1
|
Chun JJ, Chang J, Soedono S, Oh J, Kim YJ, Wee SY, Cho KW, Choi CY. Mechanical Stress Improves Fat Graft Survival by Promoting Adipose-Derived Stem Cells Proliferation. Int J Mol Sci 2022; 23:ijms231911839. [PMID: 36233141 PMCID: PMC9569524 DOI: 10.3390/ijms231911839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling. Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.
Collapse
Affiliation(s)
- Jeong Jin Chun
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi 39371, Korea
| | - Jiyeon Chang
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Jieun Oh
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31583, Korea
| | - Yeong Jin Kim
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Bucheon 14584, Korea
| | - Syeo Young Wee
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi 39371, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.W.C.); (C.Y.C.); Tel.: +82-41-413-5028 (K.W.C.); +82-32-621-5319 (C.Y.C.)
| | - Chang Yong Choi
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Bucheon 14584, Korea
- Correspondence: (K.W.C.); (C.Y.C.); Tel.: +82-41-413-5028 (K.W.C.); +82-32-621-5319 (C.Y.C.)
| |
Collapse
|
2
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania.
| |
Collapse
|
3
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Savadipour A, Nims RJ, Katz DB, Guilak F. Regulation of chondrocyte biosynthetic activity by dynamic hydrostatic pressure: the role of TRP channels. Connect Tissue Res 2022; 63:69-81. [PMID: 33494617 PMCID: PMC10061443 DOI: 10.1080/03008207.2020.1871475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chondrocytes perceive and respond to mechanical loading as signals that regulate their metabolism. Joint loading exposes chondrocytes to multiple modes of mechanical stress, including hydrostatic pressure; however, the mechanisms by which chondrocytes sense physiologically relevant levels of hydrostatic pressure are not well understood. We hypothesized that hydrostatic pressure is transduced to an intracellular signal through mechanosensitive membrane ion channels of chondrocytes. The goals of this study were to examine the effect of hydrostatic loading on the development of engineered cartilage tissue and the contribution of mechanosensitive ion channels on these hydrostatic loading effects. METHODS Using a 3D model of porcine chondrocytes in agarose, we applied specific chemical inhibitors to determine the role of transient receptor potential (TRP) ion channels TRPV1, TRPV4, TRPC3, and TRPC1 in transducing hydrostatic pressure. RESULTS Hydrostatic loading caused a frequency and magnitude-dependent decrease in sulfated glycosaminoglycans (S-GAG), without changes in DNA content. Inhibiting TRPC3 and TRPV4 decreased S-GAG content; however, only the inhibition of TRPV1 partially attenuated the hydrostatic loading-induced reduction in S-GAG content. CONCLUSIONS Our findings indicate that TRPV1 may serve as a transducer of hydrostatic pressure in chondrocytes, and provide further support for the role of TRPV4 in regulating chondrocyte anabolism, as well as initial evidence implicating TRPC3 in chondrogenesis. These findings add to our further understanding of the chondrocyte "channelome" and suggest that a range of ion channels mediate the transduction of different biophysical stimuli such as hydrostatic pressure, membrane stretch, or osmotic stress.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dakota B Katz
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
5
|
Shimomura K, Hamamoto S, Hart DA, Yoshikawa H, Nakamura N. Meniscal repair and regeneration: Current strategies and future perspectives. J Clin Orthop Trauma 2018; 9:247-253. [PMID: 30202157 PMCID: PMC6128795 DOI: 10.1016/j.jcot.2018.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/30/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
The management of meniscal injuries remains difficult and challenging. Although several clinical options exist for the treatment of such injuries, complete regeneration of the damaged meniscus has proved difficult due to the limited healing capacity of the tissue. With the advancements in tissue engineering and cell-based technologies, new therapeutic options for patients with currently incurable meniscal lesions now potentially exist. This review will discuss basic anatomy, current repair techniques and treatment options for loss of meniscal integrity. Specifically, we focus on the possibility and feasibility of the latest tissue engineering approaches, including 3D printing technologies. Therefore, this discussion will facilitate a better understanding of the latest trends in meniscal repair and regeneration, and contribute to the future application of such clinical therapies for patients with meniscal injuries.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, T2N 4N1, Canada
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan,Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Corresponding author. Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan.
| |
Collapse
|