1
|
Yu D, Luo L, Wang H, Shyh-Chang N. Pregnancy-induced metabolic reprogramming and regenerative responses to pro-aging stresses. Trends Endocrinol Metab 2025; 36:482-494. [PMID: 39122601 DOI: 10.1016/j.tem.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Pregnancy is associated with physiological adaptations that affect virtually all organs, enabling the mother to support the growing fetus and placenta while withstanding the demands of pregnancy. As a result, mammalian pregnancy is a unique state that exerts paradoxical effects on maternal health. On one hand, the metabolic stress induced by pregnancy can accelerate aging and functional decline in organs. On the other hand, pregnancy activates metabolic programming and tissue regenerative responses that can reverse age-related impairments. In this sense, the oocyte-to-blastocyst transition is not the only physiological reprogramming event in the mammalian body, as pregnancy-induced regeneration could constitute a second physiological reprogramming event. Here, we review findings on how pregnancy dualistically leads to aging and rejuvenation in the maternal body.
Collapse
Affiliation(s)
- Dainan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhuang M, Wang B, Shi Y, Zhou Z. Multiorgan Regulation Mechanisms and Nutritional Intervention Strategies in Gestational Diabetes Mellitus. J Nutr 2025:S0022-3166(25)00192-0. [PMID: 40222585 DOI: 10.1016/j.tjnut.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects millions of pregnant women worldwide and leads to both short- and long-term complications for mothers and their fetuses. Managing GDM through diet, physical activity, and medical interventions can significantly reduce these risks. Studies have identified the individual and combined roles of organs regulated by placental hormones, cytokines, and gut microbiota as key pathways contributing to impaired glucose homeostasis. In this context, placental hormones mediate the crosstalk among the placenta, pancreas, and adipose tissue, stimulating endocrine pancreas adaptation and adipose tissue expansion. However, insufficient maternal physiological adaptations, such as dysregulated adipocytokines, adipokines, and oxidative stress in the pancreas, can create an environment conducive to the onset of GDM. Furthermore, gut dysbiosis implies potential mechanisms of gut-host interaction associated with the occurrence of GDM, with short-chain fatty acids possibly serving as crucial targets. Nutritional therapy is recognized as the first-line approach for managing GDM, encompassing dietary guidance and supplementation with micro- and macronutrients as well as bioactive components. Importantly, combined interventions involving multiple nutrients, such as probiotics and prebiotics with vitamins or minerals, may exert stronger beneficial effects on the prevention and treatment of GDM and its complications. This review paper discusses the regulatory role of multiorgans in GDM and the implementation of nutritional therapy for its prevention and management, along with associated complications.
Collapse
Affiliation(s)
- Min Zhuang
- College of Food Science, Shihezi University, Shihezi, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Bing Wang
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | - Yanchuan Shi
- Neuroendocrinology Group, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Zhongkai Zhou
- College of Food Science, Shihezi University, Shihezi, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China; Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
3
|
Velmurugan S, Pandey VK, Verma N, Kotiya D, Despa F, Despa S. Cardiac remodelling, recognition memory deficits and accelerated ageing in a rat model of gestational diabetes. Diabetologia 2025:10.1007/s00125-025-06421-7. [PMID: 40186686 DOI: 10.1007/s00125-025-06421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/18/2025] [Indexed: 04/07/2025]
Abstract
AIMS/HYPOTHESIS Women with prior gestational diabetes mellitus (GDM) have higher incidence of age-associated diseases, including type 2 diabetes, CVD and cognitive impairment. Human studies cannot readily determine whether GDM causes these conditions or the underlying mechanisms. Here we used a well-validated rat model of GDM to address these questions. METHODS Rats with beta cell-specific expression of human amylin, a pancreatic hormone, were used as a GDM model. Five-month-old female rats were randomly assigned to no-pregnancy, one-pregnancy and two-pregnancies experimental groups. GTTs and transthoracic echocardiography were performed at baseline and during the postpartum period. At 18 months of age, the novel object recognition test was administered, followed by euthanasia and organ collection. RESULTS All female rats developed glucose intolerance and showed cardiac remodelling and impaired left ventricular relaxation with ageing. Glucose intolerance was exacerbated in rats with prior GDM pregnancies compared with nulliparous rats, with significant differences starting at 9 months of age. However, blood glucose levels were comparable in the three groups during the course of the study. Rats with two GDM-complicated pregnancies had increased left ventricular mass compared with the other groups following the second pregnancy and until the end of the study. At 18 months of age, rats with prior GDM pregnancies presented aggravated demyelination, particularly in the hippocampus and mid-brain region, oxidative stress and neuroinflammation, and had a lower recognition index in the novel object recognition test compared with nulliparous rats. Higher parity exacerbated these effects. Shorter telomeres and reduced mitochondrial DNA content, two hallmarks of biological ageing, were found in the brain, heart and pancreas of rats with prior GDM. CONCLUSIONS/INTERPRETATION These findings support the concept that GDM is a sex-specific risk factor for ageing-related diseases, and point to accelerated cellular ageing as a contributing mechanism. DATA AVAILABILITY Cardiac echocardiography and GTT data are available at Dataverse under the identifier https://doi.org/10.7910/DVN/R2HITG.
Collapse
Affiliation(s)
- Sathya Velmurugan
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Vivek K Pandey
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Juksar J, Mijdam R, Bosman S, van Oudenaarden A, Carlotti F, de Koning EJP. Effects of Neurogenin 3 Induction on Endocrine Differentiation and Delamination in Adult Human Pancreatic Ductal Organoids. Transpl Int 2025; 38:13422. [PMID: 40236756 PMCID: PMC11996654 DOI: 10.3389/ti.2025.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Diabetes mellitus is characterized by the loss of pancreatic insulin-secreting β-cells in the Islets of Langerhans. Understanding the regenerative potential of human islet cells is relevant in the context of putative restoration of islet function after damage and novel islet cell replacement therapies. Adult human pancreatic tissue can be cultured as three-dimensional organoids with the capacity for long-term expansion and the promise of endocrine cell formation. Here, we characterize the endocrine differentiation potential of human adult pancreatic organoids. Because exocrine-to-endocrine differentiation is dependent on the expression of Neurogenin 3 (NEUROG3), we first generated NEUROG3-inducible organoid lines. We show that doxycycline-induced NEUROG3 expression in the organoids leads to the formation of chromogranin A positive (CHGA+) endocrine progenitor cells. The efficiency of this differentiation was improved with the addition of thyroid hormone T3 and the AXL inhibitor R428. Further, compound screening demonstrated that modifying the pivotal embryonic endocrine pancreas signalling pathways driven by Notch, YAP, and EGFR led to increased NEUROG3 expression in organoids. In a similar fashion to embryonic development, adult ductal cells delaminated from the organoids after NEUROG3 induction. Thus, mechanisms in islet (re)generation including the initiation of endocrine differentiation and delamination can be achieved by NEUROG3 induction.
Collapse
Affiliation(s)
- Juri Juksar
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rachel Mijdam
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
| | - Sabine Bosman
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco J. P. de Koning
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Zaky H, Fthenou E, Srour L, Farrell T, Bashir M, El Hajj N, Alam T. Machine learning based model for the early detection of Gestational Diabetes Mellitus. BMC Med Inform Decis Mak 2025; 25:130. [PMID: 40082942 PMCID: PMC11905636 DOI: 10.1186/s12911-025-02947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Gestational Diabetes Mellitus (GDM) is one of the most common medical complications during pregnancy. In the Gulf region, the prevalence of GDM is higher than in other parts of the world. Thus, there is a need for the early detection of GDM to avoid critical health conditions in newborns and post-pregnancy complexities of mothers. METHODS In this article, we propose a machine learning (ML)-based techniques for early detection of GDM. For this purpose, we considered clinical measurements taken during the first trimester to predict the onset of GDM in the second trimester. RESULTS The proposed ensemble-based model achieved high accuracy in predicting the onset of GDM with around 89% accuracy using only the first trimester data. We confirmed biomarkers, i.e., a history of high glucose level/diabetes, insulin and cholesterol, which align with the previous studies. Moreover, we proposed potential novel biomarkers such as HbA1C %, Glucose, MCH, NT pro-BNP, HOMA-IR- (22.5 Scale), HOMA-IR- (405 Scale), Magnesium, Uric Acid. C-Peptide, Triglyceride, Urea, Chloride, Fibrinogen, MCHC, ALT, family history of Diabetes, Vit B12, TSH, Potassium, Alk Phos, FT4, Homocysteine Plasma LC-MSMS, Monocyte Auto. CONCLUSION We believe our findings will complement the current clinical practice of GDM diagnosis at an early stage of pregnancy, leading toward minimizing its burden on the healthcare system.Source code is available in GitHub at: https://github.com/H-Zaky/GD.git.
