1
|
Suchanecka M, Grzelak J, Farzaneh M, Azizidoost S, Dari MAG, Józkowiak M, Data K, Domagała D, Niebora J, Kotrych K, Czerny B, Kamiński A, Torlińska-Walkowiak N, Bieniek A, Szepietowski J, Piotrowska-Kempisty H, Dzięgiel P, Mozdziak P, Kempisty B. Adipose derived stem cells - Sources, differentiation capacity and a new target for reconstructive and regenerative medicine. Biomed Pharmacother 2025; 186:118036. [PMID: 40194335 DOI: 10.1016/j.biopha.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) derived from adipose tissue with mesenchymal lineage differentiation potential and remarkable potential in regenerative medicine. ADSCs are easily sourced from adipose tissue, share regenerative characteristics akin to other MSCs. Their convenient adherence to plastic culture flasks, coupled with their capacity for in vitro expansion and multi-lineage differentiation, underscores their promise as a robust tool for tissue repair and enhancement. The accessibility of human adipose tissue and the development of minimally invasive isolation protocols have further propelled the autologous use of ADSCs, fueling excitement in both organ repair and regenerative medicine. Consequently, research in ADSCsis experiencing rapid growth. A detailed overview of the current landscape of ADSCs isolation and differentiation capacity including the latest advancements in ADSCs usage, encompassing ongoing clinical investigations are important considerations to understand their potential to shape the landscape of regenerative medicine.
Collapse
Affiliation(s)
- Małgorzata Suchanecka
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznań 61-631, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Katarzyna Kotrych
- Department of General and Dental Radiology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin 70-111, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, Szczecin 71-230, Poland; Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, Plewiska 62-064, Poland
| | - Adam Kamiński
- Department of Pediatric Orthopedics and Musculosceletal Oncology, Pomeranian Medical University
| | | | - Andrzej Bieniek
- University Center for General and Oncological Dermatology, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Jacek Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland; Department of Dermato-Venereology, 4th Military Hospital, Wroclaw, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznań 61-631, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno 625 00, Czech Republic; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Oliver-Vila I, Sesma-Herrero E, Belda F, Seriola A, Ojosnegros S. Robust differentiation and potent immunomodulation of human mesenchymal stromal cells cultured with a xeno-free GMP protein supplement. Cytotherapy 2025; 27:552-561. [PMID: 39864016 DOI: 10.1016/j.jcyt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND/AIMS Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited. Here, we evaluate a xeno-free human plasma-derived protein supplement (Plastem, Grifols) for the expansion and functional evaluation of hMSCs. METHODS hMSC from bone marrow, adipose tissue and umbilical cord were obtained from two suppliers and cultured in Dulbecco's modified Eagle's medium (DMEM/F-12) supplemented with fetal bovine serum 10% (FBS), human platelet lysate 5% (hPL) or Plastem 10%+ hPL0.5%. Cell proliferation was evaluated after culturing hMSC for 13 days with trypan blue exclusion. hMSC immunophenotype was assessed by flow cytometry of surface markers expression. Multipotentiality assay determined the ability of hMSC to differentiate into osteogenic, chondrogenic and adipogenic lineages after 21 days, by using specific staining. Immunomodulatory properties of hMSC were analyzed by measuring suppression of human peripheral blood mononuclear cell (PBMC) proliferation in co-culture with hMSC. RESULTS Plastem 10% + hPL 0.5% supported robust and sustained hMSC growth with a similar efficiency to the reference supplement FBS 10%. hMSC cultured with the xeno-free supplement presented a similar morphology comparable to FBS-supplemented cells and maintained typical expression of markers: positive (>95%) for CD90, CD73 and CD105; and negative (<5%) for CD45, CD14, CD19, CD34 and HLA-DR. Likewise, hMSC showed potent, in vitro differentiation potential into osteogenic, chondrogenic and adipogenic lineages, outperforming the results obtained with traditional reference supplements in several instances. They retained their immunomodulatory properties, inhibiting the proliferation of phytohemagglutinin (PHA)-stimulated PBMCs with a notable enhancement of the immunomodulatory capacity of hMSCs compared to conventional reference supplements. CONCLUSIONS Plastem allowed hMSC expansion while preserving phenotype and showed remarkable differentiation and immunomodulatory properties, supporting its use for cell therapy manufacturing processes as a robust, xeno-free alternative to FBS and hPL. Moreover, Plastem can be manufactured at an industrial level, making it a scalable solution for widespread application.
Collapse
Affiliation(s)
| | - Eduardo Sesma-Herrero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francisco Belda
- Research and Development, Bio Supplies Division, Grifols, Sant Cugat del Vallès, Barcelona, Spain
| | - Anna Seriola
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Samuel Ojosnegros
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
3
|
Najafipour H, Rostamzadeh F, Jafarinejad-Farsangi S, Bagheri-Hosseinabadi Z, Jafari E, Farsinejad A, Bagheri MM. Human platelet lysate combined with mesenchymal stem cells pretreated with platelet lysate improved cardiac function in rats with myocardial infarction. Sci Rep 2024; 14:27701. [PMID: 39533052 PMCID: PMC11557824 DOI: 10.1038/s41598-024-79050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, disability and mortality worldwide. In this study, the effects of intramyocardial injection of human platelet lysate (HPL), bone marrow mesenchymal stem cells pretreated with HPL (PMSCs), and PMSC lysate (lys), alone and in combination were investigated on MI-induced by LAD ligation in male Wistar rats. The experiment was carried out on sham, vehicle (Veh), HPL, PMSCs, PMSC lysate (PMSC lys), HPL + PMSCs, and HPL + PMSC lys groups. SBP, DBP, and ± dp/dt max were monitored by the PowerLab physiograph. The MSC characteristics and CD31, NKX2.5, and cardiac troponin I (cTnI) contents were determined by flow cytometry, immunohistochemistry, and immunofluorescence, respectively. SBP, DBP, and ± dp/dt max that decreased in the MI group were recovered by HPL, PMSC, PMSC lys, HPL + PMSC, and HPL + PMSC lys treatments. CD31 density was higher in all treated groups compared to the Veh group. CD31 density in the HPL + PMSCs and HPL + PMSC lys groups was higher than in the PMSCs group. The number of Dil+/NKX2.5 + and Dil+/cTnI + cells was higher in the HPL + PMSCs group compared to the PMSCs group. The HPL and PMSCs mitigates heart injuries and cardiac dysfunction after MI. HPL provides an appropriate environment for cardiomyocyte differentiation from PMSCs.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Boulevard Jihad, Ebne-Sina Avenue, 7619813159, Kerman, Iran.
| | - Seedieh Jafarinejad-Farsangi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, and Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Stem Cell and Regenerative Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohmmad Mehdi Bagheri
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Farag A, Koung Ngeun S, Kaneda M, Aboubakr M, Tanaka R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024; 12:1923. [PMID: 39200387 PMCID: PMC11352160 DOI: 10.3390/biomedicines12081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70-80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs.
Collapse
Affiliation(s)
- Ahmed Farag
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
5
|
Wu V, Klein-Nulend J, Bravenboer N, ten Bruggenkate CM, Helder MN, Schulten EAJM. Long-Term Safety of Bone Regeneration Using Autologous Stromal Vascular Fraction and Calcium Phosphate Ceramics: A 10-Year Prospective Cohort Study. Stem Cells Transl Med 2023; 12:617-630. [PMID: 37527504 PMCID: PMC10502529 DOI: 10.1093/stcltm/szad045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
This prospective cohort study aimed to assess long-term safety, dental implant survival, and clinical and radiological outcomes after maxillary sinus floor elevation (MSFE; lateral window technique) using freshly isolated autologous stromal vascular fraction (SVF) combined with calcium phosphate ceramics. All 10 patients previously participating in a phase I trial were included in a 10-year follow-up. They received either β-tricalcium phosphate (β-TCP; n = 5) or biphasic calcium phosphate (BCP; n = 5) with SVF-supplementation on one side (study). Bilaterally treated patients (6 of 10; 3 β-TCP, 3 BCP) received only calcium phosphate on the opposite side (control). Clinical and radiological assessments were performed on 44 dental implants at 1-month pre-MSFE, and 0.5- to 10-year post-MSFE. Implants were placed 6 months post-MSFE. No adverse events or pathology was reported during a 10-year follow-up. Forty-three dental implants (98%) remained functional. Control and study sides showed similar peri-implant soft-tissue quality, sulcus bleeding index, probing depth, plaque index, keratinized mucosa width, as well as marginal bone loss (0-6 mm), graft height loss (0-6 mm), and graft volume reduction. Peri-implantitis was observed around 6 implants (control: 4; study: 2) in 3 patients. This study is the first to demonstrate the 10-year safety of SVF-supplementation in MSFE for jawbone reconstruction. SVF-supplementation showed enhanced bone regeneration in the short term (previous study) and led to no abnormalities clinically and radiologically in the long term.
