1
|
Wang W, Pang Z, Zhang S, Yang P, Pan Y, Qiao L, Yang K, Liu J, Wang R, Liu W. Multi-omics integrated analysis reveals the molecular mechanism of tail fat deposition differences in sheep with different tail types. BMC Genomics 2025; 26:465. [PMID: 40346476 PMCID: PMC12065285 DOI: 10.1186/s12864-025-11658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The accumulation of tail fat in sheep is a manifestation of adaptive evolution to the environment. Sheep with different tail types show significant differences in physiological functions and tail fat deposition. Although these differences reflect the developmental mechanism of tail fat under different gene regulation, the situation of sheep tail fat tissue at the single cell level has not been explored, and its molecular mechanism still needs to be further elucidated. RESULTS Here, we characterized the genomic features of sheep with different tail types, detected the transcriptomic differences in tail adipose tissue between fat-tailed and thin-tailed sheep, established a single-cell atlas of sheep tail adipose tissue, and screened potential molecular markers (SESN1, RPRD1A and RASGEF1B) that regulate differences in sheep tail fat deposition through multi-omics integrated analysis. We found that the differential mechanism of sheep tail fat deposition not only involves adipocyte differentiation and proliferation, but is also closely related to cell-specific communication networks (When adipocytes act as signal outputters, LAMININ and other signal pathways are strongly expressed in guangling large tailed sheep and hu sheep), including interactions with immune cells and tissue remodeling to drive the typing of tail fat. In addition, we revealed the differentiation trajectory of sheep tail adipocytes through pseudo-time analysis and constructed the cell communication network of sheep tail adipose tissue. CONCLUSIONS Our results provide insights into the molecular mechanisms of tail fat deposition in sheep with different tail types, and provide a deeper explanation for the development and functional regulation of adipocytes.
Collapse
Affiliation(s)
- Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhixv Pang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Siying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Pengkun Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Precision Breeding of Shanxi Province, Taigu, 030801, China
| | - Ruizhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
- Key Laboratory of Farm Animal Genetic Resources Exploration and Precision Breeding of Shanxi Province, Taigu, 030801, China.
| |
Collapse
|
2
|
Zhang H, Zhuang Z, Hong L, Wang R, Xu J, Tang Y. The malignant signature gene of cancer-associated fibroblasts serves as a potential prognostic biomarker for colon adenocarcinoma patients. Front Immunol 2025; 16:1589678. [PMID: 40313961 PMCID: PMC12043632 DOI: 10.3389/fimmu.2025.1589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Background Colon adenocarcinoma (COAD) is the most frequently occurring type of colon cancer. Cancer-associated fibroblasts (CAFs) are pivotal in facilitating tumor growth and metastasis; however, their specific role in COAD is not yet fully understood. This research utilizes single-cell RNA sequencing (scRNA-seq) to identify and validate gene markers linked to the malignancy of CAFs. Methods ScRNA-seq data was downloaded from a database and subjected to quality control, dimensionality reduction, clustering, cell annotation, cell communication analysis, and enrichment analysis, specifically focusing on fibroblasts in tumor tissues compared to normal tissues. Fibroblast subsets were isolated, dimensionally reduced, and clustered, then combined with copy number variation (CNV) inference and pseudotime trajectory analysis to identify genes related to malignancy. A Cox regression model was constructed based on these genes, incorporating LASSO analysis, nomogram construction, and validation.Subsequently, we established two FNDC5-knockdown cell lines and utilized colony formation and transwell assays to investigate the impact of FNDC5 on cellular biological behaviors. Results Using scRNA-seq data, we analyzed 8,911 cells from normal and tumor samples, identifying six distinct cell types. Cell communication analysis highlighted interactions between these cell types mediated by ligands and receptors. CNV analysis classified CAFs into three groups based on malignancy levels. Pseudo-time analysis identified 622 pseudotime-related genes and generated a forest plot using univariate Cox regression. Lasso regression identified the independent prognostic gene FNDC5, which was visualized in a nomogram. Kaplan-Meier survival analysis confirmed the prognostic value of FNDC5, showing associations with T stage and distant metastasis. In vitro experiment results demonstrated a strong association between FNDC5 expression levels and the proliferative, migratory, and invasive abilities of colon cancer cells. Conclusion We developed a risk model for genes related to the malignancy of CAFs and identified FNDC5 as a potential therapeutic target for COAD.
