1
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
2
|
Zhila NO, Sapozhnikova KY, Kiselev EG, Shishatskaya EI, Volova TG. Biosynthesis of Polyhydroxyalkanoates in Cupriavidus necator B-10646 on Saturated Fatty Acids. Polymers (Basel) 2024; 16:1294. [PMID: 38732762 PMCID: PMC11085183 DOI: 10.3390/polym16091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
It has been established that the wild-type Cupriavidus necator B-10646 strain uses saturated fatty acids (SFAs) for growth and polyhydroxyalkanoate (PHA) synthesis. It uses lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids as carbon sources; moreover, the elongation of the C-chain negatively affects the biomass and PHA yields. When bacteria grow on C12 and C14 fatty acids, the total biomass and PHA yields are comparable up to 7.5 g/L and 75%, respectively, which twice exceed the values that occur on longer C16 and C18 acids. Regardless of the type of SFAs, bacteria synthesize poly(3-hydroxybutyrate), which have a reduced crystallinity (Cx from 40 to 57%) and a molecular weight typical for poly(3-hydroxybutyrate) (P(3HB)) (Mw from 289 to 465 kDa), and obtained polymer samples demonstrate melting and degradation temperatures with a gap of about 100 °C. The ability of bacteria to assimilate SFAs opens up the possibility of attracting the synthesis of PHAs on complex fat-containing substrates, including waste.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Kristina Yu. Sapozhnikova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| |
Collapse
|
3
|
Englert J, Palà M, Witzdam L, Rayatdoost F, Grottke O, Lligadas G, Rodriguez-Emmenegger C. Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18476-18485. [PMID: 38048267 DOI: 10.1021/acs.langmuir.3c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.
Collapse
Affiliation(s)
- Jenny Englert
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Palà
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Lena Witzdam
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Farahnaz Rayatdoost
- Department of Anesthesiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Oliver Grottke
- Department of Anesthesiology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Cesar Rodriguez-Emmenegger
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Vicente D, Proença DN, Morais PV. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2959. [PMID: 36833658 PMCID: PMC9957297 DOI: 10.3390/ijerph20042959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.
Collapse
Affiliation(s)
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, 3000-456 Coimbra, Portugal
| | | |
Collapse
|
5
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
6
|
Zhang Z, Shi C, Scoti M, Tang X, Chen EYX. Alternating Isotactic Polyhydroxyalkanoates via Site- and Stereoselective Polymerization of Unsymmetrical Diolides. J Am Chem Soc 2022; 144:20016-20024. [PMID: 36256876 DOI: 10.1021/jacs.2c08791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally produced, biodegradable polyhydroxyalkanoates (PHAs) promise more sustainable alternatives to nonrenewable/degradable plastics, but biological PHA's stereomicrostructures are strictly confined to isotactic (R)-polymers or copolymers of random sequences. Chemical synthesis via catalyzed ring-opening polymerization (ROP) of cyclic (di)esters offers expedient access to diverse PHA microstructures, including those with defined comonomer sequences and tacticities. However, the synthesis of alternating isotactic PHAs has not been achieved by the existing methodologies. Here, we report the design of unsymmetrically disubstituted eight-membered diolides (rac-8DLR1-R2) and their site- and stereoselective ROP with discrete chiral catalysts, enabling the synthesis of alternating isotactic PHAs, poly(3-hydroxybutyrate-alt-3-hydroxyvalerate) (alt-P3HBV) and poly(3-hydroxybutyrate-alt-3-hydroxyheptanoate) (alt-P3HBHp), with high to quantitative (>99%) alternation and isotacticity and Mn up to 113 kDa and Đ = 1.01. Physical properties of such PHAs are substantially determined by the degree of backbone sequence alternation and tacticity, ranging from amorphous to semi-crystalline materials. The alt-P3HBV shows significantly improved mechanical performance relative to the constituent homopolymers. Intriguingly, enantiomeric (R)-alt-P3HBV and (S)-alt-P3HBV, synthesized by kinetically resolved ROP of rac-8DLMe-Et, form a stereocomplex with a significantly enhanced Tm (by 53 °C), while the enantiomeric homopolymers do not form a stereocomplex.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, Napoli 80126, Italy
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
7
|
Potential of mealworms used in polyhydroxyalkanoate/bioplastic recovery as red hybrid tilapia (Oreochromis sp.) feed ingredient. Sci Rep 2022; 12:9598. [PMID: 35689011 PMCID: PMC9187653 DOI: 10.1038/s41598-022-13429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are bio-based polymers produced in bacterial cells to replace some petrochemical plastics. It has always been a challenge to commercialise PHA due in part to the costly recovery processes of the PHA granules from the bacterial cells. The biological approach of using mealworms, Tenebrio molitor, for the recovery of PHA from the bacterial cells is a newly established method that is at the scale-up stage. On the other hand, the aquaculture feed industry needs a low-cost mealworm meal as a protein source. We aimed at studying the nutritional value of the mealworms (which are by-products) used for the poly(3-hydroxybutyrate) (PHB) (the most common type of PHA) recovery from the bacterial and examining the effect of the mealworms on the growth performance, and feed utilization efficiency of red hybrid tilapia (Oreochromis sp.). The cells were fed to the mealworms to digest the proteinaceous cellular materials and excrete the PHB granules in the form of fecal pellets. The resulting mealworms were used as fishmeal replacement to formulate five isonitrogenous (35% crude protein) and isolipidic (8% lipid) diets at mealworm meal (MwM) inclusion levels of 0% (MwM0/control diet), 25% (MwM25), 50% (MwM50), 75% (MwM75) or 100% (MwM100). The results showed good nutritive value mealworms [high protein (75%), low-lipid (10%)] and up to 75% MwM inclusion diet was good in supplying satisfactory nutrients and energy to the red hybrid tilapia. This approach is beneficial in a way that minimal cost was involved in recovering kilograms of PHB and the proteins, lipids, and minerals from the bacterial cells do not end up as wastes but in turn, are used as nutrition by the larvae.
