1
|
Guo X, Wang X, Wang J, Ma M, Ren Q. Current Development of iPSC-Based Modeling in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3774. [PMID: 40332425 PMCID: PMC12027653 DOI: 10.3390/ijms26083774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Over the past two decades, significant advancements have been made in the induced pluripotent stem cell (iPSC) technology. These developments have enabled the broader application of iPSCs in neuroscience, improved our understanding of disease pathogenesis, and advanced the investigation of therapeutic targets and methods. Specifically, optimizations in reprogramming protocols, coupled with improved neuronal differentiation and maturation techniques, have greatly facilitated the generation of iPSC-derived neural cells. The integration of the cerebral organoid technology and CRISPR/Cas9 genome editing has further propelled the application of iPSCs in neurodegenerative diseases to a new stage. Patient-derived or CRISPR-edited cerebral neurons and organoids now serve as ideal disease models, contributing to our understanding of disease pathophysiology and identifying novel therapeutic targets and candidates. In this review, we examine the development of iPSC-based models in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Xiangge Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Xumeng Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Jiaxuan Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Min Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- Human Brain Bank, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Petrova IO, Smirnikhina SA. Prime Editing in Dividing and Quiescent Cells. Int J Mol Sci 2025; 26:3596. [PMID: 40332080 PMCID: PMC12026808 DOI: 10.3390/ijms26083596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Prime editing is a method of genome editing based on reverse transcription. Recent results have shown its elevated efficiency in dividing cells, which raises some questions regarding the mechanism of this effect, because prime editing does not employ homology-driven repair. This mini review aims to identify the reason for this phenomenon and find a possible solution to the problems that it poses. In dividing cells, prime editing takes advantage of high levels of dNTPs and active endonuclease and ligase machinery, such as FEN1 endonuclease and LIG1 ligase, but DNA mismatch repair, which is closely associated with replication, works against prime editing. Prime editing is a method which relies on retroviral reverse transcription, so mechanisms of intrinsic anti-retroviral defense should also work against editing. One of the factors which drastically reduce the efficiency of reverse translation is SAMHD1, which maintains low levels of dNTPs in non-dividing cells. Recent works aimed at the mitigation of SAMHD1 function demonstrated a significant increase in prime editing efficiency.
Collapse
Affiliation(s)
- Irina O. Petrova
- Laboratory of Genome Editing, Research Center for Medical Genetics, Moskvorechye 1, 115478 Moscow, Russia
| | | |
Collapse
|
3
|
Englich M, Arkudas A, Mengen L, Horch RE, Cai A. Selection of optimal human myoblasts based on patient related factors influencing proliferation and differentiation capacity. Sci Rep 2025; 15:11714. [PMID: 40188257 PMCID: PMC11972305 DOI: 10.1038/s41598-025-96108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Human myoblasts (hMb) are a promising source for engineering skeletal muscle tissue. But sample-specific variabilities make research with human cells challenging. For the purpose of selecting hMb with adequate proliferation and differentiation properties, the influence of various patient related factors, including age, gender, BMI, anatomical sampling site and previous radio-/chemotherapy on hMb behavior was investigated in this study. Immunofluorescence staining and proliferation periods were analysed for proliferation capacity, while creatine kinase and cell viability assay, immunofluorescence staining and PCR were used to determine differentiation capacity. Using desmin expression, a multiple linear regression (MLR) model was established based on the above-mentioned patient related factors. Higher age and BMI, female gender and chemotherapy had a negative impact on desmin expression. Muscle type specific differences could also be seen. Previous radiotherapy led to senescence of hMb in large parts. Differentiation was mainly influenced by gender in a time-dependent manner, as well as by the anatomical collecting site. We were able to demonstrate the importance of analyzing patient characteristics for the purpose of hMb isolation. Using MLR, these patient characteristics can be used to predict the proliferation capacity of hMb as a step further towards translational application of skeletal muscle engineering and regeneration.
Collapse
Affiliation(s)
- Moritz Englich
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Lilly Mengen
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Aijia Cai
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Bell SM, Wareing H, Capriglia F, Hughes R, Barnes K, Hamshaw A, Adair L, Shaw A, Olejnik A, De S, New E, Shaw PJ, De Marco M, Venneri A, Blackburn DJ, Ferraiuolo L, Mortiboys H. Increasing hexokinase 1 expression improves mitochondrial and glycolytic functional deficits seen in sporadic Alzheimer's disease astrocytes. Mol Psychiatry 2025; 30:1369-1382. [PMID: 39271753 PMCID: PMC11919762 DOI: 10.1038/s41380-024-02746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Abnormalities in cellular metabolism are seen early in Alzheimer's disease (AD). Astrocyte support for neuronal function has a high metabolic demand, and astrocyte glucose metabolism plays a key role in encoding memory. This indicates that astrocyte metabolic dysfunction might be an early event in the development of AD. In this paper we interrogate glycolytic and mitochondrial functional changes and mitochondrial structural alterations in patients' astrocytes derived with a highly efficient direct conversion protocol. In astrocytes derived from patients with sporadic (sAD) and familial AD (fAD) we identified reductions in extracellular lactate, total cellular ATP and an increase in mitochondrial reactive oxygen species. sAD and fAD astrocytes displayed significant reductions in mitochondrial spare respiratory capacity, have altered mitochondrial membrane potential and a stressed mitochondrial network. A reduction in glycolytic reserve and glycolytic capacity is seen. Interestingly, glycolytic reserve, mitochondrial spare respiratory capacity and extracellular lactate levels correlated positively with neuropsychological tests of episodic memory affected early in AD. We identified a deficit in the glycolytic enzyme hexokinase 1 (HK1), and correcting this deficit improved the metabolic phenotype in sAD not fAD astrocytes. Importantly, the amount of HK1 at the mitochondria was shown to be reduced in sAD astrocytes, and not in fAD astrocytes. Overexpression of HK1 in sAD astrocytes increases mitochondrial HK1 levels. In fAD astrocytes HK1 levels were unaltered at the mitochondria after overexpression. This study highlights a clear metabolic deficit in AD patient-derived astrocytes and indicates how HK1, with its roles in both oxidative phosphorylation and glycolysis, contributes to this.
Collapse
Affiliation(s)
- Simon M Bell
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK.
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK.
| | - Hollie Wareing
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Francesco Capriglia
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Rachel Hughes
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Katy Barnes
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alexander Hamshaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Liam Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Allan Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alicja Olejnik
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Suman De
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Elizabeth New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniel J Blackburn
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Santos JLDS, Paredes BD, Adanho CSA, Nonaka CKV, da Silva KN, Santos IM, Loiola EC, Silva VAO, Rocha CAG, Souza BSDF. Generation and characterization of human-induced pluripotent stem cell lines from patients with autism spectrum disorder and SCN2A variants. Hum Cell 2025; 38:74. [PMID: 40111547 DOI: 10.1007/s13577-025-01199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Autism spectrum disorders (ASD) comprise a group of complex neurodevelopmental disorders that affect communication and social interactions. Over a thousand genes have been associated with ASD, with SCN2A standing out due to its critical role in neuronal function and development. Induced pluripotent stem cells (iPSCs) derived from individuals with ASD have become invaluable in vitro models for investigating the cellular and molecular mechanisms underlying the disorder. In this study, we generated and characterized four iPSC clones from peripheral blood mononuclear cells (PBMCs) of two ASD patients carrying loss-of-function variants in the SCN2A gene. These iPSC lines underwent comprehensive characterization through multiple assays. Reverse transcription polymerase chain reaction (RT-PCR), flow cytometry, and immunofluorescence analyses confirmed the presence of pluripotency markers. An embryoid body formation assay demonstrated their potential to differentiate into the three germ layers. Sequencing analysis confirmed the SCN2A variants, while short tandem repeat (STR) analysis authenticated the cell lines, and karyotype analysis ensured chromosomal integrity. The iPSCs exhibited typical morphologic characteristics, including large nuclei with prominent nucleoli, a high nucleus-to-cytoplasm ratio, densely packed cells, and well-defined borders. These cells maintained pluripotency markers, demonstrated the ability to differentiate into the three germ layers, and showed a normal karyotype. Furthermore, we successfully generated cerebral organoids from these cells. Our study establishes a robust platform for further exploration of the pathophysiological mechanisms of ASD, particularly those involving SCN2A.