Collapse
Affiliation(s)
- Vivian Wu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Christiaan M ten Bruggenkate
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Jabbarpour Z, Aghayan SS, Moradzadeh K, Ghaffari S, Ahmadbeigi N. The effect of serum origin on cytokines induced killer cell expansion and function. BMC Immunol 2023; 24:28. [PMID: 37658313 PMCID: PMC10474620 DOI: 10.1186/s12865-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cytokine-induced killer (CIK) cells have shown promising results in adoptive immunotherapy. However, serum may play a determining role in the large-scale expansion of these cells for clinical applications. According to Good Manufacturing Practice (GMP) guidelines to reduce the use of animal products in cell-based therapies; therefore, this study sought to investigate the impact of serum origin and the reduced serum concentration on the pattern of cell expansion and function. METHODS Peripheral blood mononuclear cells (PBMCs) isolated from a healthy donor were expanded based on the CIK cell expansion protocol. The cell culture medium was supplemented with three types of sera comprising fetal bovine serum (FBS), human serum (HS), or human-derived platelet lysate (hPL) at different concentrations (10%, 5%, and 2.5%). The proliferation kinetics for each group were investigated for 30 days of cell culture. RESULTS Cell proliferation in 10% concentration of all sera (hPL, FBS, HS) was higher than their lower concentrations. Moreover, hPL was significantly associated with higher expansion rates than FBS and HS in all three concentrations. Furthermore, cells cultured in hPL showed higher viability, cytotoxicity effect, and CIK CD markers expression. CONCLUSION hPL at a concentration of 10% showed the best effect on CIK cell proliferation and function.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran
| | - Seyed Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran
| | - Kobra Moradzadeh
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran
| | - Sasan Ghaffari
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran.
| |
Collapse
|
7
|
Schepici G, Gugliandolo A, Mazzon E. Serum-Free Cultures: Could They Be a Future Direction to Improve Neuronal Differentiation of Mesenchymal Stromal Cells? Int J Mol Sci 2022; 23:ijms23126391. [PMID: 35742836 PMCID: PMC9223839 DOI: 10.3390/ijms23126391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undifferentiated cells with multilinear potential, known for their immunomodulatory and regenerative properties. Although the scientific community is working to improve their application, concerns limit their use to repair tissues following neurological damage. One of these obstacles is represented by the use of culture media supplemented with fetal bovine serum (FBS), which, due to its xenogenic nature and the risk of contamination, has increased scientific, ethical and safety problems. Therefore, the use of serum-free media could improve MSC culture methods, avoiding infectious and immunogenic transmission problems as well as MSC bioprocesses, without the use of animal components. The purpose of our review is to provide an overview of experimental studies that demonstrate that serum-free cultures, along with the supplementation of growth factors or chemicals, can lead to a more defined and controlled environment, enhancing the proliferation and neuronal differentiation of MSCs.
Collapse
|
8
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|
9
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
10
|
Kurdi BA, Ababneh NA, Abuharfeil N, Al Demour S, Awidi AS. Use of conditioned media (CM) and xeno-free serum substitute on human adipose-derived stem cells (ADSCs) differentiation into urothelial-like cells. PeerJ 2021; 9:e10890. [PMID: 33850639 PMCID: PMC8019311 DOI: 10.7717/peerj.10890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background Congenital abnormalities, cancers as well as injuries can cause irreversible damage to the urinary tract, which eventually requires tissue reconstruction. Smooth muscle cells, endothelial cells, and urothelial cells are the major cell types required for the reconstruction of lower urinary tract. Adult stem cells represent an accessible source of unlimited repertoire of untransformed cells. Aim Fetal bovine serum (FBS) is the most vital supplement in the culture media used for cellular proliferation and differentiation. However, due to the increasing interest in manufacturing xeno-free stem cell-based cellular products, optimizing the composition of the culture media and the serum-type used is of paramount importance. In this study, the effects of FBS and pooled human platelet (pHPL) lysate were assessed on the capacity of human adipose-derived stem cells (ADSCs) to differentiate into urothelial-like cells. Also, we aimed to compare the ability of both conditioned media (CM) and unconditioned urothelial cell media (UCM) to induce urothelial differentiation of ADCS in vitro. Methods ADSCs were isolated from human lipoaspirates and characterized by flow cytometry for their ability to express the most common mesenchymal stem cell (MSCs) markers. The differentiation potential was also assessed by differentiating them into osteogenic and adipogenic cell lineages. To evaluate the capacity of ADSCs to differentiate towards the urothelial-like lineage, cells were cultured with either CM or UCM, supplemented with either 5% pHPL, 2.5% pHPL or 10% FBS. After 14 days of induction, cells were utilized for gene expression and immunofluorescence analysis. Results ADSCs cultured in CM and supplemented with FBS exhibited the highest upregulation levels of the urothelial cell markers; cytokeratin-18 (CK-18), cytokeratin-19 (CK-19), and Uroplakin-2 (UPK-2), with a 6.7, 4.2- and a 2-folds increase in gene expression, respectively. Meanwhile, the use of CM supplemented with either 5% pHPL or 2.5% pHPL, and UCM supplemented with either 5% pHPL or 2.5% pHPL showed low expression levels of CK-18 and CK-19 and no upregulation of UPK-2 level was observed. In contrast, the use of UCM with FBS has increased the levels of CK-18 and CK-19, however to a lesser extent compared to CM. At the cellular level, CK-18 and UPK-2 were only detected in CM/FBS supplemented group. Growth factor analysis revealed an increase in the expression levels of EGF, VEGF and PDGF in all of the differentiated groups. Conclusion Efficient ADSCs urothelial differentiation is dependent on the use of conditioned media. The presence of high concentrations of proliferation-inducing growth factors present in the pHPL reduces the efficiency of ADSCs differentiation towards the urothelial lineage. Additionally, the increase in EGF, VEGF and PDGF during the differentiation implicates them in the mechanism of urothelial cell differentiation.
Collapse
Affiliation(s)
- Ban Al- Kurdi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| | | | - Nizar Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saddam Al Demour
- Department of Urology, School of medicine, University of Jordan, Amman, Jordan, University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
11
|
Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis. Stem Cell Res Ther 2021; 12:111. [PMID: 33546766 PMCID: PMC7863295 DOI: 10.1186/s13287-020-02091-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cerebral ischemia-reperfusion (I/R) injury, the most common form of stroke, has high mortality and often brings persistent and serious brain dysfunction among survivors. Administration of adipose-derived mesenchymal stem cells (ASCs) has been suggested to alleviate the I/R brain injury, but the mechanism remains uncharacterized. Here, we aimed at investigating the mechanism of ASCs and their extracellular vesicles (EVs) in the repair of or protection from I/R injury. Methods We established the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP) neuron model. ASCs or ASC-derived EVs (ASC-EVs) were co-cultured with neurons. RT-qPCR and Western blot analyses determined microRNA (miRNA)-22-3p, BMP2, BMF, and KDM6B expression in neurons upon treatment with ASC-EVs. Bioinformatics analysis predicted the binding between miR-22-3p and KDM6B. Using gain- and loss-of-function methods, we tested the impact of these molecules on I/R injury in vivo and in vitro. Results Treatment with ASCs and ASC-derived EVs significantly alleviated the I/R brain injury in vivo, elevated neuron viability in vitro, and decreased apoptosis. Interestingly, miR-22-3p was upregulated in ASC-EVs, and treatment with EV-miR-22-3p inhibitor led to increased apoptosis and decreased neuronal. Of note, miR-22-3p bound to and inhibited KDM6B, as demonstrated by dual-luciferase reporter gene assay and Western blot assay. Overexpression of KDM6B enhanced apoptosis of neurons in the OGD/RP model, and KDM6B bound to BMB2 and promoted its expression by binding to BMP2. Silencing of BMF reduced infarct volume and apoptosis in the stroke model. Conclusion Results support a conclusion that ASC-EV-derived miR-22-3p could alleviate brain ischemic injury by inhibiting KDM6B-mediated effects on the BMP2/BMF axis. These findings compelling indicate a novel treatment strategy for cerebral ischemic injury.
Collapse
|
12
|
Khoury S, Haj Khalil T, Palzur E, Srouji S. A Multichamber Gas System to Examine the Effect of Multiple Oxygen Conditions on Cell Culture. Tissue Eng Part C Methods 2021; 27:24-34. [PMID: 33353455 DOI: 10.1089/ten.tec.2020.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The classic bone tissue engineering model for bone regeneration combines three elements: scaffolds, biomaterials, and mesenchymal stem cells (MSCs). Incorporation of MSCs and growth factors into a scaffold implanted into the area of bone injury is a proven strategy to achieve successful bone regeneration as demonstrated in the literature. However, a major limitation of using bone grafts or scaffolds is oxygen (O2) deprivation in the inner sections of the construct, due to lack of adequate vascularization. To address this limitation, we proposed two treatment strategies for MSC-seeded constructs or adipose tissue scaffolds before implantation: (1) O2 enrichment and (2) acclimation to hypoxia. Based on previous studies, the significance of the different O2 concentrations on MSC biological characteristics remains controversial. Therefore, the optimal O2 condition for engineered bone tissues should be determined. Thus, we designed an innovative multichamber gas system aimed to simultaneously assess the effects of different O2 levels on cell culture. This system was assembled using three isolated chambers integrated into a single incubator. To explore the efficacy of our method, we investigated the effect of hyperoxia, normoxia, and hypoxia, (50-60%, 21%, and 5-7.5% O2, respectively) on the biological characteristics of human adipose-derived MSCs: immunophenotyping, adhesion, proliferation, and osteogenic, and angiogenic differentiation. Our findings demonstrated that hypoxic adipose-derived mesenchymal stem cells (ASCs) conditions exhibited significantly lower levels of CD34 (p = 0.014), with significantly higher osteogenic and angiogenic differentiation capacities (p = 0.023 and p = 0.0042, respectively) than normoxia. Conversely, hyperoxia-cultured ASCs demonstrated significantly higher levels of CD73 and CD90 expression than both normoxic ASCs (p = 0.006 and p = 0.025, respectively) and hypoxic ASCs (p = 0.003 and p = 0.003, respectively). In addition, hyperoxic ASCs showed significantly reduced proliferation capacity by day 11 (p = 0.032) and significantly enhanced migration rates after 48 h (p = 0.044). The newly developed controllable multichamber gas system was cost-effective and easy to use. Different assays can be performed concurrently while preserving all other conditions identical, and the use of other ranges of O2 concentrations is feasible and also necessary to determine the ideal O2 concentration. Furthermore, the multichamber gas system has the potential for wide application, including other cell cultures, grafts, or scaffolds for in vitro and in vivo experimentation. This study was approved by the Galilee Medical Center Helsinki Committee (No. 0009-19-NHR). Impact statement The introduced multichamber gas system provides a custom-made setup for simultaneous control of three oxygen (O2) levels in a single incubator. The use of our innovative multichamber gas system is essential to determine the ideal O2 levels for engineered tissues by examining multiple O2 concentrations on cells in vitro. The determined ideal O2 concentration will then be used through this system to investigate the engrafted cell survival ex vivo, to ensure successful integration of the engineered tissues and tissue regeneration in vivo. Use of this method may promote a therapeutic tool for a major limitation in tissue engineering due to the problematic O2 insufficiency in tissue scaffolds.