Collapse
|
8
|
Komiyama K, Omura T, Kabe T, Iwata T. Mechanical properties and highly-ordered structural analysis of elastic poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] fibers fabricated by partially melting crystals. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kettner A, Noll M, Griehl C. Leptolyngbya sp. NIVA-CYA 255, a Promising Candidate for Poly(3-hydroxybutyrate) Production under Mixotrophic Deficiency Conditions. Biomolecules 2022; 12:biom12040504. [PMID: 35454093 PMCID: PMC9030801 DOI: 10.3390/biom12040504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria are a promising source for the sustainable production of biodegradable bioplastics such as poly(3-hydroxybutyrate) (PHB). The auto-phototrophic biomass formation is based on light and CO2, which is an advantage compared to heterotrophic PHB-producing systems. So far, only a handful of cyanobacterial species suitable for the high-yield synthesis of PHB have been reported. In the present study, the PHB formation, biomass, and elemental composition of Leptolyngbya sp. NIVA-CYA 255 were investigated. Therefore, a three-stage cultivation process was applied, consisting of a growth stage; an N-, P-, and NP-depleted phototrophic stage; and a subsequent mixotrophic deficiency stage, initiated by sodium acetate supplementation. The extracted cyanobacterial PHB was confirmed by FTIR- and GC-MS analyses. Furthermore, the fluorescent dyes LipidGreen2 and Nile red were used for fluorescence-based monitoring and the visualization of PHB. LipidGreen2 was well suited for PHB quantification, while the application of Nile red was limited by fluorescence emission crosstalk with phycocyanin. The highest PHB yields were detected in NP- (325 mg g−1) and N-deficiency (213 mg g−1). The glycogen pool was reduced in all cultures during mixotrophy, while lipid composition was not affected. The highest glycogen yield was formed under N-deficiency (217 mg g−1). Due to the high carbon storage capacity and PHB formation, Leptolyngbya sp. NIVA-CYA 255 is a promising candidate for PHB production. Further work will focus on upscaling to a technical scale and monitoring the formation by LipidGreen2-based fluorometry.
Collapse
Affiliation(s)
- Alexander Kettner
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Koethen, Germany;
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany;
| | - Carola Griehl
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Koethen, Germany;
- Correspondence: ; Tel.: +49-(0)-3496-67-2526
| |
Collapse
|
10
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
11
|
Koller M, Mukherjee A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering (Basel) 2022; 9:bioengineering9020074. [PMID: 35200427 PMCID: PMC8869736 DOI: 10.3390/bioengineering9020074] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The ever-increasing use of plastics, their fossil origin, and especially their persistence in nature have started a wave of new innovations in materials that are renewable, offer the functionalities of plastics, and are biodegradable. One such class of biopolymers, polyhydroxyalkanoates (PHAs), are biosynthesized by numerous microorganisms through the conversion of carbon-rich renewable resources. PHA homo- and heteropolyesters are intracellular products of secondary microbial metabolism. When isolated from microbial biomass, PHA biopolymers mimic the functionalities of many of the top-selling plastics of petrochemical origin, but biodegrade in soil, freshwater, and marine environments, and are both industrial- and home-compostable. Only a handful of PHA biopolymers have been studied in-depth, and five of these reliably match the desired material properties of established fossil plastics. Realizing the positive attributes of PHA biopolymers, several established chemical companies and numerous start-ups, brand owners, and converters have begun to produce and use PHA in a variety of industrial and consumer applications, in what can be described as the emergence of the “PHA industry”. While this positive industrial and commercial relevance of PHA can hardly be described as the first wave in its commercial development, it is nonetheless a very serious one with over 25 companies and start-ups and 30+ brand owners announcing partnerships in PHA production and use. The combined product portfolio of the producing companies is restricted to five types of PHA, namely poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), even though PHAs as a class of polymers offer the potential to generate almost limitless combinations of polymers beneficial to humankind. To date, by varying the co-monomer type and content in these PHA biopolymers, their properties emulate those of the seven top-selling fossil plastics, representing 230 million t of annual plastics production. Capacity expansions of 1.5 million t over the next 5 years have been announced. Policymakers worldwide have taken notice and are encouraging industry to adopt biodegradable and compostable material solutions. This wave of commercialization of PHAs in single-use and in durable applications holds the potential to make the decisive quantum leap in reducing plastic pollution, the depletion of fossil resources, and the emission of greenhouse gases and thus fighting climate change. This review presents setbacks and success stories of the past 40 years and the current commercialization wave of PHA biopolymers, their properties, and their fields of application.
