1
|
Ruetten HM, Lankford SS, Abdolmaleki AS, Edenhoffer N, Badlani G, Williams JK. Local tissue response to a C-X-C motif chemokine ligand 12 therapy for fecal incontinence in a rabbit model. Am J Physiol Gastrointest Liver Physiol 2025; 328:G136-G144. [PMID: 39745592 DOI: 10.1152/ajpgi.00343.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
This study aimed to determine if local injection of C-X-C motif chemokine ligand 12 (CXCL12) reduces sphincter fibrosis, restores sphincter muscle content, vascularization, and innervation, and recruits progenitor cells in a rabbit model of anal sphincter injury and incontinence. Adult female rabbits were assigned to three groups: uninjured/no treatment (control), injured/treated (treated), and injured/no treatment (untreated) (n = 4 each). Injured groups were anesthetized, and a section of external anal sphincter was removed at the 9 o'clock position. The treated sphincters were injected with 200 ng of human recombinant CXCL12 6 wk after injury, and necropsy was performed 6-wk post-treatment. The external anal sphincter was removed, fixed, embedded in paraffin, sectioned, and mounted to slides for histologic analysis of collagen and muscle content and fiber characteristics: innervation, vascularization, and progenitor cell content. Compared with controls, untreated had significantly decreased total skeletal muscle, indistinct muscle layers, and disorganized circumferential and inner longitudinal layers at the injury site. Untreated also had significantly increased collagen fiber density at the injury site compared with treated and controls. Cells staining positive for CD34 within the skeletal muscle layer were increased in treated and untreated compared with controls. Staining density for markers of nerves and vascular endothelium, cells staining positive for CD34 within the mucosa/submucosae, and cells staining positive for PAX7 were similar among all groups. Local injection of CXCL12 reduces postinjury fibrosis and results in statistically similar muscle content and organization between treated animals and controls. Further studies are needed for this promising new treatment for postparturient anal sphincter injury.NEW & NOTEWORTHY Local injection of CXCL12 cytokine reduces postinjury fibrosis in a rabbit model of anal sphincter injury and fecal incontinence. The larger size of the rabbits aided in targeted injury and treatment. Further studies are needed to explore noninvasive treatment options for postparturient anal sphincter injury.
Collapse
Affiliation(s)
- Hannah M Ruetten
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States
| | - Shannon S Lankford
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States
| | - Abolfazl S Abdolmaleki
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States
| | - Nicholas Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States
| | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States
- Section of Urology, VA Medical Center, Salisbury, North Carolina, United States
| | - James K Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States
| |
Collapse
|
2
|
Wang Y, Xiao Y, Yang X, He F, Hu J, Yang G, Wang W. Bone marrow mesenchymal stem cells overexpressing stromal cell- derived factor 1 aid in bone formation in osteoporotic mice. BMC Musculoskelet Disord 2024; 25:878. [PMID: 39497150 PMCID: PMC11536944 DOI: 10.1186/s12891-024-07957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells. Stromal cell-derived factor 1 (SDF1) is a chemokine that induces targeted cell migration through the SDF1/CXCR4 (C-X-C chemokine receptor 4) axis and can induce migration of exogenous mesenchymal stem cells to sites of high SDF1 concentration. There are no studies on BMSCs overexpressing SDF1 (SDF1-BMSCs) in osteoporotic mice in vivo. We aimed to investigate if the increased SDF1 concentration facilitated cell migration to the bone. METHODS We used lentivirus to construct BMSCs overexpressing SDF1 or knocking down CXCR4. We verified the proliferation ability of the cells in vitro using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridinc (BrdU), the migration ability of the cells using Transwell, and the osteogenic and lipogenic ability of the cells using osteogenic and lipogenic induction solutions. In in vivo experiments, we induced osteoporosis in 72 female mice by ovariectomy and injected different groups of cells via the tail vein. Femoral tissue samples were collected for a fixed time, and the osteogenic and homing abilities of the cells were verified by MicroCT and tissue section staining. RESULTS We successfully demonstrated that high expression of SDF1 promoted cell proliferation and migration in vitro, without affecting their cell differentiation ability. In an ovariectomized mouse model, SDF1-BMSCs were more likely to be home to the femur than the BMSCs, had a better pro-osteogenic ability, and had higher expression of Wnt-1. Blocking the SDF1/CXCR4 axis reduced the homing of exogenous mesenchymal stem cells (MSCs) to the femur and their osteogenic capacity. CONCLUSIONS SDF1-BMSCs can further promote bone formation by increasing the number of cells homing to the femur in osteoporotic mice. Our study shows that stem cells can promote their proliferation and home to the femur via the SDF1/CXCR4 axis and further help bone formation via Wnt-1 signaling.
Collapse
Affiliation(s)
- Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya Xiao
- First Clinical College, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - XinYu Yang
- Clinical Oncology College, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Jun Hu
- Department of Orthopedic, The First People's Hospital of Kunming, Kunming, Yunnan, China
| | - Guang Yang
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Weizhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Sun L, Billups A, Rietsch A, Damaser MS, Zutshi M. The Effect of Dosing of Stromal Cell-Derived Factor 1 on Anal Sphincter Regeneration. Tissue Eng Part A 2023; 29:93-101. [PMID: 36341592 DOI: 10.1089/ten.tea.2022.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aim: The aim of this study is to investigate if a high dose of the stromal cell-derived factor-1 (SDF-1) plasmid improves outcome in a minipig model of chronic anal sphincter injury. Methods: Twenty-two female minipigs underwent excision of the posterior hemicircumference of the anal sphincter complex and were allowed to recover for 6 weeks. They were randomly allocated (n = 6) to receive either 5% dextrose (sham) or 2, 4, or 8 mg of SDF-1 plasmid at the defect site. Two control pigs received no surgery/treatment. Outcome measures included anal manometry at preinjury/pretreatment and 2, 4, and 8 weeks after treatment, recording the mean of eight pressure channels and the posterior channel alone, histopathology using Masson's trichrome, and immunohistochemistry using PGP9.5 for staining of neural structures, and CY3 staining for blood vessels. Data are expressed as mean ± standard error. Manometry analysis used two-way analysis of variance (ANOVA) followed by the Holm-Sidak test. Quantification of muscle/fibrosis was analyzed with a Kruskal-Wallis one-way ANOVA on ranks. Results: Posterior anal pressures were significantly decreased in sham treated animals compared with controls (p = 0.04). In contrast, mean anal pressures at the four time points were not significantly different between groups (p > 0.05). The defect area of the sham treated group showed irregular muscle bundles, while all three SDF-1 treatment groups show organized muscle bundles, with the most organization in the higher dose groups. Quantification of Masson-stained slides showed no statistically significant differences between groups, but did show increased muscle volume in the area of defect in the treatment groups compared with sham. PGP9.5 and CY3 staining showed increased fluorescence in the higher dose groups compared with sham treatment. Conclusion: A single higher dose of the plasmid encoding SDF-1 may increase muscle volume in the area of a chronic defect. Impact statement Fecal or bowel incontinence as a result of a torn anal sphincter complex remains undetected for many years. The resulting defect does not respond well to surgical repair. Regenerating the anal sphincter complex with functional muscle has been a long-term goal. Stem cells home to a site of a chronic injury and cause regeneration when a cell signaling mechanism is available. Stromal cell-derived factor-1 is one such cytokine that has been well researched by us and others to have this effect. It is easy to use clinically and has been used in other applications in humans and considered safe.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Engineering and Cleveland Clinic, Cleveland, Ohio
