1
|
Sun Z, Yu S, Chen S, Liu H, Chen Z. SP1 regulates KLF4 via SP1 binding motif governed by DNA methylation during odontoblastic differentiation of human dental pulp cells. J Cell Biochem 2019; 120:14688-14699. [PMID: 31009133 PMCID: PMC8895433 DOI: 10.1002/jcb.28730] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE DNA methylation is a critical epigenetic modulation in regulating gene expression in cell differentiation process, however, its detailed molecular mechanism during odontoblastic differentiation remains elusive. We aimed to study the global effect of DNA methylation on odontoblastic differentiation and how DNA methylation affects the transactivation of transcription factor (TF) on its target gene. METHODS DNA methyltransferase (DNMTs) inhibition assay and following odontoblastic differentiation assay were performed to evaluate the effect of DNA methylation inhibition on odontoblastic differentiation. Promoter DNA methylation microarray and motif enrichment assay were performed to predict the most DNA-methylation-affected TF motifs during odontoblastic differentiation. The enriched target sites and motifs were further analyzed by methylation-specific polymerase chain reaction (MS-PCR) and sequencing. The functional target sites were validated in vitro with Luciferase assay. The regulatory effect of DNA methylation on the enriched target sites in primary human dental pulp cells and motifs were confirmed by in vitro methylation assay. RESULTS Inhibition of DNMTs in preodontoblast cells increased the expression level of Klf4 as well as marker genes of odontoblastic differentiation including Dmp1 and Dspp, and enhanced the efficiency of odontoblastic differentiation. SP1/KLF4 binding motifs were found to be highly enriched in the promoter regions and showed demethylation during odontoblastic differentiation. Mutation of SP1 binding site at -75 within KLF4's promoter region significantly decreased the luciferase activity. The in vitro methylation of KLF4's promoter decreased the transactivation of SP1 on KLF4. CONCLUSION We confirmed that SP1 regulates KLF4 through binding site lying in a CpG island in KLF4's promoter region which demethylated during odontoblastic differentiation thus enhancing the efficiency of SP1's binding and transcriptional regulation on KLF4.
Collapse
Affiliation(s)
- Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Harada A, Maehara K, Handa T, Arimura Y, Nogami J, Hayashi-Takanaka Y, Shirahige K, Kurumizaka H, Kimura H, Ohkawa Y. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat Cell Biol 2018; 21:287-296. [DOI: 10.1038/s41556-018-0248-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
|
3
|
Liu H, Leslie EJ, Carlson JC, Beaty TH, Marazita ML, Lidral AC, Cornell RA. Identification of common non-coding variants at 1p22 that are functional for non-syndromic orofacial clefting. Nat Commun 2017; 8:14759. [PMID: 28287101 PMCID: PMC5355807 DOI: 10.1038/ncomms14759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/30/2017] [Indexed: 01/29/2023] Open
Abstract
Genome-wide association studies (GWAS) do not distinguish between single nucleotide polymorphisms (SNPs) that are causal and those that are merely in linkage-disequilibrium with causal mutations. Here we describe a versatile, functional pipeline and apply it to SNPs at 1p22, a locus identified in several GWAS for non-syndromic cleft lip with or without cleft palate (NS CL/P). First we amplified DNA elements containing the ten most-highly risk-associated SNPs and tested their enhancer activity in vitro, identifying three SNPs with allele-dependent effects on such activity. We then used in vivo reporter assays to test the tissue-specificity of these enhancers, chromatin configuration capture to test enhancer-promoter interactions, and genome editing in vitro to show allele-specific effects on ARHGAP29 expression and cell migration. Our results further indicate that two SNPs affect binding of CL/P-associated transcription factors, and one affects chromatin configuration. These results translate risk into potential mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Elizabeth J. Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Jenna C. Carlson
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Department of Human Genetics, Graduate School of Public Health and Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Andrew C. Lidral
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52246, USA
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
4
|
Sundaram AYM, Hughes T, Biondi S, Bolduc N, Bowman SK, Camilli A, Chew YC, Couture C, Farmer A, Jerome JP, Lazinski DW, McUsic A, Peng X, Shazand K, Xu F, Lyle R, Gilfillan GD. A comparative study of ChIP-seq sequencing library preparation methods. BMC Genomics 2016; 17:816. [PMID: 27769162 PMCID: PMC5073829 DOI: 10.1186/s12864-016-3135-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/27/2016] [Indexed: 12/03/2022] Open
Abstract