Collapse
Affiliation(s)
- Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria
- ARENA—Association for Resource Efficient and Sustainable Technologies, Inffeldgasse 21b, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-380-5463
| | - Anindya Mukherjee
- Global Organization for PHA (GO!PHA), Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- PHAXTEC, Inc., Wake Forest, NC 27587, USA
| |
Collapse
|
12
|
Eraslan K, Aversa C, Nofar M, Barletta M, Gisario A, Salehiyan R, Alkan Goksu Y. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): synthesis, properties, and applications - A Review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Alfano S, Lorini L, Majone M, Sciubba F, Valentino F, Martinelli A. Ethylic Esters as Green Solvents for the Extraction of Intracellular Polyhydroxyalkanoates Produced by Mixed Microbial Culture. Polymers (Basel) 2021; 13:polym13162789. [PMID: 34451326 PMCID: PMC8398844 DOI: 10.3390/polym13162789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile fatty acids obtained from the fermentation of the organic fraction of municipal solid waste can be used as raw materials for non-toxic ethyl ester (EE) synthesis as well as feedstock for the production of polyhydroxyalkanoates (PHAs). Taking advantage of the concept of an integrated process of a bio-refinery, in the present paper, a systematic investigation on the extraction of intracellular poly(3-hydroxybutyrate-co-3-hydroxyvalerate), produced by mixed microbial culture by using EEs was reported. Among the tested EEs, ethyl acetate (EA) was the best solvent, dissolving the copolymer at the lowest temperature. Then, extraction experiments were carried out by EA at different temperatures on two biomass samples containing PHAs with different average molecular weights. The parallel characterization of the extracted and non-extracted PHAs evidenced that at the lower temperature (100 °C) EA solubilizes preferentially the polymer fractions richer in 3HV comonomers and with the lower molecular weight. By increasing the extraction temperature from 100 °C to 125 °C, an increase of recovery from about 50 to 80 wt% and a molecular weight reduction from 48% to 65% was observed. The results highlighted that the extracted polymer purity is always above 90 wt% and that it is possible to choose the proper extraction condition to maximize the recovery yield at the expense of polymer fractionation and degradation at high temperatures or use milder conditions to maintain the original properties of a polymer.
Collapse
Affiliation(s)
- Sara Alfano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.A.); (L.L.); (M.M.)
| | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.A.); (L.L.); (M.M.)
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.A.); (L.L.); (M.M.)
| | - Fabio Sciubba
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy;
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.A.); (L.L.); (M.M.)
- Correspondence:
| |
Collapse
|
14
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
15
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
16
|
Andreasi Bassi S, Boldrin A, Frenna G, Astrup TF. An environmental and economic assessment of bioplastic from urban biowaste. The example of polyhydroxyalkanoate. BIORESOURCE TECHNOLOGY 2021; 327:124813. [PMID: 33582519 DOI: 10.1016/j.biortech.2021.124813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Bio-based and biodegradable plastics promise considerable reductions in our dependency on fossil fuels and in the environmental impacts of plastic waste. This study quantifies the environmental and economic consequences of diverting municipal food waste and wastewater sewage sludge from traditional management to the biorefinery-based production of polyhydroxyalkanoates (PHA) in five geographical regions. The results show that PHA can outperform fossil polyurethane and PHA from first-generation biomass (sugarcane and maize) with respect to both environmental impacts and societal costs (four times lower impacts and eight times lower costs than polyurethane). To outperform other fossil polymers like low-density polyethylene (LDPE), biorefinery performance should be improved further by more efficient utilization of sodium hypochlorite during PHA extraction, minimization of methane leakage in biogas facilities, upgrading of biogas to biomethane, and more effective handling of the liquid fraction from digestate dewatering.
Collapse
Affiliation(s)
- Susanna Andreasi Bassi
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Alessio Boldrin
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Giammarco Frenna
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, IT-30172 Mestre (VE), Italy
| | - Thomas F Astrup
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Di Caprio F. A fattening factor to quantify the accumulation ability of microorganisms under N-starvation. N Biotechnol 2021; 66:70-78. [PMID: 33862285 DOI: 10.1016/j.nbt.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023]
Abstract
Many microorganisms can accumulate biomass in the form of lipids and polysaccharides, which can be used for biofuels, bioplastics, food and feed. Some innovative bioprocesses exploit the competitive advantage provided by such accumulation ability, mainly under N-starvation, to select high-accumulating strains against biological contaminants, by using uncoupled nutrient feeding. However, there is no general and easily comparable parameter available to compare biomass accumulation ability among different microbial strains, which could measure the competitive advantage. Here, a parameter termed "fattening factor" (ηx) is described to quantify such strain-specific biomass accumulation ability in bacteria, yeasts and microalgae. This parameter measures how many fold a microbial population can increase its biomass just as the result of accumulation. It is derived from considerations about the main metabolic aspects of cells' response to N-starvation, which induces variations in cell cycle, biomass production and biochemical composition. The fattening factor described here should be easily estimatable in N-starvation for every culturable microbial strain, by measuring the amount of accumulated biomass.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
18
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
19
|
|
20
|
Pagliano G, Galletti P, Samorì C, Zaghini A, Torri C. Recovery of Polyhydroxyalkanoates From Single and Mixed Microbial Cultures: A Review. Front Bioeng Biotechnol 2021; 9:624021. [PMID: 33644018 PMCID: PMC7902716 DOI: 10.3389/fbioe.2021.624021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
An overview of the main polyhydroxyalkanoates (PHA) recovery methods is here reported, by considering the kind of PHA-producing bacteria (single bacterial strains or mixed microbial cultures) and the chemico-physical characteristics of the extracted polymer (molecular weight and polydispersity index). Several recovery approaches are presented and categorized in two main strategies: PHA recovery with solvents (halogenated solvents, alkanes, alcohols, esters, carbonates and ketones) and PHA recovery by cellular lysis (with oxidants, acid and alkaline compounds, surfactants and enzymes). Comparative evaluations based on the recovery, purity and molecular weight of the recovered polymers as well as on the potential sustainability of the different approaches are here presented.