| | - Alanna Billups
- Department of Biomedical Engineering and Cleveland Clinic, Cleveland, Ohio
| | - Anna Rietsch
- Department of Biomedical Engineering and Cleveland Clinic, Cleveland, Ohio
| | - Margot S Damaser
- Department of Biomedical Engineering and Cleveland Clinic, Cleveland, Ohio.,Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Massarat Zutshi
- Department of Biomedical Engineering and Cleveland Clinic, Cleveland, Ohio.,Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
4
|
The Effect of Mesenchymal Stem Cells, Adipose Tissue Derived Stem Cells, and Cellular Stromal Vascular Fraction on the Repair of Acute Anal Sphincter Injury in Rats. Bioengineering (Basel) 2022; 9:bioengineering9070318. [PMID: 35877369 PMCID: PMC9311655 DOI: 10.3390/bioengineering9070318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Anal sphincter incontinence (ASI) can cause a serious decline in the quality of life and can cause a socioeconomic burden. Studies have shown that bone marrow mesenchymal stem cells (MSC) have significant therapeutic effects on ASI, but the cost and risk of MSC harvest limit their further application. In contrast, adipose tissue derived stem cells (ADSC) and cellular stromal vascular fraction (CSVF) as stem cell sources have multipotency and the advantage of easy harvest. Objective: Here we aim to investigate the effects of ADSC and CSVF on treating ASI and compare them to that of bone marrow MSC. Methods: Bone marrow MSC, ADSC, and CSVF were obtained and labeled with green fluorescent protein (GFP), and CSVF was labeled with DIL. Sprague Dawley (SD) rats were divided into 5 groups. Four groups were injected with 0.2 mL phosphate buffer saline (PBS), 1 × 107/0.2 mL of MSC, ADSC, or CSVF, respectively, after model establishment. The control group received no treatment. The repair was assessed by anal functional tests and immunostaining on day 5 and day 10 after injection. Results: MSC, ADSC, and CSVF significantly promoted tissue repair and the recovery of muscle contraction and electromyographic activity in ASI. The generation of myosatellite cells by injected MSC, ADSC, and CSVF was found in the wounded area. On day 5, CSVF showed highest therapeutic effect, while on day 10, MSC and ADSC showed higher therapeutic effects than CSVF. When comparing the effects of MSC and ADSC, ADSC was slightly better than MSC in the indexes of anal pressure, etc. Conclusion: ADSC and CVSF are alternative stem cell sources for ASI repair.
Collapse
|
5
|
El Haraki AS, Lankford S, Li W, Williams KJ, Matthews CA, Badlani GH. Chemokine therapy for anal sphincter injury in a rat model: a pilot study. Int Urogynecol J 2022; 33:3283-3289. [PMID: 35445812 DOI: 10.1007/s00192-022-05195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND HYPOTHESIS To determine whether delayed administration of CXCL12 alters anorectal manometric pressures and histology in rats following anal sphincterotomy compared to primary surgical repair alone. METHODS Adult female rats were divided into three groups: A, a control group that did not undergo surgery; B, anal sphincterotomy with primary surgical repair; C, anal sphincterotomy with primary surgical repair and intra-sphincteric injection of CXCL12 at 6 weeks post-injury. All rats underwent anal manometry measurements at baseline and at 6 and 12 weeks post-injury. Histologic analysis of the anal sphincters was also performed. RESULTS At baseline and 6 weeks, there were no statistically significant differences among D, Tmax and P∆ of Groups A, B and C. At 12-week manometry, the total duration of contractions on anal manometry was significantly less in Group C compared to Groups A and B (3.65, 5.5, 5.3 p < 0.01) as was time to peak of contraction at 12 weeks (1.6, 2.1, 3.1, p < 0.01); however, group C had a significantly higher P∆ at 12 weeks compared to Groups A and B (2.25, 1.4, 0.34, p < 0.01). There were no statistically significant differences in the ratio of muscle to collagen at the site of injury; however, muscle fibers were significantly smaller in group C and less per bundle than the other groups. CONCLUSIONS Administration of chemokine therapy at 6 weeks post-repair using CXCL12 enhanced the magnitude of anal sphincter contractions in a rat model of anal sphincter injury but decreased overall duration of contraction. Increased anal sphincter contraction magnitude was not explained by histologic differences in explanted specimens.
Collapse
Affiliation(s)
- Amr S El Haraki
- Department of Urology, Wake Forest Baptist Medical Center, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - S Lankford
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Koudy J Williams
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Catherine A Matthews
- Department of Urology, Wake Forest Baptist Medical Center, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Gopal H Badlani
- Department of Urology, Wake Forest Baptist Medical Center, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
6
|
Sun L, Billups A, Rietsch A, Damaser MS, Zutshi M. Stromal cell derived factor 1 plasmid to regenerate the anal sphincters. J Tissue Eng Regen Med 2022; 16:355-366. [PMID: 35092171 DOI: 10.1002/term.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to evaluate regeneration of a chronic large anal sphincter defect in a pig model after treatment with a plasmid encoding Stromal Cell Derived Factor-1(SDF-1). METHODS Under ethics approved protocol 19 age/weight matched Sinclair mini-pigs were subjected to excision of the posterior 50% of anal sphincter muscle and left to recover for 6 weeks. They were randomly allocated to receive either saline treatment (Saline 1 ml, n = 5), 1 injection of SDF-1 plasmid 2 mg/ml (1 SDF-1, n = 9) or 2 injections of SDF-1, 2 mg/ml each at 2 weeks intervals (2 SDF-1, n = 5). Euthanasia occurred 8 weeks after the last treatment. In vivo outcomes included anal resting pressures done under anesthesia pre-injury, pre-injection and before euthanasia (8 weeks after treatment). Anal ultrasound was done pre injury and pre-euthanasia. Tissues were saved for histology and analyzed quantitatively. Two way ANOVA followed by Holm-Sidak test and one way ANOVA followed by the Tukey test were used for data analysis, p < 0.05 was regarded as significant. RESULTS Posterior anal pressures at the 3 time points were not significantly different in the saline group. In contrast, post-treatment pressures in the 1 SDF-1 group pressures were significantly higher than both pre-injury (p = 0.001) and pre-treatment time points (p = 0.003). At the post-treatment time point, both 1 SDF-1 (p = 0.01) and 2 SDF-1 (p = 0.01) groups had significantly higher mean pressures compared to the saline group. Histology showed distortion of normal anatomy with patchy regeneration in the control group while muscle was more organized in both treatment groups. CONCLUSIONS Eight weeks after a single or two doses of SDF-1injected into a chronic anal sphincter injury improved resting anal pressures and regenerated muscle in the entire defect. SDF-1 plasmid is effective in treating chronic defects of the anal sphincter in a large animal and could be clinically translated.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alanna Billups
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Rietsch
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, Ohio, USA