Background ChIP-seq is the primary technique used to investigate genome-wide protein-DNA interactions. As part of this procedure, immunoprecipitated DNA must undergo “library preparation” to enable subsequent high-throughput sequencing. To facilitate the analysis of biopsy samples and rare cell populations, there has been a recent proliferation of methods allowing sequencing library preparation from low-input DNA amounts. However, little information exists on the relative merits, performance, comparability and biases inherent to these procedures. Notably, recently developed single-cell ChIP procedures employing microfluidics must also employ library preparation reagents to allow downstream sequencing. Results In this study, seven methods designed for low-input DNA/ChIP-seq sample preparation (Accel-NGS® 2S, Bowman-method, HTML-PCR, SeqPlex™, DNA SMART™, TELP and ThruPLEX®) were performed on five replicates of 1 ng and 0.1 ng input H3K4me3 ChIP material, and compared to a “gold standard” reference PCR-free dataset. The performance of each method was examined for the prevalence of unmappable reads, amplification-derived duplicate reads, reproducibility, and for the sensitivity and specificity of peak calling. Conclusions We identified consistent high performance in a subset of the tested reagents, which should aid researchers in choosing the most appropriate reagents for their studies. Furthermore, we expect this work to drive future advances by identifying and encouraging use of the most promising methods and reagents. The results may also aid judgements on how comparable are existing datasets that have been prepared with different sample library preparation reagents. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3135-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Shea Biondi
- Zymo Research Corp., 7062 Murphy Ave., Irvine, CA, 92614, USA
| | - Nathalie Bolduc
- Takara Bio USA, Inc., 1290 Terra Bella Avenue, Mountain View, 94043, CA, USA
| | - Sarah K Bowman
- Mass. General Hospital, Mol. Biol., Harvard Medical School, 185 Cambridge St, CPZN 7250, Boston, 02114, MA, USA.,Present address: Directed Genomics, 240 County Road, Ipswich, MA, 01938, USA
| | - Andrew Camilli
- Department Molecular Biology & Microbiology and Howard Hughes Medical Institute, Tufts University, 136 Harrison Avenue, Boston, 02111, MA, USA
| | - Yap C Chew
- Zymo Research Corp., 7062 Murphy Ave., Irvine, CA, 92614, USA
| | - Catherine Couture
- Swift Biosciences, Inc., Suite 100, 58 Parkland Plaza, Ann Arbor, 48103, MI, USA
| | - Andrew Farmer
- Takara Bio USA, Inc., 1290 Terra Bella Avenue, Mountain View, 94043, CA, USA
| | - John P Jerome
- Rubicon Genomics, Inc., 4743 Venture Drive, Ann Arbor, 48108, MI, USA
| | - David W Lazinski
- Department Molecular Biology & Microbiology and Howard Hughes Medical Institute, Tufts University, 136 Harrison Avenue, Boston, 02111, MA, USA
| | - Andrew McUsic
- Swift Biosciences, Inc., Suite 100, 58 Parkland Plaza, Ann Arbor, 48103, MI, USA
| | - Xu Peng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609, Singapore, Republic of Singapore
| | - Kamran Shazand
- Rubicon Genomics, Inc., 4743 Venture Drive, Ann Arbor, 48108, MI, USA
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609, Singapore, Republic of Singapore
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Parsons XH. Direct Conversion of Pluripotent Human Embryonic Stem Cells Under Defined Culture Conditions into Human Neuronal or Cardiomyocyte Cell Therapy Derivatives. Methods Mol Biol 2016; 1307:299-318. [PMID: 24500898 DOI: 10.1007/7651_2014_69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Developing novel strategies for well-controlled efficiently directing pluripotent human embryonic stem cells (hESCs) exclusively and uniformly towards clinically relevant cell types in a lineage-specific manner is not only crucial for unveiling the molecular and cellular cues that direct human embryogenesis but also vital to harnessing the power of hESC biology for tissue engineering and cell-based therapies. Conventional hESC differentiation methods require uncontrollable simultaneous multi-lineage differentiation of pluripotent cells, which yield embryoid bodies (EB) or aggregates consisting of a mixed population of cell types of three embryonic germ layers, among which only a very small fraction of cells display targeted differentiation, impractical for commercial and clinical applications. Here, a protocol for lineage-specific differentiation of hESCs, maintained under defined culture systems, direct from the pluripotent stage using small-molecule induction exclusively and uniformly to a neural or a cardiac lineage is described. Lineage-specific differentiation of pluripotent hESCs by small-molecule induction enables well-controlled highly efficient direct conversion of nonfunctional pluripotent hESCs into a large supply of high-purity functional human neuronal or cardiomyocyte cell therapy derivatives for commercial and therapeutic uses.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA, 92109, USA,
| |
Collapse
|
6
|
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 2015; 7:1150-1184. [PMID: 26516408 PMCID: PMC4620423 DOI: 10.4252/wjsc.v7.i9.1150] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.