Collapse
Affiliation(s)
- Giorgia Pagliano
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Paola Galletti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| | - Chiara Samorì
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| | - Agnese Zaghini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
| | - Cristian Torri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Ravenna, Italy
- CIRI-Fonti Rinnovabili, Ambiente, Mare ed Energia, Ravenna, Italy
| |
Collapse
|
21
|
Gomes Gradíssimo D, Pereira Xavier L, Valadares Santos A. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy. Molecules 2020; 25:E4331. [PMID: 32971731 PMCID: PMC7571216 DOI: 10.3390/molecules25184331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023] Open
Abstract
Conventional petrochemical plastics have become a serious environmental problem. Its unbridled use, especially in non-durable goods, has generated an accumulation of waste that is difficult to measure, threatening aquatic and terrestrial ecosystems. The replacement of these plastics with cleaner alternatives, such as polyhydroxyalkanoates (PHA), can only be achieved by cost reductions in the production of microbial bioplastics, in order to compete with the very low costs of fossil fuel plastics. The biggest costs are carbon sources and nutrients, which can be appeased with the use of photosynthetic organisms, such as cyanobacteria, that have a minimum requirement for nutrients, and also using agro-industrial waste, such as the livestock industry, which in turn benefits from the by-products of PHA biotechnological production, for example pigments and nutrients. Circular economy can help solve the current problems in the search for a sustainable production of bioplastic: reducing production costs, reusing waste, mitigating CO2, promoting bioremediation and making better use of cyanobacteria metabolites in different industries.
Collapse
Affiliation(s)
- Diana Gomes Gradíssimo
- Post Graduation Program in Biotechnology, Institute of Biological Sciences, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil;
| | - Agenor Valadares Santos
- Post Graduation Program in Biotechnology, Institute of Biological Sciences, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil;
| |
Collapse
|
22
|
Bartels M, Gutschmann B, Widmer T, Grimm T, Neubauer P, Riedel SL. Recovery of the PHA Copolymer P(HB- co-HHx) With Non-halogenated Solvents: Influences on Molecular Weight and HHx-Content. Front Bioeng Biotechnol 2020; 8:944. [PMID: 32903820 PMCID: PMC7438878 DOI: 10.3389/fbioe.2020.00944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Biodegradable and biocompatible polyhydroxyalkanoates (PHAs) are promising alternatives to conventional plastics. Based on the chain length of their monomers they are classified as short chain length (scl-) or medium chain length (mcl-) PHA polymers. The type of monomers, the composition and the molecular weight (MW) define the polymer properties. To accelerate the use of PHA as a bulk material, the downstream associated costs need to be minimized. This study focuses on the evaluation of non-halogenated solvents, especially acetone as a scl-PHA non-solvent, for the recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) - P(HB-co-HHx) - with an mcl-HHx content >15 mol% and a MW average (M w) < 2 × 105 Da. Solvents and precipitants were chosen regarding zeotrope formation, boiling point differences, and toxicity. Non-halogenated solvent-precipitant pairs were evaluated regarding the MW characteristics (MWCs) of the extracted polymer. Acetone and 2-propanol as a low toxic and zeotropic solvent-precipitant pair was evaluated at different extraction temperatures and multiple extraction times. The extraction process was further evaluated by using impure acetone for the extraction and implementing a multi-stage extraction process. Additionally, P(HB-co-HHx) extracted with three different solvents was characterized by 1H and 13C-APT NMR. The screening of precipitants resulted in a negative influence on the MWCs by ethanol precipitation for extractions with acetone and ethyl acetate, respectively. It was observed, that extractions with acetone at 70°C extracted a higher fraction of PHA from the cells compared to extractions at RT, but the M w was decreased by 9% in average. Acetone with a 2-propanol fraction of up to 30% was still able to extract the polymer 95% as efficient as pure acetone. Additionally, when acetone and ethyl acetate were used in a multi-stage extraction process, a two-stage process was sufficient to extract 98-99% of the polymer from the cells. 1H and 13C-APT NMR analysis confirmed the monomer fraction and structure of the extracted polymers and revealed a random copolymer structure. The presented strategy can be further developed to an ecological and economically feasible PHA downstream process and thus contributes to the commercialization of low-cost PHAs.