Collapse
Affiliation(s)
- Samira Khoury
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tharwat Haj Khalil
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Oral and Maxillofacial Surgery and Oral Medicine Institute, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
13
|
Cheng NC, Tu YK, Lee NH, Young TH. Influence of Human Platelet Lysate on Extracellular Matrix Deposition and Cellular Characteristics in Adipose-Derived Stem Cell Sheets. Front Cell Dev Biol 2020; 8:558354. [PMID: 33195191 PMCID: PMC7642065 DOI: 10.3389/fcell.2020.558354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cell (ASC) is a valuable source of cell therapy. By stimulating extracellular matrix (ECM) secretion, ASC sheets can be fabricated with enhanced regenerative capabilities. In recent years, human platelet lysate (HPL) provides an attractive alternative to fetal bovine serum (FBS) for the ex vivo expansion of ASCs for clinical use. However, the effect of HPL on ASC sheet formation has not been previously determined. In this study, we compared ECM composition and cellular characteristics of ASC sheets cultured in growth medium supplemented with either FBS or HPL. HPL supplement significantly enhanced ASC proliferation without obvious change in the expression pattern of cell surface markers. We found that culturing ASCs with HPL rendered thicker cell sheets with significantly more ECM deposition, including collagen and fibronectin. Proteomic analysis of the FBS or HPL-cultured cell sheets showed diversity in ECM composition. HPL-cultured ASC sheets exhibited up-regulation of interleukin-6 and an anti-inflammatory cytokine, C1q/tumor necrosis factor-related protein-3. Conditioned medium of HPL-cultured ASC sheets significantly enhanced fibroblast migration and tube formation of endothelial cells in vitro, while it inhibited the migration of macrophages toward stimulated macrophages in vitro. TGF-β1-stimulated fibroblasts cultured in ASC sheet-conditioned medium showed down-regulation of α-SMA and TGF-β1. By adding an anti-hepatocyte growth factor (HGF) neutralizing antibody in conditioned medium, we indicated that an anti-fibrosis effect of HPL-cultured ASC sheets is partially mediated through the increased secretion of HGF. Moreover, chick embryo chorioallantoic membrane (CAM) assay showed comparable capillary density after applying either FBS or HPL-cultured ASC sheets, both of which were significantly higher than the control. In conclusion, robust ECM formation with altered ECM composition was noted in ASC sheets cultured in HPL-supplemented medium. Their immunomodulatory and pro-angiogenesis capabilities were largely maintained. Our findings paved the way to elucidate the potential of HPL-cultured ASC sheets for clinical application in tissue regeneration.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Ning-Hsu Lee
- Institute of Biomedical Engineering, College of Medicine, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine, College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Markmee R, Aungsuchawan S, Tancharoen W, Narakornsak S, Pothacharoen P. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine. Heliyon 2020; 6:e04844. [PMID: 32995593 PMCID: PMC7502343 DOI: 10.1016/j.heliyon.2020.e04844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Human amniotic fluid mesenchymal stem cells (hAF-MSCs) have been shown to be effective in the treatment of many diseases. Platelet lysate (PL) contains multiple growth and differentiation factors; therefore, it can be used as a differentiation inducer. In this study, we attempted to evaluate the efficiency of human platelet lysate (hPL) on cell viability and the effects on cardiomyogenic differentiation of hAF-MSCs. When treating the cells with hPL, the result showed an increase in cell viability. Expressions of cardiomyogenic specific genes, including GATA4, cTnT, Cx43 and Nkx2.5, were higher in the combined treatment groups of 5-azacytidine (5-aza) and hPL than the expressions of cardiomyogenic specific genes in the control group and in the 5-aza treatment group. In terms of the results of immunofluorescence and immunoenzymatic staining, the highest expressions of cardiomyogenic specific proteins were revealed in combined treatment groups. It can be summarized that hPL may be an effective supporting cardiomyogenic supplementary factor for cardiomyogenic differentiation in hAF-MSCs.
Collapse
Affiliation(s)
- Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Guiotto M, Raffoul W, Hart AM, Riehle MO, di Summa PG. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. J Transl Med 2020; 18:351. [PMID: 32933520 PMCID: PMC7493356 DOI: 10.1186/s12967-020-02489-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Foetal bovine serum (FBS), is the most commonly used culture medium additive for in vitro cultures, despite its undefined composition, its potential immunogenicity and possible prion/zoonotic transmission. For these reasons, significant efforts have been targeted at finding a substitute, such as serum free-media or human platelet-lysates (hPL). Our aim is to critically appraise the state-of-art for hPL in the published literature, comparing its impact with FBS. MATERIALS AND METHODS In June 2019 a systematic search of the entire Web of Science, Medline and PubMed database was performed with the following search terms: (mesenchymal stem cells) AND (fetal bovine serum OR fetal bovine calf) AND (human platelet lysate). Excluded from this search were review articles that were published before 2005, manuscripts in which mesenchymal stem cells (MSCs) were not from human sources, and when the FBS controls were missing. RESULTS Based on our search algorithm, 56 papers were selected. A review of these papers indicated that hMSCs cultured with hPL showed a spindle-shaped elongated morphology, had higher proliferation indexes, similar cluster of differentiation (CD) markers and no significant variation in differentiation lineage (osteocyte, adipocyte, and chondrocyte) compared to those cultured with FBS. Main sources of primary hMSCs were either fat tissue or bone marrow; in a few studies cells isolated from alternative sources showed no relevant difference in their response. CONCLUSION Despite the difference in medium choice and a lack of standardization of hPL manufacturing, the majority of publications support that hPL was at least as effective as FBS in promoting adhesion, survival and proliferation of hMSCs. We conclude that hPL should be considered a viable alternative to FBS in hMSCs culture-especially with a view for their clinical use.
Collapse
Affiliation(s)
- M Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.
| | - W Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - A M Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - M O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - P G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
16
|
Lu Y, Wen H, Huang J, Liao P, Liao H, Tu J, Zeng Y. Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis. J Cell Mol Med 2020; 24:9590-9604. [PMID: 32666704 PMCID: PMC7520275 DOI: 10.1111/jcmm.15387] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Adipose‐derived stem cells (ASC) are said to have a pivotal role in wound healing. Specifically, ASC‐secreted extracellular vesicles (EV) carry diverse cargos such as microRNAs (miRNAs) to participate in the ASC‐based therapies. Considering its effects, we aimed to investigate the role of ASC‐EVs in the cutaneous wound healing accompanied with the study on the specific cargo‐medicated effects on wound healing. Two full‐thickness excisional skin wounds were created on mouse dorsum, and wound healing was recorded at the indicated time points followed by histological analysis and immunofluorescence staining for CD31 and α‐SMA. Human skin fibroblasts (HSFs) and human microvascular endothelial cells (HMECs) were co‐cultured with EVs isolated from ASC (ASC‐EVs), respectively, followed by the evaluation of their viability and mobility using CCK‐8, scratch test and transwell migration assays. Matrigel‐based angiogenesis assays were performed to evaluate vessel‐like tube formation by HMECs in vitro. ASC‐EVs accelerated the healing of full‐thickness skin wounds, increased re‐epithelialization and reduced scar thickness whilst enhanced collagen synthesis and angiogenesis in murine models. However, miR‐486‐5p antagomir abrogated the ASC‐EVs‐induced effects. Intriguingly, miR‐486‐5p was found to be highly enriched in ASC‐EVs, exhibiting an increase in viability and mobility of HSFs and HMECs and enhanced the angiogenic activities of HMECs. Notably, we also demonstrated that ASC‐EVs‐secreted miR‐486‐5p achieved the aforesaid effects through its target gene Sp5. Hence, our results suggest that miR‐486‐5p released by ASC‐EVs could be a critical mediator to develop an ASC‐based therapeutic strategy for wound healing.
Collapse
Affiliation(s)
- Yingjie Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huicai Wen
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinjun Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Liao
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huaiwei Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Tu
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanlin Zeng
- Department of Burn Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Gilmutdinov RY, Galiullin AK, Spiridonov GN, Sovronov PV. Bovine fetal tissue extracts as an alternative to fetal serum for in vitro reproduction of viruses. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202700044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors assessed the possibility of substitution of the serum component with tissue extracts (muscles, liver, kidneys) of bovine fetuses in the culture medium during the cultivation of transplanted LEK and Vero cell lines, as well as the reproduction of infectious rhinotracheitis IR, PI-3 viruses and reovirus on them. The greatest stimulating effect on LEK and Vero cells was obtained from bovine fetuses muscle extract. The effect of this extract on the proliferative activity of LEK and Vero cells is significant and amounts to 27 and 25%, respectively. The power of the effect of liver and kidney extracts is significantly lower and equal, respectively, 15 and 18% for LEK and 14 and 19% for Vero, although it is reliable. The reproductive activity of IR and PI-3 viruses when using tissue extracts was inferior to that when using blood serum. The stimulating effect of blood serum and muscle extract on the reproduction of reovirus was comparable. The effect of fetal muscle extract on the reproduction of IR, PI-3 viruses and reovirus is reliable and amounts to 29, 31 and 33%, respectively. In general, it is close to that of the blood serum of bovine fetuses - 30, 35 and 36%. The power of the influence of the liver and kidney extracts of the bovine fetuses is significantly lower and comparable to that of the blood serum of the cows themselves: 25, 23 and 20%, although it is reliable.
