1
|
Wang S, Yu H, Zhu K. Engineering Pseudomonas aeruginosa for (R)-3-hydroxydecanoic acid production. AMB Express 2025; 15:72. [PMID: 40327264 PMCID: PMC12055736 DOI: 10.1186/s13568-025-01880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
(R)-3-hydroxyalkanoic acids (R-3HAs) play a crucial role as essential chemicals serving as precursors or intermediates in the synthesis of a wide range of valuable compounds, such as pharmaceuticals, antibiotics, and food additives. Despite their significance, achieving industrial-scale production of R-3HAs, particularly medium-chain-length (mcl) R-3HAs, has been challenging due to the absence of suitable strains with efficient biosynthesis pathways. This study focuses on achieving the production of mcl R-3HA monomers by leveraging the "substrate pool" of R-3-(R-3-hydroxyalkanoyloxy) alkanoic acids (HAAs) which is synthesized by HAAs synthase RhlA. The process involved truncating the rhamnolipids synthesis pathway in Pseudomonas aeruginosa PAO1 by knocking out downstream genes rhlB and rhlC, leading to the accumulation and collection of intermediate HAAs from the culture supernatant. To enhance the production of HAAs further, a series of key genes in the β-oxidation pathway were knocked out, resulting in a titer of approximately 18 g/L. Subsequently, hydrolysis of HAAs was conducted under alkaline conditions, where the dimers could be rapidly and efficiently converted into monomers. The hydrolysis process was completed in 2.5 h at 80 °C using a 0.5 M NaOH solution. The primary hydrolysis product identified through GC-MS analysis was (R)-3-hydroxydecanoic acid (R-3HD) with a purity of 95%.
Collapse
Affiliation(s)
- Shuai Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiying Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kun Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Zhu SS, Chen ZW, Fan DD, Lv H, Yuan X, Guo K. Synthesis of Ester-Substituted Polycyclic N-Heteroaromatics via Photocatalyzed Alkoxycarbonylation/Tricyclization Reactions of Enediyne in Continuous Flow Conditions. J Org Chem 2025; 90:4232-4243. [PMID: 40110700 DOI: 10.1021/acs.joc.4c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
For the first time, a photoredox-catalyzed alkoxycarbonylation/tricyclization reaction was developed by employing readily accessible enediynes and alkyloxalyl chlorides as starting materials, enabling the synthesis of ester-substituted polycyclic N-heteroaromatics under mild conditions through a radical-mediated mechanism. This photocatalytic strategy is notable for its exceptional compatibility with diverse functional groups, scalability, and efficiency in the formation of rings and chemical bonds. Notably, continuous flow photocatalysis technology markedly improved these reactions compared to the equivalent batch reactions, efficiently decreasing the reaction times to merely 40 min.
Collapse
Affiliation(s)
- Shan-Shan Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Wei Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dan-Dan Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
3
|
Lesur E, Zhang Y, Dautin N, Dietrich C, Li de la Sierra-Gallay I, Augusto LA, Rollando P, Lazar N, Urban D, Doisneau G, Constantinesco-Becker F, Van Tilbeurgh H, Guianvarc'h D, Bourdreux Y, Bayan N. Synthetic mycolates derivatives to decipher protein mycoloylation, a unique post-translational modification in bacteria. J Biol Chem 2025; 301:108243. [PMID: 39880088 PMCID: PMC11927696 DOI: 10.1016/j.jbc.2025.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC. This PTM represents the first example of protein O-acylation in prokaryotes and the first example of protein modification by mycolic acid. Through the design and synthesis of trehalose monomycolate (TMM) analogs, we prove that i) MytC is the mycoloyltransferase directly involved in this PTM, ii) TMM, but not trehalose dimycolate (TDM), is a suitable mycolate donor for PorA mycoloylation, iii) MytC is able to discriminate between an acyl and a mycoloyl chain in vitro unlike other trehalose mycoloyltransferases. We also solved the structure of MytC acyl-enzyme obtained with a soluble short TMM analogs which constitutes the first mycoloyltransferase structure covalently linked to an authentic mycolic acid moiety. These data highlight the great conformational flexibility of the active site of MytC during the reaction cycle and pave the way for a better understanding of the catalytic mechanism of all members of the mycoloyltransferase family including the essential Antigen85 enzymes in Mycobacteria.