Collapse
Affiliation(s)
| | - Björn Gutschmann
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | | | | | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L Riedel
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| |
Collapse
|
23
|
Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020; 43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a "removal and disposal" approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved-1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3-2.2 and 0.1-0.3 $·kgdry biomass-1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5-2.0 $·kg-1) appears as a promising valorisation route.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - María Grassino
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, Móstoles, Spain.
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2020; 59:119-130. [DOI: 10.1016/j.ymben.2020.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022]
|
25
|
Optimization of Green Extraction and Purification of PHA Produced by Mixed Microbial Cultures from Sludge. WATER 2020. [DOI: 10.3390/w12041185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sludge from municipal wastewater treatment systems can be used as a source of mixed microbial cultures for the production of polyhydroxyalkanoates (PHA). Stored intracellularly, the PHA is accumulated by some species of bacteria as energy stockpile and can be extracted from the cells by reflux extraction. Dimethyl carbonate was tested as a solvent for the PHA extraction at different extraction times and biomass to solvent ratios, and 1-butanol was tested for purifying the obtained PHA at different purification times and PHA to solvent ratios. Overall, only a very small difference was observed in the different extraction scenarios. An average extraction amount of 30.7 ± 1.6 g of PHA per 100 g of biomass was achieved. After purification with 1-butanol, a visual difference was observed in the PHA between the tested scenarios, although the actual purity of the resulting samples did not present a significant difference. The overall purity increased from 91.2 ± 0.1% to 98.0 ± 0.1%.
Collapse
|
26
|
Calvino C, Macke N, Kato R, Rowan SJ. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101221] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
28
|
Hirai K, Nojo M, Sato Y, Tsuzuki M, Sato N. Contribution of protein synthesis depression to poly-β-hydroxybutyrate accumulation in Synechocystis sp. PCC 6803 under nutrient-starved conditions. Sci Rep 2019; 9:19944. [PMID: 31882765 PMCID: PMC6934822 DOI: 10.1038/s41598-019-56520-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Poly-β-hydroxybutyrate (PHB) in cyanobacteria, which accumulates as energy and carbon sources through the action of photosynthesis, is expected to substitute for petroleum-based plastics. This study first demonstrated that PHB accumulation was induced, with the appearance of lipid droplets, in sulfur (S)-starved cells of a cyanobacterium, Synechocystis sp. PCC 6803, however, to a lower level than in nitrogen (N)- or phosphorus (P)-starved cells. Concomitantly found was repression of the accumulation of total cellular proteins in the S-starved cells to a similar level to that in N-starved cells, and a severer level than in P-starved cells. Intriguingly, PHB accumulation was induced in Synechocystis even under nutrient-replete conditions, upon repression of the accumulation of total cellular proteins through treatment of the wild type cells with a protein synthesis inhibitor, chloramphenicol, or through disruption of the argD gene for Arg synthesis. Meanwhile, the expression of the genes for PHB synthesis was hardly induced in S-starved cells, in contrast to their definite up-regulation in N- or P-starved cells. It therefore seemed that PHB accumulation in S-starved cells is achieved through severe repression of protein synthesis, but is smaller than in N- or P-starved cells, owing to little induction of the expression of PHB synthesis genes.
Collapse
Affiliation(s)
- Kazuho Hirai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Miki Nojo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yosuke Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
29
|
Zainab-L I, Sudesh K. High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms. J Biotechnol 2019; 305:35-42. [DOI: 10.1016/j.jbiotec.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/26/2022]
|
30
|
A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107283] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Polyhydroxyalkanoates Synthesized by Aeromonas Species: Trends and Challenges. Polymers (Basel) 2019; 11:polym11081328. [PMID: 31405025 PMCID: PMC6722653 DOI: 10.3390/polym11081328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 11/24/2022] Open
Abstract
The negative effects of petrochemical-derived plastics on the global environment and depletion of global fossil fuel supplies have paved the way for exploring new technologies for the production of bioplastics. Polyhydroxyalkanoates (PHAs) are considered an alternative for synthetic polymers because of their biodegradability, biocompatibility, and non-toxicity. Many bacteria have been reported to have the ability to synthesize PHAs. Among them, the Aeromonas species seem to be ideal hosts for the industrial production of these biopolyesters due to their robust growth, simple growth requirements, their ability for the synthesis of homopolymers, co-polymers, and terpolymers with unique material properties. Some Aeromonas strains were able to produce PHAs in satisfactory amounts from simple carbon sources. Efforts have been made to use genetically modified Aeromonas strains for enhanced PHAs and to obtain bacteria with modified compositions and improved properties. This review discusses the current state of knowledge of polyhydroxyalkanoates synthesized by Aeromonas species, with a special focus on their potential, challenges, and progress in PHA synthesis.
Collapse
|
32
|
Designing Novel Interfaces via Surface Functionalization of Short-Chain-Length Polyhydroxyalkanoates. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/3831251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoates (PHA), a microbial plastic has emerged as promising biomaterial owing to the broad range of mechanical properties. However, some studies revealed that PHA is hydrophobic and has no recognition site for cell attachment and this is often a limitation in tissue engineering aspects. Owing to this, the polymer is tailored accordingly in order to enhance the biocompatibilityin vivoas well as to suit the intended application. Thus far, these surface modifications have led to PHA being widely used in various biomedical and pharmaceutical applications such as cardiac patches, wound management, nerve, bone, and cartilage repair. This review addresses the surface modification on biomedical applications focusing on short-chain-length PHA such as poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)].