Collapse
Affiliation(s)
| | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Corynne Stephanie Ahouefa Adanho
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Katia Nunes da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Ian Marinho Santos
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Erick Correia Loiola
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Viviane Aline Oliveira Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil.
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil.
- Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Sahoo SS, Khiami M, Wlodarski MW. Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes. Exp Hematol 2025; 143:104669. [PMID: 39491640 DOI: 10.1016/j.exphem.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as powerful tools for in vitro modeling of bone marrow failure (BMF) syndromes and hereditary conditions predisposing to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). This review synthesizes recent advances in iPSC-based disease modeling for various inherited BMF/MDS disorders, including Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia as well as GATA2, RUNX1, ETV6, ANKRD26, SAMD9, SAMD9L, and ADH5/ALDH2 syndromes. Although the majority of these iPSC lines are derived from patient cells, some are generated by introducing patient-specific mutations into healthy iPSC backgrounds, offering complementary approaches to disease modeling. The review highlights the ability of iPSCs to recapitulate key disease phenotypes, such as impaired hematopoietic differentiation, telomere dysfunction, and defects in DNA repair or ribosome biogenesis. We discuss how these models have enhanced our understanding of disease pathomechanisms, hematopoietic defects, and potential therapeutic approaches. Challenges in generating and maintaining disease-specific iPSCs are examined, particularly for disorders involving DNA repair. We emphasize the necessity of creating isogenic controls to elucidate genotype-phenotype relationships. Furthermore, we address limitations of current iPSC models, including genetic variability among iPSC clones derived from the same patient, and difficulties in achieving robust engraftment of iPSC-derived hematopoietic progenitor cells in mouse transplantation models. The review also explores future directions, including the potential of iPSC models for drug discovery and personalized medicine approaches. This review underscores the significance of iPSC technology in advancing our understanding of inherited hematopoietic disorders and its potential to inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Majd Khiami
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
7
|
Du B, Dai Z, Wang H, Ren Z, Li D. Advances and Prospects in Using Induced Pluripotent Stem Cells for 3D Bioprinting in Cardiac Tissue Engineering. Rev Cardiovasc Med 2025; 26:26697. [PMID: 40160587 PMCID: PMC11951483 DOI: 10.31083/rcm26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 04/02/2025] Open
Abstract
Background Cardiovascular diseases remain one of the leading causes of death worldwide. Given the limited self-repair capacity of cardiac tissue, cardiac tissue engineering (CTE) aims to develop strategies and materials for repairing or replacing damaged cardiac tissue by combining biology, medicine, and engineering. Indeed, CTE has made significant strides since the discovery of induced pluripotent stem cells (iPSCs) in 2006, including creating cardiac patches, organoids, and chip models derived from iPSCs, thus offering new strategies for treating cardiac diseases. Methods A systematic search for relevant literature published between 2003 and 2024 was conducted in the PubMed and Web of Science databases using "Cardiac Tissue Engineering", "3D Bioprinting", "Scaffold in Tissue Engineering", "Induced Pluripotent Stem Cells", and "iPSCs" as keywords. Results This systematic search using the abovementioned keywords identified relevant articles for inclusion in this review. The resulting literature indicated that CTE can offer innovative solutions for treating cardiac diseases when integrated with three-dimensional (3D) bioprinting and iPSC technology. Conclusions Despite notable advances in the field of CTE, multiple challenges remain relating to 3D-bioprinted cardiac tissues. These include maintaining long-term cell viability, achieving precise cell distribution, tissue vascularization, material selection, and cost-effectiveness. Therefore, further research is needed to optimize printing techniques, develop more advanced bio-inks, explore larger-scale tissue constructs, and ensure the biosafety and functional fidelity of engineered cardiac tissues. Subsequently, future research efforts should focus on these areas to facilitate the clinical translation of CTE. Moreover, additional long-term animal models and preclinical studies should be conducted to ensure the biosafety and functionality of engineered cardiac tissues, thereby creating novel possibilities for treating patients with heart diseases.
Collapse
Affiliation(s)
- Baoluo Du
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Ziqiang Dai
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Zhipeng Ren
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| | - Dianyuan Li
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Lu Z, Ren S, Wang B, Zhang Y, Mu X, Wang Z. 3D dynamic culture of muse cells on a porous gelatin microsphere after magnetic sorting: Achieving high purity proliferation. Regen Ther 2025; 28:402-412. [PMID: 39911597 PMCID: PMC11794956 DOI: 10.1016/j.reth.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 01/04/2025] [Indexed: 02/07/2025] Open
Abstract
Muse cell has become a promising source of cells for disease treatment due to its remarkable characteristics, including stress tolerance, low tumorigenicity, effective homing ability, and differentiation into histocompatibility cells after transplantation. However, there are some obvious obstacles that need to be overcome in the efficient expansion of Muse cells. We extracted mesenchymal stem cells (MSCs) from human umbilical cord and their MSCs phenotypes were verified by flow cytometry. Then, immune magnetic sorting was performed to obtain Muse cells, and the expression of pluripotency related factors and the ability to differentiate into three germ layers were verified with sorted Muse cells. We then tested a new 3D culture method with dynamic microsphere carrier to possibly expand Muse cells more efficiently. Finally, in vivo experiments were conducted to check the homing ability of Muse cells to muscle injury. Our results showed that, the cultivation and expansion of Muse cells can be more effectively achieved through dynamic microsphere carrier; compared to non-Muse cells, Muse cells have stronger pluripotency and differentiation ability, and their homing ability in the muscle injury mice model is superior to that of non-Muse cells. Therefore, with the method of immune magnetic sorting and dynamic microsphere carrier, highly regenerative Muse cells can be more effectively sorted and expanded from MSCs.