Collapse
Affiliation(s)
| | | | | | | | | | - Youyuan Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Jiang J, Liu F, Cui D, Xu C, Chi J, Yan T, Guo F. Novel molecular mechanisms of immune evasion in hepatocellular carcinoma: NSUN2-mediated increase of SOAT2 RNA methylation. Cancer Commun (Lond) 2025. [PMID: 40227950 DOI: 10.1002/cac2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a deadly malignancy known for its ability to evade immune surveillance. NOP2/Sun RNA methyltransferase family member 2 (NSUN2), an RNA methyltransferase involved in carcinogenesis, has been associated with immune evasion and energy metabolism reprogramming. This study aimed to examine the molecular mechanisms underlying the involvement of NSUN2 in immune evasion and metabolic reprogramming of HCC. METHODS Single-cell transcriptomic sequencing was applied to examine cellular composition changes, particularly immune cell dynamics, in HCC and adjacent normal tissues. Bulk RNA-seq and proteomics identified key genes and proteins. Methylation sequencing and methylated RNA immunoprecipitation (MeRIP) were carried out to characterize the role of NSUN2 in 5-methylcytosine (m5C) modification of sterol O-acyltransferase 2 (SOAT2). Clinical samples from 30 HCC patients were analyzed using reverse transcription-quantitative polymerase chain reaction and Western blotting. Gene expression was manipulated using CRISPR/Cas9 and lentiviral vectors. In vitro co-culture models and metabolomics were used to study HCC cell-T cell interactions, energy metabolism, and immune evasion. Tumor growth in an orthotopic mouse model was monitored by bioluminescence imaging, with subsequent measurements of tumor weight, volume, and immunohistochemical staining. RESULTS Single-cell transcriptomic analysis identified a marked increase in malignant cells in HCC tissues. Cell communication analysis indicated that tumor cells might promote cancer progression by evading immune clearance. Multi-omics analyses identified NSUN2 as a key regulator in HCC development. MeRIP confirmed that NSUN2 facilitated the m5C modification of SOAT2. Analysis of human HCC tissue samples demonstrated pronounced upregulation of NSUN2 and SOAT2, along with elevated m5C levels in HCC tissues. In vitro experiments uncovered that NSUN2 augmented the reprogramming of energy metabolism and repressed the activity and cytotoxicity of CD8+ T cells, contributing to immune evasion. In vivo studies further substantiated the role of NSUN2 in fostering immune evasion and tumor formation of HCC by modulating the m5C modification of SOAT2. CONCLUSIONS The findings highlight the critical role of NSUN2 in driving HCC progression through the regulation of m5C modification on SOAT2. These findings present potential molecular markers for HCC diagnosis and therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jinhua Jiang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Feng Liu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Dan Cui
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Caixia Xu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Jiachang Chi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Tinghua Yan
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Cui Y, Zhang H, Deng Y, Fan O, Wang J, Xing Z, Tang J, Zhu W, Gong B, Sun YE. Shared and distinct peripheral blood immune cell landscape in MCTD, SLE, and pSS. Cell Biosci 2025; 15:42. [PMID: 40211396 PMCID: PMC11983850 DOI: 10.1186/s13578-025-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Mixed connective tissue disease (MCTD) is a rare autoimmune disease, and little is known about its pathogenesis. Furthermore, MCTD, systemic lupus erythematosus (SLE), and primary Sjögren's syndrome (pSS) share many clinical, laboratory, and immunological manifestations. This overlap complicates early diagnosis and accurate treatment. METHODS The transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) from MCTD patients was performed using both bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) for the first time. Additionally, we applied MCTD scRNA-seq data, along with datasets from SLE (GSE135779) and pSS (GSE157278) from the Gene Expression Omnibus database, to characterize and compare the similarities and heterogeneity among MCTD, SLE, and pSS. RESULTS We first resolved transcriptomic changes in peripheral blood immune cells of MCTD, and then revealed the shared and unique features among MCTD, SLE, and pSS. Analyses showed that the percentage of CD8+ effector T cells was increased, while mucosal-associated invariant T cells were decreased in all three diseases. Genes related to the 'interferon (IFN) γ response' and 'IFN α response' were significantly upregulated. SCENIC analysis revealed activation of STAT1 and IRF7 in disease states, targeting IFN-related genes. The IFN-II signaling network was notably elevated in all three diseases. Unique features of MCTD, SLE, and pSS were also identified. CONCLUSION We dissected the immune landscape of MCTD at single-cell resolution, providing new insights into the development of novel biomarkers and immunotherapies for MCTD. Furthermore, we offer insights into the transcriptomic similarities and heterogeneity across different autoimmune diseases, while highlighting prospective therapeutic targets.