Collapse
|
33
|
Israni N, Thapa S, Shivakumar S. Biolytic extraction of poly(3-hydroxybutyrate) from Bacillus megaterium Ti3 using the lytic enzyme of Streptomyces albus Tia1. J Genet Eng Biotechnol 2018; 16:265-271. [PMID: 30733734 PMCID: PMC6354000 DOI: 10.1016/j.jgeb.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022]
Abstract
The applicability of Streptomyces sp. cell lytic enzymes for devising a simple and competent biological polyhydroxyalkanoate (PHA) recovery approach from Bacillus megaterium cells was investigated. B. megaterium strain Ti3 produced 50% (w/w) PHA using glucose as carbon source. The intracellular PHA was recovered employing a non-PHA accumulating actinomycetes (Tia1) identified as Streptomyces albus, having potent lytic activity against living and heat inactivated B. megaterium. Interestingly, maximum biomass (2.53 ± 0.6 g/L by 24 h) of the lytic actinomycete was obtained in PHA production medium itself thus circumventing the prior actinomycete acclimatization just by co-inoculation with B. megaterium as an inducer. Maximum lytic activity was observed at pH 6.0, 40 °C, 220 mg of biomass and 33.3 mL of concentrated culture filtrate in a 100 mL reaction mixture. Preliminary biochemical investigations confirmed the proteolytic and caseinolytic nature of the lytic enzyme. PHA yield of 0.55 g/g by co-inoculation extraction approach was comparable with the conventional sodium hypochlorite based extraction method. Interestingly, S. albus also demonstrated a broad spectrum lytic potential against varied Gram-negative and Gram-positive PHA producers highlighting the extensive applicability of this biolytic PHA recovery approach. The lytic enzyme retained almost 100% relative activity on storage at -20 °C upto two months. 1H Nuclear magnetic resonance analysis of the extracted polymer confirmed it as a homopolymer composed of 3-hydroxybutyrate monomeric units. This is the first report on Streptomyces sp. based biological and eco-friendly, intracellular PHA recovery from Bacillus spp.
Collapse
Affiliation(s)
| | | | - Srividya Shivakumar
- Department of Microbiology, School of Sciences, Jain University, Bangalore 560011, India
| |
Collapse
|
34
|
Blunt W, Levin DB, Cicek N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers (Basel) 2018; 10:polym10111197. [PMID: 30961122 PMCID: PMC6290639 DOI: 10.3390/polym10111197] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.
Collapse
Affiliation(s)
- Warren Blunt
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| |
Collapse
|
35
|
Synthesis of novel biodegradable elastomers based on poly[3-hydroxy butyrate] and poly[3-hydroxy octanoate] via transamidation reaction. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Ashby RD, Solaiman DKY, Nuñez A, Strahan GD, Johnston DB. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid. BIORESOURCE TECHNOLOGY 2018; 253:333-342. [PMID: 29413997 DOI: 10.1016/j.biortech.2017.12.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 06/08/2023]
Abstract
Burkholderia sacchari was used to produce poly-3-hydroxybutyrate-co-3-hydroxyvalerate block copolymers from xylose and levulinic acid. Levulinic acid was the preferred substrate resulting in 3-hydroxyvalerate (3HV) contents as high as 95 mol% at 24 h. The 3HB:3HV ratios were controlled by the initial levulinic acid media concentration and fermentation length. Higher levulinic acid concentrations and longer durations, resulted in polymers with two glass transition temperatures, each approximating those associated with poly-3HB and poly-3HV. 13C NMR confirmed the presence of high concentrations of 3HB-3HB and 3HV-3HV homopolymeric dyads, while mass spectrometry of the partial hydrolysis products did not conform to Bernoullian statistics for randomness, confirming block sequences. MS/MS analysis of specific oligomers showed the mass-loss of 86 amu (a 3HB unit) and 100 amu (a 3HV unit) attesting to some randomness within the polymers. This study verifies the potential for producing Poly-3HB-block-3HV copolymers from inexpensive biorenewable feedstocks without sequential addition of carbon sources.
Collapse
Affiliation(s)
- Richard D Ashby
- Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Daniel K Y Solaiman
- Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Alberto Nuñez
- Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Gary D Strahan
- Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - David B Johnston
- Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
37
|
Kumar M, Sundaram S, Gnansounou E, Larroche C, Thakur IS. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. BIORESOURCE TECHNOLOGY 2018; 247:1059-1068. [PMID: 28951132 DOI: 10.1016/j.biortech.2017.09.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Due to industrialization and urbanization, as humans continue to rely on fossil fuels, carbon dioxide (CO2) will inevitably be generated and result in an increase of Global Warming Gases (GWGs). However, their prospect is misted up because of the environmental and economic intimidation posed by probable climate shift, generally called it as the "green house effect". Among all GWGs, the major contributor in greenhouse effect is CO2. Mitigation strategies that include capture and storage of CO2 by biological means may reduce the impact of CO2 emissions on environment. The biological CO2 sequestration has significant advantage, since increasing atmospheric CO2 level supports productivity and overall storage capacity of the natural system. This paper reviews CO2 sequestration mechanism in bacteria and their pathways for production of value added products such as, biodiesel, bioplastics, extracellular polymeric substance (EPS), biosurfactants and other related biomaterials.