| | - Massarat Zutshi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Balaphas A, Meyer J, Meier RPH, Liot E, Buchs NC, Roche B, Toso C, Bühler LH, Gonelle-Gispert C, Ris F. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021; 10:2086. [PMID: 34440855 PMCID: PMC8394955 DOI: 10.3390/cells10082086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Anal sphincter incontinence is a chronic disease, which dramatically impairs quality of life and induces high costs for the society. Surgery, considered as the best curative option, shows a disappointing success rate. Stem/progenitor cell therapy is pledging, for anal sphincter incontinence, a substitute to surgery with higher efficacy. However, the published literature is disparate. Our aim was to perform a review on the development of cell therapy for anal sphincter incontinence with critical analyses of its pitfalls. Animal models for anal sphincter incontinence were varied and tried to reproduce distinct clinical situations (acute injury or healed injury with or without surgical reconstruction) but were limited by anatomical considerations. Cell preparations used for treatment, originated, in order of frequency, from skeletal muscle, bone marrow or fat tissue. The characterization of these preparations was often incomplete and stemness not always addressed. Despite a lack of understanding of sphincter healing processes and the exact mechanism of action of cell preparations, this treatment was evaluated in 83 incontinent patients, reporting encouraging results. However, further development is necessary to establish the correct indications, to determine the most-suited cell type, to standardize the cell preparation method and to validate the route and number of cell delivery.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
- Department of Surgery, Geneva Medical School, University of Geneva, 1205 Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Raphael P. H. Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Emilie Liot
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Nicolas C. Buchs
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Bruno Roche
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Christian Toso
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Leo H. Bühler
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Carmen Gonelle-Gispert
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Frédéric Ris
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| |
Collapse
|
8
|
Plair A, Bennington J, Williams JK, Parker-Autry C, Matthews CA, Badlani G. Regenerative medicine for anal incontinence: a review of regenerative therapies beyond cells. Int Urogynecol J 2020; 32:2337-2347. [PMID: 33247762 DOI: 10.1007/s00192-020-04620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Current treatment modalities for anal sphincter injuries are ineffective for many patients, prompting research into restorative and regenerative therapies. Although cellular therapy with stem cells and progenitor cells show promise in animal models with short-term improvement, there are additional regenerative approaches that can augment or replace cellular therapies for anal sphincter injuries. The purpose of this article is to review the current knowledge of cellular therapies for anal sphincter injuries and discusses the use of other regenerative therapies including cytokine therapy with CXCL12. METHODS A literature search was performed to search for articles on cellular therapy and cytokine therapy for anal sphincter injuries and anal incontinence. RESULTS The article search identified 337 articles from which 33 articles were included. An additional 12 referenced articles were included as well as 23 articles providing background information. Cellular therapy has shown positive results for treating anal sphincter injuries and anal incontinence in vitro and in one clinical trial. However, cellular therapy has disadvantages such as the source and processing of stem cells and progenitor cells. CXCL12 does not have such issues while showing promising in vitro results for treating anal sphincter injuries. Additionally, electrical stimulation and extracorporeal shock wave therapy are potential regenerative medicine adjuncts for anal sphincter injuries. A vision for future research and clinical applications of regenerative medicine for anal sphincter deficiencies is provided. CONCLUSION There are viable regenerative medicine therapies for anal sphincter injuries beyond cellular therapy. CXCL12 shows promise as a focus of therapeutic research in this field.
Collapse
Affiliation(s)
- Andre Plair
- Department of Urology, Wake Forest Baptist Health, Winston Salem, NC, USA.
| | - Julie Bennington
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | | | | | | | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Health, Winston Salem, NC, USA
| |
Collapse
|
9
|
Li P, Ma X, Jin W, Li X, Hu J, Jiang X, Guo X. Effects of local injection and intravenous injection of allogeneic bone marrow mesenchymal stem cells on the structure and function of damaged anal sphincter in rats. J Tissue Eng Regen Med 2020; 14:989-1000. [PMID: 32537834 DOI: 10.1002/term.3079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Anal sphincter injury leads to damage to the anal structure and functions and has been identified as a major risk factor for fecal incontinence. Bone marrow mesenchymal stem cells (BMSCs) with capacities of multidifferentiation, paracrine, and low immunogenicity have been widely used in tissue repair and regeneration. The primary objective of this research was to compare the effects of different injection therapies of BMSCs on the injured anal sphincters. Ninety-six Sprague-Dawley female rats were randomly divided into four groups (n = 24 each): intravenous injection, local injection, sham operation, and normal control. For the first three groups, 25% removal of the anal sphincter complex was performed and 0.3-ml phosphate-buffered saline (PBS) (containing 107 green fluorescent protein-labeled allogeneic BMSCs) was given accordingly to the treatment group 24 h after operation for 7 consecutive days. The sham operation group was injected with 0.3-ml PBS only. All cases had undergone evaluation in the 1st, 7th, 14th, and 28th postoperative days. The rats were sacrificed on the 28th postoperative day, and the anal sphincters were dissected to be analyzed by morphological examination. At 14 days postoperatively, local injection of BMSC significantly improved the peak contraction pressure, electromyography amplitude, and frequency of the injured anal sphincter compared with tail vein, but there was no significant difference in resting pressure until 28 days after sphincterectomy. Masson staining results confirmed that the local injection group had significantly more new muscles on the wound. BMSC could remarkably improve peak contraction pressure, electromyography amplitude, and muscle fibers on the wound, and local injection is superior to intravenous injection.
Collapse
Affiliation(s)
- Peng Li
- Department of Anorectal, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojia Li
- Department of Anorectal, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxue Jiang
- Department of Anorectal Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Chao HH, Li L, Gao X, Wang C, Yue W. CXCL12 expression in aborted mouse uteri induced by IFN-γ: Potential anti-inflammatory effect involves in endometrial restoration after abortion in mice. Gene 2019; 700:38-46. [PMID: 30898705 DOI: 10.1016/j.gene.2019.02.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Anti-inflammation is a key process to restore tissue integrity and function. CXCL12 is a homeostasis chemokine, which plays a coordinating role in organogenesis, tumorigenesis and regeneration. In the present study we found that the uterus of abortion mice showed different histo-morphological changes with the development of abortion. The expression of chemokine CXCL12 and its receptor CXCR4 in abortion uterus showed a time-dependent pattern. Compared with normal pregnancy, the expression of CXCL12 and CXCR4 did not change in the uterus of GD7 abortion mice, but increased significantly in the uterus of GD8 and GD10 abortion mice. However, the expression of IFN-γ increased significantly in the uterus of GD7 abortion mice, while there was no significant change detected in GD8 aborted mice uterus. Our further data show that the expression of CXCL12 is not regulated by IFN-γ in endometrial stromal cell culture system in vitro. The treatment of CXCL12 significantly inhibits the expression of IFN-γ in in vitro cultured stromal cells and splenic monocytes. This suggests that CXCL12 may play an anti-inflammatory role in the uterus of abortion mice to promote the process of endometrial restoration after abortion, rather than participate in the process of abortion as a response molecule of IFN-γ.