Collapse
|
18
|
Acebes-Huerta A, Arias-Fernández T, Bernardo Á, Muñoz-Turrillas MC, Fernández-Fuertes J, Seghatchian J, Gutiérrez L. Platelet-derived bio-products: Classification update, applications, concerns and new perspectives. Transfus Apher Sci 2019; 59:102716. [PMID: 31928859 DOI: 10.1016/j.transci.2019.102716] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Platelet derived bio-products in the form of platelet rich plasma, plasma rich in growth factors, or plasma-free platelet releasates, are being studied worldwide with the aim of proving their efficacy in tissue regeneration within many different clinical areas, such as traumatology, maxillofacial surgery, ophthalmology, dermatology and otorhinolaryngology, amongst others. The current lack of consensus in the preparation method and application form, or in the quality assessment of each bio-product, precludes adequate interpretation of the relevance of reported clinical outcomes, and, while many in clinicians are very positive about them, many are sceptic. Relevant aspects of these products are considered to propose a classification nomenclature which would aid a comprehensive comparison of clinical outcomes of bio-products of the same characteristics. Finally, the uses of platelet-derived bio-products in in vitro culture (for cell therapy purposes) as a substitute of animal-origin sera, and other future perspectives of applications of platelet-derived bio-products are discussed.
Collapse
Affiliation(s)
- Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Tamara Arias-Fernández
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ángel Bernardo
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Hospital Universitario Central de Asturias (HUCA), Laboratorio de Diagnóstico Clínico Hematología, Oviedo, Spain
| | - María Carmen Muñoz-Turrillas
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
| | - Judit Fernández-Fuertes
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Cabueñes Hospital Universitario (CAHU), Servicio de Cirugía Ortopédica y Traumatología (COT), Gijón, Spain
| | - Jerard Seghatchian
- International consultancy in blood components quality / safety and DDR strategies, London, UK
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain.
| |
Collapse
|
19
|
Jooybar E, Abdekhodaie MJ, Karperien M, Mousavi A, Alvi M, Dijkstra PJ. Developing hyaluronic acid microgels for sustained delivery of platelet lysate for tissue engineering applications. Int J Biol Macromol 2019; 144:837-846. [PMID: 31715235 DOI: 10.1016/j.ijbiomac.2019.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
Abstract
Platelet lysate (PL), a blood product that contains high concentrations of growth factors (GFs), can be considered as a cost-effective source of multiple GFs. In this study, hyaluronic acid (HA) based microgels were developed for delivery of PL proteins. Spherical microgel were prepared using a water in oil emulsion method. First, hyaluronic acid was grafted with tyramine groups, after which prepared microdroplets were crosslinked via an enzymatic reaction in the presence of hydrogen peroxide and horseradish peroxidase. Because of electrostatic interactions, these microgels are promising carriers for positively charged proteins entrapment like most of the GFs. When microgels are incubated in PL solution, protein loading takes place which is mainly governed by nonspecific adsorption of plasma proteins. Although this hampered loading efficiency, loading could be increased by repeated washing and incubation steps. The loaded microgels presented a sustained release of PL growth factors for a period of two weeks. When PL enriched microgels were embedded in a HA bulk hydrogel, cell proliferation was higher compared to constructs without microgels. These findings suggest that the developed microgels are a potential candidate for sustained delivery of PL growth factors and present a solution to the issue of their short half-lives in vivo.
Collapse
Affiliation(s)
- Elaheh Jooybar
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Marcel Karperien
- MIRA - Institute for Biomedical Technology and Technical Medicine and Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, PO Box 217, 7500 AE, the Netherlands
| | - Abbas Mousavi
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mansour Alvi
- Canadian Center for Regenerative Therapy, Toronto, ON, Canada
| | - Pieter J Dijkstra
- MIRA - Institute for Biomedical Technology and Technical Medicine and Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, PO Box 217, 7500 AE, the Netherlands.
| |
Collapse
|
20
|
Wang M, Hu R, Yang Y, Xiang L, Mu Y. In Vivo Ultrasound Molecular Imaging of SDF-1 Expression in a Swine Model of Acute Myocardial Infarction. Front Pharmacol 2019; 10:899. [PMID: 31496948 PMCID: PMC6712163 DOI: 10.3389/fphar.2019.00899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 07/17/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Stem cell therapy of acute myocardial infarction (AMI) is proving to be a promising approach to repair the injured myocardia. The time window for stem cell transplantation is crucial yet difficult to determine since it produces different therapeutic effects at different times after myocardial infarction. Stromal cell-derived factor-1 (SDF- 1) plays a pivotal role in the mobilization, homing, proliferation, and differentiation of transplanted stem cells. Here, by using ultrasound molecular imaging via targeted microbubbles, we determined the dynamic expression of SDF-1 in a swine model of AMI in vivo. Methods: Twenty-four miniswine were randomly selected for the control group and the AMI model group, which underwent ligation of the left anterior descending coronary artery (LAD). The AMI animals were randomly divided into six experimental groups according to the duration of the myocardial infarction. All animals were subjected to ultrasound molecular imaging through injections with targeted microbubbles (T + T group) or nontargeted control microbubbles (T + C group). The values of the myocardial perfusion parameters (A, β, and A × β) were determined using Q-Lab (Philips ultrasound, version 9.0), and the expression level of SDF-1 was analyzed by real-time polymerase chain reaction (RT-PCR). Results: Our results showed that the expression of SDF-1 gradually increased and peaked at 1 week after AMI. The trend is well reflected by ultrasound molecular imaging in the myocardial perfusion parameters. The A, β, and A × β values correlated with SDF-1 in the T + T group (r = 0.887, 0.892, and 0.942; P < 0.05). Regression equations were established for the relationships of the A, β, and A × β values (X) with SDF-1 (Y): Y = 0.699X - 0.6048, Y = 0.4698X + 0.3282, and Y = 0.0945X + 0.6685, respectively (R 2 = 0.772, 0.7957, and 0.8871; P < 0.05). Conclusions: Our finding demonstrated that ultrasound molecular imaging could be used to evaluate the expression dynamics of SDF-1 after AMI.
Collapse
Affiliation(s)
| | | | | | | | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
21
|
Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells 2019; 8:cells8070724. [PMID: 31311198 PMCID: PMC6679214 DOI: 10.3390/cells8070724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Adipose derived stromal/stem cells (ASCs) hold potential as cell therapeutics for a wide range of disease states; however, many expansion protocols rely on the use of fetal bovine serum (FBS) as a cell culture nutrient supplement. The current study explores the substitution of lysates from expired human platelets (HPLs) as an FBS substitute. METHODS Expired human platelets from an authorized blood center were lysed by freeze/thawing and used to examine human ASCs with respect to proliferation using hematocytometer cell counts, colony forming unit-fibroblast (CFU-F) frequency, surface immunophenotype by flow cytometry, and tri-lineage (adipocyte, chondrocyte, osteoblast) differentiation potential by histochemical staining. RESULTS The proliferation assays demonstrated that HPLs supported ASC proliferation in a concentration dependent manner, reaching levels that exceeded that observed in the presence of 10% FBS. The concentration of 0.75% HPLs was equivalent to 10% FBS when utilized in cell culture media with respect to proliferation, immunophenotype, and CFU-F frequency. When added to osteogenic, adipogenic, and chondrogenic differentiation media, both supplements showed appropriate differentiation by staining. CONCLUSION HPLs is an effective substitute for FBS in the culture, expansion and differentiation of human ASCs suitable for pre-clinical studies; however, additional assays and analyses will be necessary to validate HPLs for clinical applications and regulatory approval.
Collapse
|
22
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
23
|
Tancharoen W, Aungsuchawan S, Pothacharoen P, Bumroongkit K, Puaninta C, Pangjaidee N, Narakornsak S, Markmee R, Laowanitwattana T, Thaojamnong C. Human platelet lysate as an alternative to fetal bovine serum for culture and endothelial differentiation of human amniotic fluid mesenchymal stem cells. Mol Med Rep 2019; 19:5123-5132. [PMID: 31059024 PMCID: PMC6522963 DOI: 10.3892/mmr.2019.10182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Human amniotic fluid (hAF) mesenchymal stem cells (MSCs) are commonly cultured in medium containing FBS. However, there are concerns about using animal serum in therapeutic applications due to the potential for immunogenic reactions and the risk of transmission of pathogens. For safety reasons, human platelet lysate (hPL) has been suggested as a replacement for FBS because it appears to be a natural source of growth factors. In this present study, it was investigated whether FBS could be substituted with hPL in hAF-MSCs culture without affecting their properties. Pooled hPL was generated by the freeze-thaw method. The concentration of hPL was selected after evaluation by MTT assay. The hAF-MSCs were cultured in FBS- or hPL-supplemented conditions and shared a fibroblast-like morphology. Cell proliferation assays showed that the growth characteristic of hAF-MSCs cultured in 10% hPL-supplemented media was similar to those cultured in 10% FBS-supplemented media. The expression of MSC markers did not differ between the cells cultured in the different conditions. The endothelial differentiation potential was also investigated. Reverse transcription-quantitative (RT-q)PCR revealed that induced cells supplemented with hPL showed an increase level of endothelial specific gene expression compared to the FBS-supplemented cells. Immunofluorescence analysis showed specific protein localization in both induced cell groups. Additionally, induced cells supplemented with hPL had the potential to form networks on Matrigel. This present study indicated that hPL could be used to culture and enhance the endothelial differentiation potential of hAF-MSCs.