Collapse
Affiliation(s)
- Hesham Zaky
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Eleni Fthenou
- Qatar Foundation for Education, Science, and Community, Qatar Biobank for Medical, ResearchDoha, Qatar
| | - Luma Srour
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas Farrell
- Endocrine Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed Bashir
- Endocrine Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nady El Hajj
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
6
|
Lee J, Lee NK, Moon JH. Gestational Diabetes Mellitus: Mechanisms Underlying Maternal and Fetal Complications. Endocrinol Metab (Seoul) 2025; 40:10-25. [PMID: 39844628 PMCID: PMC11898322 DOI: 10.3803/enm.2024.2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects over 10% of all pregnancies, both in Korea and worldwide. GDM not only increases the risk of adverse pregnancy outcomes such as preeclampsia, preterm birth, macrosomia, neonatal hypoglycemia, and shoulder dystocia, but it also significantly increases the risk of developing postpartum type 2 diabetes mellitus and cardiovascular disease in the mother. Additionally, GDM is linked to a higher risk of childhood obesity and diabetes in offspring, as well as neurodevelopmental disorders, including autistic spectrum disorder. This review offers a comprehensive summary of clinical epidemiological studies concerning maternal and fetal complications and explores mechanistic investigations that reveal the underlying pathophysiology.
Collapse
Affiliation(s)
- Jooyeop Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Armed Forces Yangju Hospital, Yangju, Korea
| | - Na Keum Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Joon Ho Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
7
|
Zgutka K, Tkacz M, Grabowska M, Mikołajek-Bedner W, Tarnowski M. Sirtuins and Their Implications in the Physiopathology of Gestational Diabetes Mellitus. Pharmaceuticals (Basel) 2025; 18:41. [PMID: 39861104 PMCID: PMC11768332 DOI: 10.3390/ph18010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for the mother and her child. An effective therapeutic that can reduce the incidence of GDM and improve long-term outcomes is a major research priority and is very important for public health. Unfortunately, despite numerous studies, the molecular mechanisms underlying GDM are not fully defined and require further study. Chronic low-grade inflammation, oxidative stress, and insulin resistance are central features of pregnancies complicated by GDM. There is evidence of the involvement of sirtuins, which are NAD+-dependent histone deacetylases, in energy metabolism and inflammation. Taking these facts into consideration, the role of sirtuins in the pathomechanism of GDM will be discussed.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Wioletta Mikołajek-Bedner
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| |
Collapse
|
8
|
Dubey V, Tanday N, Irwin N, Tarasov AI, Flatt PR, Moffett RC. Cafeteria diet compromises natural adaptations of islet cell transdifferentiation and turnover in pregnancy. Diabet Med 2025; 42:e15434. [PMID: 39255356 PMCID: PMC11635593 DOI: 10.1111/dme.15434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Pancreatic islet β-cell mass expands during pregnancy, but underlying mechanisms are not fully understood. This study examines the impact of pregnancy and cafeteria diet on islet morphology, associated cellular proliferation/apoptosis rates as well as β-cell lineage. METHODS Non-pregnant and pregnant Ins1Cre/+;Rosa26-eYFP transgenic mice were maintained on either normal or high-fat cafeteria diet, with pancreatic tissue obtained at 18 days gestation. Immunohistochemical changes in islet morphology, β-/α-cell proliferation and apoptosis, as well as islet cell identity, neogenesis and ductal cell transdifferentiation were assessed. RESULTS Pregnant normal diet mice displayed an increase in body weight and glycaemia. Cafeteria feeding attenuated this weight gain while causing overt hyperglycaemia. Pregnant mice maintained on a normal diet exhibited typical expansion in islet and β-cell area, owing to increased β-cell proliferation and survival as well as ductal to β-cell transdifferentiation and β-cell neogenesis, alongside decreased β-cell dedifferentiation. Such pregnancy-induced islet adaptations were severely restricted by cafeteria diet. Accordingly, islets from these mice displayed high levels of β-cell apoptosis and dedifferentiation, together with diminished β-cell proliferation and lack of pregnancy-induced β-cell neogenesis and transdifferentiation, entirely opposing islet cell modifications observed in pregnant mice maintained on a normal diet. CONCLUSION Augmentation of β-cell mass during gestation arises through various mechanisms that include proliferation and survival of existing β-cells, transdifferentiation of ductal cells as well as β-cell neogenesis. Remarkably, cafeteria feeding almost entirely annuls pregnancy-induced islet adaptations, which may contribute to the development of gestational diabetes in the setting of dietary provoked metabolic stress.
Collapse
Affiliation(s)
- Vaibhav Dubey
- Centre for Diabetes, School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Neil Tanday
- Centre for Diabetes, School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Nigel Irwin
- Centre for Diabetes, School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Andrei I. Tarasov
- Centre for Diabetes, School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Peter R. Flatt
- Centre for Diabetes, School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - R. Charlotte Moffett
- Centre for Diabetes, School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
9
|
Sylvester-Armstrong KR, Reeder CF, Powell A, Becker MW, Hagan DW, Chen J, Mathews CE, Wasserfall CH, Atkinson MA, Egerman R, Phelps EA. Serum from pregnant donors induces human beta cell proliferation. Islets 2024; 16:2334044. [PMID: 38533763 PMCID: PMC10978022 DOI: 10.1080/19382014.2024.2334044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Pancreatic beta cells are among the slowest replicating cells in the human body and have not been observed to increase in number except during the fetal and neonatal period, in cases of obesity, during puberty, as well as during pregnancy. Pregnancy is associated with increased beta cell mass to meet heightened insulin demands. This phenomenon raises the intriguing possibility that factors present in the serum of pregnant individuals may stimulate beta cell proliferation and offer insights into expansion of the beta cell mass for treatment and prevention of diabetes. The primary objective of this study was to test the hypothesis that serum from pregnant donors contains bioactive factors capable of inducing human beta cell proliferation. An immortalized human beta cell line with protracted replication (EndoC-βH1) was cultured in media supplemented with serum from pregnant and non-pregnant female and male donors and assessed for differences in proliferation. This experiment was followed by assessment of proliferation of primary human beta cells. Sera from five out of six pregnant donors induced a significant increase in the proliferation rate of EndoC-βH1 cells. Pooled serum from the cohort of pregnant donors also increased the rate of proliferation in primary human beta cells. This study demonstrates that serum from pregnant donors stimulates human beta cell proliferation. These findings suggest the existence of pregnancy-associated factors that can offer novel avenues for beta cell regeneration and diabetes prevention strategies. Further research is warranted to elucidate the specific factors responsible for this effect.
Collapse
Affiliation(s)
| | - Callie F. Reeder
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Andrece Powell
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Robert Egerman
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Seedat F, Kandzija N, Ellis M, Jiang S, Sarbalina A, Bancroft J, Drydale E, Hester S, Fischer R, Wade A, Stefana M, Todd J, Vatish M. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells. Clin Sci (Lond) 2024; 138:1481-1502. [PMID: 39432712 PMCID: PMC11579211 DOI: 10.1042/cs20241782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Insulin secretion increases progressively during pregnancy to maintain normal maternal blood glucose levels. The placenta plays a crucial role in this process by releasing hormones and extracellular vesicles into the maternal circulation, which drive significant changes in pregnancy physiology. Placental extracellular vesicles, which are detectable in the plasma of pregnant women, have been shown to signal peripheral tissues and contribute to pregnancy-related conditions. While studies using murine models have demonstrated that extracellular vesicles can modulate insulin secretion in pancreatic islets, it remains unclear whether these effects translate to human biology. Understanding how placental signals enhance insulin synthesis and secretion from β cells could be pivotal in developing new therapies for diabetes. In our study, we isolated placental small extracellular vesicles from human placentae and utilised the human β cell line, EndoC-βH3, to investigate their effects on β-cell function in vitro. Our results indicate that human β cells internalise placental small extracellular vesicles, leading to enhanced insulin gene expression and increased insulin content within the β cells. Moreover, these vesicles up-regulated the expression of Annexin A1, a protein known to increase insulin content. This up-regulation of Annexin A1 holds promise as a potential mechanism by which placental small extracellular vesicles enhance insulin biosynthesis.