Collapse
Affiliation(s)
- Hu-He Chao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Xiao Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Chengrong Wang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China.
| |
Collapse
|
11
|
Trébol J, Carabias-Orgaz A, García-Arranz M, García-Olmo D. Stem cell therapy for faecal incontinence: Current state and future perspectives. World J Stem Cells 2018; 10:82-105. [PMID: 30079130 PMCID: PMC6068732 DOI: 10.4252/wjsc.v10.i7.82] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
Faecal continence is a complex function involving different organs and systems. Faecal incontinence is a common disorder with different pathogeneses, disabling consequences and high repercussions for quality of life. Current management modalities are not ideal, and the development of new treatments is needed. Since 2008, stem cell therapies have been validated, 36 publications have appeared (29 in preclinical models and seven in clinical settings), and six registered clinical trials are currently ongoing. Some publications have combined stem cells with bioengineering technologies. The aim of this review is to identify and summarise the existing published knowledge of stem cell utilization as a treatment for faecal incontinence. A narrative or descriptive review is presented. Preclinical studies have demonstrated that cellular therapy, mainly in the form of local injections of muscle-derived (muscle derived stem cells or myoblasts derived from them) or mesenchymal (bone-marrow- or adipose-derived) stem cells, is safe. Cellular therapy has also been shown to stimulate the repair of both acute and subacute anal sphincter injuries, and some encouraging functional results have been obtained. Stem cells combined with normal cells on bioengineered scaffolds have achieved the successful creation and implantation of intrinsically-innervated anal sphincter constructs. The clinical evidence, based on adipose-derived stem cells and myoblasts, is extremely limited yet has yielded some promising results, and appears to be safe. Further investigation in both animal models and clinical settings is necessary to drawing conclusions. Nevertheless, if the preliminary results are confirmed, stem cell therapy for faecal incontinence may well become a clinical reality in the near future.
Collapse
Affiliation(s)
- Jacobo Trébol
- General and Digestive Tract Surgery Department, Salamanca University Healthcare Centre, Salamanca 37007, Spain.
| | - Ana Carabias-Orgaz
- Anaesthesiology Department, Complejo Asistencial de Ávila, Ávila 05004, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Damián García-Olmo
- General and Digestive Tract Surgery Department, Quiron-Salud Hospitals, Madrid 28040, Spain
| |
Collapse
|
12
|
Trébol J, Georgiev-Hristov T, Vega-Clemente L, García-Gómez I, Carabias-Orgaz A, García-Arranz M, García-Olmo D. Rat model of anal sphincter injury and two approaches for stem cell administration. World J Stem Cells 2018; 10:1-14. [PMID: 29391927 PMCID: PMC5785699 DOI: 10.4252/wjsc.v10.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a rat model of anal sphincter injury and test different systems to provide stem cells to injured area. METHODS Adipose-derived stem cells (ASCs) were isolated from BDIX rats and were transfected with green fluorescent protein (GFP) for cell tracking. Biosutures (sutures covered with ASCs) were prepared with 1.5 x 106 GFP-ASCs, and solutions of 106 GFP-ASCs in normal saline were prepared for injection. Anorectal normal anatomy was studied on Wistar and BDIX female rats. Then, we designed an anal sphincter injury model consisting of a 1-cm extra-mucosal miotomy beginning at the anal verge in the anterior middle line. The sphincter lesion was confirmed with conventional histology (hematoxylin and eosin) and immunofluorescence with 4', 6-diamidino-2-phenylindole (commonly known as DAPI), GFP and α-actin. Functional effect was assessed with basal anal manometry, prior to and after injury. After sphincter damage, 36 BDIX rats were randomized to three groups for: (1) Cell injection without repair; (2) biosuture repair; and (3) conventional suture repair and cell injection. Functional and safety studies were conducted on all the animals. Rats were sacrificed after 1, 4 or 7 d. Then, histological and immunofluorescence studies were performed on the surgical area. RESULTS With the described protocol, biosutures had been covered with at least 820000-860000 ASCs, with 100% viability. Our studies demonstrated that some ASCs remained adhered after suture passage through the muscle. Morphological assessment showed that the rat anal anatomy is comparable with human anatomy; two sphincters are present, but the external sphincter is poorly developed. Anal sphincter pressure data showed spontaneous, consistent, rhythmic anal contractions, taking the form of "plateaus" with multiple twitches (peaks) in each pressure wave. These basal contractions were very heterogeneous; their frequency was 0.91-4.17 per min (mean 1.6980, SD 0.57698), their mean duration was 26.67 s and mean number of peaks was 12.53. Our morphological assessment revealed that with the aforementioned surgical procedure, both sphincters were completely sectioned. In manometry, the described activity disappeared and was replaced by a gentle oscillation of basal line, without a recognizable pattern. Surprisingly, these findings appeared irrespective of injury repair or not. ASCs survived in this potentially septic area for 7 d, at least. We were able to identify them in 84% of animals, mainly in the muscular section area or in the tissue between the muscular endings. ASCs formed a kind of "conglomerate" in rats treated with injections, while in the biosuture group, they wrapped the suture. ASCs were also able to migrate to the damaged zone. No relevant adverse events or mortality could be related to the stem cells in our study. We also did not find unexpected tissue growths. CONCLUSION The proposed procedure produces a consistent sphincter lesion. Biosutures and injections are suitable for cell delivery. ASCs survive and are completely safe in this clinical setting.