Collapse
Affiliation(s)
- Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine of Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokkan Bumroongkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaniporn Puaninta
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathaporn Pangjaidee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chawapon Thaojamnong
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Kong CM, Lin HD, Biswas A, Bongso A, Fong CY. Manufacturing of human Wharton's jelly stem cells for clinical use: selection of serum is important. Cytotherapy 2019; 21:483-495. [PMID: 30879965 DOI: 10.1016/j.jcyt.2019.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Human Wharton's jelly-derived mesenchymal stromal cells (hWJSCs) have gained considerable attention for their use in cell therapy. Many of these applications would require manufacturing of millions of hWJSCs. It is, therefore, necessary to develop a Good Manufacturing Practice (GMP)-compliant hWJSC expansion protocol, allowing the generation of a large quantity of cells to meet both clinical and regulatory requirements. Here, we compared human platelet lysate (HPL) and human serum (HS) in supporting clinical-grade hWJSC expansion. METHODS hWJSCs were successfully isolated from six different umbilical cords using GMP-compliant dissociation enzymes. Freshly isolated hWJSCs were cultured in media supplemented with 10% of one of the following sera: fetal bovine serum (FBS), HPL and HS. Properties of the expanded hWJSCs were analyzed. RESULTS We showed that GMP-compliant dissociation enzymes were as efficient as research-grade dissociation enzymes in isolating hWJSCs. hWJSC fresh cell yield and cell viability using HPL and HS supplementations were at greater advantages than FBS. Moreover, hWJSCs expanded in HPL and HS supplementations not only preserved classical MSCs phenotypes and differentiation potential to adipocytes, osteocytes and chondrocytes, they also enhanced the migration of skin fibroblasts. However, HS, unlike HPL, did not alter immunogenicity properties of hWJSCs. hWJSCs expanded in HS supplementation also exerted greater immunosuppressive action in inhibiting T-cell proliferation and increased extracellular matrix (ECM) gene expression, making them useful in tissue repair clinical application. CONCLUSION Our findings indicate that HS can be considered as a promising and safer alternative to FBS, and should be recommended for clinical-grade expansion of hWJSCs.
Collapse
Affiliation(s)
- Chiou Mee Kong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Hao Daniel Lin
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Ariff Bongso
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore.
| | - Chui-Yee Fong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Lagerweij T, Pérez-Lanzón M, Baglio SR. A Preclinical Mouse Model of Osteosarcoma to Define the Extracellular Vesicle-mediated Communication Between Tumor and Mesenchymal Stem Cells. J Vis Exp 2018. [PMID: 29782011 DOI: 10.3791/56932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Within the tumor microenvironment, resident or recruited mesenchymal stem cells (MSCs) contribute to malignant progression in multiple cancer types. Under the influence of specific environmental signals, these adult stem cells can release paracrine mediators leading to accelerated tumor growth and metastasis. Defining the crosstalk between tumor and MSCs is of primary importance to understand the mechanisms underlying cancer progression and identify novel targets for therapeutic intervention. Cancer cells produce high amounts of extracellular vesicles (EVs), which can profoundly affect the behavior of target cells in the tumor microenvironment or at distant sites. Tumor EVs enclose functional biomolecules, including inflammatory RNAs and (onco)proteins, that can educate stromal cells to enhance the metastatic behavior of cancer cells or to participate in the pre-metastatic niche formation. In this article, we describe the development of a preclinical cancer mouse model that enables specific evaluation of the EV-mediated crosstalk between tumor and mesenchymal stem cells. First, we describe the purification and characterization of tumor-secreted EVs and the assessment of the EV internalization by MSCs. We then make use of a multiplex bead-based immunoassay to evaluate the alteration of the MSC cytokine expression profile induced by cancer EVs. Finally, we illustrate the generation of a bioluminescent orthotopic xenograft mouse model of osteosarcoma that recapitulates the tumor-MSC interaction, and show the contribution of EV-educated MSCs to tumor growth and metastasis formation. Our model provides the opportunity to define how cancer EVs shape a tumor-supporting environment, and to evaluate whether blockade of the EV-mediated communication between tumor and MSCs prevents cancer progression.
Collapse
Affiliation(s)
| | | | - S Rubina Baglio
- Exosomes Research Group, Department of Pathology, VU Medical Center;
| |
Collapse
|
26
|
Haack-Sørensen M, Juhl M, Follin B, Harary Søndergaard R, Kirchhoff M, Kastrup J, Ekblond A. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:293-300. [PMID: 29661028 DOI: 10.1080/00365513.2018.1462082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro expanded adipose-derived stromal cells (ASCs) are a useful resource for tissue regeneration. Translation of small-scale autologous cell production into a large-scale, allogeneic production process for clinical applications necessitates well-chosen raw materials and cell culture platform. We compare the use of clinical-grade human platelet lysate (hPL) and fetal bovine serum (FBS) as growth supplements for ASC expansion in the automated, closed hollow fibre quantum cell expansion system (bioreactor). Stromal vascular fractions were isolated from human subcutaneous abdominal fat. In average, 95 × 106 cells were suspended in 10% FBS or 5% hPL medium, and loaded into a bioreactor coated with cryoprecipitate. ASCs (P0) were harvested, and 30 × 106 ASCs were reloaded for continued expansion (P1). Feeding rate and time of harvest was guided by metabolic monitoring. Viability, sterility, purity, differentiation capacity, and genomic stability of ASCs P1 were determined. Cultivation of SVF in hPL medium for in average nine days, yielded 546 × 106 ASCs compared to 111 × 106 ASCs, after 17 days in FBS medium. ASCs P1 yields were in average 605 × 106 ASCs (PD [population doublings]: 4.65) after six days in hPL medium, compared to 119 × 106 ASCs (PD: 2.45) in FBS medium, after 21 days. ASCs fulfilled ISCT criteria and demonstrated genomic stability and sterility. The use of hPL as a growth supplement for ASCs expansion in the quantum cell expansion system provides an efficient expansion process compared to the use of FBS, while maintaining cell quality appropriate for clinical use. The described process is an obvious choice for manufacturing of large-scale allogeneic ASC products.
Collapse
Affiliation(s)
- Mandana Haack-Sørensen
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Morten Juhl
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Bjarke Follin
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Rebekka Harary Søndergaard
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Maria Kirchhoff
- b Department of Clinical Genetics , Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Jens Kastrup
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Annette Ekblond
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| |
Collapse
|
27
|
Dessels C, Durandt C, Pepper MS. Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion. Platelets 2018; 30:356-367. [PMID: 29553865 DOI: 10.1080/09537104.2018.1445840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pooled human platelet lysate (pHPL) has been used to expand adipose-derived stromal cells (ASCs) and can be formulated using fresh or expired buffy coats (BCs) which are then resuspended in either plasma or an additive solution. Not much is known about the effects that expired products and additive solutions have on ASC expansion, and the need for quality control and release criteria has been expressed. This pilot study compared proliferation, cell size, morphology and immunophenotype of ASCs expanded in the different pHPL alternatives versus foetal bovine serum (FBS). Quality control criteria were assessed prior to and during the manufacture of the pHPL alternatives. ASCs were then expanded in 1%, 2.5%, 5% or 10% of the different pHPL alternatives or in 10% FBS. Cell size, morphology, cell number and immunophenotype were measured using microscopy and flow cytometry. The majority of the pHPL alternatives were within the recommended ranges for the quality control criteria. ASCs expanded in the pHPL alternatives were smaller in size, displayed a tighter spindle-shaped morphology, increased cell growth and had a similar immunophenotype (with the exception of CD34 and CD36) when compared to ASCs expanded in FBS. Here we report on the effects that expired BC products and additive solutions have on ASC expansion. When taken together, our findings indicate that all of the pHPL alternatives can be considered to be suitable replacements for FBS for ASC expansion, and that expired BC products can be used as an alternative to fresh BC products.
Collapse
Affiliation(s)
- Carla Dessels
- a Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Chrisna Durandt
- a Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Michael S Pepper
- a Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
28
|
Platelet Lysate: The Better Choice for Jaw Periosteal Cell Mineralization. Stem Cells Int 2017; 2017:8303959. [PMID: 29391870 PMCID: PMC5748149 DOI: 10.1155/2017/8303959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022] Open
Abstract
Previously, we demonstrated a high quality of minerals formed by serum-free cultured jaw periosteal cells (JPCs) by Raman spectroscopy but the mineralization extent was not satisfactory. In the present study, we analyzed the proliferation and mineralization potential of human platelet lysate- (hPL-) cultured JPCs in comparison to that of FCS-cultured JPCs. By cell impedance measurements, we detected significantly higher population doubling times of PL-cultured JPCs in comparison to FCS-cultured JPCs. However, this result was not based on lower proliferation activities but on diminished cell sizes which JPCs develop under PL cultivation. The measurements of the metabolic activities clearly showed significantly higher cell proliferation rates under PL culturing. Equivalent levels of the mesenchymal cell markers CD29, CD45, CD73, CD90, and CD105 were detected, but there were significantly increased MSCA-1 levels under PL cultivation. While JPCs only occasionally mineralize under FCS culture conditions, the mineralization potential was significantly stronger under PL cultivation. Moreover, in 4 of 5 analyzed patient cells, the addition of dexamethasone was proved no longer necessary for strong mineralization of PL-cultured JPCs. We conclude that in vitro cultivation of JPCs with platelet lysate is a suitable alternative to FCS culture conditions and a powerful tool for the development of high-quality TE constructs using jaw periosteal cells.