Collapse
Affiliation(s)
| | | | - Bingjie Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yajun Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaodong Mu
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihui Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Vembuli H, Rajasingh S, Nabholz P, Guenther J, Morrow BR, Taylor MM, Aghazadeh M, Sigamani V, Rajasingh J. Induced mesenchymal stem cells generated from periodontal ligament fibroblast for regenerative therapy. Exp Biol Med (Maywood) 2025; 250:10342. [PMID: 39963344 PMCID: PMC11830513 DOI: 10.3389/ebm.2025.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Bone fractures and bone loss represent significant global health challenges, with their incidence rising due to an aging population. Despite autologous bone grafts remain the gold standard for treatment, challenges such as limited bone availability, immune reactions, and the risk of infectious disease transmission have driven the search for alternative cell-based therapies for bone regeneration. Stem cells derived from oral tissues and umbilical cord mesenchymal stem cells (MSCs) have shown potential in both preclinical and clinical studies for bone tissue regeneration. However, their limited differentiation capacity and wound healing abilities necessitate the exploration of alternative cell sources. In this study, we generated induced pluripotent stem cells (iPSCs) using a safe, nonviral and mRNA-based approach from human periodontal ligament fibroblasts (PDLF), an easily accessible cell source. These iPSCs were subsequently differentiated into MSCs, referred to as induced MSCs (iMSCs). The resulting iMSCs were homogeneous, highly proliferative, and possessed anti-inflammatory properties, suggesting their potential as a superior alternative to traditional MSCs for regenerative therapy. These iMSCs demonstrated trilineage differentiation potential, giving rise to osteocytes, chondrocytes, and adipocytes. The iMSC-derived osteocytes (iOSTs) were homogeneous, patient-specific and showed excellent attachment and growth on commercial collagen-based membranes, highlighting their suitability for bone tissue regeneration applications. Given their promising characteristics compared to traditional MSCs, PDLF-derived iMSCs are strong candidates for future clinical studies in bone regeneration and other regenerative dental therapies.
Collapse
Affiliation(s)
- Hemanathan Vembuli
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Patrick Nabholz
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jefferson Guenther
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brian R. Morrow
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Margaret M. Taylor
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marziyeh Aghazadeh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Demchenko A, Balyasin M, Nazarova A, Grigorieva O, Panchuk I, Kondrateva E, Tabakov V, Schagina O, Amelina E, Smirnikhina S. Human Induced Lung Organoids: A Promising Tool for Cystic Fibrosis Drug Screening. Int J Mol Sci 2025; 26:437. [PMID: 39859153 PMCID: PMC11764749 DOI: 10.3390/ijms26020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient in vitro model is needed to screen therapeutic agents under development. This study, on the most common mutation, F508del, investigates the efficacy of human induced pluripotent stem cell-derived lung organoids (hiLOs) from NKX2.1+ lung progenitors and airway basal cells (hiBCs) as a 3D model for CFTR modulator response assessment by a forskolin-induced swelling assay. Weak swelling was observed for hiLOs from NKX2.1+ lung progenitors and hiBCs in response to modulators VX-770/VX-809 and VX-770/VX-661, whereas the VX-770/VX-661/VX-445 combination resulted in the highest swelling response, indicating superior CFTR function restoration. The ROC analysis of the FIS assay results revealed an optimal cutoff of 1.21, with 65.9% sensitivity and 71.8% specificity, and the predictive accuracy of the model was 76.4%. In addition, this study compared the response of hiLOs with the clinical response of patients to therapy and showed similar drug response dynamics. Thus, hiLOs can effectively model the CF pathology and predict patients' specific response to modulators.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Miklukho-Maklaya, 6, 117198 Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Dm. Ulyanova Str., 11, 117292 Moscow, Russia
| | - Aleksandra Nazarova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Olga Grigorieva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Irina Panchuk
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Olga Schagina
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, 11th Parkovaya Str., 32/4, 105077 Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| |
Collapse
|
11
|
Jagadeesan SK, Galuta A, Sandarage RV, Tsai EC. Transcriptomic and Functional Landscape of Adult Human Spinal Cord NSPCs Compared to iPSC-Derived Neural Progenitor Cells. Cells 2025; 14:64. [PMID: 39851491 PMCID: PMC11763936 DOI: 10.3390/cells14020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br). RNA sequencing analysis revealed distinct transcriptomic profiles and functional disparities among NSPC types. iPSC-Br NSPCs exhibited a close resemblance to bona fide spinal cord NSPCs, characterized by enriched expression of neurogenesis, axon guidance, synaptic signaling, and voltage-gated calcium channel activity pathways. Conversely, iPSC-SC NSPCs displayed significant heterogeneity, suboptimal regional specification, and elevated expression of neural crest and immune response-associated genes. Functional assays corroborated the transcriptomic findings, demonstrating superior neurogenic potential in iPSC-Br NSPCs. Additionally, we assessed donor-specific influences on NSPC behavior by analyzing gene expression and differentiation outcomes across syngeneic populations from multiple individuals. Donor-specific factors significantly modulated transcriptomic profiles, with notable variability in the alignment of iPSC-derived NSPCs to bona fide spinal cord NSPCs. Enrichment of pathways related to neurogenesis, axon guidance, and synaptic signaling varied across donors, highlighting the impact of genetic and epigenetic individuality on NSPC behavior.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.K.J.); (A.G.)
- Neuroscience Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Ahmad Galuta
- Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.K.J.); (A.G.)
- Neuroscience Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Ryan Vimukthi Sandarage
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
| | - Eve Chung Tsai
- Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.K.J.); (A.G.)
- Neuroscience Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada;
| |
Collapse
|
12
|
Helal MM, Ibrahim AA, Beddor A, Kashbour M. Breaking Barriers in Huntington's Disease Therapy: Focused Ultrasound for Targeted Drug Delivery. Neurochem Res 2025; 50:68. [PMID: 39751928 PMCID: PMC11698766 DOI: 10.1007/s11064-024-04302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein. However, these agents are limited by their inability to cross the blood-brain barrier (BBB), preventing optimal therapeutic effects. Although various techniques have been explored to overcome the BBB, focused ultrasound (FUS) has emerged as a promising non-invasive therapeutic modality offering the potential for targeted intervention in neurodegenerative diseases, including HD. Preclinical studies demonstrated the safety and efficacy of FUS in delivering therapeutic agents, such as siRNAs and AAV vector-based gene therapy, resulting in significant reductions in mutant HTT expression and improvements in motor function in HD mouse models. Furthermore, the safety profile of FUS-induced BBB opening has been established in clinical trials on human patients of neurodegenerative diseases other than HD, showing no adverse effects on brain structure or function. This review provides a comprehensive overview of the current state of FUS research in HD and connects existing evidence from neurodegenerative disease studies with its promise in establishing disease-modifying therapies for HD.
Collapse
Affiliation(s)
| | - Arwa Amer Ibrahim
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Beddor
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Muataz Kashbour
- Diagnostic Radiology Department, National Cancer Institute, Misrata, Libya
| |
Collapse
|
13
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
14
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
15
|
Arroyave F, Uscátegui Y, Lizcano F. From iPSCs to Pancreatic β Cells: Unveiling Molecular Pathways and Enhancements with Vitamin C and Retinoic Acid in Diabetes Research. Int J Mol Sci 2024; 25:9654. [PMID: 39273600 PMCID: PMC11395045 DOI: 10.3390/ijms25179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic β-like cells (PβLCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic β cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into PβLCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic β cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific β cell genes.