Collapse
Affiliation(s)
- Jacobo Trébol
- Department of General and Digestive Tract Surgery, University Hospital "La Paz", Madrid 28046, Spain
| | - Tihomir Georgiev-Hristov
- Department of General and Digestive Tract Surgery, Villalba General Hospital, Madrid 28400, Spain
| | - Luz Vega-Clemente
- New Therapies Laboratory, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Ignacio García-Gómez
- Senior Research Associate, Hektoen Institute of Medicine, Chicago, Illinois 60612, United States
| | - Ana Carabias-Orgaz
- Department of Anaesthesiology, Complejo Asistencial de Ávila, Ávila 05004, Spain
| | - Mariano García-Arranz
- Scientific Head, New Therapies Laboratory, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Damián García-Olmo
- Head of Department, Department of General and Digestive Tract Surgery, Quiron-Salud Hospitals, Madrid 28040, Spain
| |
Collapse
|
13
|
Stromal Cell-Derived Factor 1 Plasmid Regenerates Both Smooth and Skeletal Muscle After Anal Sphincter Injury in the Long Term. Dis Colon Rectum 2017; 60:1320-1328. [PMID: 29112569 DOI: 10.1097/dcr.0000000000000940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Regenerating muscle at a time remote from injury requires re-expression of cytokines to attract stem cells to start and sustain the process of repair. OBJECTIVE We aimed to evaluate the sustainability of muscle regeneration after treatment with a nonviral plasmid expressing stromal cell-derived factor 1. DESIGN This was a randomized study. SETTINGS The study was conducted with animals in a single research facility. INTERVENTIONS Fifty-six female age-/weight-matched Sprague-Dawley rats underwent excision of the ventral half of the anal sphincter complex. Three weeks later, rats were randomly allocated (n = 8) to one of the following groups: no treatment, 100 μg of plasmid encoding stromal cell-derived factor 1 injected locally, local injection of plasmid and 8 × 10 bone marrow-derived mesenchymal stem cells, and plasmid encoding stromal cell-derived factor 1 injected locally with injection of a gelatin scaffold mixed with bone marrow-derived mesenchymal stem cells. MAIN OUTCOME MEASURES Anal manometry, histology, immunohistochemistrym and morphometry were performed 8 weeks after treatment. Protein expression of cytokines CXCR4 and Myf5 was investigated 1 week after treatment (n = 6 per group). ANOVA was used, with p < 0.0083 indicating significant differences for anal manometry and p < 0.05 for all other statistical analysis. RESULTS Eight weeks after treatment, all of the groups receiving the plasmid had significantly higher anal pressures than controls and more organized muscle architecture in the region of the defect. Animals receiving plasmid alone had significantly greater muscle in the defect (p = 0.03) than either animals with injury alone (p = 0.02) or those receiving the plasmid, cells, and scaffold (p = 0.03). Both smooth and skeletal muscles were regenerated significantly more after plasmid treatment. There were no significant differences in the protein levels of CXCR4 or Myf5. LIMITATIONS The study was limited by its small sample size and because stromal cell-derived factor 1 was not blocked. CONCLUSIONS A plasmid expressing stromal cell-derived factor 1 may be sufficient to repair an injured anal sphincter even long after the injury and in the absence of mesenchymal stem cell or scaffold treatments. See Video Abstract at http://links.lww.com/DCR/A451.
Collapse
|
14
|
Abstract
BACKGROUND Fecal incontinence is a common disorder, but its pathophysiology is not completely understood. OBJECTIVE The aim of this review is to present animal models that have a place in the study of fecal incontinence. DATA SOURCES A literature review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines performed in August 2016 revealed 50 articles of interest. Search terms included fecal/faecal incontinence and animal model or specific species. STUDY SELECTION Articles not describing an animal model, in vitro studies, veterinary literature, reviews, and non-English articles were excluded. MAIN OUTCOME MEASURES The articles described models in rats (n = 31), dogs (n = 8), rabbits (n = 7), and pigs (n = 4). RESULTS Different fecal incontinence etiologies were modeled, including anal sphincter lesions (33 articles) ranging from a single anal sphincter cut to destruction of 50% of the anal sphincter by sharp dissection, electrocautery, or diathermy. Neuropathic fecal incontinence (12 articles) was achieved by complete or incomplete pudendal, pelvic, or inferior rectal nerve damage. Mixed fecal incontinence (5 articles) was modeled either by the inflation of pelvic balloons or an array of several lesions including nervous and muscular damage. Anal fistulas (2 articles), anal sphincter resection (3 articles), and diabetic neuropathy (2 articles) were studied to a lesser extent. LIMITATIONS Bias may have arisen from the authors' own work on fecal incontinence and the absence of blinding to the origins of articles. CONCLUSIONS Validated animal models representing the main etiologies of fecal incontinence exist, but no animal model to date represents the whole pathophysiology of fecal incontinence. Therefore, the individual research questions still dictate the choice of model and species.
Collapse
|
15
|
Callewaert G, Da Cunha MMCM, Sindhwani N, Sampaolesi M, Albersen M, Deprest J. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 2017; 14:373-385. [PMID: 28374792 DOI: 10.1038/nrurol.2017.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With advancing population age, pelvic-floor dysfunction (PFD) will affect an increasing number of women. Many of these women wish to maintain active lifestyles, indicating an urgent need for effective strategies to treat or, preferably, prevent the occurrence of PFD. Childbirth and pregnancy have both long been recognized as crucial contributing factors in the pathophysiology of PFD. Vaginal delivery of a child is a serious traumatic event, causing anatomical and functional changes in the pelvic floor. Similar changes to those experienced during childbirth can be found in symptomatic women, often many years after delivery. Thus, women with such PFD symptoms might have incompletely recovered from the trauma caused by vaginal delivery. This hypothesis creates the possibility that preventive measures can be initiated around the time of delivery. Secondary prevention has been shown to be beneficial in patients with many other chronic conditions. The current general consensus is that clinicians should aim to minimize the extent of damage during delivery, and aim to optimize healing processes after delivery, therefore preventing later dysfunction. A substantial amount of research investigating the potential of stem-cell injections as a therapeutic strategy for achieving this purpose is currently ongoing. Data from small animal models have demonstrated positive effects of mesenchymal stem-cell injections on the healing process following simulated vaginal birth injury.
Collapse
Affiliation(s)
- Geertje Callewaert
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | | | - Nikhil Sindhwani
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maurilio Sampaolesi
- Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maarten Albersen
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Urology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
16
|
Abstract
BACKGROUND Healing of an anal sphincter defect at a time distant from injury is a challenge. OBJECTIVE We aimed to investigate whether re-establishing stem cell homing at the site of an anal sphincter defect when cytokine expression has declined using a plasmid engineered to express stromal derived factor 1 with or without mesenchymal stem cells can improve anatomic and functional outcome. DESIGN This was a randomized animal study. SETTINGS Thirty-two female age- and weight-matched Sprague Dawley rats underwent 50% excision of the anal sphincter complex. Three weeks after injury, 4 interventions were randomly allocated (n = 8), including no intervention, 100-μg plasmid, plasmid and 800,000 cells, and plasmid with a gelatin scaffold mixed with cells. MAIN OUTCOME MEASURES The differences in anal sphincter resting pressures just before and 4 weeks after intervention were used for functional analysis. Histology was analyzed using Masson staining. One-way ANOVA followed by the Tukey post hoc test was used for pressure and histological analysis. RESULTS All 3 of the intervention groups had a significantly greater change in resting pressure (plasmid p = 0.009; plasmid + cells p = 0.047; plasmid + cells in scaffold p = 0.009) compared with the control group. The plasmid-with-cells group showed increased organization of muscle architecture and increased muscle percentage, whereas the control group showed disorganized architecture at the site of the defect. Histological quantification revealed significantly more muscle at the site of defect in the plasmid-plus-cells group compared with the control group, which had the least muscle. Quantification of connective tissue revealed significantly less fibrosis at the site of defect in the plasmid and plasmid-plus-cells groups compared with the control group. LIMITATIONS Midterm evaluation and muscle morphology were not defined. CONCLUSIONS At this midterm follow-up, local delivery of a stromal derived factor 1 plasmid with or without local mesenchymal stem cells enhanced anal sphincter muscle regeneration long after an anal sphincter injury, thereby improving functional outcome. See Video Abstract at http://links.lww.com/DCR/A324.
