pediatric Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, 300060, Tianjin, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xin Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Chong Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- National Human Genetic Resources Sharing Service Platform, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, 300060, Tianjin, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
16
|
Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals (Basel) 2024; 17:1048. [PMID: 39204153 PMCID: PMC11357454 DOI: 10.3390/ph17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The establishment and utilization of preclinical animal models constitute a pivotal aspect across all facets of cancer research, indispensably contributing to the comprehension of disease initiation and progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic approaches. These models have emerged as crucial bridges between basic and clinical research, offering multifaceted support to clinical investigations. This study initially focuses on the importance and benefits of establishing preclinical animal models, discussing the different types of preclinical animal models and recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics of different stages of tumor development and the development of anti-cancer drugs. By integrating tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and present an outlook on the prospects and challenges associated with preclinical animal models. These models undoubtedly offer new avenues for cancer research, encompassing drug development and personalized anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles. Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.
Collapse
Affiliation(s)
- Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| |
Collapse
|
17
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Ma X, Cui M, Guo Y. Bioinformatics analysis of the association between obesity and gastric cancer. Front Genet 2024; 15:1385559. [PMID: 39011399 PMCID: PMC11246963 DOI: 10.3389/fgene.2024.1385559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background Obesity and gastric cancer (GC) are prevalent diseases worldwide. In particular, the number of patients with obesity is increasing annually, while the incidence and mortality rates of GC are ranked high. Consequently, these conditions seriously affect the quality of life of individuals. While evidence suggests a strong association between these two conditions, the underlying mechanisms of this comorbidity remain unclear. Methods We obtained the gene expression profiles of GSE94752 and GSE54129 from the Gene Expression Omnibus database. To investigate the associated biological processes, pathway enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes for the shared differentially expressed genes in obesity and GC. A protein-protein interaction (PPI) network was subsequently established based on the Search Tool for the Retrieval of Interacting Genes (STRING) database, followed by the screening of the core modules and central genes in this network using Cytoscape plug-in MCODE. Furthermore, we scrutinized the co-expression network and the interplay network of transcription factors (TFs), miRNAs, and mRNAs linked to these central genes. Finally, we conducted further analyses using different datasets to validate the significance of the hub genes. Results A total of 246 shared differentially expressed genes (209 upregulated and 37 downregulated) were selected for ensuing analyses. Functional analysis emphasized the pivotal role of inflammation and immune-associated pathways in these two diseases. Using the Cytoscape plug-in CytoHubba, nine hub genes were identified, namely, CXCR4, CXCL8, CXCL10, IL6, TNF, CCL4, CXCL2, CD4, and CCL2. IL6 and CCL4 were confirmed as the final hub genes through validation using different datasets. The TF-miRNA-mRNA regulatory network showed that the TFs primarily associated with the hub genes included RELA and NFKB1, while the predominantly associated miRNAs included has-miR-195-5p and has-miR-106a-5p. Conclusion Using bioinformatics methods, we identified two hub genes from the Gene Expression Omnibus datasets for obesity and GC. In addition, we constructed a network of hub genes, TFs, and miRNAs, and identified the major related TFs and miRNAs. These factors may be involved in the common molecular mechanisms of obesity and GC.
Collapse
Affiliation(s)
- Xiaole Ma
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Miao Cui
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuntong Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Zaakouk M, Longworth A, Hunter K, Jiman S, Kearns D, El-Deftar M, Shaaban AM. Detailed Profiling of the Tumor Microenvironment in Ethnic Breast Cancer, Using Tissue Microarrays and Multiplex Immunofluorescence. Int J Mol Sci 2024; 25:6501. [PMID: 38928207 PMCID: PMC11203983 DOI: 10.3390/ijms25126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer poses a global health challenge, yet the influence of ethnicity on the tumor microenvironment (TME) remains understudied. In this investigation, we examined immune cell infiltration in 230 breast cancer samples, emphasizing diverse ethnic populations. Leveraging tissue microarrays (TMAs) and core samples, we applied multiplex immunofluorescence (mIF) to dissect immune cell subtypes across TME regions. Our analysis revealed distinct immune cell distribution patterns, particularly enriched in aggressive molecular subtypes triple-negative and HER2-positive tumors. We observed significant correlations between immune cell abundance and key clinicopathological parameters, including tumor size, lymph node involvement, and patient overall survival. Notably, immune cell location within different TME regions showed varying correlations with clinicopathologic parameters. Additionally, ethnicities exhibited diverse distributions of cells, with certain ethnicities showing higher abundance compared to others. In TMA samples, patients of Chinese and Caribbean origin displayed significantly lower numbers of B cells, TAMs, and FOXP3-positive cells. These findings highlight the intricate interplay between immune cells and breast cancer progression, with implications for personalized treatment strategies. Moving forward, integrating advanced imaging techniques, and exploring immune cell heterogeneity in diverse ethnic cohorts can uncover novel immune signatures and guide tailored immunotherapeutic interventions, ultimately improving breast cancer management.