Collapse
Affiliation(s)
- Faheem Seedat
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Neva Kandzija
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Michael J. Ellis
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Shuhan Jiang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Asselzhan Sarbalina
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Edward Drydale
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Svenja S. Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Alisha N. Wade
- Research in Metabolism and Endocrinology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, U.S.A
| | - M. Irina Stefana
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - John A. Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Manu Vatish
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| |
Collapse
|
11
|
Bourgeois S, Coenen S, Degroote L, Willems L, Van Mulders A, Pierreux J, Heremans Y, De Leu N, Staels W. Harnessing beta cell regeneration biology for diabetes therapy. Trends Endocrinol Metab 2024; 35:951-966. [PMID: 38644094 DOI: 10.1016/j.tem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sophie Coenen
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Laure Degroote
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Lien Willems
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Annelore Van Mulders
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Julie Pierreux
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Yves Heremans
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nico De Leu
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Endocrinology, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium.
| | - Willem Staels
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
| |
Collapse
|
12
|
Liu B, Ruz-Maldonado I, Persaud SJ. Global deletion of G protein-coupled receptor 55 impairs glucose homeostasis during obesity by reducing insulin secretion and β-cell turnover. Diabetes Obes Metab 2024; 26:4591-4601. [PMID: 39113250 DOI: 10.1111/dom.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024]
Abstract
AIM To investigate the effect of G protein-coupled receptor 55 (GPR55) deletion on glucose homeostasis and islet function following diet-induced obesity. METHODS GPR55-/- and wild-type (WT) mice were fed ad libitum either standard chow (SC) or a high-fat diet (HFD) for 20 weeks. Glucose and insulin tolerance tests were performed at 9/10 and 19/20 weeks of dietary intervention. Insulin secretion in vivo and dynamic insulin secretion following perifusion of isolated islets were also determined, as were islet caspase-3/7 activities and β-cell 5-bromo-20-deoxyuridine (BrdU) incorporation. RESULTS GPR55-/- mice fed a HFD were more susceptible to diet-induced obesity and were more glucose intolerant and insulin resistant than WT mice maintained on a HFD. Islets isolated from HFD-fed GPR55-/- mice showed impaired glucose- and pcacahorbol 12-myristate 13-acetate-stimulated insulin secretion, and they also displayed increased cytokine-induced apoptosis. While there was a 5.6 ± 1.6-fold increase in β-cell BrdU incorporation in the pancreases of WT mice fed a HFD, this compensatory increase in β-cell proliferation in response to the HFD was attenuated in GPR55-/- mice. CONCLUSIONS Under conditions of diet-induced obesity, GPR55-/- mice show impaired glucose handling, which is associated with reduced insulin secretory capacity, increased islet cell apoptosis and insufficient compensatory increases in β-cell proliferation. These observations support that GPR55 plays an important role in positively regulating islet function.
Collapse
Affiliation(s)
- Bo Liu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Inmaculada Ruz-Maldonado
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Comparative Medicine & Pathology, Vascular Biology and Therapeutics Program (VBT) Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
13
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
15
|
Granlund L, Korsgren O, Skog O, Lundberg M. Extra-islet cells expressing insulin or glucagon in the pancreas of young organ donors. Acta Diabetol 2024; 61:1195-1203. [PMID: 38888636 PMCID: PMC11379743 DOI: 10.1007/s00592-024-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/14/2024] [Indexed: 06/20/2024]
Abstract
AIMS The existence of insulin- or glucagon-expressing extra-islet endocrine cells scattered in the pancreas is well-known, but they have been sparsely characterized. The aim of this study was to examine their density, distribution, transcription-factor expression, and mitotic activity in young non-diabetic subjects. METHODS Multispectral imaging was used to examine PDX1, ARX, Ki67, insulin and glucagon in extra-islet endocrine cells in pancreatic tissue from organ donors aged 1-25 years. RESULTS Extra-islet insulin- or glucagon-positive cells were frequent in all donors (median 17.3 and 22.9 cells/mm2 respectively), with an insulin:glucagon cell ratio of 0.9. The density was similar regardless of age. PDX1 localized mainly to insulin-, and ARX mainly to glucagon-positive cells but, interestingly, many of the cells were negative for both transcription factors. Double-hormone-positive cells were rare but found in all age groups, as were insulin-positive cells expressing ARX and glucagon-positive cells expressing PDX1. Extra-islet endocrine cells with Ki67 expression were present but rare (0-2%) in all age groups. CONCLUSIONS Extra-islet endocrine cells are more frequent than islets. The preserved extra-islet cell density during pancreas volume-expansion from childhood- to adulthood indicates that new cells are formed, possibly from replication as cells with mitotic activity were discovered. The lack of transcription-factor expression in many cells indicates that they are immature, newly formed or plastic. This, together with the mitotic activity, suggests that these cells could play an important role in the expansion of beta-cell mass in situations of increasing demand, or in the turnover of the endocrine cell population.
Collapse
Affiliation(s)
- Louise Granlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Bucciarelli V, Moscucci F, Dei Cas A, Coppi F, Angeli F, Pizzi C, Renda G, Nodari S, Maffei S, Montisci R, Pedrinelli R, Sciomer S, Perrone Filardi P, Mattioli AV, Gallina S. Maternal-fetal dyad beyond the phenomenology of pregnancy: from primordial cardiovascular prevention on out, do not miss this boat! Curr Probl Cardiol 2024; 49:102695. [PMID: 38852910 DOI: 10.1016/j.cpcardiol.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pregnancy represents a stress test for every woman's cardiovascular (CV) system, and a pre-existing maternal unfavorable cardio-metabolic phenotype can uncover both adverse pregnancy outcomes and the subsequent development of cardiovascular disease (CVD) risk factors during and after pregnancy. Moreover, the maternal cardiac and extracardiac environment can affect offspring's cardiovascular health through a complex mechanism called developmental programming, in which fetal growth can be influenced by maternal conditions. This interaction continues later in life, as adverse developmental programming, along with lifestyle risk factors and genetic predisposition, can exacerbate and accelerate the development of CV risk factors and CVD in childhood and adolescence. The aim of this narrative review is to summarize the latest evidences regarding maternal-fetal dyad and its role on primordial, primary and secondary CV prevention.
Collapse
Affiliation(s)
- Valentina Bucciarelli
- Cardiovascular Sciences Department, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico n. 155, Rome 00161, Italy
| | - Alessandra Dei Cas
- Department of Medicine and Surgery, Università di Parma, Parma, Italy; Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesca Coppi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Francesco Angeli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda, Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences- DIMEC, University of Bologna, Via Giuseppe Massarenti 9, Bologna 40138, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda, Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences- DIMEC, University of Bologna, Via Giuseppe Massarenti 9, Bologna 40138, Italy
| | - Giulia Renda
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Silvia Maffei
- Department of Cardiovascular Endocrinology and Metabolism, Gynaecological and Cardiovascular Endocrinology and Osteoporosis Unit, "Gabriele Monasterio" Foundation and Italian National Research Council (CNR) Pisa, Pisa 56124 Italy
| | - Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Susanna Sciomer
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 'Sapienza', Rome University, Viale dell'Università, 37, Rome 00185, Italy
| | | | - Anna Vittoria Mattioli
- Department of Quality of Life Sciences, University of Bologna-Alma Mater Studiorum, Bologna 40126, Italy.
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
17
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
18
|
Kong X, Yang C, Li B, Yan D, Yang Y, Cao C, Xing B, Ma X. FXR/Menin-mediated epigenetic regulation of E2F3 expression controls β-cell proliferation and is increased in islets from diabetic GK rats after RYGB. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167136. [PMID: 38531483 DOI: 10.1016/j.bbadis.2024.167136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates β-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult β-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and β-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in β-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and β-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and β-cell proliferation, a mechanism possibly underlying RYGB-induced β-cell proliferation.