Collapse
Affiliation(s)
- Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Smita Sundaram
- Advanced Instrument Research Facility, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Edgard Gnansounou
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
38
|
Maestro B, Sanz JM. Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microb Biotechnol 2017; 10:1323-1337. [PMID: 28425176 PMCID: PMC5658603 DOI: 10.1111/1751-7915.12718] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters of increasing biotechnological importance that are synthesized by many prokaryotic organisms as carbon and energy storage compounds in limiting growth conditions. PHAs accumulate intracellularly in form of inclusion bodies that are covered with a proteinaceous surface layer (granule-associated proteins or GAPs) conforming a network-like surface of structural, metabolic and regulatory polypeptides, and configuring the PHA granules as complex and well-organized subcellular structures that have been designated as 'carbonosomes'. GAPs include several enzymes related to PHA metabolism (synthases, depolymerases and hydroxylases) together with the so-called phasins, an heterogeneous group of small-size proteins that cover most of the PHA granule and that are devoid of catalytic functions but nevertheless play an essential role in granule structure and PHA metabolism. Structurally, phasins are amphiphilic proteins that shield the hydrophobic polymer from the cytoplasm. Here, we summarize the characteristics of the different phasins identified so far from PHA producer organisms and highlight the diverse opportunities that they offer in the Biotechnology field.
Collapse
Affiliation(s)
- Beatriz Maestro
- Instituto de Biología Molecular y CelularUniversidad Miguel HernándezAv. Universidad s/nElche03202Spain
| | - Jesús M. Sanz
- Instituto de Biología Molecular y CelularUniversidad Miguel HernándezAv. Universidad s/nElche03202Spain
| |
Collapse
|
39
|
Singh AK, Mallick N. Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett 2017; 364:4107776. [DOI: 10.1093/femsle/fnx189] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022] Open
|
40
|
Zhao H, Yao Z, Chen X, Wang X, Chen GQ. Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis. Microb Biotechnol 2017; 10:1400-1411. [PMID: 28840964 PMCID: PMC5658623 DOI: 10.1111/1751-7915.12820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/05/2023] Open
Abstract
Phasins are unusual amphiphilic proteins that bind to microbial polyhydroxyalkanoate (PHA) granules in nature and show great potential for various applications in biotechnology and medicine. Despite their remarkable diversity, only the crystal structure of PhaPAh from Aeromonas hydrophila has been solved to date. Based on the structure of PhaPAh, homology models of PhaPAz from Azotobacter sp. FA‐8 and PhaPTD from Halomonas bluephagenesis TD were successfully established, allowing rational mutagenesis to be conducted to enhance the stability and surfactant properties of these proteins. PhaPAz mutants, including PhaPAzQ38L and PhaPAzQ78L, as well as PhaPTD mutants, including PhaPTDQ38M and PhaPTDQ72M, showed better emulsification properties and improved thermostability (6‐10°C higher melting temperatures) compared with their wild‐type homologues under the same conditions. Importantly, the established PhaP homology‐modelling approach, based on the high‐resolution structure of PhaPAh, can be generalized to facilitate the study of other PhaP members.
Collapse
Affiliation(s)
- Hongyu Zhao
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhenyu Yao
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiangbin Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xinquan Wang
- MOE Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,Center for Nano and Micro-Mechanics, Tsinghua University, Beijing, 100084, China.,MOE Key Lab for Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
41
|
Structural Insights on PHA Binding Protein PhaP from Aeromonas hydrophila. Sci Rep 2016; 6:39424. [PMID: 28009010 PMCID: PMC5180188 DOI: 10.1038/srep39424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
Phasins or PhaPs are a group of amphiphilic proteins that are found attached to the surface of microbial polyhydroxyalkanoate (PHA) granules. They have both structural and regulatory functions and can affect intracellular PHA accumulation and mediate protein folding. The molecular basis for the diverse functions of the PhaPs has not been fully understood due to the lack of the structural knowledge. Here we report the structural and biochemical studies of the PhaP cloned from Aeromonas hydrophila (PhaPAh), which is utilized in protein and tissue engineering. The crystal structure of PhaPAh was revealed to be a tetramer with 8 α-helices adopting a coiled-coil structure. Each monomer has a hydrophobic and a hydrophilic surface, rendering the surfactant properties of the PhaPAh monomer. Based on the crystal structure, we predicted three key amino acid residues and obtained mutants with enhanced stability and improved emulsification properties. The first PhaP crystal structure, as reported in this study, is an important step towards a mechanistic understanding of how PHA is formed in vivo and why PhaP has such unique surfactant properties. At the same time, it will facilitate the study of other PhaP members that may have significant biotechnological potential as bio-surfactants and amphipathic coatings.