Collapse
Affiliation(s)
- Yanling Cui
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huina Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxuan Deng
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonggang Xing
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China.
| | - Wenmin Zhu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Tong W, Qin N, Lu T, Liu L, Liu R, Chen J, Luo N. Integrating bulk and single-cell RNA sequencing reveals SH3D21 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway. PLoS One 2025; 20:e0302766. [PMID: 40179068 PMCID: PMC11967960 DOI: 10.1371/journal.pone.0302766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/16/2025] [Indexed: 04/05/2025] Open
Abstract
As a novel genetic biomarker, the potential role of SH3D21 in hepatocellular carcinoma remains unclear. Here, we decipher the expression and function of SH3D21 in human hepatocellular carcinoma. The expression level and clinical significance of SH3D21 in hepatocellular carcinoma patients, the relationship between SH3D21 and the features of tumor microenvironment (TME) and role of SH3D21 in promoting hepatocellular carcinoma progression were analyzed based on the bulk samples obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Single-cell sequencing samples from Gene Expression Omnibus (GEO) database were employed to verify the prediction mechanism. Additionally, different biological effects of SH3D21 on hepatocellular carcinoma cells were investigated by qRT-PCR, CCK-8 assay, colony forming assay and Western blot analysis. Bioinformatics analysis and in vitro experiments revealed that the expression level of SH3D21 was up-regulated in hepatocellular carcinoma and correlated with the poor prognosis in hepatocellular carcinoma patients. SH3D21 effectively promoted the proliferation, invasion, and migration as well as the formation of immunosuppressive microenvironment of hepatocellular carcinoma. In addition, SH3D21 can activate the PI3K/AKT/mTOR signaling pathway. SH3D21 stimulates the progression of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling pathway, and SH3D21 can serve as a prognostic biomarker and therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Qin
- The Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Lu
- Department of hepatobiliary surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Li Liu
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rong Liu
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Centre for Translational Medical Research in Integrative Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
6
|
Quan K, Wang H, Su P, Xu Y, Yao X. Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions. Cells 2025; 14:539. [PMID: 40214492 PMCID: PMC11988620 DOI: 10.3390/cells14070539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The combined application of single-cell RNA sequencing (scRNA-seq) and single-cell B-cell receptor sequencing (scBCR-seq) offers a multidimensional perspective for dissecting the immunopathological mechanisms of B cells in autoimmune diseases. This review systematically summarizes the principles of these techniques, the analytical framework, and their key applications in diseases such as systemic lupus erythematosus et. al. It reveals the dynamic correlations between the transcriptome of B-cell subsets and B-cell receptor (BCR) clones. Furthermore, we focus on the potential roles of dual BCR B cells and B/T biphenotypic cells in autoimmunity, emphasizing their exacerbation of disease progression through abnormal clonal expansion and autoantibody secretion. By sorting through cutting-edge advancements and bottleneck issues, this article aims to propel the innovation of multi-omics research and precision treatment paradigms for autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xinsheng Yao
- Department of Immunology, Center of Immuno-Molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563002, China; (K.Q.); (H.W.); (P.S.); (Y.X.)
| |
Collapse
|
7
|
Traversa D, Chiara M. Mapping Cell Identity from scRNA-seq: A primer on computational methods. Comput Struct Biotechnol J 2025; 27:1559-1569. [PMID: 40270709 PMCID: PMC12017876 DOI: 10.1016/j.csbj.2025.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Single cell (sc) technologies mark a conceptual and methodological breakthrough in our way to study cells, the base units of life. Thanks to these technological developments, large-scale initiatives are currently ongoing aimed at mapping of all the cell types in the human body, with the ambitious aim to gain a cell-level resolution of physiological development and disease. Since its broad applicability and ease of interpretation scRNA-seq is probably the most common sc-based application. This assay uses high throughput RNA sequencing to capture gene expression profiles at the sc-level. Subsequently, under the assumption that differences in transcriptional programs correspond to distinct cellular identities, ad-hoc computational methods are used to infer cell types from gene expression patterns. A wide array of computational methods were developed for this task. However, depending on the underlying algorithmic approach and associated computational requirements, each method might have a specific range of application, with implications that are not always clear to the end user. Here we will provide a concise overview on state-of-the-art computational methods for cell identity annotation in scRNA-seq, tailored for new users and non-computational scientists. To this end, we classify existing tools in five main categories, and discuss their key strengths, limitations and range of application.