Collapse
Affiliation(s)
- Xiangchen Kong
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Chenxi Yang
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Bingfeng Li
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Dan Yan
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Yanhui Yang
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Cuihua Cao
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Bowen Xing
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
19
|
Moon JH, Choe HJ, Lim S. Pancreatic beta-cell mass and function and therapeutic implications of using antidiabetic medications in type 2 diabetes. J Diabetes Investig 2024; 15:669-683. [PMID: 38676410 PMCID: PMC11143426 DOI: 10.1111/jdi.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the focus of diabetes treatment has switched from lowering the glucose level to preserving glycemic homeostasis and slowing the disease progression. The main pathophysiology of both type 1 diabetes and long-standing type 2 diabetes is pancreatic β-cell mass loss and dysfunction. According to recent research, human pancreatic β-cells possess the ability to proliferate in response to elevated insulin demands. It has been demonstrated that in insulin-resistant conditions in humans, such as obesity or pregnancy, the β-cell mass increases. This ability could be helpful in developing novel treatment approaches to restore a functional β-cell mass. Treatment strategies aimed at boosting β-cell function and mass may be a useful tool for managing diabetes mellitus and stopping its progression. This review outlines the processes of β-cell failure and detail the many β-cell abnormalities that manifest in people with diabetes mellitus. We also go over standard techniques for determining the mass and function of β-cells. Lastly, we provide the therapeutic implications of utilizing antidiabetic drugs in controlling the mass and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Hun Jee Choe
- Department of Internal MedicineHallym University Dongtan Sacred Heart HospitalHwaseongSouth Korea
| | - Soo Lim
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| |
Collapse
|
20
|
Li J, Bode K, Lee YC, Morrow N, Ma A, Wei S, da Silva Pereira J, Stewart T, Lee-Papastavros A, Hollister-Lock J, Sullivan B, Bonner-Weir S, Yi P. Loss-of-function of ALDH3B2 transdifferentiates human pancreatic duct cells into beta-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593941. [PMID: 38798376 PMCID: PMC11118503 DOI: 10.1101/2024.05.13.593941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Replenishment of pancreatic beta cells is a key to the cure for diabetes. Beta cells regeneration is achieved predominantly by self-replication especially in rodents, but it was also shown that pancreatic duct cells can transdifferentiate into beta cells. How pancreatic duct cells undergo transdifferentiated and whether we could manipulate the transdifferentiation to replenish beta cell mass is not well understood. Using a genome-wide CRISPR screen, we discovered that loss-of-function of ALDH3B2 is sufficient to transdifferentiate human pancreatic duct cells into functional beta-like cells. The transdifferentiated cells have significant increase in beta cell marker genes expression, secrete insulin in response to glucose, and reduce blood glucose when transplanted into diabetic mice. Our study identifies a novel gene that could potentially be targeted in human pancreatic duct cells to replenish beta cell mass for diabetes therapy.
Collapse
|
21
|
Gupta D, Burstein AW, Shankar K, Varshney S, Singh O, Osborne-Lawrence S, Richard CP, Zigman JM. Impact of Ghrelin on Islet Size in Nonpregnant and Pregnant Female Mice. Endocrinology 2024; 165:bqae048. [PMID: 38626085 PMCID: PMC11075791 DOI: 10.1210/endocr/bqae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Reducing ghrelin by ghrelin gene knockout (GKO), ghrelin-cell ablation, or high-fat diet feeding increases islet size and β-cell mass in male mice. Here we determined if reducing ghrelin also enlarges islets in females and if pregnancy-associated changes in islet size are related to reduced ghrelin. Islet size and β-cell mass were larger (P = .057 for β-cell mass) in female GKO mice. Pregnancy was associated with reduced ghrelin and increased liver-expressed antimicrobial peptide-2 (LEAP2; a ghrelin receptor antagonist) in wild-type mice. Ghrelin deletion and pregnancy each increased islet size (by ∼19.9-30.2% and ∼34.9-46.4%, respectively), percentage of large islets (>25 µm2×103, by ∼21.8-42% and ∼21.2-41.2%, respectively), and β-cell mass (by ∼15.7-23.8% and ∼65.2-76.8%, respectively). Neither islet cross-sectional area, β-cell cross-sectional area, nor β-cell mass correlated with plasma ghrelin, although all positively correlated with LEAP2 (P = .081 for islet cross-sectional area). In ad lib-fed mice, there was an effect of pregnancy, but not ghrelin deletion, to change (raise) plasma insulin without impacting blood glucose. Similarly, there was an effect of pregnancy, but not ghrelin deletion, to change (lower) blood glucose area under the curve during a glucose tolerance test. Thus, genetic deletion of ghrelin increases islet size and β-cell cross-sectional area in female mice, similar to males. Yet, despite pregnancy-associated reductions in ghrelin, other factors appear to govern islet enlargement and changes to insulin sensitivity and glucose tolerance in the setting of pregnancy. In the case of islet size and β-cell mass, one of those factors may be the pregnancy-associated increase in LEAP2.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Avi W Burstein
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Endocrinology & Metabolism, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
23
|
Fu Q, Qian Y, Jiang H, He Y, Dai H, Chen Y, Xia Z, Liang Y, Zhou Y, Gao R, Zheng S, Lv H, Sun M, Xu K, Yang T. Genetic lineage tracing identifies adaptive mechanisms of pancreatic islet β cells in various mouse models of diabetes with distinct age of initiation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:504-517. [PMID: 37930473 DOI: 10.1007/s11427-022-2372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 11/07/2023]
Abstract
During the pathogenesis of type 1 diabetes (T1D) and type 2 diabetes (T2D), pancreatic islets, especially the β cells, face significant challenges. These insulin-producing cells adopt a regeneration strategy to compensate for the shortage of insulin, but the exact mechanism needs to be defined. High-fat diet (HFD) and streptozotocin (STZ) treatment are well-established models to study islet damage in T2D and T1D respectively. Therefore, we applied these two diabetic mouse models, triggered at different ages, to pursue the cell fate transition of islet β cells. Cre-LoxP systems were used to generate islet cell type-specific (α, β, or δ) green fluorescent protein (GFP)-labeled mice for genetic lineage tracing, thereinto β-cell GFP-labeled mice were tamoxifen induced. Single-cell RNA sequencing (scRNA-seq) was used to investigate the evolutionary trajectories and molecular mechanisms of the GFP-labeled β cells in STZ-treated mice. STZ-induced diabetes caused extensive dedifferentiation of β cells and some of which transdifferentiated into a or δ cells in both youth- and adulthood-initiated mice while this phenomenon was barely observed in HFD models. β cells in HFD mice were expanded via self-replication rather than via transdifferentiation from α or δ cells, in contrast, α or δ cells were induced to transdifferentiate into β cells in STZ-treated mice (both youth- and adulthood-initiated). In addition to the re-dedifferentiation of β cells, it is also highly likely that these "α or δ" cells transdifferentiated from pre-existing β cells could also re-trans-differentiate into insulin-producing β cells and be beneficial to islet recovery. The analysis of ScRNA-seq revealed that several pathways including mitochondrial function, chromatin modification, and remodeling are crucial in the dynamic transition of β cells. Our findings shed light on how islet β cells overcome the deficit of insulin and the molecular mechanism of islet recovery in T1D and T2D pathogenesis.
Collapse
Affiliation(s)
- Qi Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Qian
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hemin Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yunqiang He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Dai
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqing Xia
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yucheng Liang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuncai Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Zheng
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Lv
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Sun
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kuanfeng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
24
|
Hill TG, Smith LIF, Ruz-Maldonado I, Jones PM, Bowe JE. Kisspeptin upregulates β-cell serotonin production during pregnancy. J Endocrinol 2024; 260:e230218. [PMID: 37997938 PMCID: PMC10762540 DOI: 10.1530/joe-23-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. The lactogenic hormones are well established to play a key role in regulating the islet adaptation to pregnancy, and one of the mechanisms through which they act is through upregulating β-cell serotonin production. During pregnancy islet serotonin levels are significantly elevated, where it is released from the β-cells to drive the adaptive response through paracrine and autocrine effects. We have previously shown that placental kisspeptin (KP) also plays a role in promoting the elevated insulin secretion and β-cell proliferation observed during pregnancy, although the precise mechanisms involved are unclear. In the present study we investigated the effects of KP on expression of pro-proliferative genes and serotonin biosynthesis within rodent islets. Whilst KP had limited effect on pro-proliferative gene expression at the time points tested, KP did significantly stimulate expression of the serotonin biosynthesis enzyme Tph-1. Furthermore, the islets of pregnant β-cell-specific GPR54 knockdown mice were found to contain significantly fewer serotonin-positive β-cells when compared to pregnant controls. Our previous studies suggested that reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent β-cell compensation, may be a factor in the development of GDM in humans. These current data suggest that, similar to the lactogenic hormones, KP may also contribute to serotonin biosynthesis and subsequent islet signalling during pregnancy. Furthermore, upregulation of serotonin biosynthesis may represent a common mechanism through which multiple signals might influence the islet adaptation to pregnancy.