Collapse
Affiliation(s)
- Emilie Lesur
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Yijie Zhang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nathalie Dautin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christiane Dietrich
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Ines Li de la Sierra-Gallay
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Luis A Augusto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulin Rollando
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Noureddine Lazar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dominique Urban
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | | | - Herman Van Tilbeurgh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France.
| | - Yann Bourdreux
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Nenadović M, Maršavelski A, Bogojević SŠ, Maslak V, Nikodinović-Runić J, Milovanović J. New model compounds for the efficient colorimetric screening of medium chain length polyhydroxyalkanoate (mcl-PHA) depolymerases reveal mechanism of activity. Int J Biol Macromol 2024; 283:137672. [PMID: 39566772 DOI: 10.1016/j.ijbiomac.2024.137672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Plastic pollution presents a significant environmental problem contributing to increased CO2 emissions and persistently accumulation in ecosystems. Biobased polymers, like polyhydroxyalkanoates (PHAs), offer a part of a solution with their biodegradability and reduced carbon footprint. However, effective end-of-life strategies, such as controlled enzymatic depolymerization, are crucial for sustainability, relying on efficient PHA depolymerases (PHAases). Here we describe the synthesis of two new chromogenic compounds derived from polyhydroxyoctanoate (PHO) and their application in a continuous, quantitative spectrophotometric assay for PHO depolymerase and other medium chain lengths PHAase activity within 10 min. These substrates allow activity measurement at temperatures above 45 °C, simplifying the comparison of PHAases and aiding enzymatic degradation progress. The study also explores enzyme specificity and identifies key amino acids involved in PHO recognition by PfPHOase. The 3-hydroxyoctanoyl moieties of both compounds were found to bind specifically to a groove formed by the amino acids Phe96, Phe125, Ile171, and Val230, which are highly conserved in known mcl-PHA depolymerases.
Collapse
Affiliation(s)
- Marija Nenadović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | | | - Sanja Škaro Bogojević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Veselin Maslak
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | | | - Jelena Milovanović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia.
| |
Collapse
|
5
|
Narayanasamy A, Patel SKS, Singh N, Rohit MV, Lee JK. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers (Basel) 2024; 16:2227. [PMID: 39125253 PMCID: PMC11314723 DOI: 10.3390/polym16152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future.
Collapse
Affiliation(s)
- Anand Narayanasamy
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Neha Singh
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - M. V. Rohit
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Ishak KA, Zahid NI, Velayutham TS, Khyasudeen MF, Annuar MSM. Corroborative studies on chain packing characteristics of biological medium-chain-length poly-3-hydroxyalkanoates with different monomeric composition. Int J Biol Macromol 2024; 269:131973. [PMID: 38692536 DOI: 10.1016/j.ijbiomac.2024.131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Medium-chain-length poly-3-hydroxyalkanoates (mcl-PHAs) with varied monomeric compositions were biosynthesized by producer bacteria fed with different fatty acids as carbon source. Octanoic-, lauric-, stearic-, and oleic acids were used to produce four types of mcl-PHAs viz. PHA-OC, PHA-LA, PHA-ST, and PHA-OL, respectively. The mcl-PHAs as film-casted preparations exhibit distinct traits e.g., PHA-OC and PHA-ST films are less flexible than PHA-LA while PHA-OL is a sticky, glue-like material; PHA-ST is opaque whereas PHA-OC, PHA-LA, and PHA-OL displayed transparent layers. The observation is attributed to polymer chain packing and side chain crystallization. A structure-property investigation of these biopolymers was carried out employing different spectroscopic and microscopic analyses in addition to thermal analyses. Comparative analyses of the results were applied in the interpretation and discussion of structure-property relationship.