Collapse
Affiliation(s)
- Daniele Traversa
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, Milan 20133, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, Milan 20133, Italy
| |
Collapse
|
8
|
Tong Z, Wang Z, Jiang J, Fu W, Hu S. Glycyrrhizin enhances the antitumor activity of cisplatin in non‑small cell lung cancer cells by influencing DNA damage and apoptosis. Oncol Lett 2025; 29:207. [PMID: 40070780 PMCID: PMC11894513 DOI: 10.3892/ol.2025.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
The objective of the present study was to elucidate the mechanism by which glycyrrhizin enhances the antitumor activity of cisplatin in non-small cell lung cancer. Initially, A549 cells were treated with different concentrations of glycyrrhizin (0.25-8 mM) or cisplatin (10-160 µM) for 48 h to investigate the effect of glycyrrhizin combined with cisplatin on A549 cells in vitro. Subsequently, A549 cells were divided into control (untreated), CP (20 µM cisplatin), GL (2 mM glycyrrhizin) and CP + GL (20 µM cisplatin + 2 mM glycyrrhizin) groups to elucidate the underlying mechanism of glycyrrhizin. After 48 h incubation, the viability and colony-forming ability of the cells were assessed using MTT and colony formation assays. Apoptosis levels and cell cycle progression were analyzed using flow cytometry and western blotting was used to evaluate apoptosis- and cell cycle-related proteins. Additionally, comet assays and western blotting were used to evaluate DNA damage and relevant proteins. The results demonstrated both glycyrrhizin and cisplatin individually reduced A549 cell viability in a concentration-dependent manner. Cisplatin demonstrated a lower half-maximal inhibitory concentration (IC50) at higher glycyrrhizin concentrations, with an IC50 value of ~35 µM with 2 mM glycyrrhizin. Furthermore, the combined treatment of glycyrrhizin and cisplatin synergistically reduced cell colony-forming ability, induced apoptosis and arrested the cell cycle at the G2 phase, showing greater efficacy when compared with either treatment individually. In addition, western blotting analysis demonstrated that, in comparison with treatment with cisplatin or glycyrrhizin alone, the combined treatment markedly increased the protein expression levels of B-cell lymphoma 2-associated X protein, cleaved-caspase-3/caspase-3, γH2AX, phosphorylated-checkpoint kinase 1 and phosphorylated-p53/p53, while notably reducing the protein levels of B-cell lymphoma 2, cyclin D1, cyclin-dependent kinase 2 and cyclin-dependent kinase 4. The findings of the present study indicate that glycyrrhizin enhances the antitumor efficacy of cisplatin in non-small cell lung cancer cells by modulating DNA damage and apoptosis.
Collapse
Affiliation(s)
- Zhufeng Tong
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jinghan Jiang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Wenqi Fu
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Siying Hu
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
9
|
Rafi FR, Heya NR, Hafiz MS, Jim JR, Kabir MM, Mridha MF. A systematic review of single-cell RNA sequencing applications and innovations. Comput Biol Chem 2025; 115:108362. [PMID: 39919386 DOI: 10.1016/j.compbiolchem.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.
Collapse
Affiliation(s)
- Fahamidur Rahaman Rafi
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Nafeya Rahman Heya
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Md Sadman Hafiz
- Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jamin Rahman Jim
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| | - Md Mohsin Kabir
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh.