Collapse
Affiliation(s)
- Felipe Arroyave
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
| | - Yomaira Uscátegui
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
- School of Medicine, Universidad de La Sabana, Chia 250008, Colombia
| |
Collapse
|
16
|
El It F, Faivre L, Thauvin-Robinet C, Vitobello A, Duplomb L. [The contribution of cerebral organoids to the understanding and treatment of rare genetic diseases with neurodevelopmental disorders]. Med Sci (Paris) 2024; 40:643-652. [PMID: 39303116 DOI: 10.1051/medsci/2024100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Rare genetic diseases with neurodevelopmental disorders (NDDs) encompass several heterogeneous conditions (autism spectrum disorder (ASD), intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), specific learning disorder (SLD), among others). Currently, few treatments are available for these patients. The difficulty in accessing human brain samples and the discrepancies between human and animal models highlight the need for new research approaches. One promising approach is the use of the cerebral organoids. These 3D, self-organized structures, generated from induced pluripotent stem cells (iPSCs), enable the reproduction of the stages of human brain development, from the proliferation of neural stem cells to their differentiation into neurons, oligodentrocytes, and astrocytes. Cerebral organoids hold great promise in understanding brain development and in the search for treatments.
Collapse
Affiliation(s)
- Fatima El It
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Laurence Faivre
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France - Centre de référence des anomalies du développement et syndromes malformatifs, CHU Dijon, Dijon, France
| | - Christel Thauvin-Robinet
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France - Centre de référence des anomalies du développement et syndromes malformatifs, CHU Dijon, Dijon, France
| | - Antonio Vitobello
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France - Unité fonctionnelle innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Laurence Duplomb
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France
| |
Collapse
|
17
|
Fatehi A, Sadat M, Fayyad M, Tang J, Han D, Rogers IM, Taylor D. Efficient Generation of Pancreatic Progenitor Cells from Induced Pluripotent Stem Cells Derived from a Non-Invasive and Accessible Tissue Source-The Plucked Hair Follicle. Cells 2024; 13:1010. [PMID: 38920642 PMCID: PMC11202038 DOI: 10.3390/cells13121010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The advent of induced pluripotent stem cell (iPSC) technology has brought about transformative advancements in regenerative medicine, offering novel avenues for disease modeling, drug testing, and cell-based therapies. Patient-specific iPSC-based treatments hold the promise of mitigating immune rejection risks. However, the intricacies and costs of producing autologous therapies present commercial challenges. The hair follicle is a multi-germ layered versatile cell source that can be harvested at any age. It is a rich source of keratinocytes, fibroblasts, multipotent stromal cells, and the newly defined Hair Follicle-Associated Pluripotent Stem Cells (HAP). It can also be obtained non-invasively and transported via regular mail channels, making it the ideal starting material for an autologous biobank. In this study, cryopreserved hair follicle-derived iPSC lines (HF-iPS) were established through integration-free vectors, encompassing a diverse cohort. These genetically stable lines exhibited robust expression of pluripotency markers, and showcased tri-lineage differentiation potential. The HF-iPSCs effectively differentiated into double-positive cKIT+/CXCR4+ definitive endoderm cells and NKX6.1+/PDX1+ pancreatic progenitor cells, affirming their pluripotent attributes. We anticipate that the use of plucked hair follicles as an accessible, non-invasive cell source to obtain patient cells, in conjunction with the use of episomal vectors for reprogramming, will improve the future generation of clinically applicable pancreatic progenitor cells for the treatment of Type I Diabetes.
Collapse
Affiliation(s)
- Amatullah Fatehi
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.F.); (M.S.)
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
- Acorn Biolabs Inc., Toronto, ON M5G 2N2, Canada; (M.F.); (D.H.)
| | - Marwa Sadat
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.F.); (M.S.)
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
| | - Muneera Fayyad
- Acorn Biolabs Inc., Toronto, ON M5G 2N2, Canada; (M.F.); (D.H.)
| | - Jean Tang
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Duhyun Han
- Acorn Biolabs Inc., Toronto, ON M5G 2N2, Canada; (M.F.); (D.H.)
| | - Ian M. Rogers
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.F.); (M.S.)
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Drew Taylor
- Acorn Biolabs Inc., Toronto, ON M5G 2N2, Canada; (M.F.); (D.H.)
| |
Collapse
|
18
|
Sivamani P, Rajendran RL, Gangadaran P, Ahn BC. An induced pluripotent stem cell-based approach for hair follicle development and regeneration. Regen Ther 2024; 26:502-507. [PMID: 39140101 PMCID: PMC11321309 DOI: 10.1016/j.reth.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Because hair loss is a common concern for many individuals, potential regenerative therapies of hair follicles have been extensively researched. Induced pluripotent stem cells (iPSCs) are a promising avenue for hair follicle regeneration. This review explores current iPSC-based approaches and highlights their potential applications and challenges in hair restoration. The principles of iPSC technology, iPSC differentiation into hair follicle precursor cells, and potential clinical implications for hair follicle regeneration are also discussed. This overview of iPSCs and their applications aims to contribute to our understanding of their role in hair restoration and potential future therapeutic applications.
Collapse
Affiliation(s)
- Poornima Sivamani
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| |
Collapse
|
19
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Li S, Mei L, He C, Cai X, Wu H, Wu X, Liu Y, Feng Y, Song J. Identification of a family with van der Hoeve's syndrome harboring a novel COL1A1 mutation and generation of patient-derived iPSC lines and CRISPR/Cas9-corrected isogenic iPSCs. Hum Cell 2024; 37:817-831. [PMID: 38379122 DOI: 10.1007/s13577-024-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Van der Hoeve's syndrome, also known as osteogenesis imperfecta (OI), is a genetic connective tissue disorder characterized by fragile, fracture-prone bone and hearing loss. The disease is caused by a gene mutation in one of the two type I collagen genes COL1A1 or COL1A2. In this study, we identified a novel frameshift mutation of the COL1A1 gene (c.1607delG) in a family with OI using whole-exome sequencing, bioinformatics analysis and Sanger sequencing. This mutation may lead to the deletion of a portion of exon 23 and the generation of a premature stop codon in the COL1A1 gene. To further investigate the impact of this mutation, we established two induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells of OI patients carrying a novel mutation in the COL1A1 gene. Osteoblasts (OB) derived from OI-iPSCs exhibited reduced production of type I collagen and diminished ability to differentiate into osteoblasts. Using a CRISPR-based homology-directed repair strategy, we corrected the OI disease-causing COL1A1 novel mutations in iPSCs generated from an affected individual. Our results demonstrated that the diminished expression of type I collagen and osteogenic potential were enhanced in OB induced from corrected OI-iPSCs compared to those from OI-iPSCs. Overall, our results provide new insights into the genetic basis of Van der Hoeve's syndrome and highlight the potential of iPSC technology for disease modeling and therapeutic development.
Collapse
Affiliation(s)
- SiJun Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Xinzhang Cai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Hong Wu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - XueWen Wu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Otorhinolaryngology, The Affiliated Maternal and Child Health Hospital of Hunan Province, Hengyang Medical School, University of South China, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, Hunan, China.
| | - Jian Song
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Hartley A, Burger L, Wincek CL, Dons L, Li T, Grewenig A, Taşgın T, Urban M, Roig-Merino A, Ghazvini M, Harbottle RP. A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors. Genes (Basel) 2024; 15:575. [PMID: 38790204 PMCID: PMC11121542 DOI: 10.3390/genes15050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein-Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.