Collapse
Affiliation(s)
- Khairul Anwar Ishak
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Thamil Selvi Velayutham
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - M Faisal Khyasudeen
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
7
|
Serrano‐Aguirre L, Prieto MA. Can bioplastics always offer a truly sustainable alternative to fossil-based plastics? Microb Biotechnol 2024; 17:e14458. [PMID: 38568795 PMCID: PMC10990045 DOI: 10.1111/1751-7915.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Bioplastics, comprised of bio-based and/or biodegradable polymers, have the potential to play a crucial role in the transition towards a sustainable circular economy. The use of biodegradable polymers not only leads to reduced greenhouse gas emissions but also might address the problem of plastic waste persisting in the environment, especially when removal is challenging. Nevertheless, biodegradable plastics should not be considered as substitutes for proper waste management practices, given that their biodegradability strongly depends on environmental conditions. Among the challenges hindering the sustainable implementation of bioplastics in the market, the development of effective downstream recycling routes is imperative, given the increasing production volumes of these materials. Here, we discuss about the most advisable end-of-life scenarios for bioplastics. Various recycling strategies, including mechanical, chemical or biological (both enzymatic and microbial) approaches, should be considered. Employing enzymes as biocatalysts emerges as a more selective and environmentally friendly alternative to chemical recycling, allowing the production of new bioplastics and added value and high-quality products. Other pending concerns for industrial implementation of bioplastics include misinformation among end users, the lack of a standardised bioplastic labelling, unclear life cycle assessment guidelines and the need for higher financial investments. Although further research and development efforts are essential to foster the sustainable and widespread application of bioplastics, significant strides have already been made in this direction.
Collapse
Affiliation(s)
- Lara Serrano‐Aguirre
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
8
|
Solarz D, Witko T, Karcz R, Malagurski I, Ponjavic M, Levic S, Nesic A, Guzik M, Savic S, Nikodinovic-Runic J. Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications. RSC Adv 2023; 13:24112-24128. [PMID: 37577093 PMCID: PMC10415749 DOI: 10.1039/d3ra03021k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Daria Solarz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Niezapominajek 8 30-239 Krakow Poland +48 507196 866
- Department of Product Technology and Ecology, Krakow University of Economics Rakowicka 27 31-510 Kraków Poland
| | - Robert Karcz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Niezapominajek 8 30-239 Krakow Poland +48 507196 866
| | - Ivana Malagurski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade 11042 Belgrade Serbia +381 11 397 60 34
| | - Marijana Ponjavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade 11042 Belgrade Serbia +381 11 397 60 34
| | - Steva Levic
- Faculty of Agriculture, University of Belgrade 11081 Belgrade Serbia
| | | | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Niezapominajek 8 30-239 Krakow Poland +48 507196 866
| | - Sanja Savic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Center of Excellence in Environmental Chemistry and Engineering Njegoseva 12 11000 Belgrade Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade 11042 Belgrade Serbia +381 11 397 60 34
| |
Collapse
|
9
|
Yuan YN, Li JQ, Fang HB, Xing SJ, Yan YM, Cheng YX. Non-peptide compounds from Kronopolites svenhedini (Verhoeff) and their antitumor and iNOS inhibitory activities. Beilstein J Org Chem 2023; 19:789-799. [PMID: 37346495 PMCID: PMC10280063 DOI: 10.3762/bjoc.19.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Six new compounds, including a tetralone 1, two xanthones 2 and 3, a flavan derivative 4, and two nor-diterpenoids 7 and 8, accompanied by two known flavan derivatives 5 and 6 and a known olefine acid (9) were isolated from whole bodies of Kronopolites svenhedini (Verhoeff). The structures of the new compounds were determined by 1D and 2D nuclear magnetic resonance (NMR) and other spectroscopic methods, as well as computational methods. Selected compounds were evaluated for their biological properties against a mouse pancreatic cancer cell line and inhibitory effects on iNOS and COX-2 in RAW264.7 cells.