Collapse
Affiliation(s)
- Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Lorna I F Smith
- Diabetes Research Group, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | | | - Peter M Jones
- Diabetes Research Group, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - James E Bowe
- Diabetes Research Group, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| |
Collapse
|
25
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
26
|
Gayatri V, Krishna Prasad M, Mohandas S, Nagarajan S, Kumaran K, Ramkumar KM. Crosstalk between inflammasomes, inflammation, and Nrf2: Implications for gestational diabetes mellitus pathogenesis and therapeutics. Eur J Pharmacol 2024; 963:176241. [PMID: 38043778 DOI: 10.1016/j.ejphar.2023.176241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The role of inflammasomes in gestational diabetes mellitus (GDM) has emerged as a critical area of research in recent years. Inflammasomes, key components of the innate immune system, are now recognized for their involvement in the pathogenesis of GDM. Activation of inflammasomes in response to various triggers during pregnancy can produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), contributing to systemic inflammation and insulin resistance. This dysregulation not only impacts maternal health but also poses significant risks to fetal development and long-term health outcomes. Understanding the intricate interplay between inflammasomes and GDM holds promise for developing novel therapeutic strategies and interventions to mitigate the adverse effects of this condition on both mothers and their offspring. Researchers have elucidated that targeting inflammasomes using anti-inflammatory drugs and compounds can effectively reduce inflammation in GDM. Furthermore, the addition of nuclear factor erythroid 2-related factor 2 (Nrf2) to this complex mechanism opens novel avenues for therapeutics. The antioxidant properties of Nrf2 may potentially suppress inflammasome activation in GDM. This comprehensive review investigates the intricate relationship between inflammasomes and GDM, emphasizing the pivotal role of inflammation in its pathogenesis. It also sheds light on potential therapeutic strategies targeting inflammasome activation and explores the role of Nrf2 in mitigating inflammation in GDM.
Collapse
Affiliation(s)
- Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sanjushree Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
27
|
Chaudhary R, Khanna J, Rohilla M, Gupta S, Bansal S. Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing. Endocr Metab Immune Disord Drug Targets 2024; 24:348-362. [PMID: 37608675 DOI: 10.2174/1871530323666230822095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease. OBJECTIVES The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance. METHODS Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose". RESULTS In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration. CONCLUSION Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Janvi Khanna
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Manni Rohilla
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
28
|
Usman TO, Chhetri G, Yeh H, Dong HH. Beta-cell compensation and gestational diabetes. J Biol Chem 2023; 299:105405. [PMID: 38229396 PMCID: PMC10694657 DOI: 10.1016/j.jbc.2023.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal β-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed β-cell compensation, is essential for maintaining normal maternal metabolism. β-cell compensation culminates in the expansion of β-cell mass and augmentation of β-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, β-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational β-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How β-cells compensate for pregnancy and what causes β-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that β-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to β-cell compensation for pregnancy. We will provide mechanistic insights into β-cell decompensation in the etiology of GDM.
Collapse
Affiliation(s)
- Taofeek O Usman
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Goma Chhetri
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hsuan Yeh
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H Henry Dong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
29
|
Mittendorfer B, Patterson BW, Haire-Joshu D, Cahill AG, Cade WT, Stein RI, Klein S. Insulin Sensitivity and β-Cell Function During Early and Late Pregnancy in Women With and Without Gestational Diabetes Mellitus. Diabetes Care 2023; 46:2147-2154. [PMID: 37262059 PMCID: PMC10698210 DOI: 10.2337/dc22-1894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To evaluate the metabolic alterations associated with gestational diabetes mellitus (GDM) in women with overweight or obesity. RESEARCH DESIGN AND METHODS We compared fasting and postprandial plasma glucose and free fatty acid (FFA) concentrations, insulin sensitivity (IS; Matsuda index), and β-cell function (i.e., β-cell responsiveness to glucose) by using a frequently sampled oral glucose tolerance test (OGTT) at 15 and 35 weeks' gestation in women with overweight or obesity who had GDM (n = 29) or did not have GDM (No-GDM; n = 164) at 35 weeks. RESULTS At 15 weeks, IS and β-cell function were lower, and fasting, 1-h, and total area-under-the-curve plasma glucose concentrations during the OGTT were higher (all P < 0.05) in the GDM than in the No-GDM group. At 35 weeks compared with 15 weeks, IS decreased, β-cell function increased, and postprandial suppression of plasma FFA was blunted in both the GDM and No-GDM groups, but the decrease in IS and the increase in postprandial FFA concentration were greater and the increase in β-cell function was less (all P ≤ 0.05) in the GDM than in the No-GDM group. A receiver operating characteristic curve analysis showed that both fasting plasma glucose and 1-h OGTT glucose concentration at 15 weeks are predictors of GDM, but the predictive power was <30%. CONCLUSIONS Women with overweight or obesity and GDM, compared with those without GDM, have worse IS and β-cell function early during pregnancy and a greater subsequent decline in IS and blunted increase in β-cell function. Increased fasting and 1-h OGTT plasma glucose concentration early during pregnancy are markers of increased GDM risk, albeit with weak predictive power.
Collapse
Affiliation(s)
| | | | | | - Alison G. Cahill
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO
- Department of Women’s Health, The University of Texas at Austin, Dell Medical School, Austin, TX
| | - W. Todd Cade
- Program in Physical Therapy, Washington University, St. Louis, MO
| | - Richard I. Stein
- Center for Human Nutrition, Washington University, St. Louis, MO
| | - Samuel Klein
- Center for Human Nutrition, Washington University, St. Louis, MO
- Sansum Diabetes Research Institute, Santa Barbara, CA
| |
Collapse
|
30
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
31
|
Moon JH, Lee J, Kim KH, Kim HJ, Kim H, Cha HN, Park J, Lee H, Park SY, Jang HC, Kim H. Multiparity increases the risk of diabetes by impairing the proliferative capacity of pancreatic β cells. Exp Mol Med 2023; 55:2269-2280. [PMID: 37903900 PMCID: PMC10618440 DOI: 10.1038/s12276-023-01100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 11/01/2023] Open
Abstract
Pregnancy imposes a substantial metabolic burden on women, but little is known about whether or how multiple pregnancies increase the risk of maternal postpartum diabetes. In this study, we assessed the metabolic impact of multiple pregnancies in humans and in a rodent model. Mice that underwent multiple pregnancies had increased adiposity, but their glucose tolerance was initially improved compared to those of age-matched virgin mice. Later, however, insulin resistance developed over time, but insulin secretory function and compensatory pancreatic β cell proliferation were impaired in multiparous mice. The β cells of multiparous mice exhibited aging features, including telomere shortening and increased expression of Cdkn2a. Single-cell RNA-seq analysis revealed that the β cells of multiparous mice exhibited upregulation of stress-related pathways and downregulation of cellular respiration- and oxidative phosphorylation-related pathways. In humans, women who delivered more than three times were more obese, and their plasma glucose concentrations were elevated compared to women who had delivered three or fewer times, as assessed at 2 months postpartum. The disposition index, which is a measure of the insulin secretory function of β cells, decreased when women with higher parity gained body weight after delivery. Taken together, our findings indicate that multiple pregnancies induce cellular stress and aging features in β cells, which impair their proliferative capacity to compensate for insulin resistance.