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| |
Collapse
|
10
|
Fang J, Yu S, Wang W, Liu C, Lv X, Jin J, Han X, Zhou F, Wang Y. A tumor-infiltrating B lymphocytes -related index based on machine-learning predicts prognosis and immunotherapy response in lung adenocarcinoma. Front Immunol 2025; 16:1524120. [PMID: 40196113 PMCID: PMC11973313 DOI: 10.3389/fimmu.2025.1524120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Tumor-infiltrating B lymphocytes (TILBs) play a pivotal role in shaping the immune microenvironment of tumors (TIME) and in the progression of lung adenocarcinoma (LUAD). However, there remains a scarcity of research that has thoroughly and systematically delineated the characteristics of TILBs in LUAD. Method The research employed single-cell RNA sequencing from the GSE117570 dataset to identify markers linked to TILBs. A comprehensive machine learning approach, utilizing ten distinct algorithms, facilitated the creation of a TILB-related index (BRI) across the TCGA, GSE31210, and GSE72094 datasets. We used multiple algorithms to evaluate the relationships between BRI and TIME, as well as immune therapy-related biomarkers. Additionally, we assessed the role of BRI in predicting immune therapy response in two datasets, GSE91061 and GSE126044. Result BRI functioned as an independent risk determinant in LUAD, demonstrating a robust and reliable capacity to predict overall survival rates. We observed significant differences in the scores of B cells, M2 macrophages, NK cells, and regulatory T cells between the high and low BRI score groups. Notably, BRI was found to inversely correlate with cytotoxic CD8+ T-cell infiltration (r = -0.43, p < 0.001) and positively correlate with regulatory T cells (r = 0.31, p = 0.008). We also found that patients with lower BRI were more likely to respond to immunotherapy and were associated with reduced IC50 values for standard chemotherapy and targeted therapy drugs, in contrast to higher BRI. Additionally, the BRI-based survival prediction nomogram demonstrated significant promise for clinical application in predicting the 1-, 3-, and 5-year overall survival rates among LUAD patients. Discussion Our study developed a BRI model using ten different algorithms and 101 algorithm combinations. The BRI could be a valuable tool for risk stratification, prognosis, and selection of treatment approaches.
Collapse
Affiliation(s)
- Jiale Fang
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Siyuan Yu
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Wang
- Department of Pharmacology, Air Force Medical University, Xi’an, China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Cheng Liu
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaojia Lv
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaqi Jin
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaomin Han
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
- Department of Basic Medicine and Law, Baotou Medical College, Baotou, China
| | - Fang Zhou
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yukun Wang
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Vo K, Shila S, Sharma Y, Pei GJ, Rosales CY, Dahiya V, Fields PE, Rumi MAK. Detection of mRNA Transcript Variants. Genes (Basel) 2025; 16:343. [PMID: 40149494 PMCID: PMC11942493 DOI: 10.3390/genes16030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Most eukaryotic genes express more than one mature mRNA, defined as transcript variants. This complex phenomenon arises from various mechanisms, such as using alternative transcription start sites and alternative post-transcriptional processing events. The resulting transcript variants can lead to synthesizing proteins that possess distinct functional domains or may even generate noncoding RNAs, each with unique roles in cellular processes. The generation of these transcript variants is not merely a random occurrence; it is cell-type specific and varies with developmental stages, aging processes, or pathogenesis of diseases. This highlights the biological significance of transcript variants in regulating gene expression and their potential impact on cellular functionality. Despite the biological importance, investigating transcript variants has been hampered by challenges associated with detecting their expression. This review article addresses the advancements in molecular techniques in detecting transcript variants. Traditional methods such as RT-PCR and RT-qPCR can easily detect known transcript variants using primers that target unique exons associated with the variants. Other techniques like RACE-PCR and hybridization-based methods, including Northern blotting, RNase protection assays, and microarrays, have also been utilized to detect transcript variants. Nevertheless, RNA sequencing (RNA-Seq) has emerged as a powerful technique for identifying transcript variants, especially those with previously unknown sequences. The effectiveness of RNA sequencing in transcript variant detection depends on the specific sequencing approach and the precision of data analysis. By understanding the strengths and weaknesses of each laboratory technique, researchers can develop more effective strategies for detecting mRNA transcript variants. This ability will be crucial for our comprehensive understanding of gene regulation and the implications of transcript diversity in various biological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (K.V.); (S.S.); (Y.S.); (G.J.P.); (C.Y.R.); (V.D.); (P.E.F.)