Collapse
|
7
|
An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 2015; 6:6033. [DOI: 10.1038/ncomms7033] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022] Open
|
8
|
Chen TW, Li HP, Lee CC, Gan RC, Huang PJ, Wu TH, Lee CY, Chang YF, Tang P. ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 2014; 15:539. [PMID: 24974934 PMCID: PMC4092222 DOI: 10.1186/1471-2164-15-539] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Chromatin is a dynamic but highly regulated structure. DNA-binding proteins such as transcription factors, epigenetic and chromatin modifiers are responsible for regulating specific gene expression pattern and may result in different phenotypes. To reveal the identity of the proteins associated with the specific region on DNA, chromatin immunoprecipitation (ChIP) is the most widely used technique. ChIP assay followed by next generation sequencing (ChIP-seq) or microarray (ChIP-chip) is often used to study patterns of protein-binding profiles in different cell types and in cancer samples on a genome-wide scale. However, only a limited number of bioinformatics tools are available for ChIP datasets analysis. Results We present ChIPseek, a web-based tool for ChIP data analysis providing summary statistics in graphs and offering several commonly demanded analyses. ChIPseek can provide statistical summary of the dataset including histogram of peak length distribution, histogram of distances to the nearest transcription start site (TSS), and pie chart (or bar chart) of genomic locations for users to have a comprehensive view on the dataset for further analysis. For examining the potential functions of peaks, ChIPseek provides peak annotation, visualization of peak genomic location, motif identification, sequence extraction, and comparison between datasets. Beyond that, ChIPseek also offers users the flexibility to filter peaks and re-analyze the filtered subset of peaks. ChIPseek supports 20 different genome assemblies for 12 model organisms including human, mouse, rat, worm, fly, frog, zebrafish, chicken, yeast, fission yeast, Arabidopsis, and rice. We use demo datasets to demonstrate the usage and intuitive user interface of ChIPseek. Conclusions ChIPseek provides a user-friendly interface for biologists to analyze large-scale ChIP data without requiring any programing skills. All the results and figures produced by ChIPseek can be downloaded for further analysis. The analysis tools built into ChIPseek, especially the ones for selecting and examine a subset of peaks from ChIP data, provides invaluable helps for exploring the high through-put data from either ChIP-seq or ChIP-chip. ChIPseek is freely available at http://chipseek.cgu.edu.tw.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Congdon LM, Sims JK, Tuzon CT, Rice JC. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail 'histone code' and Riz1 tumor suppressor function. Nucleic Acids Res 2014; 42:3580-9. [PMID: 24423864 PMCID: PMC3973283 DOI: 10.1093/nar/gkt1377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail ‘histone code’. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail ‘histone code’. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function.