Collapse
Affiliation(s)
- Yuan-Nan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Jin-Qiang Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
- Department of Pathogen Biology, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong-Bin Fang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Shao-Jun Xing
- Department of Pathogen Biology, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Yong-Xian Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
10
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Kalia VC, Gong C, Shanmugam R, Lee JK. Prospecting Microbial Genomes for Biomolecules and Their Applications. Indian J Microbiol 2022; 62:516-523. [PMID: 36458216 PMCID: PMC9705627 DOI: 10.1007/s12088-022-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022] Open
Abstract
Bioactive molecules of microbial origin are finding increasing biotechnological applications. Their sources range from the terrestrial, marine, and endophytic to the human microbiome. These biomolecules have unique chemical structures and related groups, which enable them to improve the efficiency of the bioprocesses. This review focuses on the applications of biomolecules in bioremediation, agriculture, food, pharmaceutical industries, and human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Chunjie Gong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 People’s Republic of China
| | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
12
|
Tang Y, Dai K, Xiang X, Yang Y, Li M. Synthesis of ester-functionalized indolo[2,1- a]isoquinolines via iron-catalyzed radical cascade cyclization of 2-aryl- N-acryloyl indoles with carbazates. Org Biomol Chem 2022; 20:5704-5711. [PMID: 35838169 DOI: 10.1039/d2ob00934j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An FeCl2·4H2O-catalyzed oxidative alkoxycarbonylation/cyclization reaction of 2-aryl-N-acryloyl indoles with carbazates leading to ester-functionalized indolo[2,1-a]isoquinoline derivatives has been developed. The reaction features mild reaction conditions and broad functional group tolerance. Moreover, the ester group could be easily converted to the corresponding free acid and alcohol, and has high potential applications in organic and pharmaceutical synthesis. A radical pathway was proposed to explain this experiment.
Collapse
Affiliation(s)
- Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Kaiming Dai
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Xingxian Xiang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yiting Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Min Li
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| |
Collapse
|
13
|
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun 2022; 13:3192. [PMID: 35680868 PMCID: PMC9184479 DOI: 10.1038/s41467-022-30661-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.
Collapse
|
14
|
Chen JQ, Tu X, Qin B, Huang S, Zhang J, Wu J. Synthesis of Ester-Substituted Indolo[2,1- a]isoquinolines via Photocatalyzed Alkoxycarbonylation/Cyclization Reactions. Org Lett 2022; 24:642-647. [PMID: 34985296 DOI: 10.1021/acs.orglett.1c04082] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A direct alkoxycarbonylation/cyclization reaction is accomplished under visible light-induced photoredox catalysis. With this approach, a variety of ester-substituted indolo[2,1-a]isoquinolines are prepared in good to excellent yields. It is worth noting that this method not only can afford the synthesis of indolo[2,1-a]isoquinolines but also can provide an alternative route for generating complex target structures bearing carboxylic esters.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiaodong Tu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Binyan Qin
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shaoxin Huang
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Li J, Zhang X, Udduttula A, Fan ZS, Chen JH, Sun AR, Zhang P. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Front Bioeng Biotechnol 2022; 9:763031. [PMID: 34993185 PMCID: PMC8724543 DOI: 10.3389/fbioe.2021.763031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a class of structurally diverse natural biopolyesters, synthesized by various microbes under unbalanced culture conditions. PHAs as biomedical materials have been fabricated in various forms to apply to tissue engineering for the past years due to their excellent biodegradability, inherent biocompatibility, modifiable mechanical properties, and thermo-processability. However, there remain some bottlenecks in terms of PHA production on a large scale, the purification process, mechanical properties, and biodegradability of PHA, which need to be further resolved. Therefore, scientists are making great efforts via synthetic biology and metabolic engineering tools to improve the properties and the product yields of PHA at a lower cost for the development of various PHA-based scaffold fabrication technologies to widen biomedical applications, especially in bone tissue engineering. This review aims to outline the biosynthesis, structures, properties, and the bone tissue engineering applications of PHA scaffolds with different manufacturing technologies. The latest advances will provide an insight into future outlooks in PHA-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jian Li
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Anjaneyulu Udduttula
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhi Shan Fan
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Hai Chen
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antonia RuJia Sun
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Zhang
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
16
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
17
|
Guzik MW. Polyhydroxyalkanoates, bacterially synthesized polymers, as a source of chemical compounds for the synthesis of advanced materials and bioactive molecules. Appl Microbiol Biotechnol 2021; 105:7555-7566. [PMID: 34536102 PMCID: PMC8502142 DOI: 10.1007/s00253-021-11589-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Research into polyhydroxyalkanoates (PHAs) is growing exponentially. These bacterially derived polyesters offer a spectrum of possible applications, such as in manufacturing of daily-use objects, production of medical devices and implantable objects, or as synthons in chemical and pharmaceutical industries. Thanks to their broad physicochemical features, PHAs can be seen as polymers of the future, which can replace traditional petrochemical equivalents. As they are synthesized by bacteria through fermentation processes, these polyesters can be obtained from virtually any carbon source in a sustainable manner. Characterized by biodegradability and biocompatibility, they are used in many industries, ranging from production of everyday objects to medical applications. Furthermore, as they are built from bioactive monomers, namely (R)-3-hydroxyacids, they provide a platform for the synthesis of advanced chemical compounds. In this mini review, the reader will be acquainted with recent studies conducted at the Jerzy Haber Institute of Catalysis and Surface Chemistry of the Polish Academy of Sciences in collaboration with other groups that have contributed to the development of PHA-based medical materials, bioactive molecules and novel green solvents derived from PHA monomers.Key points• Polyhydroxyalkanoates are emerging polymers for biomedical applications• Polyhydroxyalkanoates can be modified easily to provide novel materials• (R)-3-Hydroxyacids are good synthons for bioactive substances and green solvents.