Collapse
|
29
|
Fan G, Xu Z, Hu X, Li M, Zhou J, Zeng Y, Xie Y. miR-33a hinders the differentiation of adipose mesenchymal stem cells towards urothelial cells in an inductive condition by targeting β‑catenin and TGFR. Mol Med Rep 2017; 17:2341-2348. [PMID: 29207162 PMCID: PMC5783476 DOI: 10.3892/mmr.2017.8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Abstract
Tissue engineering technology offers an appealing approach for tissue reconstruction of the urothelium. Adipose-derived mesenchymal stem cells (ADSCs) represent an abundant source for tissue engineering applications. However, ASCs primarily possess mesoderm lineage differentiation potential. It is difficult to induce differentiation of ASCs towards urothelial cells that are derived from the endoderm, although a recent findings have reported that a conditioned medium may drive ADSCs towards differentiation into the urothelium phenotype. In the present study, human ADSCs were isolated from abdominal adipose tissues and incubated in this conditioned medium for indicated time periods. Western blotting showed that protein expression levels of urothelial specific marks, including CK7, CK20 and UPIII, were increased after seven days' incubation, but immunofluorescence microscopy determined that cells with CK7 and UPIII staining were scarce, which suggested a low-efficiency for the differentiation. Prolonging the incubation time did not further increase CK20 and UPIII expression. Furthermore, miR-33a expression was increased with ADSC differentiation. Using synthetic miRNAs to mimic or inhibit the action of miR-33a revealed that miR-33a hinders the differentiation of ADSCs towards urothelial cells. Furthermore, luciferase reporter assay confirmed that β-catenin and transforming growth factor-β receptor (TGFR) are targets of miR-33a. Inhibition of miR-33a expression increased β-catenin and TGFR expression and improved the efficiency of ADSCs towards differentiation into the urothelium phenotype. The present novel finding suggests that miR-33 may be an important target in tissue engineering and regenerative medicine for urothelium repair.
Collapse
Affiliation(s)
- Gang Fan
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiang Hu
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Mingfeng Li
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Zhou
- Department of Urology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Yong Zeng
- Department of Clinical Translational Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Xie
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2017; 93:19-31. [PMID: 29072818 DOI: 10.1002/cyto.a.23242] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) exhibit a high self-renewal capacity, multilineage differentiation potential and immunomodulatory properties. This set of exceptional features makes them an attractive tool for research and clinical application. However, MSC are far from being a uniform cell type, which makes standardization difficult. The exact properties of human MSC (hMSC) can vary greatly depending on multiple parameters including tissue source, isolation method and medium composition. In this review we address the most important influence factors. We highlight variations in the differentiation potential of MSC from different tissue sources. Furthermore, we compare enzymatic isolation strategies with explants cultures focusing on adipose tissue and umbilical cords as two relevant examples. Additionally, we address effects of medium composition and serum supplementation on MSC expansion and differentiation. The lack of standardized methods for hMSC isolation and cultivation mandates careful evaluation of different protocols regarding efficiency and cell quality. MSC characterization based on a set of minimal criteria defined by the International Society for Cellular Therapy is a widely accepted practice, and additional testing for MSC functionality can provide valuable supplementary information. The MSC secretome has been identified as an important signaling mechanism to affect other cells. In this context, extracellular vesicles (EVs) are attracting increasing interest. The thorough characterization of MSC-derived EVs and their interaction with target cells is a crucial step toward a more complete understanding of MSC-derived EV functionality. Here, we focus on flow cytometric approaches to characterize free as well as cell bound EVs and address potential differences in the bioactivity of EVs derived from stem cells from different sources. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Dolly Mushahary
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, 3500 Krems, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
31
|
Miyake N, Wolf NI, Cayami FK, Crawford J, Bley A, Bulas D, Conant A, Bent SJ, Gripp KW, Hahn A, Humphray S, Kimura-Ohba S, Kingsbury Z, Lajoie BR, Lal D, Micha D, Pizzino A, Sinke RJ, Sival D, Stolte-Dijkstra I, Superti-Furga A, Ulrick N, Taft RJ, Ogata T, Ozono K, Matsumoto N, Neubauer BA, Simons C, Vanderver A. X-linked hypomyelination with spondylometaphyseal dysplasia (H-SMD) associated with mutations in AIFM1. Neurogenetics 2017; 18:185-194. [PMID: 28842795 PMCID: PMC5705759 DOI: 10.1007/s10048-017-0520-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023]
Abstract
An X-linked condition characterized by the combination of hypomyelinating leukodystrophy and spondylometaphyseal dysplasia (H-SMD) has been observed in only four families, with linkage to Xq25-27, and recent genetic characterization in two families with a common AIFM1 mutation. In our study, 12 patients (6 families) with H-SMD were identified and underwent comprehensive assessment accompanied by whole-exome sequencing (WES). Pedigree analysis in all families was consistent with X-linked recessive inheritance. Presentation typically occurred between 12 and 36 months. In addition to the two disease-defining features of spondylometaphyseal dysplasia and hypomyelination on MRI, common clinical signs and symptoms included motor deterioration, spasticity, tremor, ataxia, dysarthria, cognitive defects, pulmonary hypertension, nystagmus, and vision loss due to retinopathy. The course of the disease was slowly progressive. All patients had maternally inherited or de novo mutations in or near exon 7 of AIFM1, within a region of 70 bp, including synonymous and intronic changes. AIFM1 mutations have previously been associated with neurologic presentations as varied as intellectual disability, hearing loss, neuropathy, and striatal necrosis, while AIFM1 mutations in this small region present with a distinct phenotype implicating bone. Analysis of cell lines derived from four patients identified significant reductions in AIFM1 mRNA and protein levels in osteoblasts. We hypothesize that AIFM1 functions in bone metabolism and myelination and is responsible for the unique phenotype in this condition.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Nicole I Wolf
- Department of Child Neurology, and Amsterdam Neuroscience, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Ferdy K Cayami
- Department of Child Neurology, and Amsterdam Neuroscience, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Department of Clinical Genetics, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Annette Bley
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Dorothy Bulas
- Department of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC, USA
| | - Alex Conant
- Department of Neurology, Children's National Medical Center, Suite 4800, Washington, DC, USA
| | - Stephen J Bent
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Karen W Gripp
- Division of Medical Genetics, A.I. duPont Hospital for Children/Nemours, Wilmington, DE, USA
| | - Andreas Hahn
- Department of Pediatric Neurology, Univ.-Klinikum Giessen/Marburg; Standort Giessen, Feulgenstr. 12, 35389, Giessen, Germany
| | - Sean Humphray
- Chesterford Research Park, Illumina, Inc., Little Chesterford, CB10 1XL, UK
| | - Shihoko Kimura-Ohba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zoya Kingsbury
- Chesterford Research Park, Illumina, Inc., Little Chesterford, CB10 1XL, UK
| | | | - Dennis Lal
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, USA
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Amy Pizzino
- Department of Neurology, Children's National Medical Center, Suite 4800, Washington, DC, USA
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Deborah Sival
- Department of Child Neurology, University Hospital Groningen, Groningen, Netherlands
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Nicole Ulrick
- Department of Neurology, Children's National Medical Center, Suite 4800, Washington, DC, USA
| | - Ryan J Taft
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,Illumina, Inc, San Diego, CA, USA.,George Washington University School of Medicine, Washington, DC, USA
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Bernd A Neubauer
- Department of Pediatric Neurology, Univ.-Klinikum Giessen/Marburg; Standort Giessen, Feulgenstr. 12, 35389, Giessen, Germany
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Adeline Vanderver
- Department of Neurology, Children's National Medical Center, Suite 4800, Washington, DC, USA.,Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland.,Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
32
|
Leijs MJC, van Buul GM, Verhaar JAN, Hoogduijn MJ, Bos PK, van Osch GJVM. Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium. Am J Sports Med 2017; 45:1151-1161. [PMID: 28114800 DOI: 10.1177/0363546516682710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. HYPOTHESIS Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. STUDY DESIGN Controlled laboratory study. METHODS We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. RESULTS Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. CONCLUSION Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. CLINICAL RELEVANCE To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA.
Collapse
Affiliation(s)
- Maarten J C Leijs
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands.,Department of Radiology, Erasmus MC Rotterdam, the Netherlands
| | | | - Jan A N Verhaar
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands
| | | | - Pieter K Bos
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands.,Department of Otorhinolaryngology, Erasmus MC Rotterdam, the Netherlands
| |
Collapse
|
33
|
Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Effects of Macromolecular Crowding on Human Adipose Stem Cell Culture in Fetal Bovine Serum, Human Serum, and Defined Xeno-Free/Serum-Free Conditions. Stem Cells Int 2017; 2017:6909163. [PMID: 28465691 PMCID: PMC5390653 DOI: 10.1155/2017/6909163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC) was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC) proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS-) and human serum- (HS-) based media and xeno- and serum-free (XF/SF) media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation.
Collapse
|
35
|
Leegwater NC, Bakker AD, Hogervorst JMA, Nolte PA, Klein-Nulend J. Hypothermia reduces VEGF-165 expression, but not osteogenic differentiation of human adipose stem cells under hypoxia. PLoS One 2017; 12:e0171492. [PMID: 28166273 PMCID: PMC5293214 DOI: 10.1371/journal.pone.0171492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
Cryotherapy is successfully used in the clinic to reduce pain and inflammation after musculoskeletal damage, and might prevent secondary tissue damage under the prevalent hypoxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and differentiation under hypoxic conditions, causing impaired callus formation is unknown. We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide production, VEGF gene and protein expression, and osteogenic/chondrogenic differentiation of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia (37°C, 1% O2), hypothermia and hypoxia (30°C, 1% O2), or control conditions (37°C, 20% O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expression, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67 expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67 gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduction in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity, gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day 4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hypoxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia. These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain and inflammation, is not likely to harm early stages of callus formation.