Collapse
Affiliation(s)
- Anna Hartley
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Luisa Burger
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Cornelia L. Wincek
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| | - Lieke Dons
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Tracy Li
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Annabel Grewenig
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| | - Toros Taşgın
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuela Urban
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Alicia Roig-Merino
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehrnaz Ghazvini
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Richard P. Harbottle
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| |
Collapse
|
22
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
23
|
Vo Q, Benam KH. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip. Eur J Pharm Sci 2024; 195:106709. [PMID: 38246431 PMCID: PMC10939731 DOI: 10.1016/j.ejps.2024.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Lung vasculature is particularly important due to its involvement in genesis and progression of rare, debilitating disorders as well as common chronic pathologies. Here, we provide an overview of the latest advances in the development of pulmonary vascular (PV) models using emerging microfluidic tissue engineering technology Organs-on-Chips (so-called PV-Chips). We first review the currently reported PV-Chip systems and their key features, and then critically discuss their major limitations in reproducing in vivo-seen and disease-relevant cellularity, localization, and microstructure. We conclude by presenting latest efforts to overcome such technical and biological limitations and future directions.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
24
|
Bitounis D, Jacquinet E, Rogers MA, Amiji MM. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov 2024; 23:281-300. [PMID: 38263456 DOI: 10.1038/s41573-023-00859-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | | | | | - Mansoor M Amiji
- Departments of Pharmaceutical Sciences and Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
25
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
26
|
Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, Emert B, Jiang CL, Dardani IP, Reffsin S, Arnett M, Yang W, Raj A. Retrospective identification of cell-intrinsic factors that mark pluripotency potential in rare somatic cells. Cell Syst 2024; 15:109-133.e10. [PMID: 38335955 PMCID: PMC10940218 DOI: 10.1016/j.cels.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.
Collapse
Affiliation(s)
- Naveen Jain
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret C Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie L Jiang
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian P Dardani
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles Arnett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Beltran AS. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024; 14:84. [PMID: 38392976 PMCID: PMC10890222 DOI: 10.3390/metabo14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Nogueira IPM, Costa GMJ, Lacerda SMDSN. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals (Basel) 2024; 14:220. [PMID: 38254390 PMCID: PMC10812705 DOI: 10.3390/ani14020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first generated by Yamanaka in 2006, revolutionizing research by overcoming limitations imposed by the use of embryonic stem cells. In terms of the conservation of endangered species, iPSC technology presents itself as a viable alternative for the manipulation of target genetics without compromising specimens. Although iPSCs have been successfully generated for various species, their application in nonmammalian species, particularly avian species, requires further in-depth investigation to cover the diversity of wild species at risk and their different protocol requirements. This study aims to provide an overview of the workflow for iPSC induction, comparing well-established protocols in humans and mice with the limited information available for avian species. Here, we discuss the somatic cell sources to be reprogrammed, genetic factors, delivery methods, enhancers, a brief history of achievements in avian iPSC derivation, the main approaches for iPSC characterization, and the future perspectives and challenges for the field. By examining the current protocols and state-of-the-art techniques employed in iPSC generation, we seek to contribute to the development of efficient and species-specific iPSC methodologies for at-risk avian species. The advancement of iPSC technology holds great promise for achieving in vitro germline competency and, consequently, addressing reproductive challenges in endangered species, providing valuable tools for basic research, bird genetic preservation and rescue, and the establishment of cryobanks for future conservation efforts.
Collapse
Affiliation(s)
| | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (I.P.M.N.); (G.M.J.C.)
| |
Collapse
|
29
|
Tsukamoto M, Kimura K, Yoshida T, Tanaka M, Kuwamura M, Ayabe T, Ishihara G, Watanabe K, Okada M, Iijima M, Nakanishi M, Akutsu H, Sugiura K, Hatoya S. Generation of canine induced pluripotent stem cells under feeder-free conditions using Sendai virus vector encoding six canine reprogramming factors. Stem Cell Reports 2024; 19:141-157. [PMID: 38134923 PMCID: PMC10828825 DOI: 10.1016/j.stemcr.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Although it is in its early stages, canine induced pluripotent stem cells (ciPSCs) hold great potential for innovative translational research in regenerative medicine, developmental biology, drug screening, and disease modeling. However, almost all ciPSCs were generated from fibroblasts, and available canine cell sources for reprogramming are still limited. Furthermore, no report is available to generate ciPSCs under feeder-free conditions because of their low reprogramming efficiency. Here, we reanalyzed canine pluripotency-associated genes and designed canine LIN28A, NANOG, OCT3/4, SOX2, KLF4, and C-MYC encoding Sendai virus vector, called 159cf. and 162cf. We demonstrated that not only canine fibroblasts but also canine urine-derived cells, which can be isolated using a noninvasive and straightforward method, were successfully reprogrammed with or without feeder cells. ciPSCs existed in undifferentiated states, differentiating into the three germ layers in vitro and in vivo. We successfully generated ciPSCs under feeder-free conditions, which can promote studies in veterinary and consequently human regenerative medicines.
Collapse
Affiliation(s)
- Masaya Tsukamoto
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan; Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kazuto Kimura
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Takumi Yoshida
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Taro Ayabe
- Anicom Specialty Medical Institute, Shinjuku-ku, Tokyo 231-0033, Japan
| | - Genki Ishihara
- Anicom Specialty Medical Institute, Shinjuku-ku, Tokyo 231-0033, Japan
| | - Kei Watanabe
- Anicom Specialty Medical Institute, Shinjuku-ku, Tokyo 231-0033, Japan
| | - Mika Okada
- TOKIWA-Bio, Tsukuba, Ibaraki 305-0047, Japan
| | | | | | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
30
|
Bruno S, Schlaeger TM, Del Vecchio D. Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming. NPJ Syst Biol Appl 2024; 10:3. [PMID: 38184707 PMCID: PMC10771499 DOI: 10.1038/s41540-023-00326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
Experimental studies have shown that chromatin modifiers have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to pluripotent stem cells. Here, we develop a model of the OCT4 gene regulatory network that includes genes expressing chromatin modifiers TET1 and JMJD2, and the chromatin modification circuit on which these modifiers act. We employ this model to compare three reprogramming approaches that have been considered in the literature with respect to reprogramming efficiency and latency variability. These approaches are overexpression of OCT4 alone, overexpression of OCT4 with TET1, and overexpression of OCT4 with JMJD2. Our results show more efficient and less variable reprogramming when also JMJD2 and TET1 are overexpressed, consistent with previous experimental data. Nevertheless, TET1 overexpression can lead to more efficient reprogramming compared to JMJD2 overexpression. This is the case when the recruitment of DNA methylation by H3K9me3 is weak and the methyl-CpG-binding domain (MBD) proteins are sufficiently scarce such that they do not hamper TET1 binding to methylated DNA. The model that we developed provides a mechanistic understanding of existing experimental results and is also a tool for designing optimized reprogramming approaches that combine overexpression of cell-fate specific transcription factors (TFs) with targeted recruitment of epigenetic modifiers.