Collapse
Affiliation(s)
- Mohamed Zaakouk
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Aisling Longworth
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Kelly Hunter
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
| | - Suhaib Jiman
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Daniel Kearns
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Mervat El-Deftar
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| |
Collapse
|
20
|
Grigore A, Oproiu AM, Iancu I, Florescu IP. The Immune Response of Cutaneous Basosquamous- and Squamous-Cell Carcinoma Associated with Sun Exposure. Curr Oncol 2024; 31:2481-2487. [PMID: 38785466 PMCID: PMC11120243 DOI: 10.3390/curroncol31050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, there has been an observed increase in the frequency of cutaneous carcinoma, which correlates with sun exposure. This study aims to explore the variances of tumor characteristics and immune response markers among patients diagnosed with cutaneous squamous-cell carcinoma (SCC) and basosquamous-cell carcinoma (BSC) with varying levels of sun exposure. The objective is to elucidate the potential influence of sun exposure on tumor progression and immune response in these types of carcinomas. We conducted a retrospective observational study that included 132 patients diagnosed with SCC and BSC. Participants were separated into high- and low-sun exposure groups. Tumor characteristics and immune response markers, including lymphocyte percentage (LY%), neutrophil-to-lymphocyte ratio (NLR), and lymphocyte-to-monocyte ratio (LMR), were assessed using the Mann-Whitney U test. Our findings revealed the interplay between sun exposure, inflammation, aging, and immune response. In 80% of cases, it was found that individuals had high sun exposure throughout their lifetime. Patients in the high sun exposure category had a significantly higher LY% than those with low sun exposure (24.22 ± 7.64 vs. 20.71 ± 8.10, p = 0.041). Also, the NLR was lower in patients with high sun exposure (3.08 ± 1.47 vs. 3.94 ± 2.43, p = 0.023). Regarding inflammatory markers, the erythrocyte sedimentation rate (ESR), LY%, NLR, and LMR showed significant differences between the two groups. Patients who were diagnosed with SCC had higher ESR values (p = 0.041), higher LY% (p = 0.037), higher NLR (p = 0.041), and lower LMR (p = 0.025). This study provides evidence supporting distinct tumor characteristics and immune response patterns in patients diagnosed with SCC and BSC with a high sun exposure history. These findings imply that sun exposure may contribute to tumor progression and influence the immune response in individuals with SCC and BSC.
Collapse
Affiliation(s)
- Anamaria Grigore
- Plastic Surgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana-Maria Oproiu
- Plastic Surgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Plastic Surgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Ioana Iancu
- Manchester Centre for Clinical Neuroscience, Manchester M6 8HD, UK;
| | - Ioan-Petre Florescu
- Plastic Surgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
21
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
22
|
Wang L, Xiao Y, Luo Y, Master RP, Mo J, Kim MC, Liu Y, Maharjan CK, Patel UM, De U, Carelock ME, Tithi TI, Li X, Shaffer DR, Guertin KR, Zhuang H, Moser E, Smalley KS, Lv D, Zhou D, Zheng G, Zhang W. PROTAC-mediated NR4A1 degradation as a novel strategy for cancer immunotherapy. J Exp Med 2024; 221:e20231519. [PMID: 38334978 PMCID: PMC10857906 DOI: 10.1084/jem.20231519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME, we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here, we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level, NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC), all of which are known to be clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yuewan Luo
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Veterinary Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju-si, South Korea
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Urvi M. Patel
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Umasankar De
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tanzia Islam Tithi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | - Haoyang Zhuang
- Rheumatology and Clinical Immunology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily Moser
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Keiran S.M. Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology, Center of Innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, Center of Innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
24
|
Chang LY, Lee MZ, Wu Y, Lee WK, Ma CL, Chang JM, Chen CW, Huang TC, Lee CH, Lee JC, Tseng YY, Lin CY. Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles. Nucleic Acids Res 2024; 52:e17. [PMID: 38096046 PMCID: PMC10853793 DOI: 10.1093/nar/gkad1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Pathway analysis, including nontopology-based (non-TB) and topology-based (TB) methods, is widely used to interpret the biological phenomena underlying differences in expression data between two phenotypes. By considering dependencies and interactions between genes, TB methods usually perform better than non-TB methods in identifying pathways that include closely relevant or directly causative genes for a given phenotype. However, most TB methods may be limited by incomplete pathway data used as the reference network or by difficulties in selecting appropriate reference networks for different research topics. Here, we propose a gene set correlation enrichment analysis method, Gscore, based on an expression dataset-derived coexpression network to examine whether a differentially expressed gene (DEG) list (or each of its DEGs) is associated with a known gene set. Gscore is better able to identify target pathways in 89 human disease expression datasets than eight other state-of-the-art methods and offers insight into how disease-wide and pathway-wide associations reflect clinical outcomes. When applied to RNA-seq data from COVID-19-related cells and patient samples, Gscore provided a means for studying how DEGs are implicated in COVID-19-related pathways. In summary, Gscore offers a powerful analytical approach for annotating individual DEGs, DEG lists, and genome-wide expression profiles based on existing biological knowledge.
Collapse
Affiliation(s)
- Lan-Yun Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Zhan Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yujia Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Kai Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Liang Ma
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jun-Mao Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ciao-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chun Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 110, Taiwan
| | - Yu-Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
25
|
Wu Z, Jiao M, Shu C, Li C, Zhu Y. Tea intake and lung diseases: a Mendelian randomization study. Front Immunol 2024; 15:1328933. [PMID: 38375474 PMCID: PMC10875148 DOI: 10.3389/fimmu.2024.1328933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Background Existing studies on the relationship between tea intake and lung diseases have yielded inconsistent results, leading to an ongoing dispute on this issue. The impact of tea consumption on the respiratory system remained elucidating. Materials and methods We conducted a two-sample Mendelian randomization (MR) study to evaluate the associations between five distinct tea intake phenotypes and 15 different respiratory outcomes using open Genome-wide association study (GWAS) data. The inverse variance weighted (IVW) was used for preliminary screening and a variety of complementary methods were used as sensitivity analysis to validate the robustness of MR estimates. Pathway enrichment analysis was used to explore possible mechanisms. Results IVW found evidence for a causal effect of standard tea intake on an increased risk of lung squamous cell cancer (LSCC) (OR = 1.004; 95% CI = 1.001-1.007; P = 0.00299). No heterogeneity or pleiotropy was detected. After adjustment for potential mediators, including smoking, educational attainment, and time spent watching television, the association was still robust in multivariable MR. KEGG and GO enrichment predicted proliferation and activation of B lymphocytes may play a role in this causal relation. No causalities were observed when evaluating the effect of other kinds of tea intake on various pulmonary diseases. Conclusion Our MR estimates provide causal evidence of the independent effect of standard tea intake (black tea intake) on LSCC, which may be mediated by B lymphocytes. The results implied that the population preferring black tea intake should be wary of a higher risk of LSCC.