Collapse
Affiliation(s)
- Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joonyub Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyun Hoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeongnam University, Daegu, Korea
| | - Jungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyeonkyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeongnam University, Daegu, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
32
|
Guevara-Ramírez P, Paz-Cruz E, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Felix ML, Simancas-Racines D, Zambrano AK. Molecular pathways and nutrigenomic review of insulin resistance development in gestational diabetes mellitus. Front Nutr 2023; 10:1228703. [PMID: 37799768 PMCID: PMC10548225 DOI: 10.3389/fnut.2023.1228703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Gestational diabetes mellitus is a condition marked by raised blood sugar levels and insulin resistance that usually occurs during the second or third trimester of pregnancy. According to the World Health Organization, hyperglycemia affects 16.9% of pregnancies worldwide. Dietary changes are the primarily alternative treatment for gestational diabetes mellitus. This paper aims to perform an exhaustive overview of the interaction between diet, gene expression, and the metabolic pathways related to insulin resistance. The intake of foods rich in carbohydrates can influence the gene expression of glycolysis, as well as foods rich in fat, can disrupt the beta-oxidation and ketogenesis pathways. Furthermore, vitamins and minerals are related to inflammatory processes regulated by the TLR4/NF-κB and one carbon metabolic pathways. We indicate that diet regulated gene expression of PPARα, NOS, CREB3L3, IRS, and CPT I, altering cellular physiological mechanisms and thus increasing or decreasing the risk of gestational diabetes. The alteration of gene expression can cause inflammation, inhibition of fatty acid transport, or on the contrary help in the modulation of ketogenesis, improve insulin sensitivity, attenuate the effects of glucotoxicity, and others. Therefore, it is critical to comprehend the metabolic changes of pregnant women with gestational diabetes mellitus, to determine nutrients that help in the prevention and treatment of insulin resistance and its long-term consequences.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Maria L. Felix
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
33
|
Spinelli P, Fields AM, Falcone S, Mesaros C, Susiarjo M. Susceptibility to Low Vitamin B6 Diet-induced Gestational Diabetes Is Modulated by Strain Differences in Mice. Endocrinology 2023; 164:bqad130. [PMID: 37624591 PMCID: PMC10686696 DOI: 10.1210/endocr/bqad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Gestational diabetes is a common pregnancy complication that adversely influences the health and survival of mother and child. Pancreatic islet serotonin signaling plays an important role in β-cell proliferation in pregnancy, and environmental and genetic factors that disrupt serotonin signaling are associated with gestational diabetes in mice. Our previous studies show that pregnant C57BL/6J mice fed a diet that is low in vitamin B6, a critical co-factor in serotonin synthesis, develop hyperglycemia and glucose intolerance, phenotypes that are consistent with gestational diabetes in humans. The current study shows that, unlike in the C57BL/6J mice, low vitamin B6 diet does not alter glucose tolerance and insulin secretion in pregnant DBA/2J mice. The hypothesis to be tested in the current study is that pregnant DBA/2J mice are protected against low vitamin B6-induced gestational diabetes due to their higher expression and enzymatic activities of tissue nonspecific alkaline phosphatase (ALPL) relative to C57BL/6J. ALPL is a rate-limiting enzyme that regulates vitamin B6 bioavailability. Interestingly, treating pregnant DBA/2J mice with 7.5 mg/kg/day of the ALPL inhibitor SBI-425 is associated with glucose intolerance in low vitamin B6-fed mice, implying that inhibition of ALPL activity is sufficient to modulate resilience to low vitamin B6-induced metabolic impairment.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ashley M Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Baumel-Alterzon S, Tse I, Heidery F, Garcia-Ocaña A, Scott DK. NRF2 Dysregulation in Mice Leads to Inadequate Beta-Cell Mass Expansion during Pregnancy and Gestational Diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555207. [PMID: 37693560 PMCID: PMC10491153 DOI: 10.1101/2023.08.28.555207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The late stages of the mammalian pregnancy are accompanied with increased insulin resistance due to the increased glucose demand of the growing fetus. Therefore, as a compensatory response to maintain the maternal normal blood glucose levels, maternal beta-cell mass expands leading to increased insulin release. Defects in beta-cell adaptive expansion during pregnancy can lead to gestational diabetes mellitus (GDM). Although the exact mechanisms that promote GDM are poorly understood, GDM strongly associates with impaired beta-cell proliferation and with increased levels of reactive oxygen species (ROS). Here, we show that NRF2 levels are upregulated in mouse beta-cells at gestation day 15 (GD15) concomitant with increased beta-cell proliferation. Importantly, mice with tamoxifen-induced beta-cell-specific NRF2 deletion display inhibition of beta-cell proliferation, increased beta-cell oxidative stress and elevated levels of beta-cell death at GD15. This results in attenuated beta-cell mass expansion and disturbed glucose homeostasis towards the end of pregnancy. Collectively, these results highlight the importance of NRF2-oxidative stress regulation in beta-cell mass adaptation to pregnancy and suggest NRF2 as a potential therapeutic target for treating GDM.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isabelle Tse
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fatema Heidery
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute at City of Hope, Duarte, CA
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
35
|
Basu J, Mukherjee R, Sahu P, Datta C, Chowdhury S, Mandal D, Ghosh A. Association of common variants of TCF7L2 and PCSK2 with gestational diabetes mellitus in West Bengal, India. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:185-202. [PMID: 37610142 DOI: 10.1080/15257770.2023.2248201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
The genetic etiology of gestational diabetes mellitus (GDM) was suggested to overlap with type-2 diabetes(T2D). Transcription factor 7-like 2 (TCF7L2) and Proprotein Convertase Subtilisin/Kexin type 2 (PCSK2) are T2D susceptibility genes of the insulin synthesis/processing pathway. We analyzed associations of TCF7L2 and PCSK2 variants with GDM risk and evaluated their potential impact on impaired insulin processing in an eastern Indian population. The study included 114 GDM (case) and 228 non-GDM pregnant women (control). rs7903146, rs4132670, rs12255372 of TCF7L2, and rs2269023 of PCSK2 were genotyped by PCR-RFLP, and genotype distributions were compared between case and control. Fasting serum proinsulin and C-peptide levels were measured by ELISA and the Proinsulin/C-peptide ratio was considered an indicator of proinsulin conversion. Significantly higher frequency of risk allele (T) of rs12255372 (p = 0.02, OR = 2.0, 95%CI = 1.11-3.64) and rs4132670 (p = 0.002, OR = 2.26, 95%CI = 1.32-3.87) of TCF7L2 was found in GDM cases than non-GDM controls; TT genotype was associated with significantly increased disease risk. In rs7903146 (TCF7L2) and rs2269023 (PCSK2), although the frequency of risk allele (T) was not significantly higher in cases than controls, an association of TT for both variants remained significant with higher GDM risk in the recessive model. Increased serum pro-insulin and proinsulin:c-peptide ratio was found in GDM than non-GDM women and the phenomenon showed significant association with careers of risk alleles for TCF7L2 variants. In conclusion, TCF7L2 and PCSK2 variants are related to GDM risk in the studied population and hence may serve as potential biomarkers for assessing the disease risk. TCF7L2 variants contribute to impaired insulin processing.
Collapse
Affiliation(s)
- Jayita Basu
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Pooja Sahu
- Department of Gynecology and Obstetrics, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Chhanda Datta
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhankar Chowdhury
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debasmita Mandal
- Department of Gynecology and Obstetrics, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
36
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
37
|
Khalil WJ, Akeblersane M, Khan AS, Moin ASM, Butler AE. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int J Mol Sci 2023; 24:8870. [PMID: 37240215 PMCID: PMC10219141 DOI: 10.3390/ijms24108870] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
To meet the increased need for food and energy because of the economic shift brought about by the Industrial Revolution in the 19th century, there has been an increase in persistent organic pollutants (POPs), atmospheric emissions and metals in the environment. Several studies have reported a relationship between these pollutants and obesity, and diabetes (type 1, type 2 and gestational). All of the major pollutants are considered to be endocrine disruptors because of their interactions with various transcription factors, receptors and tissues that result in alterations of metabolic function. POPs impact adipogenesis, thereby increasing the prevalence of obesity in exposed individuals. Metals impact glucose regulation by disrupting pancreatic β-cells, causing hyperglycemia and impaired insulin signaling. Additionally, a positive association has been observed between the concentration of endocrine disrupting chemicals (EDCs) in the 12 weeks prior to conception and fasting glucose levels. Here, we evaluate what is currently known regarding the link between environmental pollutants and metabolic disorders. In addition, we indicate where further research is required to improve our understanding of the specific effects of pollutants on these metabolic disorders which would enable implementation of changes to enable their prevention.