| |
Collapse
|
12
|
Yuan X, Li C, Yang L, Gao J, Wang B, Li Z. Unraveling asthma through single-cell RNA sequencing in understanding disease mechanisms. J Asthma 2025:1-9. [PMID: 40014380 DOI: 10.1080/02770903.2025.2472358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE To elucidate the fundamental principles of single-cell RNA sequencing (scRNA-seq) and summarize its application in asthma research, aiming to enhance understanding of asthma pathophysiology and guide future research directions. DATASOURCE Recent advances and emerging research in scRNA-seq and its role in the pathogenesis of asthma. STUDY SELECTIONS This review incorporates studies that analyzed the heterogeneity of asthma cell types and their functional states using scRNA-seq, with particular emphasis on immune cells and airway remodeling. The selection of specific cell types and markers was based on their relevance to asthma pathogenesis, and we discuss the rationale for favoring certain scRNA-seq technologies in these investigations. RESULTS ScRNA-seq technology has provided insights into the key mechanisms underlying inflammation and airway remodeling in asthma. It has uncovered the diversity of immune cell subtypes and their specific roles in asthma pathogenesis, revealing critical pathways that contribute to disease progression. These findings offer a theoretical foundation for the development of targeted therapeutic strategies, paving the way for personalized medicine and improved patient outcomes. CONCLUSION ScRNA-seq reveals the complex heterogeneity and functional roles of immune cells in asthma, offering key insights into disease mechanisms and the potential for targeted therapies. However, challenges remain, such as the need for further refinement of data integration methods and addressing the limited clinical applicability of current findings. Future research should focus on overcoming these limitations, improving cell type annotation, and expanding studies to include longitudinal and clinical data to better understand disease dynamics and therapy responses.
Collapse
Affiliation(s)
- Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Chaofan Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiawei Gao
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyu Wang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhuying Li
- Department of Respiratory, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Sun D, Hu Y, Peng J, Wang S. Construction of T-Cell-Related Prognostic Risk Models and Prediction of Tumor Immune Microenvironment Regulation in Pancreatic Adenocarcinoma via Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq. Int J Mol Sci 2025; 26:2384. [PMID: 40141028 PMCID: PMC11942068 DOI: 10.3390/ijms26062384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a fatal malignant tumor of the digestive system, and immunotherapy has currently emerged as a key therapeutic approach for treating PAAD, with its efficacy closely linked to T-cell subsets and the tumor immune microenvironment. However, reliable predictive markers to guide clinical immunotherapy for PAAD are not available. We analyzed the single-cell RNA sequencing (scRNA-seq) data focused on PAAD from the GeneExpressionOmnibus (GEO) database. Then, the information from the Cancer Genome Atlas (TCGA) database was integrated to develop and validate a prognostic risk model derived from T-cell marker genes. Subsequently, the correlation between these risk models and the effectiveness of immunotherapy was explored. Analysis of scRNA-seq data uncovered six T-cell subtypes and 1837 T-cell differentially expressed genes (DEGs). Combining these data with the TCGA dataset, we constructed a T-cell prognostic risk model containing 16 DEGs, which can effectively predict patient survival and immunotherapy outcomes. We have found that patients in the low-risk group had better prognostic outcomes, increased immune cell infiltration, and signs of immune activation compared to those in the high-risk group. Additionally, analysis of tumor mutation burden showed higher mutation rates in patients with PAAD in the high-risk group. Risk scores with immune checkpoint gene expression and drug sensitivity analysis provide patients with multiple therapeutic targets and drug options. Our study constructed a prognostic risk model for PAAD patients based on T-cell marker genes, providing valuable insights into predicting patient prognosis and the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Dingya Sun
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha 410083, China;
| | - Yijie Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| | - Jun Peng
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha 410083, China;
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
14
|
Kim Y, Cheng W, Cho CS, Hwang Y, Si Y, Park A, Schrank M, Hsu JE, Anacleto A, Xi J, Kim M, Pedersen E, Koues OI, Wilson T, Lee C, Jun G, Kang HM, Lee JH. Seq-Scope: repurposing Illumina sequencing flow cells for high-resolution spatial transcriptomics. Nat Protoc 2025; 20:643-689. [PMID: 39482362 PMCID: PMC11896753 DOI: 10.1038/s41596-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024]
Abstract
Spatial transcriptomics technologies aim to advance gene expression studies by profiling the entire transcriptome with intact spatial information from a single histological slide. However, the application of spatial transcriptomics is limited by low resolution, limited transcript coverage, complex procedures, poor scalability and high costs of initial setup and/or individual experiments. Seq-Scope repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, overcoming these limitations. It offers submicrometer resolution, high capture efficiency, rapid turnaround time and precise annotation of histopathology at a much lower cost than commercial alternatives. This protocol details the implementation of Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell, allowing the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. We describe the preparation of a fresh-frozen tissue section for both histological imaging and sequencing library preparation and provide a streamlined computational pipeline with comprehensive instructions to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single-cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Aside from array production and sequencing, which can be done in batches, tissue processing, library preparation and running the computational pipeline can be completed within 3 days by researchers with experience in molecular biology, histology and basic Unix skills. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology.