Collapse
Affiliation(s)
- Zhengyan Wu
- Department of Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenying Shu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chang Li
- Department of Pulmonary and Critical Care Medicine, Chongzhou People's Hospital, Chongzhou, China
| | - Yehan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Chia TY, Billingham LK, Boland L, Katz JL, Arrieta VA, Shireman J, Rosas AL, DeLay SL, Zillinger K, Geng Y, Kruger J, Silvers C, Wang H, Vazquez Cervantes GI, Hou D, Wang S, Wan H, Sonabend A, Zhang P, Lee-Chang C, Miska J. The CXCL16-CXCR6 axis in glioblastoma modulates T-cell activity in a spatiotemporal context. Front Immunol 2024; 14:1331287. [PMID: 38299146 PMCID: PMC10827847 DOI: 10.3389/fimmu.2023.1331287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.
Collapse
Affiliation(s)
- Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah K. Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Aurora-Lopez Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Susan L. DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kaylee Zillinger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeandre Kruger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gustavo Ignacio Vazquez Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Patel RK, Parappilly M, Rahman S, Schwantes IR, Sewell M, Giske NR, Whalen RM, Durmus NG, Wong MH. The Hallmarks of Circulating Hybrid Cells. Results Probl Cell Differ 2024; 71:467-485. [PMID: 37996690 DOI: 10.1007/978-3-031-37936-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
While tumor metastases represent the primary driver of cancer-related mortality, our understanding of the mechanisms that underlie metastatic initiation and progression remains incomplete. Recent work identified a novel tumor-macrophage hybrid cell population, generated through the fusion between neoplastic and immune cells. These hybrid cells are detected in primary tumor tissue, peripheral blood, and in metastatic sites. In-depth analyses of hybrid cell biology indicate that they can exploit phenotypic properties of both parental tumor and immune cells, in order to intravasate into circulation, evade the immune response, and seed tumors at distant sites. Thus, it has become increasingly evident that the development and dissemination of tumor-immune hybrid cells play an intricate and fundamental role in the metastatic cascade and can provide invaluable information regarding tumor characteristics and patient prognostication. In this chapter, we review the current understanding of this novel hybrid cell population, the specific hallmarks of cancer that these cells exploit to promote cancer progression and metastasis, and discuss exciting new frontiers that remain to be explored.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Marisa Sewell
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nicole R Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Riley M Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
28
|
Georgescu MT, Trifanescu OG, Serbanescu GL, Mitrica RI, Georgescu DE, Mihaila RI, Neagu A, Gaube A, Botezatu C, Manolescu Mastalier BS. Navigating a Complex Intersection: Immunotherapy and Radiotherapy Synergy in Squamous Cell Carcinoma of the Skin—A Comprehensive Literature Review. COSMETICS 2023; 10:165. [DOI: 10.3390/cosmetics10060165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Skin squamous cell carcinoma (SCC) represents a major public health concern due to its high incidence and potential for local invasion and metastasis. Compared to local recurrence, metastatic SCC represents an even greater therapeutic challenge. Once distant metastasis occurs, the disease becomes incurable, and treatment focuses on palliation and prolonging survival. The immune microenvironment of SCC is characterized by an infiltration of immune cells, including tumor-infiltrating lymphocytes. In addition to its direct cytotoxic effects, radiotherapy also induces immunomodulatory effects within the tumor microenvironment. Radiation can promote the release of tumor-associated antigens and induce immunogenic cell death, thereby enhancing the recognition of tumor cells by the immune system. Immunotherapy and radiotherapy have emerged as promising therapeutic modalities for metastatic SCC. This literature review aims to evaluate the potential synergy between these treatments and shed light on their combined efficacy. Within the manuscript, we present a compelling case report of a patient with advanced SCC who exhibited resistance to the combined regimen of immunotherapy and radiotherapy, leading to disease progression. Despite the increasing evidence supporting the synergy between these modalities, this case underscores the complex nature of treatment response and the importance of considering individual patient characteristics.