Collapse
Affiliation(s)
- Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| |
Collapse
|
18
|
Chen JQ, Tu X, Tang Q, Li K, Xu L, Wang S, Ji M, Li Z, Wu J. Efficient access to aliphatic esters by photocatalyzed alkoxycarbonylation of alkenes with alkyloxalyl chlorides. Nat Commun 2021; 12:5328. [PMID: 34493725 PMCID: PMC8423752 DOI: 10.1038/s41467-021-25628-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Aliphatic esters are essential constituents of biologically active compounds and versatile chemical intermediates for the synthesis of drugs. However, their preparation from readily available olefins remains challenging. Here, we report a strategy to access aliphatic esters from olefins through a photocatalyzed alkoxycarbonylation reaction. Alkyloxalyl chlorides, generated in situ from the corresponding alcohols and oxalyl chloride, are engaged as alkoxycarbonyl radical fragments under photoredox catalysis. This transformation tolerates a broad scope of electron-rich and electron-deficient olefins and provides the corresponding β-chloro esters in good yields. Additionally, a formal β-selective alkene alkoxycarbonylation is developed. Moreover, a variety of oxindole-3-acetates and furoindolines are prepared in good to excellent yields. A more concise formal synthesis of (±)-physovenine is accomplished as well. With these strategies, a wide range of natural-product-derived olefins and alkyloxalyl chlorides are also successfully employed. Aliphatic esters are essential constituents of biologically active compounds but their preparation from readily available olefins remains challenging. Here the authors show a strategy to access aliphatic esters from olefins through a unique photocatalyzed alkoxycarbonylation reaction.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China.
| | - Xiaodong Tu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Qi Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Ke Li
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Liang Xu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Siyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Mingjuan Ji
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| |
Collapse
|
19
|
Pekmezovic M, Kalagasidis Krusic M, Malagurski I, Milovanovic J, Stępień K, Guzik M, Charifou R, Babu R, O’Connor K, Nikodinovic-Runic J. Polyhydroxyalkanoate/Antifungal Polyene Formulations with Monomeric Hydroxyalkanoic Acids for Improved Antifungal Efficiency. Antibiotics (Basel) 2021; 10:737. [PMID: 34207011 PMCID: PMC8234488 DOI: 10.3390/antibiotics10060737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Novel biodegradable and biocompatible formulations of "old" but "gold" drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Beutenberstrasse 11a, 07745 Jena, Germany
| | - Melina Kalagasidis Krusic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Ivana Malagurski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
| | - Jelena Milovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
| | - Karolina Stępień
- Centre for Preclinical Research and Technology, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Romina Charifou
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, D2 Dublin, Ireland; (R.C.); (R.B.)
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, D2 Dublin, Ireland; (R.C.); (R.B.)
| | - Kevin O’Connor
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, D4 Dublin 4, Ireland;
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, D4 Dublin 4, Ireland
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, D4 Dublin 4, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11221 Belgrade, Serbia; (M.P.); (I.M.); (J.M.)