Collapse
Affiliation(s)
- Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Jiang JH, Ren RT, Cheng YJ, Li XX, Zhang GR. Immune cells and RBCs derived from human induced pluripotent stem cells: method, progress, prospective challenges. Front Cell Dev Biol 2024; 11:1327466. [PMID: 38250324 PMCID: PMC10796611 DOI: 10.3389/fcell.2023.1327466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Blood has an important role in the healthcare system, particularly in blood transfusions and immunotherapy. However, the occurrence of outbreaks of infectious diseases worldwide and seasonal fluctuations, blood shortages are becoming a major challenge. Moreover, the narrow specificity of immune cells hinders the widespread application of immune cell therapy. To address this issue, researchers are actively developing strategies for differentiating induced pluripotent stem cells (iPSCs) into blood cells in vitro. The establishment of iPSCs from terminally differentiated cells such as fibroblasts and blood cells is a straightforward process. However, there is need for further refinement of the protocols for differentiating iPSCs into immune cells and red blood cells to ensure their clinical applicability. This review aims to provide a comprehensive overview of the strategies and challenges facing the generation of iPSC-derived immune cells and red blood cells.
Collapse
Affiliation(s)
- Jin-he Jiang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Ru-tong Ren
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Yan-jie Cheng
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xin-xin Li
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Gui-rong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
32
|
Aksoy ZB, Akcali KC. Generation of Induced Pluripotent Stem Cells from Erythroid Progenitor Cells. Methods Mol Biol 2024; 2835:99-110. [PMID: 39105909 DOI: 10.1007/978-1-0716-3995-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are generated through the reprogramming of somatic cells to an embryonic-like state by activating specific genes. They closely resemble embryonic stem cells (ESCs), in various aspects, including the expression of key stem cell genes, potency, and differentiation capabilities. iPSCs can be derived from various cell types such as fibroblasts, keratinocytes, and peripheral blood mononuclear cells (PBMCs). The ease of obtaining origin cells through non-invasive methods simplifies the generation of human iPSCs. Therefore, PBMCs are commonly preferred, with erythroid progenitor cells (EPCs) obtained through EPC enrichment being used as origin cells in this protocol. The EPC enrichment performed in this protocol not only reduces costs but also increases efficiency by enhancing the percentage of reprogrammable cells with progenitor characteristics. Human iPSCs are incredibly valuable for in vitro research, cell therapy, drug discovery, and tissue engineering. The outlined procedures below provide a general framework for inducing iPSCs from erythroid progenitor cells, pluripotency confirmation experiments, and cultivating them for downstream experiments.
Collapse
Affiliation(s)
| | - Kamil Can Akcali
- Ankara University, Stem Cell Institute, Ankara, Turkey.
- Ankara University, Faculty of Medicine, Department of Biophysics, Ankara, Turkey.
| |
Collapse
|
33
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
34
|
Song XY, Fan CX, Atta-ur-Rahman FRS, Choudhary MI, Wang XP. Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward. Curr Neuropharmacol 2024; 22:2272-2283. [PMID: 38939990 PMCID: PMC11451317 DOI: 10.2174/1570159x22666240509092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024] Open
Abstract
The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.
Collapse
Affiliation(s)
- Xiao-Yan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Cun-Xiu Fan
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Atta-ur-Rahman FRS
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xiao-Ping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Powell KA, Bohrer LR, Stone NE, Hittle B, Anfinson KR, Luangphakdy V, Muschler G, Mullins RF, Stone EM, Tucker BA. Automated human induced pluripotent stem cell colony segmentation for use in cell culture automation applications. SLAS Technol 2023; 28:416-422. [PMID: 37454765 PMCID: PMC10775697 DOI: 10.1016/j.slast.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have demonstrated great promise for a variety of applications that include cell therapy and regenerative medicine. Production of clinical grade hiPSCs requires reproducible manufacturing methods with stringent quality-controls such as those provided by image-controlled robotic processing systems. In this paper we present an automated image analysis method for identifying and picking hiPSC colonies for clonal expansion using the CellXTM robotic cell processing system. This method couples a light weight deep learning segmentation approach based on the U-Net architecture to automatically segment the hiPSC colonies in full field of view (FOV) high resolution phase contrast images with a standardized approach for suggesting pick locations. The utility of this method is demonstrated using images and data obtained from the CellXTM system where clinical grade hiPSCs were reprogrammed, clonally expanded, and differentiated into retinal organoids for use in treatment of patients with inherited retinal degenerative blindness.
Collapse
Affiliation(s)
- Kimerly A Powell
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA.
| | - Laura R Bohrer
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicholas E Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bradley Hittle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Kristin R Anfinson
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Viviane Luangphakdy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Cell X Technologies Inc., Cleveland, OH, USA
| | - George Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
36
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
37
|
Mehra V, Chhetri JB, Ali S, Roddie C. The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics. BIOLOGY 2023; 12:1419. [PMID: 37998018 PMCID: PMC10669440 DOI: 10.3390/biology12111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
Adoptive cell therapy (ACT) has transformed the treatment landscape for cancer and infectious disease through the investigational use of chimeric antigen receptor T-cells (CAR-Ts), tumour-infiltrating lymphocytes (TILs) and viral-specific T-cells (VSTs). Whilst these represent breakthrough treatments, there are subsets of patients who fail to respond to autologous ACT products. This is frequently due to impaired patient T-cell function or "fitness" as a consequence of prior treatments and age, and can be exacerbated by complex manufacturing protocols. Further, the manufacture of autologous, patient-specific products is time-consuming, expensive and non-standardised. Induced pluripotent stem cells (iPSCs) as an allogeneic alternative to patient-specific products can potentially overcome the issues outlined above. iPSC technology provides an unlimited source of rejuvenated iPSC-derived T-cells (T-iPSCs) or natural killer (NK) cells (NK-iPSCs), and in the context of the growing field of allogeneic ACT, iPSCs have enormous potential as a platform for generating off-the-shelf, standardised, "fit" therapeutics for patients. In this review, we evaluate current and future applications of iPSC technology in the CAR-T/NK, TIL and VST space. We discuss current and next-generation iPSC manufacturing protocols, and report on current iPSC-based adoptive therapy clinical trials to elucidate the potential of this technology as the future of ACT.
Collapse
Affiliation(s)
| | | | | | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, Paul O’Gorman Building, London WCIE 6DD, UK
| |
Collapse
|
38
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
39
|
Zhou L, Chen W, Jiang S, Xu R. In Vitro Models of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2023; 43:3783-3799. [PMID: 37870685 PMCID: PMC11407737 DOI: 10.1007/s10571-023-01423-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the commonest neurodegenerative diseases of adult-onset, which is characterized by the progressive death of motor neurons in the cerebral cortex, brain stem and spinal cord. The dysfunction and death of motor neurons lead to the progressive muscle weakness, atrophy, fasciculations, spasticity and ultimately the whole paralysis of body. Despite the identification of several genetic mutations associated with the pathogenesis of ALS, including mutations in chromosome 9 open reading frame 72 leading to the abnormal expansion of GGGGCC repeat sequence, TAR DNA-binding protein 43, fused in sarcoma/translocated in liposarcoma, copper/zinc superoxide dismutase 1 (SOD1) and TANK-binding kinase 1, the exact mechanisms underlying the specific degeneration of motor neurons that causes ALS remain incompletely understood. At present, since the transgenic model expressed SOD1 mutants was established, multiple in vitro models of ALS have been developed for studying the pathology, pathophysiology and pathogenesis of ALS as well as searching the effective neurotherapeutics. This review reviewed the details of present established in vitro models used in studying the pathology, pathophysiology and pathogenesis of ALS. Meanwhile, we also discussed the advantages, disadvantages, cost and availability of each models.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, National Regional Medical Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, 330008, Jiangxi, China.