Collapse
Affiliation(s)
- Mihai Teodor Georgescu
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Oana Gabriela Trifanescu
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Georgia Luiza Serbanescu
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Radu Iulian Mitrica
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Dragos Eugen Georgescu
- “Dr. Ion Cantacuzino” Surgery Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Raluca Ioana Mihaila
- “Prof. Dr. AL. Trestioreanu” Oncology I Department, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Alexandra Neagu
- Radiotherapy 2 Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, 022328 Bucharest, Romania
| | - Alexandra Gaube
- “Prof. Dr. Matei Bals” National Institute of Infectious Diseases, 021105 Bucharest, Romania
| | - Cristian Botezatu
- Colentina Hospital Surgery Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | |
Collapse
|
29
|
Sahin A, Kocyigit I, Aslan K, Eroglu E, Demiray A, Eken A. Elevated checkpoint inhibitor expression and Treg cell number in autosomal dominant polycystic kidney disease and their correlation with disease parameters and hypertension. Clin Exp Med 2023; 23:3631-3640. [PMID: 36869968 DOI: 10.1007/s10238-023-01031-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) has cancer-like pathophysiology. In this study, we aimed to investigate the phenotype of peripheral blood (PB) T cell subsets and immune checkpoint inhibitor expression of ADPKD patients across different chronic kidney disease (CKD) stages. Seventy-two patients with ADPKD and twenty-three healthy controls were included in the study. The patients were grouped into five different CKD stages, according to glomerular filtration rate (GFR). PB mononuclear cells were isolated and T cell subsets and cytokine production were examined by flow cytometry. CRP levels, height-adjusted total kidney volume (htTKV), rate of hypertension (HT) differed significantly across different GFR stages in ADPKD. T cell phenotyping revealed significantly elevated CD3+ T cells, CD4+, CD8+, double-negative, and double-positive subsets and significantly elevated IFN-γ and TNF-α producing subsets of CD4+, CD8+ cells. The expression of checkpoint inhibitors CTLA-4, PD-1, and TIGIT by T cell subsets was also increased to various extent. Additionally, Treg cell numbers and suppressive markers CTLA-4, PD-1, and TIGIT were significantly elevated in ADPKD patients' PB. Treg CTLA4 expression and CD4CD8DP T cell frequency in patients with HT were significantly higher. Lastly, HT and increased htTKV and higher frequency of PD1+ CD8SP were found to be risk factors for rapid disease progression. Our data provide the first detailed analyses of checkpoint inhibitor expression by PB T cell subsets during stages of ADPKD, and that a higher frequency of PD1+ CD8SP cells is associated with rapid disease progression.
Collapse
Affiliation(s)
- Ali Sahin
- Division of Nephrology, Department of Internal Medicine, Erciyes University School of Medicine, 38030, Kayseri, Turkey
| | - Ismail Kocyigit
- Division of Nephrology, Department of Internal Medicine, Erciyes University School of Medicine, 38030, Kayseri, Turkey.
| | - Kubra Aslan
- Department of Medical Biology, Erciyes University School of Medicine, 38030, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Eray Eroglu
- Department of Nephrology, Kilis State Hospital, Kilis, Turkey
| | - Alparslan Demiray
- Division of Nephrology, Department of Internal Medicine, Erciyes University School of Medicine, 38030, Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, Erciyes University School of Medicine, 38030, Kayseri, Turkey.
- Betul Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| |
Collapse
|
30
|
Yu S, Wang S, Xiong B, Peng C. Gut microbiota: key facilitator in metastasis of colorectal cancer. Front Oncol 2023; 13:1270991. [PMID: 38023192 PMCID: PMC10643165 DOI: 10.3389/fonc.2023.1270991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of incidence among all kinds of cancer. The main cause of death is metastasis. Recent studies have shown that the gut microbiota could facilitate cancer metastasis by promoting cancer cells proliferation, invasion, dissemination, and survival. Multiple mechanisms have been implicated, such as RNA-mediated targeting effects, activation of tumor signaling cascades, secretion of microbiota-derived functional substances, regulation of mRNA methylation, facilitated immune evasion, increased intravasation of cancer cells, and remodeling of tumor microenvironment (TME). The understanding of CRC metastasis was further deepened by the mechanisms mentioned above. In this review, the mechanisms by which the gut microbiota participates in the process of CRC metastasis were reviewed as followed based on recent studies.
Collapse
Affiliation(s)
- Siyi Yu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
31
|
Zhang B, Chen X, Wang Z, Guo F, Zhang X, Huang B, Ma S, Xia S, Shang D. Identifying endoplasmic reticulum stress-related molecular subtypes and prognostic model for predicting the immune landscape and therapy response in pancreatic cancer. Aging (Albany NY) 2023; 15:10549-10579. [PMID: 37815881 PMCID: PMC10599750 DOI: 10.18632/aging.205094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Endoplasmic reticulum stress (ERS) is caused by the accumulation of intracellular misfolded or unfolded proteins and is associated with cancer development. In this study, pan-cancer analysis revealed complex genetic variations, including copy number variation, methylation, and somatic mutations for ERS-related genes (ERGs) in 33 kinds of cancer. Consensus clustering divided pancreatic cancer (PC) patients from TCGA and GEO databases into two ERS-related subtypes: ERGcluster A and B. Compared with ERGcluster A, ERGcluster B had a more active ERS state and worse prognosis. Subsequently, the ERS-related prognostic model was established to quantify the ERS score for a single sample. The patient with a low ERS score had remarkably longer survival times. ssGSEA and CIBERSORT algorithms revealed that activated B cells and CD8+ T cells had higher infiltration in the low ERS score group, but higher infiltration of activated CD4+ T cells, activated dendritic cells, macrophages, and neutrophils in the high ERS score group. Drug sensitivity analysis indicated the low ERS score group had a better response to gemcitabine, paclitaxel, 5-fluorouracil, oxaliplatin, and irinotecan. RT-qPCR validated that MET, MUC16, and KRT7 in the model had higher expression levels in pancreatic tumour tissues. Single-cell analysis further revealed that MET, MUC16, and KRT7 were mainly expressed in cancer cells in PC tumour microenvironment. In all, we first constructed the ERS-related molecular subtypes and prognostic model in PC. Our research highlighted the vital role of ERS in PC and contributed to further research on molecular mechanisms and novel therapeutic strategies for PC in the future.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shurong Ma