| |
Collapse
|
20
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
El-Malek FA, Rofeal M, Farag A, Omar S, Khairy H. Polyhydroxyalkanoate nanoparticles produced by marine bacteria cultivated on cost effective Mediterranean algal hydrolysate media. J Biotechnol 2021; 328:95-105. [PMID: 33485864 DOI: 10.1016/j.jbiotec.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
Algae are omnipresent in all seas and oceans, which make thema target for many applications such as bio-fertilizers, fish feeding and removal of heavy metals. In the present study, different algal species were examined as sustainable alternatives substrates for PHA production by Halomonas sp. Several media simulations were utilized to achieve high polymer productivity. The maximum poly(3-hydroxybutyrate) (PHB) concentrations were determined by using Corallina mediterranea hydrolysates as a carbon and nitrogen source. The isolates Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 were found to be able to produce PHA by 67 % wt and 63 % wt CDW, respectively. PHB nanoparticles (NPs) had high zeta potential values and small particle sizes. These properties make it suitable for several drug delivery and pharmaceutical applications. Interestingly, NPs showed a potent antibacterial activity against several reference strains. The antibacterial efficacy of PHA-NPs has not been previously studied, thus this study opens a promising use of PHA-NPs.
Collapse
Affiliation(s)
- Fady Abd El-Malek
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Marian Rofeal
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Aida Farag
- Marine Biotechnology and Natural Products Extract Laboratory, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Sanaa Omar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt.
| |
Collapse
|
22
|
Jakšić J, Mitrović A, Tokić Vujošević Z, Milčić M, Maslak V. Selective formation of dihydrofuran fused [60] fullerene derivatives by TEMPO mediated [3 + 2] cycloaddition of medium chain β-keto esters to C 60. RSC Adv 2021; 11:29426-29432. [PMID: 35479550 PMCID: PMC9040907 DOI: 10.1039/d1ra03944j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, β-keto esters as readily available bio-based building blocks were used to decorate the C60 sphere. Generally, cyclopropanated fullerene derivatives are obtained by the standard Bingel–Hirsch procedure. Herein, omitting the iodine from the reaction mixture and adding TEMPO afforded dihydrofuran fused C60 fullerene derivatives. The mechanism of the reaction shifted from nucleophilic aliphatic substitution to oxidative [3 + 2] cycloaddition via fullerenyl cations as an intermediate. This mechanism is proposed based on a series of control experiments with radical scavengers. Therefore, dihydrofuran-fused C60 derivatives were selectively obtained in good yields and their structures were established based on UV-Vis, IR, NMR spectroscopy and mass spectrometry. The electrochemical properties of the synthesized compounds were investigated by cyclic voltammetry. DFT calculations were performed in order to investigate the difference in stability, electronic properties and π-electron delocalization between methano and furano fullerenes. In this study, β-keto esters as readily available bio-based building blocks were used to decorate the C60 sphere.![]()
Collapse
Affiliation(s)
- Jovana Jakšić
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Aleksandra Mitrović
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Zorana Tokić Vujošević
- Department of Organic Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Miloš Milčić
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Veselin Maslak
- Department of Organic Chemistry, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
23
|
Archer L, Jachimska B, Krzan M, Szaleniec M, Hebda E, Radzik P, Pielichowski K, Guzik M. Physical properties of biomass-derived novel natural deep eutectic solvents based on choline chloride and (R)-3-hydroxyacids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2020; 59:119-130. [DOI: 10.1016/j.ymben.2020.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022]
|
25
|
Characterization of an intracellular poly(3-hydroxyalkanoate) depolymerase from the soil bacterium, Pseudomonas putida LS46. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
27
|
Voinova V, Bonartseva G, Bonartsev A. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells 2019; 11:764-786. [PMID: 31692924 PMCID: PMC6828591 DOI: 10.4252/wjsc.v11.i10.764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal multipotent stem cells that can differentiate into multiple cell types, including fibroblasts, osteoblasts, chondrocytes, adipocytes, and myoblasts, thus allowing them to contribute to the regeneration of various tissues, especially bone tissue. MSCs are now considered one of the most promising cell types in the field of tissue engineering. Traditional petri dish-based culture of MSCs generate heterogeneity, which leads to inconsistent efficacy of MSC applications. Biodegradable and biocompatible polymers, poly(3-hydroxyalkanoates) (PHAs), are actively used for the manufacture of scaffolds that serve as carriers for MSC growth. The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers, the 3D and surface microstructure of the scaffolds, and the biological activity of PHAs, which was discovered in a series of investigations. The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied. We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs, especially the most widespread representative poly(3-hydroxybutyrate) (PHB). This biopolymer is present in the bacteria of mammalian microbiota, whereas endogenous poly(3-hydroxybutyrate) is found in mammalian tissues. The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate) in bacteria and eukaryotes, including in humans, is discussed in this paper.