Collapse
|
17
|
Saldana Ruiz N, Kaiser AM. Fecal incontinence - Challenges and solutions. World J Gastroenterol 2017; 23:11-24. [PMID: 28104977 PMCID: PMC5221273 DOI: 10.3748/wjg.v23.i1.11] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023] Open
Abstract
Fecal incontinence is not a diagnosis but a frequent and debilitating common final pathway symptom resulting from numerous different causes. Incontinence not only impacts the patient's self-esteem and quality of life but may result in significant secondary morbidity, disability, and cost. Treatment is difficult without any panacea and an individualized approach should be chosen that frequently combines different modalities. Several new technologies have been developed and their specific roles will have to be defined. The scope of this review is outline the evaluation and treatment of patients with fecal incontinence.
Collapse
|
18
|
Electrical Stimulation Followed by Mesenchymal Stem Cells Improves Anal Sphincter Anatomy and Function in a Rat Model at a Time Remote From Injury. Dis Colon Rectum 2016; 59:434-42. [PMID: 27050606 DOI: 10.1097/dcr.0000000000000548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have explored cell-based therapy to aid anal sphincter repair, but a conditioning injury is required to direct stem cells to the site of injury because symptoms usually manifest at a time remote from injury. OBJECTIVE We aimed to investigate the effect of local electrical stimulation followed by mesenchymal stem cell delivery on anal sphincter regeneration at a time remote from injury. DESIGN AND MAIN OUTCOME MEASURES With the use of a rat model, electrical stimulation parameters and cell delivery route were selected based on in vivo cytokine expression and luciferase-labeled cell imaging of the anal sphincter complex. Three weeks after a partial anal sphincter excision, rats were randomly allocated to 4 groups based on different local interventions: no treatment, daily electrical stimulation for 3 days, daily stimulation for 3 days followed by stem cell injection on the third day, and daily electrical stimulation followed by stem cell injection on the first and third days. Histology-assessed anatomy and anal manometry evaluated physiology 4 weeks after intervention. RESULTS The electrical stimulation parameters that significantly upregulated gene expression of homing cytokines also achieved mesenchymal stem cell retention when injected directly in the anal sphincter complex in comparison with intravascular and intraperitoneal injections. Four weeks after intervention, there was significantly more new muscle in the area of injury and significantly improved anal resting pressure in the group that received daily electrical stimulation for 3 days followed by a single injection of 1 million stem cells on the third day at the site of injury. LIMITATION This was a pilot study and therefore was not powered for functional outcome. CONCLUSIONS In this rat injury model with optimized parameters, electrical stimulation with a single local mesenchymal stem cell injection administered 3 weeks after injury significantly improved both new muscle formation in the area of injury and anal sphincter pressures.
Collapse
|
19
|
Brenner C, Adrion C, Grabmaier U, Theisen D, von Ziegler F, Leber A, Becker A, Sohn HY, Hoffmann E, Mansmann U, Steinbeck G, Franz WM, Theiss HD. Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: A double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). Int J Cardiol 2015; 205:23-30. [PMID: 26709136 DOI: 10.1016/j.ijcard.2015.11.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In animal models, G-CSF based progenitor cell mobilization combined with a DPP4 inhibitor leads to increased homing of bone marrow derived progenitor cells to the injured myocardium via the SDF1/CXCR4 axis resulting in improved ejection fraction and survival after acute myocardial infarction (AMI). RESEARCH DESIGN AND METHODS After successful revascularization in AMI, 174 patients were randomized 1:1 in a multi-centre, prospective, placebo-controlled, parallel group, double blind, phase III efficacy and safety trial to treatment with G-CSF and Sitagliptin (GS) or placebo. Diabetic and non-diabetic patients were included in our trial. The primary efficacy endpoint hierarchically combined global left and right ventricular ejection fraction changes from baseline to 6 months of follow-up (ΔLVEF, ΔRVEF), as determined by cardiac MRI. RESULTS At follow-up ΔLVEF as well as ΔRVEF did not differ between the GS and placebo group. Patients in the placebo group had a similar risk for a major adverse cardiac event within 12 months of follow-up as compared to patients under GS. CONCLUSION Progenitor cell therapy comprising the use of G-CSF and Sitagliptin after successfully revascularized acute myocardial infarction fails to show a beneficial effect on cardiac function and clinical events after 12 months. (EudraCT: 2007-003,941-34; ClinicalTrials.gov: NCT00650143, funding: Heinz-Nixdorf foundation).
Collapse
Affiliation(s)
- Christoph Brenner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Adrion
- Institute for Medical Informatics, Biometry und Epidemiology (IBE), Ludwig-Maximilians-University, Munich, Germany
| | - Ulrich Grabmaier
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Theisen
- Institute of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Franz von Ziegler
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Alexander Leber
- Department of Cardiology, Klinikum Bogenhausen, Munich, Germany
| | - Alexander Becker
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Hae-Young Sohn
- Department of Cardiology, Klinikum Innenstadt, Ludwig-Maximilians-University, Munich, Germany
| | - Ellen Hoffmann
- Department of Cardiology, Klinikum Bogenhausen, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Informatics, Biometry und Epidemiology (IBE), Ludwig-Maximilians-University, Munich, Germany
| | - Gerhard Steinbeck
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang-Michael Franz
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany.
| | - Hans Diogenes Theiss
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
20
|
Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z, Zhuo Z, Xia H, Gao Y, Tan K. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats. Int J Nanomedicine 2014; 9:5639-51. [PMID: 25516709 PMCID: PMC4263441 DOI: 10.2147/ijn.s73950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MBSDF-1) via covalent conjugation. The characterization and bioactivity of MBSDF-1 were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MBSDF-1. The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 μg/mL. MBSDF-1 remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MBSDF-1 destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.
Collapse
Affiliation(s)
- Shengzheng Wu
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Lu Li
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Gong Wang
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Weiwei Shen
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yali Xu
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Zheng Liu
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhongxiong Zhuo
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Hongmei Xia
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Yunhua Gao
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| | - Kaibin Tan
- Department of Ultrasound, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Cheng JW, Sadeghi Z, Levine AD, Penn MS, von Recum HA, Caplan AI, Hijaz A. The role of CXCL12 and CCL7 chemokines in immune regulation, embryonic development, and tissue regeneration. Cytokine 2014; 69:277-83. [PMID: 25034237 DOI: 10.1016/j.cyto.2014.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 05/23/2014] [Accepted: 06/04/2014] [Indexed: 12/20/2022]
Abstract
Chemotactic factors direct the migration of immune cells, multipotent stem cells, and progenitor cells under physiologic and pathologic conditions. Chemokine ligand 12 and chemokine ligand 7 have been identified and investigated in multiple studies for their role in cellular trafficking in the setting of tissue regeneration. Recent early phase clinical trials have suggested that these molecules may lead to clinical benefit in patients with chronic disease. Importantly, these two proteins may play additional significant roles in directing the migration of multipotent cells, such as mesenchymal stem cells and hematopoietic progenitor cells. This article reviews the functions of these two chemokines, focusing on recruitment to sites of injury, immune function modulation, and contributions to embryonic development. Additional research would provide valuable insight into the potential clinical application of these two proteins in stem cell therapy.