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shilin Xia
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Zhang S, Zhang W, Sun H, Xue R, Lv Q. Therapeutic potential of single-nucleotide polymorphism-mediated interleukin-6 receptor blockade in cancer treatment: A Mendelian randomization study. Heliyon 2023; 9:e20474. [PMID: 37810867 PMCID: PMC10556766 DOI: 10.1016/j.heliyon.2023.e20474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Background Interleukin-6 (IL-6) is a crucial member of the cytokine network and plays a pivotal role in the pathogenesis of various diseases, including cancer. IL-6 receptor (IL-6R) blockade is widely employed as a therapeutic strategy; however, its efficacy in anticancer therapy remains ambiguous. Methods An inverse variance-weighted Mendelian randomization (MR) analysis was conducted to assess the causal effects exerted by IL-6R blockade in remediating cancer. Drug-targeted single-nucleotide polymorphisms (SNPs) were introduced within 300 kb of the IL-6R gene. An instrumental variable comprising 26 SNPs represented IL-6 signaling downregulation and C-reactive protein level reduction. Datasets pertaining to the 33 types of cancer investigated in this study were acquired from the FinnGen genome-wide association study. Results The selected instrumental variable lowered fibrinogen levels, confirming its ability to mimic IL-6R blockade. IL-6R blockade exhibited therapeutic effects on five different cancer types documented in the FinnGen database (N = 334,364, including 76,781 cancer patients): bladder (odds ratios (OR) = 0.563), laryngeal (OR = 0.293), eye (OR = 0.098), gallbladder (OR = 0.059), and myeloid leukemia (OR = 0.442); however, it simultaneously elevated the risk of developing basal cell carcinoma (OR = 1.312) and melanoma (OR = 1.311). Sensitivity analyses did not alter the primary results. Conclusion Therefore, this study aimed to evaluate the potential and efficacy of SNP-based IL-6R blockade in treating cancer.
Collapse
Affiliation(s)
- Shuwan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hanxue Sun
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Rui Xue
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
33
|
Luo M, Wang X, Wu S, Yang C, Su Q, Huang L, Fu K, An S, Xie F, To KKW, Wang F, Fu L. A20 promotes colorectal cancer immune evasion by upregulating STC1 expression to block "eat-me" signal. Signal Transduct Target Ther 2023; 8:312. [PMID: 37607946 PMCID: PMC10444827 DOI: 10.1038/s41392-023-01545-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have induced durable clinical responses in a subset of patients with colorectal cancer (CRC). However, the dis-satisfactory response rate and the lack of appropriate biomarkers for selecting suitable patients to be treated with ICIs pose a major challenge to current immunotherapies. Inflammation-related molecule A20 is closely related to cancer immune response, but the effect of A20 on "eat-me" signal and immunotherapy efficacy remains elusive. We found that A20 downregulation prominently improved the antitumor immune response and the efficacy of PD-1 inhibitor in CRC in vitro and in vivo. Higher A20 expression was associated with less infiltration of immune cells including CD3 (+), CD8 (+) T cells and macrophages in CRC tissues and also poorer prognosis. Gain- and loss-A20 functional studies proved that A20 could decrease the "eat-me" signal calreticulin (CRT) protein on cell membrane translocation via upregulating stanniocalcin 1 (STC1), binding to CRT and detaining in mitochondria. Mechanistically, A20 inhibited GSK3β phosphorylating STC1 at Thr86 to slow down the degradation of STC1 protein. Our findings reveal a new crosstalk between inflammatory molecule A20 and "eat-me" signal in CRC, which may represent a novel predictive biomarker for selecting CRC patients most likely to benefit from ICI therapy.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qiao Su
- Laboratory Animal Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Lamei Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Fachao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
34
|
Sala A, Cameron JM, Brennan PM, Crosbie EJ, Curran T, Gray E, Martin-Hirsch P, Palmer DS, Rehman IU, Rattray NJW, Baker MJ. Global serum profiling: an opportunity for earlier cancer detection. J Exp Clin Cancer Res 2023; 42:207. [PMID: 37580713 PMCID: PMC10426107 DOI: 10.1186/s13046-023-02786-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
The advances in cancer research achieved in the last 50 years have been remarkable and have provided a deeper knowledge of this disease in many of its conceptual and biochemical aspects. From viewing a tumor as a 'simple' aggregate of mutant cells and focusing on detecting key cell changes leading to the tumorigenesis, the understanding of cancer has broadened to consider it as a complex organ interacting with its close and far surroundings through tumor and non-tumor cells, metabolic mechanisms, and immune processes. Metabolism and the immune system have been linked to tumorigenesis and malignancy progression along with cancer-specific genetic mutations. However, most technologies developed to overcome the barriers to earlier detection are focused solely on genetic information. The concept of cancer as a complex organ has led to research on other analytical techniques, with the quest of finding a more sensitive and cost-effective comprehensive approach. Furthermore, artificial intelligence has gained broader consensus in the oncology community as a powerful tool with the potential to revolutionize cancer diagnosis for physicians. We herein explore the relevance of the concept of cancer as a complex organ interacting with the bodily surroundings, and focus on promising emerging technologies seeking to diagnose cancer earlier, such as liquid biopsies. We highlight the importance of a comprehensive approach to encompass all the tumor and non-tumor derived information salient to earlier cancer detection.