Collapse
Affiliation(s)
- Vera Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Garina Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anton Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
28
|
Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties. Catalysts 2019. [DOI: 10.3390/catal9060510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sugar esters are bioactive compounds derived from renewable resources. They consist of a sugar moiety with attached non-polar part – usually a fatty acid. These compounds find uses in cosmetic, food and pharmaceutical industries as surfactants due to their physicochemical and antimicrobial activities. In this study we have produced fatty acids for sugar ester synthesis from bacterially derived polyesters, namely polyhydroxyalkanoates (PHAs). We have developed methodology to decorate PHA monomers with a fluorinated moiety. With aid of biocatalysis a series of glucose esters was created with unmodified and modified PHA monomers. All synthesised compounds showed moderate antimicrobial activity.
Collapse
|
29
|
Jovanovic M, Radivojevic J, O'Connor K, Blagojevic S, Begovic B, Lukic V, Nikodinovic-Runic J, Savic V. Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans. Bioorg Chem 2019; 87:209-217. [DOI: 10.1016/j.bioorg.2019.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022]
|
30
|
Kutschera A, Dawid C, Gisch N, Schmid C, Raasch L, Gerster T, Schäffer M, Smakowska-Luzan E, Belkhadir Y, Vlot AC, Chandler CE, Schellenberger R, Schwudke D, Ernst RK, Dorey S, Hückelhoven R, Hofmann T, Ranf S. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in
Arabidopsis
plants. Science 2019; 364:178-181. [DOI: 10.1126/science.aau1279] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/02/2019] [Accepted: 03/12/2019] [Indexed: 04/09/2023]
Abstract
A fatty acid triggers immune responses
Plants and animals respond to the microbial communities around them, whether in antagonistic or mutualistic ways. Some of these interactions are mediated by lipopolysaccharide—a large, complex, and irregular molecule on the surface of most Gram-negative bacteria. Studying the small mustard plant
Arabidopsis
, Kutschera
et al.
identified a 3-hydroxydecanoyl chain as the structural element sensed by the plant's lectin receptor kinase. Indeed, synthetic 3-hydroxydecanoic acid alone was sufficient to produce a response. A small microbial metabolite may thus suffice to trigger immune responses.
Science
, this issue p.
178
Collapse
Affiliation(s)
- Alexander Kutschera
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
| | - Christian Schmid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Lars Raasch
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Tim Gerster
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Milena Schäffer
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Elwira Smakowska-Luzan
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - A. Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Science, Institute of Biochemical Plant Pathology, 85764 Neuherberg, Germany
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Romain Schellenberger
- RIBP-EA 4707, SFR Condorcet-FR CNRS 3417, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Stéphan Dorey
- RIBP-EA 4707, SFR Condorcet-FR CNRS 3417, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
31
|
Bonartsev AP, Bonartseva GA, Reshetov IV, Kirpichnikov MP, Shaitan KV. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate). Acta Naturae 2019; 11:4-16. [PMID: 31413875 PMCID: PMC6643351 DOI: 10.32607/20758251-2019-11-2-4-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Biodegradable and biocompatible polymers, polyhydroxyalkanoates (PHAs), are actively used in medicine to produce a wide range of medical devices and dosage formulations. The medical industry mainly utilizes PHAs obtained by chemical synthesis, but interest in the medical application of natural PHAs obtained biotechnologically is also growing. Synthetic PHAs are the biomimetic analogs of bacterial poly(3-hydroxybutyrate) (PHB) and other natural PHAs. This paper addresses the issue of the presence of biological activity in synthetic and natural PHAs (stimulation of cell proliferation and differentiation, tissue regeneration) and their possible association with various biological functions of PHB in bacteria and eukaryotes, including humans.