- Medical College of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
40
|
Morris G, Avoli M, Bernard C, Connor K, de Curtis M, Dulla CG, Jefferys JGR, Psarropoulou C, Staley KJ, Cunningham MO. Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2571-2585. [PMID: 37642296 DOI: 10.1111/epi.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations.
Collapse
Affiliation(s)
- Gareth Morris
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| | - Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John G R Jefferys
- Department of Physiology, 2nd Medical School, Motol, Charles University, Prague, Czech Republic
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
41
|
Owusu-Ansah K, Pavlinov I, Xu M, Beers J, Chen C, Zheng W, Zou J. Three induced pluripotent stem cell lines (TRNDi033-A, TRNDi034-A, TRNDi035-A) generated from lymphoblasts of three apparently healthy individuals. Stem Cell Res 2023; 71:103135. [PMID: 37393720 PMCID: PMC10529852 DOI: 10.1016/j.scr.2023.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Expanded human lymphoblast cells from three different aged healthy individuals, 8-year-old male, 0-year-old newborn (NB) male, and 26-year-old female, were used to generate induced pluripotent stem cell (iPSC) lines TRNDi033-A, TRNDi034-A and TRNDi035-A, respectively, by exogenous expression of five reprogramming factors, human OCT4, SOX2, KLF4, L-MYC and LIN28. The authenticity of established iPSC lines was confirmed by the expressions of stem cell markers, karyotype analysis, embryoid body formation, and scorecard analysis. These iPSC lines could serve as healthy donor controls that are age and sex matched for the studies involving patient-specific iPSCs.
Collapse
Affiliation(s)
- Kofi Owusu-Ansah
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jeanette Beers
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Ng XY, Peh GSL, Yam GHF, Tay HG, Mehta JS. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int J Mol Sci 2023; 24:12433. [PMID: 37569804 PMCID: PMC10418878 DOI: 10.3390/ijms241512433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal blindness, and the current conventional treatment option is corneal transplantation using a cadaveric donor cornea. However, there is a global shortage of suitable donor graft material, necessitating the exploration of novel therapeutic approaches. A stem cell-based regenerative medicine approach using induced pluripotent stem cells (iPSCs) offers a promising solution, as they possess self-renewal capabilities, can be derived from adult somatic cells, and can be differentiated into all cell types including corneal endothelial cells (CECs). This review discusses the progress and challenges in developing protocols to induce iPSCs into CECs, focusing on the different media formulations used to differentiate iPSCs to neural crest cells (NCCs) and subsequently to CECs, as well as the characterization methods and markers that define iPSC-derived CECs. The hurdles and solutions for the clinical application of iPSC-derived cell therapy are also addressed, including the establishment of protocols that adhere to good manufacturing practice (GMP) guidelines. The potential risks of genetic mutations in iPSC-derived CECs associated with long-term in vitro culture and the danger of potential tumorigenicity following transplantation are evaluated. In all, this review provides insights into the advancement and obstacles of using iPSC in the treatment of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Xiao Yu Ng
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
| | - Gary S. L. Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, 6614, Pittsburgh, PA 15260, USA
| | - Hwee Goon Tay
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
43
|
Abudurexiti M, Zhao Y, Wang X, Han L, Liu T, Wang C, Yuan Z. Bio-Inspired Nanocarriers Derived from Stem Cells and Their Extracellular Vesicles for Targeted Drug Delivery. Pharmaceutics 2023; 15:2011. [PMID: 37514197 PMCID: PMC10386614 DOI: 10.3390/pharmaceutics15072011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
With their seemingly limitless capacity for self-improvement, stem cells have a wide range of potential uses in the medical field. Stem-cell-secreted extracellular vesicles (EVs), as paracrine components of stem cells, are natural nanoscale particles that transport a variety of biological molecules and facilitate cell-to-cell communication which have been also widely used for targeted drug delivery. These nanocarriers exhibit inherent advantages, such as strong cell or tissue targeting and low immunogenicity, which synthetic nanocarriers lack. However, despite the tremendous therapeutic potential of stem cells and EVs, their further clinical application is still limited by low yield and a lack of standardized isolation and purification protocols. In recent years, inspired by the concept of biomimetics, a new approach to biomimetic nanocarriers for drug delivery has been developed through combining nanotechnology and bioengineering. This article reviews the application of biomimetic nanocarriers derived from stem cells and their EVs in targeted drug delivery and discusses their advantages and challenges in order to stimulate future research.
Collapse
Affiliation(s)
- Munire Abudurexiti
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Yue Zhao
- Department of Pharmacy, Sichuan Tianfu New Area People’s Hospital, Chengdu 610213, China;
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia;
| | - Chengwei Wang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| |
Collapse
|
44
|
Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, Janelt K, Kowalczuk A, Trybus A, Rozwadowska P, Wojakowski W, Gawron K, Sieroń AL. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol 2023; 11:1205122. [PMID: 37456734 PMCID: PMC10348904 DOI: 10.3389/fbioe.2023.1205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: The benefits of patient's specific cell/gene therapy have been reported in relation to numerous genetic related disorders including osteogenesis imperfecta (OI). In osteogenesis imperfecta particularly also a drug therapy based on the administration of bisphosphonates partially helped to ease the symptoms. Methods: In this controlled trial, fibroblasts derived from patient diagnosed with OI type II have been successfully reprogrammed into induced Pluripotent Stem cells (iPSCs) using Yamanaka factors. Those cells were subjected to repair mutations found in the COL1A1 gene using homologous recombination (HR) approach facilitated with star polymer (STAR) as a carrier of the genetic material. Results: Delivery of the correct linear DNA fragment to the osteogenesis imperfecta patient's cells resulted in the repair of the DNA mutation with an 84% success rate. IPSCs showed 87% viability after STAR treatment and 82% with its polyplex. Discussion: The use of novel polymer Poly[N,N-Dimethylaminoethyl Methacrylate-co-Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate] Arms (P(DMAEMA-co-OEGMA-OH) with star-like structure has been shown as an efficient tool for nucleic acids delivery into cells (Funded by National Science Centre, Contract No. UMO-2020/37/N/NZ2/01125).
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Diak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Gutmajster
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Anna Trybus
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Rozwadowska
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L. Sieroń
- Formerly Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
45
|
Cuesta-Gomez N, Verhoeff K, Dadheech N, Dang T, Jasra IT, de Leon MB, Pawlick R, Marfil-Garza B, Anwar P, Razavy H, Zapata-Morin PA, Jickling G, Thiesen A, O'Gorman D, Kallos MS, Shapiro AMJ. Suspension culture improves iPSC expansion and pluripotency phenotype. Stem Cell Res Ther 2023; 14:154. [PMID: 37280707 DOI: 10.1186/s13287-023-03382-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
| | - Tiffany Dang
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Mario Bermudez de Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, 14080, Mexico City, Mexico
- CHRISTUS-LatAm Hub - Excellence and Innovation Center, 66260, Monterrey, Mexico
| | - Perveen Anwar
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Patricio Adrián Zapata-Morin
- Laboratory of Mycology and Phytopathology, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Glen Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada.
| |
Collapse
|
46
|
Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, Encarnação M, Alves S, Coutinho MF. Neurological Disease Modeling Using Pluripotent and Multipotent Stem Cells: A Key Step towards Understanding and Treating Mucopolysaccharidoses. Biomedicines 2023; 11:biomedicines11041234. [PMID: 37189853 DOI: 10.3390/biomedicines11041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.