Collapse
Affiliation(s)
| | | | - Paul M Brennan
- Translational Neurosurgery, Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Division of Gynecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Tom Curran
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Ewan Gray
- Independent Health Economics Consultant, Edinburgh, UK
| | - Pierre Martin-Hirsch
- Gynecological Oncology, Clinical Research Facility, Lancashire Teaching Hospitals, Preston, PR2 9HT, UK
| | - David S Palmer
- Dxcover Limited, Glasgow, G1 1XW, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ihtesham U Rehman
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Matthew J Baker
- Dxcover Limited, Glasgow, G1 1XW, UK.
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK.
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
35
|
Wang L, Xiao Y, Luo Y, Master RP, Mo J, Kim MC, Liu Y, Patel UM, Li X, Shaffer D, Guertin KR, Moser E, Smalley KS, Zhou D, Zheng G, Zhang W. Unleashing the Power of NR4A1 Degradation as a Novel Strategy for Cancer Immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552650. [PMID: 37609171 PMCID: PMC10441411 DOI: 10.1101/2023.08.09.552650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple tumor-promoting cell types and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME. Using genetic and pharmacological approaches, we establish NR4A1 as a valid therapeutic target for cancer therapy. Importantly, we have developed the first-of-its kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 effectively degrades NR4A1 within hours of treatment in vitro and sustains for at least 4 days in vivo, exhibiting long-lasting NR4A1-degradation in tumors and an excellent safety profile. NR-V04 leads to robust tumor inhibition and sometimes eradication of established melanoma tumors. At the mechanistic level, we have identified an unexpected novel mechanism via significant induction of tumor-infiltrating (TI) B cells as well as an inhibition of monocytic myeloid derived suppressor cells (m-MDSC), two clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anti-cancer immune responses and offers a new avenue for treating various types of cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yuewan Luo
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Current: Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Rohan P Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Current: College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Current: R & D, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Veterinary Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju-si, Jeju-do, South Korea 63243
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Urvi M Patel
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Kevin R Guertin
- Sanofi Integrated Drug Discovery, Sanofi, Cambridge, MA 01890
| | - Emily Moser
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Keiran S Smalley
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Current: Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
- Current: College of Medicine, Florida State University, Tallahassee, FL 32306, USA
- Current: R & D, Thermo Fisher Scientific, Alachua, FL 32615, USA
- Veterinary Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju-si, Jeju-do, South Korea 63243
- Sanofi Oncology, Sanofi, Cambridge, MA 01890
- Sanofi Integrated Drug Discovery, Sanofi, Cambridge, MA 01890
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 12902
- Department of Biochemistry & Structural Biology, Center of innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Center of innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
37
|
Caponio VCA, Zhurakivska K, Lo Muzio L, Troiano G, Cirillo N. The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:3779. [PMID: 37568595 PMCID: PMC10417065 DOI: 10.3390/cancers15153779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
A still unresolved issue surrounding tumor formation concerns the role that the immune system plays in preventing the formation and progression of neoplasia, including oral squamous cell carcinoma (OSCC). Antitumor immunity has historically been seen as a critical barrier for cancer cells to develop, grow and spread, and this can be modulated using immunotherapies to achieve antitumor clinical responses. However, it has recently become clear that tumor-associated immunity, particularly the inflammatory microenvironment, has the paradoxical effect of enhancing tumorigenesis and progression. In this review, we discuss the multifaceted function of infiltrating immune cells in suppressing or promoting premalignancy and cancer. In particular, we report on the evidence supporting a role for T lymphocytes, dendritic cells, macrophages, and neutrophils in the development and progression of oral potentially malignant disorders (OPMD) and OSCC. We also draw attention to the clinical relevance of immune cell phenotypes and associated molecules for use as biomarkers and to the translatability of current research findings to improve classification systems and precision medicine in patients with OSCC.
Collapse
Affiliation(s)
- Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (V.C.A.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
38
|
Cai H, Chen Y, Zhang Q, Liu Y, Jia H. High preoperative CEA and systemic inflammation response index (C-SIRI) predict unfavorable survival of resectable colorectal cancer. World J Surg Oncol 2023; 21:178. [PMID: 37291634 DOI: 10.1186/s12957-023-03056-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND CEA and systemic inflammation were reported to correlate with proliferation, invasion, and metastasis of colorectal cancer. This study investigated the prognostic significance of the preoperative CEA and systemic inflammation response index (C-SIRI) in patients with resectable colorectal cancer. METHODS Two hundred seventeen CRC patients were recruited from Chongqing Medical University, the first affiliated hospital, between January 2015 and December 2017. Baseline characteristics, preoperative CEA level, and peripheral monocyte, neutrophil, and lymphocyte counts were retrospectively reviewed. The optimal cutoff value for SIRI was defined as 1.1, and for CEA, the best cutoff values were 4.1 ng/l and 13.0 ng/l. Patients with low levels of CEA (< 4.1 ng/l) and SIRI (< 1.1) were assigned a value of 0, those with high levels of CEA (≥ 13.0 ng/l) and SIRI (≥ 1.1) were assigned a value of 3, and those with CEA (4.1-13.0 ng/l) and SIRI (≥ 1.1), CEA (≥ 13.0 ng/l), and SIRI (< 1.1) were assigned a value of 2. Those with CEA (< 4.1 ng/l) and SIRI (≥ 1.1) and CEA (4.1-13.0 ng/l) and SIRI (< 1.1) were assigned a value of 1. The prognostic value was assessed based on univariate and multivariate survival analysis. RESULTS Preoperative C-SIRI was statistically correlated with gender, site, stage, CEA, OPNI, NLR, PLR, and MLR. However, no difference was observed between C-SIRI and age, BMI, family history of cancer, adjuvant therapy, and AGR groups. Among these indicators, the correlation between PLR and NLR is the strongest. In addition, high preoperative C-SIRI was significantly correlated with poorer overall survival (OS) (HR: 2.782, 95% CI: 1.630-4.746, P < 0.001) based on univariate survival analysis. Moreover, it remained an independent predictor for OS (HR: 2.563, 95% CI: 1.419-4.628, p = 0.002) in multivariate Cox regression analysis. CONCLUSION Our study showed that preoperative C-SIRI could serve as a significant prognostic biomarker in patients with resectable colorectal cancer.