Collapse
Affiliation(s)
- Lauren M Congdon
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Harlyne J. Norris Cancer Research Tower, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
10
|
Biancolella M, Fortini BK, Tring S, Plummer SJ, Mendoza-Fandino GA, Hartiala J, Hitchler MJ, Yan C, Schumacher FR, Conti DV, Edlund CK, Noushmehr H, Coetzee SG, Bresalier RS, Ahnen DJ, Barry EL, Berman BP, Rice JC, Coetzee GA, Casey G. Identification and characterization of functional risk variants for colorectal cancer mapping to chromosome 11q23.1. Hum Mol Genet 2013; 23:2198-209. [PMID: 24256810 DOI: 10.1093/hmg/ddt584] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies of colorectal cancer (CRC) have identified a number of common variants associated with modest risk, including rs3802842 at chromosome 11q23.1. Several genes map to this region but rs3802842 does not map to any known transcribed or regulatory sequences. We reasoned, therefore, that rs3802842 is not the functional single-nucleotide polymorphism (SNP), but is in linkage disequilibrium (LD) with a functional SNP(s). We performed ChIP-seq for histone modifications in SW480 and HCT-116 CRC cells, and incorporated ChIP-seq and DNase I hypersensitivity data available through ENCODE within a 137-kb genomic region containing rs3802842 on 11q23.1. We identified SNP rs10891246 in LD with rs3802842 that mapped within a bidirectional promoter region of genes C11orf92 and C11orf93. Following mutagenesis to the risk allele, the promoter demonstrated lower levels of reporter gene expression. A second SNP rs7130173 was identified in LD with rs3802842 that mapped to a candidate enhancer region, which showed strong unidirectional activity in both HCT-116 and SW480 CRC cells. The risk allele of rs7130173 demonstrated reduced enhancer activity compared with the common allele, and reduced nuclear protein binding affinity in electromobility shift assays compared with the common allele suggesting differential transcription factor (TF) binding. SNPs rs10891246 and rs7130173 are on the same haplotype, and expression quantitative trait loci (eQTL) analyses of neighboring genes implicate C11orf53, C11orf92 and C11orf93 as candidate target genes. These data imply that rs10891246 and rs7130173 are functional SNPs mapping to 11q23.1 and that C11orf53, C11orf92 and C11orf93 represent novel candidate target genes involved in CRC etiology.
Collapse
|
11
|
Secrier M, Schneider R. PhenoTimer: software for the visual mapping of time-resolved phenotypic landscapes. PLoS One 2013; 8:e72361. [PMID: 23951317 PMCID: PMC3741141 DOI: 10.1371/journal.pone.0072361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/13/2013] [Indexed: 01/04/2023] Open
Abstract
Timing common and specific modulators of disease progression is crucial for treatment, but the understanding of the underlying complex system of interactions is limited. While attempts at elucidating this experimentally have produced enormous amounts of phenotypic data, tools that are able to visualize and analyze them are scarce and the insight obtained from the data is often unsatisfactory. Linking and visualizing processes from genes to phenotypes and back, in a temporal context, remains a challenge in systems biology. We introduce PhenoTimer, a 2D/3D visualization tool for the mapping of time-resolved phenotypic links in a genetic context. It uses a novel visualization approach for relations between morphological defects, pathways or diseases, to enable fast pattern discovery and hypothesis generation. We illustrate its capabilities of tracing dynamic motifs on cell cycle datasets that explore the phenotypic order of events upon perturbations of the system, transcriptional activity programs and their connection to disease. By using this tool we are able to fine-grain regulatory programs for individual time points of the cell cycle and better understand which patterns arise when these programs fail. We also illustrate a way to identify common mechanisms of misregulation in diseases and drug abuse.
Collapse
Affiliation(s)
- Maria Secrier
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | | |
Collapse
|
12
|
Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. ACTA ACUST UNITED AC 2013. [PMID: 24926434 PMCID: PMC4051304 DOI: 10.9734/bbj/2013/4309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
13
|
Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. ACTA ACUST UNITED AC 2013; 3:424-457. [PMID: 24926434 DOI: 10.9734/bbj/2013/4309#sthash.6d8rulbv.dpuf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
14
|
Gilfillan GD, Hughes T, Sheng Y, Hjorthaug HS, Straub T, Gervin K, Harris JR, Undlien DE, Lyle R. Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 2012; 13:645. [PMID: 23171294 PMCID: PMC3533509 DOI: 10.1186/1471-2164-13-645] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 11/05/2012] [Indexed: 11/21/2022] Open
Abstract
Background Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) offers high resolution, genome-wide analysis of DNA-protein interactions. However, current standard methods require abundant starting material in the range of 1–20 million cells per immunoprecipitation, and remain a bottleneck to the acquisition of biologically relevant epigenetic data. Using a ChIP-seq protocol optimised for low cell numbers (down to 100,000 cells / IP), we examined the performance of the ChIP-seq technique on a series of decreasing cell numbers. Results We present an enhanced native ChIP-seq method tailored to low cell numbers that represents a 200-fold reduction in input requirements over existing protocols. The protocol was tested over a range of starting cell numbers covering three orders of magnitude, enabling determination of the lower limit of the technique. At low input cell numbers, increased levels of unmapped and duplicate reads reduce the number of unique reads generated, and can drive up sequencing costs and affect sensitivity if ChIP is attempted from too few cells. Conclusions The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells), and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance.
Collapse
|