Collapse
Affiliation(s)
- Nick C. Leegwater
- Department of Orthopaedics, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Peter A. Nolte
- Department of Orthopaedics, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Rogulska O, Petrenko Y, Petrenko A. DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology 2016; 69:265-276. [PMID: 28013442 DOI: 10.1007/s10616-016-0055-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Off-the-shelf availability of human adipose-derived mesenchymal stromal cells (ASCs) for regenerative medicine application requires the development of nontoxic, safe, and efficient protocols for cryopreservation. Favorably, such cell processing protocols should not contain xenogeneic or toxic components, such as fetal bovine serum (FS) and dimethyl sulfoxide (DMSO). The objective of the study was to assess the sensitivity of ASCs to DMSO-free cryopreservation protocol depending on their expansion conditions: conventional, based on the application of FS or xeno-free, using PL as a medium supplement. ASCs expansion was carried out in α-MEM supplemented either with FS or PL. For DMSO- and xeno-free cryopreservation ASCs were pretreated with different concentrations of sucrose during 24 h of culture. Pretreated ASCs were cryopreserved in α-MEM containing 100-300 mM of sucrose with the cooling rate of 1 degree/min. ASCs were tested for survival (Trypan Blue test), viability (MTT test), recovery (Alamar Blue test), proliferation and ability to multilineage differentiation. The optimal concentrations of sucrose for ASCs pretreatment and as an additive in cryoprotective solution, which provided highest cell survival, comprised 100 and 200 mM, correspondingly. Survival and recovery rates of platelet lysate (PL)-expanded ASCs after DMSO-free cryopreservation comprised 59 and 51%, and were higher than in FS-cultured cells. After DMSO-free cryopreservation PL-processed ASCs had a shorter population doubling time and higher capacity for osteogenic differentiation than FS-processed cultures. The described DMSO- and xeno-free processing may form the basis for the development of safe and efficient protocols for manufacturing and banking of ASCs, providing their off-the-shelf availability for regenerative medicine applications.
Collapse
Affiliation(s)
- Olena Rogulska
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of National Academic of Sciences of Ukraine, Pereyaslavskaya 23, Kharkiv, 61015, Ukraine.
| | - Yuri Petrenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of National Academic of Sciences of Ukraine, Pereyaslavskaya 23, Kharkiv, 61015, Ukraine.,Institute of Experimental Medicine AS CR, v. v. i., Vídeňská 1083, 142 20, Prague 4-Krč, Czech Republic
| | - Alexander Petrenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine of National Academic of Sciences of Ukraine, Pereyaslavskaya 23, Kharkiv, 61015, Ukraine
| |
Collapse
|
37
|
Dessels C, Potgieter M, Pepper MS. Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion. Front Cell Dev Biol 2016; 4:115. [PMID: 27800478 PMCID: PMC5065960 DOI: 10.3389/fcell.2016.00115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
Adipose-derived stromal cells (ASCs) are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing practices (GMPs) and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS). While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF), chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT) and International Fat Applied Technology Society (IFATS). The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.
Collapse
Affiliation(s)
- Carla Dessels
- South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
| | - Marnie Potgieter
- South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
| | - Michael S Pepper
- South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
| |
Collapse
|
38
|
Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 2016; 7:93. [PMID: 27411942 PMCID: PMC4944312 DOI: 10.1186/s13287-016-0352-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated freezing–thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2. PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited availability of platelet donors. Expired units might represent an alternative, but further data are needed to define safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an agreed definition of the required characteristics of PL for the requirements of manufacturers and users.
Collapse
Affiliation(s)
- Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.
| | - Eliana Amati
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Martina Bernardi
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Richard Schäfer
- Department of Cell Therapeutics & Cell Processing, Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Sandhofstrasse 1, Frankfurt am Main, Germany
| | - Sabrina Sella
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Francesco Rodeghiero
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| |
Collapse
|
39
|
Prins HJ, Schulten EAJM, Ten Bruggenkate CM, Klein-Nulend J, Helder MN. Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics. Stem Cells Transl Med 2016; 5:1362-1374. [PMID: 27388241 DOI: 10.5966/sctm.2015-0369] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
: In patients undergoing maxillary sinus floor elevation (MSFE) for dental implant placement, bone substitutes are currently evaluated as alternatives for autologous bone. However, bone substitutes have only osteoconductive properties and lack osteoinductive potential. Therefore, this phase I study evaluated the potential additive effect on bone regeneration by the addition of freshly isolated, autologous but heterologous stromal vascular fraction (SVF), which is highly enriched with adipose stromal/stem cells when compared with native adipose tissue. From 10 patients, SVF was procured using automatic processing, seeded on either β-tricalcium phosphate (n = 5) or biphasic calcium phosphate carriers (n = 5), and used for MSFE in a one-step surgical procedure. Primary objectives were feasibility and safety. The secondary objective was efficacy, evaluated by using biopsies of the augmented area taken 6 months postoperatively, concomitant with dental implant placement. Biopsies were assessed for bone, graft, and osteoid volumes. No adverse effects were reported during the procedure or follow-up (≥3 years). Bone and osteoid percentages were higher in study biopsies (SVF supplemented) than in control biopsies (ceramic only on contralateral side), in particular in β-tricalcium phosphate-treated patients. Paired analysis on the six bilaterally treated patients revealed markedly higher bone and osteoid volumes using microcomputed tomography or histomorphometric evaluations, demonstrating an additive effect of SVF supplementation, independent of the bone substitute. This study demonstrated for the first time the feasibility, safety, and potential efficacy of SVF seeded on bone substitutes for MSFE, providing the first step toward a novel treatment concept that might offer broad potential for SVF-based regenerative medicine applications. SIGNIFICANCE This is the first-in-human study using freshly isolated, autologous adipose stem cell preparations (the stromal vascular fraction [SVF] of adipose tissue) applied in a one-step surgical procedure with calcium phosphate ceramics (CaP) to increase maxillary bone height for dental implantations. All 10 patients received CaP plus SVF on one side, whereas bilaterally treated patients (6 of 10) received CaP only on the opposite side. This allowed intrapatient evaluation of the potential added value of SVF supplementation, assessed in biopsies obtained after 6 months. Feasibility, safety, and potential efficacy of SVF for bone regeneration were demonstrated, showing high potential for this novel concept.
Collapse
Affiliation(s)
- Henk-Jan Prins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands Department of Oral and Maxillofacial Surgery, MOVE Research Institute Amsterdam, VU University Medical Center/ACTA, Amsterdam, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery, MOVE Research Institute Amsterdam, VU University Medical Center/ACTA, Amsterdam, The Netherlands
| | - Christiaan M Ten Bruggenkate
- Department of Oral and Maxillofacial Surgery, MOVE Research Institute Amsterdam, VU University Medical Center/ACTA, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Orthopedic Surgery, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Woudstra L, Krijnen P, Bogaards S, Meinster E, Emmens R, Kokhuis T, Bollen I, Baltzer H, Baart S, Parbhudayal R, Helder M, van Hinsbergh V, Musters R, de Jong N, Kamp O, Niessen H, van Dijk A, Juffermans L. Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells. Stem Cell Res 2016; 17:6-15. [DOI: 10.1016/j.scr.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
|
41
|
Micha D, Voermans E, Eekhoff MEW, van Essen HW, Zandieh-Doulabi B, Netelenbos C, Rustemeyer T, Sistermans EA, Pals G, Bravenboer N. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone 2016; 84:169-180. [PMID: 26769004 DOI: 10.1016/j.bone.2016.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Fibrodysplasia ossificans progressiva is a rare genetic disorder characterized by progressive heterotopic ossification. FOP patients develop soft tissue lumps as a result of inflammation-induced flare-ups which leads to the irreversible replacement of skeletal muscle tissue with bone tissue. Classical FOP patients possess a mutation (c.617G>A; R206H) in the ACVR1-encoding gene which leads to dysregulated BMP signaling. Nonetheless, not all FOP patients with this mutation exhibit equal severity in symptom presentation or disease progression which indicates a strong contribution by environmental factors. Given the pro-inflammatory role of TGFβ, we studied the role of TGFβ in the progression of osteogenic differentiation in primary dermal fibroblasts from five classical FOP patients based on a novel method of platelet lysate-based osteogenic transdifferentiation. During the course of transdifferentiation the osteogenic properties of the cells were evaluated by the mRNA expression of Sp7/Osterix, Runx2, Alp, OC and the presence of mineralization. During transdifferentiation the expression of osteoblast markers Runx2 (p<0.05) and Alp were higher in patient cells compared to healthy controls. All cell lines exhibited increase in mineralisation. FOP fibroblasts also expressed higher baseline Sp7/Osterix levels (p<0.05) confirming their higher osteogenic potential. The pharmacological inhibition of TGFβ signaling during osteogenic transdifferentiation resulted in the attenuation of osteogenic transdifferentiation in all cell lines as shown by the decrease in the expression of Runx2 (p<0.05), Alp and mineralization. We suggest that blocking of TGFβ signaling can decrease the osteogenic transdifferentiation of FOP fibroblasts.