Collapse
Affiliation(s)
- Sofia Carvalho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de SantaComba, 3000-548 Coimbra, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
47
|
Aasadollahei N, Rezaei N, Golroo R, Agarwal T, Vosough M, Piryaei A. Bioengineering liver microtissues for modeling non-alcoholic fatty liver disease. EXCLI JOURNAL 2023; 22:367-391. [PMID: 37223084 PMCID: PMC10201011 DOI: 10.17179/excli2022-5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 05/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world's most common chronic liver disease. However, due to the lack of reliable in vitro NAFLD models, drug development studies have faced many limitations, and there is no food and drug administration-approved medicine for NAFLD treatment. A functional biomimetic in vitro human liver model requires an optimized natural microenvironment using appropriate cellular composition, to provide constructive cell-cell interactions, and niche-specific bio-molecules to supply crucial cues as cell-matrix interplay. Such a suitable liver model could employ appropriate and desired biochemical, mechanical, and physical properties similar to native tissue. Moreover, bioengineered three-dimensional tissues, specially microtissues and organoids, and more recently using infusion-based cultivation systems such as microfluidics can mimic natural tissue conditions and facilitate the exchange of nutrients and soluble factors to improve physiological function in the in vitro generated constructs. This review highlights the key players involved in NAFLD initiation and progression and discussed the available cells and matrices for in vitro NAFLD modeling. The strategies for optimizing the liver microenvironment to generate a powerful and biomimetic in vitro NAFLD model were described as well. Finally, the current challenges and future perospective for promotion in this subject were discussed.
Collapse
Affiliation(s)
- Negar Aasadollahei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reihaneh Golroo
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Bose B, Nihad M, P SS. Pluripotent stem cells: Basic biology or else differentiations aimed at translational research and the role of flow cytometry. Cytometry A 2023; 103:368-377. [PMID: 36918734 DOI: 10.1002/cyto.a.24726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/19/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Pluripotent stem cell research has revolutionized the modern era for the past 14 years with the advent of induced pluripotent stem cells. Before this time, scientists had access to human and mouse embryonic stem cells primarily for basic research and an attempt towards lineage-specific differentiations for cell therapy applications. Regarding pluripotent stem cells, expression of bonafide marker proteins such as Oct4, Nanog, Sox2, Klf4, c-Myc, and Lin28 have been considered giving a perfect readout for pluripotent stem cells and assessed using an analytical flow cytometer. In addition to the intracellular markers, surface markers such as stage-specific embryonic antigen-1 for mouse cells and SSEA-4 for human cells are needed to sort pure populations of stem cells for further downstream applications for cell therapy. The surface marker SSEA-4 is the most appropriate for obtaining pure populations of human pluripotent stem cells. When differentiated in a controlled manner using growth factors or small molecules, it is mandatory to assess the downregulation of pluripotency markers (Oct4, Nanog, Sox2, and Klf4) with subsequent up-regulation of stage-specific differentiation markers. Such assessments are done using flow cytometry. Pluripotent stem cells have a high teratoma-forming potential in vivo. Small amounts of undifferentiated PSCs might lead to dangerous teratomas upon transplantation if leftover in the pool of differentiated cells. Hence, flow cytometry is essential for sorting out PSC populations with teratoma-forming potential. The pure populations of differentiated progenitors need to be flow-sorted before differentiating them further for cell therapy applications. For example, Glycoprotein 2 is a specific cell-surface marker for pancreatic progenitors that enables one to sort the pancreatic progenitors differentiated from human PSCs. Taken together, analytical flow cytometry, and cell sorting provide indispensable tools in PSC research and cell therapy.
Collapse
Affiliation(s)
- Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
49
|
Bruno S, Vecchio DD. The epigenetic Oct4 gene regulatory network: stochastic analysis of different cellular reprogramming approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530689. [PMID: 36909486 PMCID: PMC10002722 DOI: 10.1101/2023.03.01.530689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the last decade, several experimental studies have shown how chromatin modifications (histone modifications and DNA methylation) and their effect on DNA compaction have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to a pluripotent state. In this paper, we compare three reprogramming approaches that have been considered in the literature: (a) prefixed overexpression of transcription factors (TFs) alone (Oct4), (b) prefixed overexpression of Oct4 and DNA methylation "eraser" TET, and (c) prefixed overexpression of Oct4 and H3K9me3 eraser JMJD2. To this end, we develop a model of the pluritpotency gene regulatory network, that includes, for each gene, a circuit recently published encapsulating the main interactions among chromatin modifications and their effect on gene expression. We then conduct a computational study to evaluate, for each reprogramming approach, latency and variability. Our results show a faster and less stochastic reprogramming process when also eraser enzymes are overexpressed, consistent with previous experimental data. However, TET overexpression leads to a faster and more efficient reprogramming compared to JMJD2 overexpression when the recruitment of DNA methylation by H3K9me3 is weak and the MBD protein level is sufficiently low such that it does not hamper TET binding to methylated DNA. The model developed here provides a mechanistic understanding of the outcomes of former experimental studies and is also a tool for the development of optimized reprogramming approaches that combine TF overexpression with modifiers of chromatin state.
Collapse
Affiliation(s)
- Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
50
|
Roman G, Stavik B, Lauritzen KH, Sandset PM, Harrison SP, Sullivan GJ, Chollet ME. "iPSC-derived liver organoids and inherited bleeding disorders: Potential and future perspectives". Front Physiol 2023; 14:1094249. [PMID: 36711019 PMCID: PMC9880334 DOI: 10.3389/fphys.2023.1094249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The bleeding phenotype of hereditary coagulation disorders is caused by the low or undetectable activity of the proteins involved in hemostasis, due to a broad spectrum of genetic alterations. Most of the affected coagulation factors are produced in the liver. Therefore, two-dimensional (2D) cultures of primary human hepatocytes and recombinant overexpression of the factors in non-human cell lines have been primarily used to mimic disease pathogenesis and as a model for innovative therapeutic strategies. However, neither human nor animal cells fully represent the hepatocellular biology and do not harbor the exact genetic background of the patient. As a result, the inability of the current in vitro models in recapitulating the in vivo situation has limited the studies of these inherited coagulation disorders. Induced Pluripotent Stem Cell (iPSC) technology offers a possible solution to overcome these limitations by reprogramming patient somatic cells into an embryonic-like pluripotent state, thus giving the possibility of generating an unlimited number of liver cells needed for modeling or therapeutic purposes. By combining this potential and the recent advances in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, it allows for the generation of autologous and gene corrected liver cells in the form of three-dimensional (3D) liver organoids. The organoids recapitulate cellular composition and organization of the liver, providing a more physiological model to study the biology of coagulation proteins and modeling hereditary coagulation disorders. This advanced methodology can pave the way for the development of cell-based therapeutic approaches to treat inherited coagulation disorders. In this review we will explore the use of liver organoids as a state-of-the-art methodology for modeling coagulation factors disorders and the possibilities of using organoid technology to treat the disease.
Collapse
Affiliation(s)
- Giacomo Roman
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benedicte Stavik
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut H. Lauritzen
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sean P. Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Gareth J. Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Eugenia Chollet
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|