Collapse
|
42
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|
43
|
Biological System as Reactor for the Production of Biodegradable Thermoplastics, Polyhydroxyalkanoates. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
44
|
Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. Int J Mol Sci 2016; 17:ijms17071157. [PMID: 27447619 PMCID: PMC4964529 DOI: 10.3390/ijms17071157] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs.
Collapse
|
45
|
Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Appl Biochem Biotechnol 2016; 180:1110-1127. [DOI: 10.1007/s12010-016-2155-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
|
46
|
Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 105:1667-1684. [PMID: 27080439 DOI: 10.1002/jbm.b.33674] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering based on scaffolds is quite a complex process as a whole gamut of criteria needs to be satisfied to promote cellular attachment, proliferation and differentiation: biocompatibility, right surface properties, adequate mechanical performance, controlled bioresorbability, osteoconductivity, angiogenic cues, and vascularization. Third generation scaffolds are more of composite types to maximize biological-mechanical-chemical properties. In the present review, our focus is on the performance of micro-organism-derived polyhydroxyalkanoates (PHAs)-polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV)-composite scaffolds with ceramics and natural polymers for tissue engineering applications with emphasis on bone tissue. We particularly emphasize on how material properties of the composites affect scaffold performance. PHA-based composites have demonstrated their biocompatibility with a range of tissues and their capacity to induce osteogenesis due to their piezoelectric properties. Electrospun PHB/PHBV fiber mesh in combination with human adipose tissue-derived stem cells (hASCs) were shown to improve vascularization in engineered bone tissues. For nerve and skin tissue engineering applications, natural polymers such as collagen and chitosan remain the gold standard but there is scope for development of scaffolds combining PHAs with other natural polymers which can address some of the limitations such as brittleness, lack of bioactivity and slow degradation rate presented by the latter. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1667-1684, 2017.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Centre for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Centre for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Pearl Passanha
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Wales, CF37 1DL, UK
| | - Sandra R Esteves
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Wales, CF37 1DL, UK
| | - Dhanjay Jhurry
- Centre for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| |
Collapse
|
47
|
Fed-batch production of poly-3-hydroxydecanoate from decanoic acid. J Biotechnol 2015; 218:102-7. [PMID: 26689481 DOI: 10.1016/j.jbiotec.2015.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022]
Abstract
Decanoic acid is an ideal substrate for the synthesis of medium-chain-length poly-3-hydroxyalkanoate (MCL-PHA), but its use for this purpose has only previously been studied in shake-flasks likely due to its surfactant properties, low aqueous solubility and high melting temperature. A fed-batch fermentation process was developed for the production of MCL-PHA from decanoic acid using Pseudomonas putida KT2440. Decanoic acid was kept in liquid form by heating or by mixing with acetic acid to prevent crystallization. Different ratios of decanoic acid:acetic acid:glucose (DA:AA:G) were fed to produce a specific growth rate of 0.15 h(-1). This method produced a maximum of 39 g L(-1) dry biomass containing 67% MCL-PHA when the DA:AA:G ratio was 5:1:4. However, a declining growth rate occurred in the late stage of fermentation, resulting in decanoic acid accumulation in the bioreactor leading to foaming. The duration of MCL-PHA production was extended by shifting from exponential to linear feeding before accumulation of decanoic acid. This resulted in 75 g L(-1) biomass containing 74% PHA and an overall PHA productivity of 1.16 g L(-1)h(-1) with the production of each gram of PHA requiring only 1.16 g of decanoic acid. The final PHA composition (on a molar basis) was 78% 3-hydroxydecanoate, 11% 3-hydroxyoctanoate and 11% 3-hydroxyhexanoate.
Collapse
|
48
|
Riedel SL, Jahns S, Koenig S, Bock MC, Brigham CJ, Bader J, Stahl U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol 2015; 214:119-27. [DOI: 10.1016/j.jbiotec.2015.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|
49
|
Shen L, Hu H, Ji H, Zhang C, He N, Li Q, Wang Y. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from excess activated sludge as a promising substitute of pure culture. BIORESOURCE TECHNOLOGY 2015; 189:236-242. [PMID: 25898084 DOI: 10.1016/j.biortech.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the feasibility and technology to harvest poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by mixed culture. Copolymer PHBHHx, usually fermented by pure strains, was reported to be synthesized from activated sludge for the first time. Sodium laurate was used as the sole carbon substrate for sludge acclimation and PHBHHx accumulation. Batch experiments were designed to look into the impact of the carbon, nitrogen, phosphorus and oxygen supply on PHBHHx production. The results showed that the acclimated excess sludge was able to produce PHBHHx, and the maximum output (505.6 mg/L PHBHHx containing 6.34 mol% HHx) was achieved with conditions of the continuous aeration, nitrogen and phosphorus limitation, and adequate carbon source implemented by pulse feeding 0.5 g/L sodium laurate every 4h. Moreover, composition and structure of the PHBHHx from sludge were found similar to that from pure culture, according to literature, FTIR and NMR spectra. Finally, high-throughput sequencing technique characterized that phylum Chlorobi and genus Leadbetterella should be critical groups for PHBHHx synthesis in the sludge community.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Hongyou Hu
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hongfang Ji
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chuanpan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
50
|
Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Appl Biochem Biotechnol 2015; 176:1315-34. [DOI: 10.1007/s12010-015-1648-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|