Collapse
Affiliation(s)
- Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Elise Voermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Marelise E W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Huib W van Essen
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Thomas Rustemeyer
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands.
| | - E A Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Neves LS, Rodrigues MT, Reis RL, Gomes ME. Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1140004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Riis S, Nielsen FM, Pennisi CP, Zachar V, Fink T. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Transl Med 2016; 5:314-24. [PMID: 26838270 DOI: 10.5966/sctm.2015-0148] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are being tested in clinical trials related to cell-based regenerative therapies. Although most of the current expansion protocols for ASCs use fetal calf serum (FCS), xenogeneic-free medium supplements are greatly desired. This study aims to compare the effect of FCS, human platelet lysate (hPL), and a fully defined medium on the initiation and maintenance of ASC cultures. ASCs obtained from five donors were cultured in five different media: StemPro, Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% hPL, or α-minimum essential medium (A-MEM) supplemented with 5% hPL, 10% hPL, or 10% FCS. The effect of media on proliferation, colony-forming units (CFUs), attachment, and morphology was assessed along with cell size, granularity, and immunophenotype. StemPro greatly compromised the initiation of ASC cultures, which could not survive more than a few passages. Cells cultured in A-MEM proliferated at a faster rate than in DMEM, and hPL significantly enhanced cell size, granularity, and proliferation compared with FCS. All media except StemPro supported CFUs equally well. Analysis of surface markers revealed higher levels of CD73 and CD105 in FCS-cultured ASCs, whereas increased levels of CD146 were found in hPL-cultured cells. Multiparametric flow cytometric analysis performed after seven passages revealed the existence of four distinct ASC subpopulations, all positive for CD73, CD90, and CD105, which mainly differed by their expression of CD146 and CD271. Analysis of the different subpopulations might represent an important biological measure when assessing different medium formulations for a particular clinical application.
Collapse
Affiliation(s)
- Simone Riis
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frederik Mølgaard Nielsen
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Trine Fink
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
44
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
45
|
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2015; 76:371-87. [PMID: 26561934 DOI: 10.1016/j.biomaterials.2015.10.065] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Mickey B C Koh
- Blood Services Group, Health Sciences Authority, Singapore; Department for Hematology, St George's Hospital and Medical School, London, UK
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department for Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
46
|
Autologous Adipose Stromal Cells Seeded onto a Human Collagen Matrix for Dermal Regeneration in Chronic Wounds: Clinical Proof of Concept. Plast Reconstr Surg 2015; 136:279-295. [PMID: 25946602 DOI: 10.1097/prs.0000000000001437] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nonhealing wounds are unable to integrate skin autografts by avascular and fibrotic dermal tissue. Adipose-derived stromal cells can improve the local environment of the wound bed by angiogenesis and immunomodulation. This work aimed to develop a biological dressing made of adipose-derived stromal cells onto a human acellular collagen matrix. METHODS Adipose-derived stromal cells were isolated from human adipose tissue (n = 8). In vitro, the genetic stability during early and late passages (1, 4, 10, and 16) and vascular endothelial growth factor (VEGF) secretion were assessed. Adipose-derived stromal cell adhesion and spreading on collagen matrix were preliminarily studied. In vivo tumorigenicity, angiogenesis, and tissue oxygenation were assessed after implantation of the construct in nude rats (n = 10). The biological dressing was manufactured and implanted in three patients with chronic wounds. RESULTS In vitro, aneuploidies, but no clonal transformation, were detected up to late cellular passages. VEGF was secreted more during hypoxia (0.1% oxygen) than during normoxia (21% oxygen). Adipose-derived stromal cells can adhere and spread on the scaffold within 18 to 20 days. No tumor development occurred 3 months after implantation in immunocompromised rats. Vessel counts and tissue oxygenation were higher after adipose-derived stromal cell implantation. In patients, granulation tissue was found (276 percent of vessel density), followed by epithelialization or split-thickness skin engraftment up to 22 months after implantation. CONCLUSIONS Implantation of adipose-derived stromal cells seeded onto human acellular collagen matrix (biological dressing) represents a promising therapy for nonhealing wounds, offering improvement in dermal angiogenesis and remodeling. This therapy using autologous stromal cells is safe, without significant genetic alterations after in vitro expansion.
Collapse
|
47
|
The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:162439. [PMID: 26495284 PMCID: PMC4606096 DOI: 10.1155/2015/162439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 01/13/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.
Collapse
|
48
|
Naaijkens BA, Krijnen PAJ, Meinster E, ter Horst EN, Vo K, Musters RJP, Kamp O, Niessen HWM, Juffermans LJM, van Dijk A. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue. Cell Tissue Res 2015. [PMID: 26202892 PMCID: PMC4675794 DOI: 10.1007/s00441-015-2239-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p < 0.001 vs. Control and 7D). These data were confirmed by flow cytometry, showing fewer CD90-positive cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.
Collapse
Affiliation(s)
- B A Naaijkens
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands. .,Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, Netherlands. .,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands.
| | - P A J Krijnen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands
| | - E Meinster
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - E N ter Horst
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.,Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, Netherlands.,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands
| | - K Vo
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - R J P Musters
- Department of Physiology, VU University Medical Center, Amsterdam, Netherlands.,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands
| | - O Kamp
- Department of Cardiology, VU University Medical Center, Amsterdam, Netherlands.,Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, Netherlands
| | - H W M Niessen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.,Department of Cardiac Surgery, VU University Medical Center, Amsterdam, Netherlands.,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands
| | - L J M Juffermans
- Department of Physiology, VU University Medical Center, Amsterdam, Netherlands.,Department of Cardiology, VU University Medical Center, Amsterdam, Netherlands.,Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, Netherlands.,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands
| | - A van Dijk
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.,Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
49
|
Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HWM, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 2015; 6:127. [PMID: 26129847 PMCID: PMC4529699 DOI: 10.1186/s13287-015-0116-z] [Citation(s) in RCA: 591] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 01/28/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Administration of mesenchymal stem cells (MSCs) represents a promising treatment option for patients suffering from immunological and degenerative disorders. Accumulating evidence indicates that the healing effects of MSCs are mainly related to unique paracrine properties, opening opportunities for secretome-based therapies. Apart from soluble factors, MSCs release functional small RNAs via extracellular vesicles (EVs) that seem to convey essential features of MSCs. Here we set out to characterize the full small RNAome of MSC-produced exosomes. Methods We set up a protocol for isolating exosomes released by early passage adipose- (ASC) and bone marrow-MSCs (BMSC) and characterized them via electron microscopy, protein analysis and small RNA-sequencing. We developed a bioinformatics pipeline to define the exosome-enclosed RNA species and performed the first complete small RNA characterization of BMSCs and ASCs and their corresponding exosomes in biological replicates. Results Our analysis revealed that primary ASCs and BMSCs have highly similar small RNA expression profiles dominated by miRNAs and snoRNAs (together 64-71 %), of which 150–200 miRNAs are present at physiological levels. In contrast, the miRNA pool in MSC exosomes is only 2-5 % of the total small RNAome and is dominated by a minor subset of miRNAs. Nevertheless, the miRNAs in exosomes do not merely reflect the cellular content and a defined set of miRNAs are overrepresented in exosomes compared to the cell of origin. Moreover, multiple highly expressed miRNAs are precluded from exosomal sorting, consistent with the notion that these miRNAs are involved in functional repression of RNA targets. While ASC and BMSC exosomes are similar in RNA class distribution and composition, we observed striking differences in the sorting of evolutionary conserved tRNA species that seems associated with the differentiation status of MSCs, as defined by Sox2, POU5F1A/B and Nanog expression. Conclusions We demonstrate that primary MSCs release small RNAs via exosomes, which are increasingly implicated in intercellular communications. tRNAs species, and in particular tRNA halves, are preferentially released and their specific sorting into exosomes is related to MSC tissue origin and stemness. These findings may help to understand how MSCs impact neighboring or distant cells with possible consequences for their therapeutic usage. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0116-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Serena Rubina Baglio
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy. .,Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Koos Rooijers
- Department of Biological Stress Response, Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Danijela Koppers-Lalic
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Frederik J Verweij
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - M Pérez Lanzón
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Nicoletta Zini
- CNR-National Research Council of Italy, IGM, Bologna, 40136, Italy. .,SC Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Benno Naaijkens
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Francesca Perut
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Hans W M Niessen
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Alkaline phosphatase expression/activity and multilineage differentiation potential are the differences between fibroblasts and orbital fat-derived stem cells--a study in animal serum-free culture conditions. Stem Cell Rev Rep 2015; 10:697-711. [PMID: 24913281 DOI: 10.1007/s12015-014-9529-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human orbital fat tissues are a potential source to isolate stem cells for the development of regenerative medicine therapies. For future safe clinical application of these cells, it is critical to establish animal component-free culture conditions as well as to clearly define the stem cell population characteristics differentiating them from other cell types, such as fibroblasts. Therefore, the present study aimed to compare phenotypic and functional characteristics of orbital fat-derived stem cells (OFSCs) and fibroblasts resident in the eyelid skin in donor-matched samples grown in culture medium supplemented with pooled allogeneic human serum (HS) replacing fetal bovine serum (FBS). We first investigated the proliferative effects of OFSCs on HS, and then we compared the alkaline phosphatase (AP) expression and activity, immunophenotypic profile, and in vitro multilineage differentiation potential of OFSCs side-by-side with fibroblasts. The results showed that HS enhanced OFSCs proliferation without compromising their immunophenotype, AP activity, and osteogenic, adipogenic, and chondrogenic differentiation capacities. In contrast to OFSCs, the fibroblasts did not exhibit AP expression and activity and did not have multilineage differentiation potential. The results enabled us to successfully distinguish OFSCs from fibroblasts populations, suggesting that AP expression/activity and multilineage differentiation assays can be used reliably to discriminate mesenchymal stem cells from fibroblasts. Our findings also support the feasibility of pooled allogeneic HS as a safer and more effective alternative to FBS for clinical applications.
Collapse
|