Collapse
Affiliation(s)
- Hao Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qiao Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - HouJun Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
39
|
Galadima M, Kotova I, Schmidt R, Pastor J, Schröder C, Rodríguez-Gil JE, Del Alamo MMR. Canine Mammary Neoplasia Induces Variations in the Peripheral Blood Levels of CD20, CD45RA, and CD99. Int J Mol Sci 2023; 24:ijms24119222. [PMID: 37298173 DOI: 10.3390/ijms24119222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The idea of using tumour biomarkers as diagnostic tools is progressively increasing. Of these, serum biomarkers are of particular interest, as they can provide rapid results. In the present study, serum samples from 26 bitches diagnosed with mammary tumours, plus 4 healthy bitches, were obtained. The samples were analysed using CD antibody microarrays targeting 90 CD surface markers and 56 cytokines/chemokines. A total of five CD proteins, namely CD20, CD45RA, CD53, CD59, and CD99, were selected and further analysed, utilizing immunoblotting techniques to validate the microarray results. CD45RA showed a significantly lower abundance in the serum samples from the bitches carrying mammary neoplasia in comparison to the healthy animals. Regarding CD99, the serum samples from the neoplastic bitches showed it in a significantly higher abundance than those from the healthy patients. Finally, CD20 showed a significantly higher abundance in bitches carrying a malignant mammary tumour in comparison to healthy patients, but no differential expression between malignant and benign tumours was observed. According to these results, both CD99 and CD45RA are indicators of mammary tumour presence, but without distinguishing between malignant and benign.
Collapse
Affiliation(s)
- Makchit Galadima
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Iuliia Kotova
- Sciomics GmbH, Karl-Landsteines-Straβe 6, 69151 Neckargemünd, Germany
| | - Ronny Schmidt
- Sciomics GmbH, Karl-Landsteines-Straβe 6, 69151 Neckargemünd, Germany
| | - Josep Pastor
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Joan Enric Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Montserrat Rivera Del Alamo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
40
|
Hou Y, Li J, Yu A, Deng K, Chen J, Wang Z, Huang L, Ma S, Dai X. FANCI is Associated with Poor Prognosis and Immune Infiltration in Liver Hepatocellular Carcinoma. Int J Med Sci 2023; 20:918-932. [PMID: 37324186 PMCID: PMC10266051 DOI: 10.7150/ijms.83760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: This study aimed to validate FANCI as a potential marker for both prognosis and therapy in liver hepatocellular carcinoma. Method: FANCI expression data were acquired from GEPIA, HPA, TCGA, and GEO databases. The impact of clinicopathological features was analyzed by UALCAN. The prognosis of Liver Hepatocellular Carcinoma (LIHC) patients with highly expressed FANCI was constructed utilizing Kaplan-Meier Plotter. GEO2R was employed to identify differentially expressed genes (DEGs). Metascape was used to analyze functional pathways correlations. Protein-Protein interaction (PPI) networks were generated by Cytoscape. Furthermore, molecular complex detection (MCODE) was utilized to recognize Hub genes, which were selected to establish a prognostic model. Lastly, the relationship between FANCI and immune cell infiltration in LIHC was examined. Results: Compared to adjacent tissues, FANCI expression levels were significantly higher in LIHC tissues and were positively correlated to the cancer grade, stage, and prior hepatitis B virus (HBV) infection. High expression of FANCI was found to be associated with poor prognosis in LIHC (HR=1.89, p<0.001). DEGs that were positively correlated with FANCI were involved in various processes, including the cell cycle, VEGF pathway, immune system processes, and biogenesis of ribonucleoproteins. MCM10, TPX2, PRC1, and KIF11 were identified as key genes closely related to FANCI and poor prognosis. A reliable five-variable prognostic model was constructed with strong predictive capability. Lastly, a positive correlation was observed between FANCI expression and tumor-infiltration levels of CD8+ T cells, B cells, regulatory T (Tregs), CD4+ T helper 2 (Th2), and macrophage M2 cells. Conclusion: FANCI may hold promise as a potential biomarker for predicting prognostic outcomes, and a valuable therapeutic target for LIHC patients, with a focus on anti-proliferation, anti-chemoresistance, and combination with immunotherapy.