Collapse
Affiliation(s)
- Julie W Cheng
- Urology Institute, University Hospitals Case Medical Center, Department of Urology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, United States
| | - Zhina Sadeghi
- Urology Institute, University Hospitals Case Medical Center, Department of Urology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, United States
| | - Alan D Levine
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Marc S Penn
- Skirball Laboratory for Cardiovascular Cellular Therapeutics, Summa Cardiovascular Institute, Summa Health System, 525 East Market Street, Akron, OH 44304, United States
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Adonis Hijaz
- Urology Institute, University Hospitals Case Medical Center, Department of Urology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
22
|
Salcedo L, Penn M, Damaser M, Balog B, Zutshi M. Functional outcome after anal sphincter injury and treatment with mesenchymal stem cells. Stem Cells Transl Med 2014; 3:760-7. [PMID: 24797828 DOI: 10.5966/sctm.2013-0157] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This research demonstrates the regenerative effects of mesenchymal stem cells (MSCs) on the injured anal sphincter by comparing anal sphincter pressures following intramuscular and serial intravascular MSC infusion in a rat model of anal sphincter injury. Fifty rats were divided into injury (n = 35) and no injury (NI; n = 15) groups. Each group was further divided into i.m., serial i.v., or no-treatment (n = 5) groups and followed for 5 weeks. The injury consisted of an excision of 25% of the anal sphincter complex. Twenty-four hours after injury, 5 × 10(5) green fluorescent protein-labeled MSCs in 0.2 ml of phosphate-buffered saline (PBS) or PBS alone (sham) were injected into the anal sphincter for i.m. treatment; i.v. and sham i.v. treatments were delivered daily for 6 consecutive days via the tail vein. Anal pressures were recorded before injury and 10 days and 5 weeks after treatment. Ten days after i.m. MSC treatment, resting and peak pressures were significantly increased compared with those in sham i.m. treatment (p < .001). When compared with the NI group, the injury groups had anal pressures that were not significantly different 5 weeks after i.m./i.v. treatment. Both resting and peak pressures were also significantly increased after i.m./i.v. MSC treatment compared with treatment with PBS (p < .001), suggesting recovery. Statistical analysis was done using paired t test with Bonferroni correction. Marked decrease in fibrosis and scar tissue was seen in both MSC-treated groups. Both i.m. and i.v. MSC treatment after injury caused an increase in anal pressures sustained at 5 weeks, although fewer cells were injected i.m. The MSC-treated groups showed less scarring than the PBS-treated groups, with the i.v. infusion group showing the least scarring.
Collapse
Affiliation(s)
- Levilester Salcedo
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Marc Penn
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Margot Damaser
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Brian Balog
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Massarat Zutshi
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Hijaz AK, Grimberg KO, Tao M, Schmotzer B, Sadeghi Z, Lin YH, Kavran M, Ozer A, Xiao N, Daneshgari F. Stem cell homing factor, CCL7, expression in mouse models of stress urinary incontinence. Female Pelvic Med Reconstr Surg 2013; 19:356-61. [PMID: 24165450 DOI: 10.1097/spv.0b013e3182a331a9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Animal models of vaginal distention (VD) have demonstrated increased expression of chemokine (C-C motif) ligand 7 (CCL7) In this study, we investigated the expression of CCL7 in mice models of simulated birth trauma-induced urinary incontinence using VD and pudendal nerve transection (PNT). METHODS Forty-nine mice were divided into 6 groups: VD, sham VD, PNT, sham PNT, anesthesia, and age-matched controls. The urethra, vagina, and rectum were harvested for the expression of CCL7 immediately or 24 hours after assigned procedure. Venous sampling for quantification of serum CCL7 was also performed. An analysis of variance model was used to compare the relative expression of CCL7 in each group. RESULTS Urethral CCL7 expression in the VD group was significantly higher than control group after 24 hours (P < 0.01). There was no difference in the urethral CCL7 expression in PNT, sham PNT, sham VD, or anesthesia groups compared with the controls. No statistically significant difference was noted in the vaginal and rectal expression of CCL7 between any of the groups except for sham PNT. Statistically significant differences were noted in the serum CCL7 expression in the VD, PNT, and sham PNT (P < 0.01 in all) groups after 24 hours compared with the control group. CONCLUSIONS This study demonstrates overexpression of urethral CCL7 after VD but not PNT. This suggests that nerve injury does not contribute to the CCL7 overexpression. The overexpression of CCL7 in the serum of mice after VD suggests a translational potential where CCL7 measurement could be used as a surrogate for injury after delivery.
Collapse
Affiliation(s)
- Adonis K Hijaz
- From the *Department of Urology, Case Western Reserve University; Urology Institute, University Hospitals Case Medical Center, Cleveland, OH, †Center for Clinical Investigation, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH; ‡Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; and §Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Salcedo L, Mayorga M, Damaser M, Balog B, Butler R, Penn M, Zutshi M. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res 2012; 10:95-102. [PMID: 23147650 DOI: 10.1016/j.scr.2012.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 09/13/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fecal incontinence reduces the quality of life of many women but has no long-term cure. Research on mesenchymal stem cell (MSC)-based therapies has shown promising results. The primary aim of this study was to evaluate functional recovery after treatment with MSCs in two animal models of anal sphincter injury. METHODS Seventy virgin female rats received a sphincterotomy (SP) to model episiotomy, a pudendal nerve crush (PNC) to model the nerve injuries of childbirth, a sham SP, or a sham PNC. Anal sphincter pressures and electromyography (EMG) were recorded after injury but before treatment and 10 days after injury. Twenty-four hours after injury, each animal received either 0.2 ml saline or 2 million MSCs labelled with green fluorescing protein (GFP) suspended in 0.2 ml saline, either intravenously (IV) into the tail vein or intramuscularly (IM) into the anal sphincter. RESULTS MSCs delivered IV after SP resulted in a significant increase in resting anal sphincter pressure and peak pressure, as well as anal sphincter EMG amplitude and frequency 10 days after injury. MSCs delivered IM after SP resulted in a significant increase in resting anal sphincter pressure and anal sphincter EMG frequency but not amplitude. There was no improvement in anal sphincter pressure or EMG with in animals receiving MSCs after PNC. GFP-labelled cells were not found near the external anal sphincter in MSC-treated animals after SP. CONCLUSION MSC treatment resulted in significant improvement in anal pressures after SP but not after PNC, suggesting that MSCs could be utilized to facilitate recovery after anal sphincter injury.