Collapse
Affiliation(s)
- William Junior Khalil
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Meriem Akeblersane
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Ana Saad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
38
|
Sylvester-Armstrong KR, Reeder CF, Powell A, Becker MW, Hagan DW, Chen J, Mathews CE, Wasserfall CH, Atkinson MA, Egerman R, Phelps EA. Serum from pregnant donors induces human beta cell proliferation and insulin secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537214. [PMID: 37131658 PMCID: PMC10153135 DOI: 10.1101/2023.04.17.537214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pancreatic beta cells are among the slowest replicating cells in the human body. Human beta cells usually do not increase in number with exceptions being during the neonatal period, in cases of obesity, and during pregnancy. This project explored maternal serum for stimulatory potential on human beta cell proliferation and insulin output. Gravid, full-term women who were scheduled to undergo cesarean delivery were recruited for this study. A human beta cell line was cultured in media supplemented with serum from pregnant and non-pregnant donors and assessed for differences in proliferation and insulin secretion. A subset of pregnant donor sera induced significant increases in beta cell proliferation and insulin secretion. Pooled serum from pregnant donors also increased proliferation in primary human beta cells but not primary human hepatocytes indicating a cell-type specific effect. This study suggests stimulatory factors in human serum during pregnancy could provide a novel approach for human beta cell expansion.
Collapse
Affiliation(s)
| | - Callie F. Reeder
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, Florida
| | - Andrece Powell
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida
| | - D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida
| | - Robert Egerman
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
39
|
Di Giuseppe G, Ciccarelli G, Soldovieri L, Capece U, Cefalo CMA, Moffa S, Nista EC, Brunetti M, Cinti F, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. First-phase insulin secretion: can its evaluation direct therapeutic approaches? Trends Endocrinol Metab 2023; 34:216-230. [PMID: 36858875 DOI: 10.1016/j.tem.2023.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Our work is aimed at unraveling the role of the first-phase insulin secretion in the natural history of type 2 diabetes mellitus (T2DM) and its interrelationship with insulin resistance and with β cell function and mass. Starting from pathophysiology, we investigate the impact of impaired secretion on glucose homeostasis and explore postmeal hyperglycemia as the main clinical feature, underlining its relevance in the management of the disease. We also review dietary and pharmacological approaches aimed at improving early secretory defects and restoring residual β cell function. Furthermore, we discuss possible approaches to detect early secretory defects in clinical practice. By providing a journey through human and animal data, we attempt a unification of the recent evidence in an effort to offer a new outlook on β cell secretion.
Collapse
Affiliation(s)
- Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M A Cefalo
- Department of Clinical and Molecular Medicine, University of Rome - Sapienza, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico C Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
40
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
41
|
Burgos-Gamez X, Morales-Castillo P, Fernandez-Mejia C. Maternal adaptations of the pancreas and glucose homeostasis in lactation and after lactation. Mol Cell Endocrinol 2023; 559:111778. [PMID: 36162635 DOI: 10.1016/j.mce.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
During lactation, the maternal physiology adapts to bear the nutritional requirements of the offspring. The exocrine and endocrine pancreas are central to nutrient handling, promoting digestion and metabolism. In concert with prolactin, insulin is a determinant factor for milk synthesis. The investigation of the pancreas during lactation has been scattered over several periods. The investigations that laid the foundation of lactating pancreatic physiology and glucose homeostasis were conducted in the decades of 1970-1980. With the development of molecular biology, newer studies have revealed the molecular mechanisms involved in the endocrine pancreas during breastfeeding. There has been a surge of information recently about unexpected changes in the pancreas at the end of the lactation period and after weaning. In this review, we aim to gather information on the changes in the pancreas and glucose homeostasis during and after lactation and discuss the outcomes derived from the current discoveries.
Collapse
Affiliation(s)
- Xadeni Burgos-Gamez
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Paulina Morales-Castillo
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico.
| |
Collapse
|
42
|
Nambiar SM, Lee J, Yanum JA, Garcia V, Jiang H, Dai G. Maternal hepatocytes heterogeneously and dynamically exhibit developmental phenotypes partially via yes-associated protein 1 during pregnancy. Am J Physiol Gastrointest Liver Physiol 2023; 324:G38-G50. [PMID: 36283963 PMCID: PMC9799147 DOI: 10.1152/ajpgi.00197.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023]
Abstract
Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.
Collapse
Affiliation(s)
- Shashank Manohar Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
43
|
Mishra A, Ruano SH, Saha PK, Pennington KA. A novel model of gestational diabetes: Acute high fat high sugar diet results in insulin resistance and beta cell dysfunction during pregnancy in mice. PLoS One 2022; 17:e0279041. [PMID: 36520818 PMCID: PMC9754171 DOI: 10.1371/journal.pone.0279041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM) affects 7-18% of all pregnancies. Despite its high prevalence, there is no widely accepted animal model. To address this, we recently developed a mouse model of GDM. The goal of this work was to further characterize this animal model by assessing insulin resistance and beta cell function. Mice were randomly assigned to either control (CD) or high fat, high sugar (HFHS) diet and mated 1 week later. At day 0 (day of mating) mice were fasted and intraperitoneal insulin tolerance tests (ipITT) were performed. Mice were then euthanized and pancreata were collected for histological analysis. Euglycemic hyperinsulinemic clamp experiments were performed on day 13.5 of pregnancy to assess insulin resistance. Beta cell function was assessed by glucose stimulated insulin secretion (GSIS) assay performed on day 0, 13.5 and 17.5 of pregnancy. At day 0, insulin tolerance and beta cell numbers were not different. At day 13.5, glucose infusion and disposal rates were significantly decreased (p<0.05) in Pregnant (P) HFHS animals (p<0.05) suggesting development of insulin resistance in P HFHS dams. Placental and fetal glucose uptake was significantly increased (p<0.01) in P HFHS dams at day 13.5 of pregnancy and by day 17.5 of pregnancy fetal weights were increased (p<0.05) in P HFHS dams compared to P CD dams. Basal and secreted insulin levels were increased in HFHS fed females at day 0, however at day 13.5 and 17.5 GSIS was decreased (p<0.05) in P HFHS dams. In conclusion, this animal model results in insulin resistance and beta cell dysfunction by mid-pregnancy further validating its relevance in studying the pathophysiology GDM.
Collapse
Affiliation(s)
- Akansha Mishra
- Department of Obstetrics and Gynecology and, Baylor College of Medicine, Houston, Texas, United States of America
| | - Simone Hernandez Ruano
- Department of Obstetrics and Gynecology and, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pradip K. Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathleen A. Pennington
- Department of Obstetrics and Gynecology and, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Rassie K, Giri R, Joham AE, Teede H, Mousa A. Human Placental Lactogen in Relation to Maternal Metabolic Health and Fetal Outcomes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232415621. [PMID: 36555258 PMCID: PMC9779646 DOI: 10.3390/ijms232415621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Human placental lactogen (hPL) is a placental hormone which appears to have key metabolic functions in pregnancy. Preclinical studies have putatively linked hPL to maternal and fetal outcomes, yet-despite human observational data spanning several decades-evidence on the role and importance of this hormone remains disparate and conflicting. We aimed to explore (via systematic review and meta-analysis) the relationship between hPL levels, maternal pre-existing and gestational metabolic conditions, and fetal growth. MEDLINE via OVID, CINAHL plus, and Embase were searched from inception through 9 May 2022. Eligible studies included women who were pregnant or up to 12 months post-partum, and reported at least one endogenous maternal serum hPL level during pregnancy in relation to pre-specified metabolic outcomes. Two independent reviewers extracted data. Meta-analysis was conducted where possible; for other outcomes narrative synthesis was performed. 35 studies met eligibility criteria. No relationship was noted between hPL and gestational diabetes status. In type 1 diabetes mellitus, hPL levels appeared lower in early pregnancy (possibly reflecting delayed placental development) and higher in late pregnancy (possibly reflecting increased placental mass). Limited data were found in other pre-existing metabolic conditions. Levels of hPL appear to be positively related to placental mass and infant birthweight in pregnancies affected by maternal diabetes. The relationship between hPL, a purported pregnancy metabolic hormone, and maternal metabolism in human pregnancy is complex and remains unclear. This antenatal biomarker may offer value, but future studies in well-defined contemporary populations are required.