Collapse
Affiliation(s)
- Yibo Hou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Jianing Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Albert Yu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Kexin Deng
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Jiawei Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Zixian Wang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Xiaoyong Dai
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
41
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
42
|
Finetti F, Paradisi L, Bernardi C, Pannini M, Trabalzini L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15082374. [PMID: 37190301 DOI: 10.3390/cancers15082374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial-mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucrezia Paradisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Clizia Bernardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Margherita Pannini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
43
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
44
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
45
|
Lam BM, Verrill C. Clinical Significance of Tumour-Infiltrating B Lymphocytes (TIL-Bs) in Breast Cancer: A Systematic Literature Review. Cancers (Basel) 2023; 15:cancers15041164. [PMID: 36831506 PMCID: PMC9953777 DOI: 10.3390/cancers15041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Although T lymphocytes have been considered the major players in the tumour microenvironment to induce tumour regression and contribute to anti-tumour immunity, much less is known about the role of tumour-infiltrating B lymphocytes (TIL-Bs) in solid malignancies, particularly in breast cancer, which has been regarded as heterogeneous and much less immunogenic compared to other common tumours like melanoma, colorectal cancer and non-small cell lung cancer. Such paucity of research could translate to limited opportunities for this most common type of cancer in the UK to join the immunotherapy efforts in this era of precision medicine. Here, we provide a systematic literature review assessing the clinical significance of TIL-Bs in breast cancer. Articles published between January 2000 and April 2022 were retrieved via an electronic search of two databases (PubMed and Embase) and screened against pre-specified eligibility criteria. The majority of studies reported favourable prognostic and predictive roles of TIL-Bs, indicating that they could have a profound impact on the clinical outcome of breast cancer. Further studies are, however, needed to better define the functional role of B cell subpopulations and to discover ways to harness this intrinsic mechanism in the fight against breast cancer.
Collapse
Affiliation(s)
- Brian M. Lam
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK
- Correspondence:
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
46
|
Zhang Q, Liu N, Wang J, Liu Y, Wang K, Zhang J, Pan X. The Recent Advance of Cell-Penetrating and Tumor-Targeting Peptides as Drug Delivery Systems Based on Tumor Microenvironment. Mol Pharm 2023; 20:789-809. [PMID: 36598861 DOI: 10.1021/acs.molpharmaceut.2c00629] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer has become the primary reason for industrial countries death. Although first-line treatments have achieved remarkable results in inhibiting tumors, they could have serious side effects because of insufficient selectivity. Therefore, specific localization of tumor cells is currently the main desire for cancer treatment. In recent years, cell-penetrating peptides (CPPs), as a kind of promising delivery vehicle, have attracted much attention because they mediate the high-efficiency import of large quantities of cargos in vivo and vitro. Unfortunately, the poor targeting of CPPs is still a barrier to their clinical application. In order to solve this problem, researchers use the various characteristics of tumor microenvironment and multiple receptors to improve the specificity toward tumors. This review focuses on the characteristics of the tumor microenvironment, and introduces the development of strategies and peptides based on these characteristics as drug delivery system in the tumor-targeted therapy.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
47
|
Hossain SM, Eccles MR. Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance. Int J Mol Sci 2023; 24:ijms24021601. [PMID: 36675114 PMCID: PMC9864717 DOI: 10.3390/ijms24021601] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is referred to as phenotype switching in melanoma, and it involves switching between quiescent and proliferative cell cycle states, and dramatic shifts in invasiveness, as well as changes in signaling pathways in the melanoma cells, and immune cell composition in the TME. Melanoma cell plasticity is associated with altered gene expression in immune cells and cancer-associated fibroblasts, as well as changes in extracellular matrix, which drive the metastatic cascade and therapeutic resistance. Therefore, resistance to therapy in melanoma is not only dependent on genetic evolution, but it has also been suggested to be driven by gene expression changes and adaptive phenotypic cell plasticity. This review discusses recent findings in melanoma phenotype switching, immunotherapy resistance, and the balancing of the homeostatic TME between the different melanoma cell subpopulations. We also discuss future perspectives of the biology of neural crest-like state(s) in melanoma.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
48
|
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12:3. [PMID: 36624542 PMCID: PMC9830930 DOI: 10.1186/s40164-022-00363-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer heterogeneity determines cancer progression, treatment effects, and prognosis. However, the precise mechanism for this heterogeneity remains unknown owing to its complexity. Here, we summarize the origins of breast cancer heterogeneity and its influence on disease progression, recurrence, and therapeutic resistance. We review the possible mechanisms of heterogeneity and the research methods used to analyze it. We also highlight the importance of cell interactions for the origins of breast cancer heterogeneity, which can be further categorized into cooperative and competitive interactions. Finally, we provide new insights into precise individual treatments based on heterogeneity.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Ling Zhan
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lan Luo
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
49
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
50
|
Tu JJ, Li HS, Yan H, Zhang XF. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning. Bioinformatics 2023; 39:6969103. [PMID: 36610709 PMCID: PMC9825263 DOI: 10.1093/bioinformatics/btac825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Spatially resolved gene expression profiles are the key to exploring the cell type spatial distributions and understanding the architecture of tissues. Many spatially resolved transcriptomics (SRT) techniques do not provide single-cell resolutions, but they measure gene expression profiles on captured locations (spots) instead, which are mixtures of potentially heterogeneous cell types. Currently, several cell-type deconvolution methods have been proposed to deconvolute SRT data. Due to the different model strategies of these methods, their deconvolution results also vary. RESULTS Leveraging the strengths of multiple deconvolution methods, we introduce a new weighted ensemble learning deconvolution method, EnDecon, to predict cell-type compositions on SRT data in this work. EnDecon integrates multiple base deconvolution results using a weighted optimization model to generate a more accurate result. Simulation studies demonstrate that EnDecon outperforms the competing methods and the learned weights assigned to base deconvolution methods have high positive correlations with the performances of these base methods. Applied to real datasets from different spatial techniques, EnDecon identifies multiple cell types on spots, localizes these cell types to specific spatial regions and distinguishes distinct spatial colocalization and enrichment patterns, providing valuable insights into spatial heterogeneity and regionalization of tissues. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/Zhangxf-ccnu/EnDecon. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Hong Yan
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong 999077, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | | |
Collapse
|