Collapse
|
25
|
Lenis AT, Kuang M, Woo LL, Hijaz A, Penn MS, Butler RS, Rackley R, Damaser MS, Wood HM. Impact of parturition on chemokine homing factor expression in the vaginal distention model of stress urinary incontinence. J Urol 2012; 189:1588-94. [PMID: 23022009 DOI: 10.1016/j.juro.2012.09.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 01/12/2023]
Abstract
PURPOSE Human childbirth simulated by vaginal distention is known to increase the expression of chemokines and receptors involved in stem cell homing and tissue repair. We hypothesized that pregnancy and parturition in rats contributes to the expression of chemokines and receptors after vaginal distention. MATERIALS AND METHODS We used 72 age matched female Lewis rats, including virgin rats with and without vaginal distention, and delivered rats with and without vaginal distention. Each rat was sacrificed immediately, or 3 or 7 days after vaginal distention and/or parturition, and the urethra was harvested. Relative expression of chemokines and receptors was determined by real-time polymerase chain reaction. Mixed models were used with the Bonferroni correction for multiple comparisons. RESULTS Vaginal distention up-regulated urethral expression of CCL7 immediately after injury in virgin and postpartum rats. Hypoxia inducible factor-1α and vascular endothelial growth factor were up-regulated only in virgin rats immediately after vaginal distention. CD191 expression was immediately up-regulated in postpartum rats without vaginal distention compared to virgin rats without vaginal distention. CD195 was up-regulated in virgin rats 3 days after vaginal distention compared to virgin rats without vaginal distention. CD193 and CXCR4 showed delayed up-regulation in virgin rats 7 days after vaginal distention. CXCL12 was up-regulated in virgin rats 3 days after vaginal distention compared to immediately after vaginal distention. Interleukin-8 and CD192 showed no differential expression. CONCLUSIONS Vaginal distention results in up-regulation of the chemokines and receptors expressed during tissue injury, which may facilitate the spontaneous functional recovery previously noted. Pregnancy and delivery up-regulated CD191 and attenuated the expression of hypoxia inducible factor-1α and vascular endothelial growth factor in the setting of vaginal distention, likely by decreasing hypoxia.
Collapse
Affiliation(s)
- Andrew T Lenis
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Frolova EG, Sopko N, Blech L, Popović ZB, Li J, Vasanji A, Drumm C, Krukovets I, Jain MK, Penn MS, Plow EF, Stenina OI. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J 2012; 26:2363-73. [PMID: 22362893 PMCID: PMC3360147 DOI: 10.1096/fj.11-190728] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 02/10/2012] [Indexed: 12/29/2022]
Abstract
Thrombospondin-4 (TSP-4) expression increases dramatically in hypertrophic and failing hearts in rodent models and in humans. The aim of this study was to address the function of TSP-4 in the heart. TSP-4-knockout (Thbs4(-/-)) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) to increase left ventricle load. After 2 wk, Thbs4(-/-) mice had a significantly higher heart weight/body weight ratio than WT mice. The additional increase in the heart weight in TAC Thbs4(-/-) mice was due to increased deposition of extracellular matrix (ECM). The levels of interstitial collagens were higher in the knockout mice, but the size of cardiomyocytes and apoptosis in the myocardium was unaffected by TSP-4 deficiency, suggesting that increased reactive fibrosis was the primary cause of the higher heart weight. The increased ECM deposition in Thbs4(-/-) mice was accompanied by changes in functional parameters of the heart and decreased vessel density. The expression of inflammatory and fibrotic genes known to be influential in myocardial remodeling changed as a result of TSP-4 deficiency in vivo and as a result of incubation of cells with recombinant TSP-4 in vitro. Thus, TSP-4 is involved in regulating the adaptive responses of the heart to pressure overload, suggesting its important role in myocardial remodeling. Our study showed a direct influence of TSP-4 on heart function and to identify the mechanism of its effects on heart remodeling.
Collapse
Affiliation(s)
- Ella G. Frolova
- Department of Molecular Cardiology
- Joseph J. Jacob Center for Thrombosis and Vascular Biology
| | | | - Lauren Blech
- Department of Molecular Cardiology
- Joseph J. Jacob Center for Thrombosis and Vascular Biology
| | | | - Jianbo Li
- Department of Quantitative Health Sciences
| | | | - Carla Drumm
- Department of Molecular Cardiology
- Joseph J. Jacob Center for Thrombosis and Vascular Biology
| | - Irene Krukovets
- Department of Molecular Cardiology
- Joseph J. Jacob Center for Thrombosis and Vascular Biology
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Edward F. Plow
- Department of Molecular Cardiology
- Joseph J. Jacob Center for Thrombosis and Vascular Biology
| | - Olga I. Stenina
- Department of Molecular Cardiology
- Joseph J. Jacob Center for Thrombosis and Vascular Biology
| |
Collapse
|
27
|
Low current electrical stimulation upregulates cytokine expression in the anal sphincter. Int J Colorectal Dis 2012; 27:221-5. [PMID: 22006493 DOI: 10.1007/s00384-011-1324-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2011] [Indexed: 02/04/2023]
Abstract
AIM Stem cells are an emerging treatment for regeneration of damaged anal sphincter tissues. Homing to the site of injury can be potentiated by stromal derived factor 1 (SDF-1) and monocyte chemotactic protein 3 (MCP-3) expression. The effects of electrical stimulation (ES) on upregulation of these cytokines were investigated. METHODS The anal sphincter complex of Sprague Dawley rats was stimulated with current of 0.25 mA, pulse duration of 40 pulses/s, pulse width of 100 μs, and frequency of 100 Hz for 1 or 4 h. Sham was created using the same needle which was inserted into the anal sphincter without electrical stimulation in different groups of animals. The rats were euthanized immediately or 24 h after stimulation. Cytokine analysis was performed using real-time polymerase chain reaction. Statistical analysis was performed. RESULTS Results are presented as a fold increase compared to sham that was normalized to 1. SDF-1 and MCP-3 immediately after 1 h were 2.5 ± 0.77 and 3.1± 0.93 vs. sham, respectively, showing significant increase. After 1-h stimulation and euthanasia 24 h after, SDF-1 and MCP-3 were 1.49 ± 0.16 and 1.51± 0.14 vs. sham, respectively, showing significant increase. Immediately and 24 h after 4-h stimulation, SDF-1 was 1.21 ± 0.16 and 0.54 ± 0.16 vs. sham, respectively, and was not significantly different. Immediately and 24 h after 4-h stimulation, MCP-3 was 1.29 ± 0.41 and 0.35 ±1.0 vs. sham, respectively, and was not significantly different. SDF-1 and MCP-3 after 1 h were significantly higher than after 4 h of stimulation at both time points. CONCLUSION Electrical stimulation for 1 h significantly upregulates SDF-1 and MCP-3 expression that persists for 24 h. Prolonged stimulation reduced chemokine expression, suggesting electrolysis of cells.
Collapse
|