Collapse
Affiliation(s)
- Kate Rassie
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Rinky Giri
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Anju E. Joham
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Helena Teede
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Department of Diabetes, Monash Health, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3857-22854
| |
Collapse
|
45
|
Espes D, Magnusson L, Caballero-Corbalan J, Schwarcz E, Casas R, Carlsson PO. Pregnancy induces pancreatic insulin secretion in women with long-standing type 1 diabetes. BMJ Open Diabetes Res Care 2022; 10:10/6/e002948. [PMID: 36351678 PMCID: PMC9644305 DOI: 10.1136/bmjdrc-2022-002948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Pregnancy entails both pancreatic adaptations with increasing β-cell mass and immunological alterations in healthy women. In this study, we have examined the effects of pregnancy on β-cell function and immunological processes in long-standing type 1 diabetes (L-T1D). RESEARCH DESIGN AND METHODS Fasting and stimulated C-peptide were measured after an oral glucose tolerance test in pregnant women with L-T1D (n=17) during the first trimester, third trimester, and 5-8 weeks post partum. Two 92-plex Olink panels were used to measure proteins in plasma. Non-pregnant women with L-T1D (n=30) were included for comparison. RESULTS Fasting C-peptide was detected to a higher degree in women with L-T1D during gestation and after parturition (first trimester: 64.7%, third trimester: 76.5%, and post partum: 64.7% vs 26.7% in non-pregnant women). Also, total insulin secretion and peak C-peptide increased during pregnancy. The plasma protein levels in pregnant women with L-T1D was dynamic, but few analytes were functionally related. Specifically, peripheral levels of prolactin (PRL), prokineticin (PROK)-1, and glucagon (GCG) were elevated during gestation whereas levels of proteins related to leukocyte migration (CCL11), T cell activation (CD28), and antigen presentation (such as CD83) were reduced. CONCLUSIONS In summary, we have found that some C-peptide secretion, that is, an indirect measurement of endogenous insulin production, is regained in women with L-T1D during pregnancy, which might be attributed to elevated peripheral levels of PRL, PROK-1, or GCG.
Collapse
Affiliation(s)
- Daniel Espes
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Louise Magnusson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| | | | - Erik Schwarcz
- Department of Internal Medicine, Örebro University Hospital, Orebro, Sweden
| | - Rosaura Casas
- Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Cade WT, Mittendorfer B, Patterson BW, Haire-Joshu D, Cahill AG, Stein RI, Schechtman KB, Tinius RA, Brown K, Klein S. Effect of excessive gestational weight gain on insulin sensitivity and insulin kinetics in women with overweight/obesity. Obesity (Silver Spring) 2022; 30:2014-2022. [PMID: 36150208 PMCID: PMC9512396 DOI: 10.1002/oby.23533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Obesity increases the risk for pregnancy complications and maternal hyperglycemia. The Institute of Medicine developed guidelines for gestational weight gain (GWG) targets for women with overweight/obesity, but it is unclear whether exceeding these targets has adverse effects on maternal glucose metabolism. METHODS Insulin sensitivity (assessed using the Matsuda Insulin Sensitivity Index), β-cell function (assessed as insulin secretion rate in relation to plasma glucose), and plasma insulin clearance rate were evaluated using a frequently sampled oral glucose tolerance test at 15 and 35 weeks of gestation in 184 socioeconomically disadvantaged African American women with overweight/obesity. RESULTS Insulin sensitivity decreased, whereas β-cell function and insulin clearance increased from 15 to 35 weeks of gestation in the entire group. Compared with women who achieved the recommended GWG, excessive GWG was associated with a greater decrease in insulin sensitivity between 15 and 35 weeks. β-cell function and plasma insulin clearance were not affected by excessive GWG. CONCLUSIONS These data demonstrate that gaining more weight during pregnancy than recommended by the Institute of Medicine is associated with functional effects on glucose metabolism.
Collapse
Affiliation(s)
- W. Todd Cade
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | | | - Bruce W. Patterson
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| | | | - Alison G. Cahill
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, USA
- Department of Women’s Health, The University of Texas at Austin, Dell Medical School, Austin TX USA
| | - Richard I. Stein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| | | | - Rachel A. Tinius
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | - Katherine Brown
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
47
|
High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14193930. [PMID: 36235580 PMCID: PMC9573299 DOI: 10.3390/nu14193930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Collapse
|
48
|
Pylaev TE, Smyshlyaeva IV, Popyhova EB. Regeneration of β-cells of the islet apparatus of the pancreas. Literature review. DIABETES MELLITUS 2022. [DOI: 10.14341/dm12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes of both type 1 and type 2 is characterized by a progressive loss of β-cell mass, which contributes to the disruption of glucose homeostasis. The optimal antidiabetic therapy would be simple replacement of lost cells, but at present, many researchers have shown that the pancreas (PZ) of adults has a limited regenerative potential. In this regard, significant efforts of researchers are directed to methods of inducing the proliferation of β-cells, stimulating the formation of β-cells from alternative endogenous sources and/or the generation of β-cells from pluripotent stem cells. Factors that regulate β-cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways and potential pharmaceuticals, are also being intensively studied. In this review, we consider recent scientific studies carried out in the field of studying the development and regeneration of insulin-producing cells obtained from exogenous and endogenous sources and their use in the treatment of diabetes. The literature search while writing this review was carried out using the databases of the RSIC, CyberLeninka, Scopus, Web of Science, MedLine, PubMed for the period from 2005 to 2021. using the following keywords: diabetes mellitus, pancreas, regeneration, β-cells, stem cells, diabetes therapy.
Collapse
|
49
|
Dirice E, Basile G, Kahraman S, Diegisser D, Hu J, Kulkarni RN. Single-nucleus RNA-sequencing reveals singular gene signatures of human ductal cells during adaptation to insulin resistance. JCI Insight 2022; 7:153877. [PMID: 35819843 PMCID: PMC9462484 DOI: 10.1172/jci.insight.153877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Adaptation to increased insulin demand is mediated by β cell proliferation and neogenesis, among other mechanisms. Although it is known that pancreatic β cells can arise from ductal progenitors, these observations have been limited mostly to the neonatal period. We have recently reported that the duct is a source of insulin-secreting cells in adult insulin-resistant states. To further explore the signaling pathways underlying the dynamic β cell reserve during insulin resistance, we undertook human islet and duct transplantations under the kidney capsule of immunodeficient NOD/SCID-γ (NSG) mouse models that were pregnant, were insulin-resistant, or had insulin resistance superimposed upon pregnancy (insulin resistance + pregnancy), followed by single-nucleus RNA-Seq (snRNA-Seq) on snap-frozen graft samples. We observed an upregulation of proliferation markers (e.g., NEAT1) and expression of islet endocrine cell markers (e.g., GCG and PPY), as well as mature β cell markers (e.g., INS), in transplanted human duct grafts in response to high insulin demand. We also noted downregulation of ductal cell identity genes (e.g., KRT19 and ONECUT2) coupled with upregulation of β cell development and insulin signaling pathways. These results indicate that subsets of ductal cells are able to gain β cell identity and reflect a form of compensation during the adaptation to insulin resistance in both physiological and pathological states.
Collapse
Affiliation(s)
- Ercument Dirice
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Giorgio Basile
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, United States of America
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| |
Collapse
|
50
|
Tudurí E, Soriano S, Almagro L, Montanya E, Alonso-Magdalena P, Nadal Á, Quesada I. The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Res Rev 2022; 80:101674. [PMID: 35724861 DOI: 10.1016/j.arr.2022.101674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022]
Abstract
The prevalence of type 2 diabetes (T2D) and impaired glucose tolerance (IGT) increases with ageing. T2D generally results from progressive impairment of the pancreatic islets to adapt β-cell mass and function in the setting of insulin resistance and increased insulin demand. Several studies have shown an age-related decline in peripheral insulin sensitivity. However, a precise understanding of the pancreatic β-cell response in ageing is still lacking. In this review, we summarize the age-related alterations, adaptations and/or failures of β-cells at the molecular, morphological and functional levels in mouse and human. Age-associated alterations include processes such as β-cell proliferation, apoptosis and cell identity that can influence β-cell mass. Age-related changes also affect β-cell function at distinct steps including electrical activity, Ca2+ signaling and insulin secretion, among others. We will consider the potential impact of these alterations and those mediated by senescence pathways on β-cells and their implications in age-related T2D. Finally, given the great diversity of results in the field of β-cell ageing, we will discuss the sources of this heterogeneity. A better understanding of β-cell biology during ageing, particularly at older ages, will improve our insight into the contribution of β-cells to age-associated T2D and may boost new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Tudurí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Almagro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Eduard Montanya
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain, University of Barcelona, Barcelona, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|