Collapse
Affiliation(s)
- A. P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bldg. 2, Moscow, 119071, Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bldg. 2, Moscow, 119071, Russia
| | - I. V. Reshetov
- Sechenov First Moscow State University, Trubetskaya Str. 8, bldg. 2, Moscow, 119991, Russia
| | - M. P. Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
| | - K. V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
| |
Collapse
|
32
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
33
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
34
|
Aleksic I, Petkovic M, Jovanovic M, Milivojevic D, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Anti-biofilm Properties of Bacterial Di-Rhamnolipids and Their Semi-Synthetic Amide Derivatives. Front Microbiol 2017; 8:2454. [PMID: 29276509 PMCID: PMC5727045 DOI: 10.3389/fmicb.2017.02454] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/27/2017] [Indexed: 12/23/2022] Open
Abstract
A new strain, namely Lysinibacillus sp. BV152.1 was isolated from the rhizosphere of ground ivy (Glechoma hederacea L.) producing metabolites with potent ability to inhibit biofilm formation of an important human pathogens Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and Serratia marcescens. Structural characterization revealed di-rhamnolipids mixture containing rhamnose (Rha)-Rha-C10-C10, Rha-Rha-C8-C10, and Rha-Rha-C10-C12 in the ratio 7:2:1 as the active principle. Purified di-rhamnolipids, as well as commercially available di-rhamnolipids (Rha-Rha-C10-C10, 93%) were used as the substrate for the chemical derivatization for the first time, yielding three semi-synthetic amide derivatives, benzyl-, piperidine-, and morpholine. A comparative study of the anti-biofilm, antibacterial and cytotoxic properties revealed that di-Rha from Lysinibacillus sp. BV152.1 were more potent in biofilm inhibition, both cell adhesion and biofilm maturation, than commercial di-rhamnolipids inhibiting 50% of P. aeruginosa PAO1 biofilm formation at 50 μg mL-1 and 75 μg mL-1, respectively. None of the di-rhamnolipids exhibited antimicrobial properties at concentrations of up to 500 μg mL-1. Amide derivatization improved inhibition of biofilm formation and dispersion activities of di-rhamnolipids from both sources, with morpholine derivative being the most active causing more than 80% biofilm inhibition at concentrations 100 μg mL-1. Semi-synthetic amide derivatives showed increased antibacterial activity against S. aureus, and also showed higher cytotoxicity. Therefore, described di-rhamnolipids are potent anti-biofilm agents and the described approach can be seen as viable approach in reaching new rhamnolipid based derivatives with tailored biological properties.
Collapse
Affiliation(s)
- Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milos Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Zhang C, Pan J, Li CX, Bai YP, Xu JH. Asymmetric bioreduction of keto groups of 4- and 5-Oxodecanoic acids/esters with a new carbonyl reductase. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Chen GQ, Zhang J. Microbial polyhydroxyalkanoates as medical implant biomaterials. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-18. [DOI: 10.1080/21691401.2017.1371185] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
- Department of Chemical Engineering, MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, China
| | - Junyu Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Nealon NJ, Worcester CR, Ryan EP. Lactobacillus paracasei metabolism of rice bran reveals metabolome associated with Salmonella Typhimurium growth reduction. J Appl Microbiol 2017; 122:1639-1656. [PMID: 28371001 PMCID: PMC5518229 DOI: 10.1111/jam.13459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to determine the effect of a cell-free supernatant of Lactobacillus paracasei ATCC 27092 with and without rice bran extract (RBE) on Salmonella Typhimurium 14028s growth, and to identify a metabolite profile with antimicrobial functions. METHODS AND RESULTS Supernatant was collected from overnight cultures of L. paracasei incubated in the presence (LP+RBE) or absence (LP) of RBE and applied to S. Typhimurium. LP+RBE reduced 13·1% more S. Typhimurium growth than LP after 16 h (P < 0·05). Metabolite profiles of LP and LP+RBE were examined using nontargeted global metabolomics consisting of ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. A comparison of LP and LP+RBE revealed 84 statistically significant metabolites (P < 0·05), where 20 were classified with antimicrobial functions. CONCLUSIONS LP+RBE reduced S. Typhimurium growth to a greater extent than LP, and the metabolite profile distinctions suggested that RBE favourably modulates the metabolism of L. paracasei. These findings warrant continued investigation of probiotic and RBE antimicrobial activities across microenvironments and matrices where S. Typhimurium exposure is problematic. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed a novel metabolite profile of probiotic L. paracasei and prebiotic rice bran that increased antimicrobial activity against S. Typhimurium.
Collapse
Affiliation(s)
- N J Nealon
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C R Worcester
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - E P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|