Collapse
Affiliation(s)
- Yongsung Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Weiqiu Cheng
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Chun-Seok Cho
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yongha Hwang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Space Planning and Analysis, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yichen Si
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anna Park
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mitchell Schrank
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jer-En Hsu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Angelo Anacleto
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jingyue Xi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ellen Pedersen
- Biomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USA
| | - Olivia I Koues
- Biomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Wilson
- Biomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Goo Jun
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Yuan X, Long Q, Li W, Yan Q, Zhang P. Characteristics of the Dynamic Evolutionary Pathway of ADSCs Induced Differentiation into Astrocytes Based on scRNA-Seq Analysis. Mol Neurobiol 2025; 62:2926-2944. [PMID: 39190264 DOI: 10.1007/s12035-024-04414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
We employed single-cell transcriptome sequencing to reveal the dynamic gene expression changes during the differentiation of adipose-derived stromal cells (ADSCs) into astrocytes. Single-cell RNA sequencing was conducted on cells from the ADSCs group and the induced groups at 2, 7, 14, and 21 days using the 10 × Chromium platform. Data underwent quality control and dimensionality reduction. Cell differentiation trajectories were constructed using Monocle2, and differentially expressed genes (DEGs) in each cell cluster were identified using differential selection algorithms. DEGs at each time point were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and regulatory intensities of transcription factors were analyzed using SCENIC. Integrating all groups, a total of five samples were divided into 13 cell clusters (0-12 clusters). DEGs between clusters and those compared with ADSCs at various induced time points showed distinct specificities. Monocle2 constructed cell differentiation trajectories; ADSCs can differentiate into mature astrocytes not only through the direct pathway from the 1 branch to the 3 branch but also through an indirect pathway, involving the 1 branch to the 2 branch before progressing to the 3 branch. SCENIC analysis highlighted the critical regulatory roles of STAT1, MYEF2, and SOX6 transcription factors during the differentiation of ADSCs into astrocytes. ADSCs can differentiate into mature astrocytes through two distinct pathways: direct and indirect. By the 14th day of induction, mature astrocytes have formed, characterized by a cell cycle arrest in mitosis. Further induction leads to degenerative senescence changes in differentiated cells.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Qingxi Long
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Wen Li
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Qi Yan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Pingshu Zhang
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
| |
Collapse
|
16
|
Yang S, Chen B, Zhang J, Zhou X, Jiang Y, Tong W, Chen J, Luo N. Single-cell sequencing reveals that AK5 inhibits apoptosis in AD oligodendrocytes by regulating the AMPK signaling pathway. Mol Biol Rep 2025; 52:213. [PMID: 39921763 PMCID: PMC11807073 DOI: 10.1007/s11033-025-10311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Neuroinflammation and abnormal energy metabolism have been shown to significantly contribute to the progression of Alzheimer's disease (AD). Adenylate kinase 5 (AK5), an enzyme predominantly expressed in the brain regulates ATP metabolism, has an unclear role in energy metabolism and neuroinflammation in AD. METHODS The AD datasets were derived from the GEO public database to analyze the expression levels of AK5 in AD and normal samples and to assess the relationship between AK5 expression and the clinical characteristics of AD patients. Functional enrichment analysis was employed to investigate the effects of changes in AK5 expression on energy metabolism and immunoinflammation in AD, as well as the underlying mechanisms. Moreover, the influence of AK5 expression variations on oligodendrocyte development was assessed, and the predicted outcomes were validated through cellular experiments. RESULTS Bioinformatic analysis revealed that AK5 was lowly expressed in AD olfactory lobe tissues, accompanied by increased immunoinflammation and apoptosis. Increased expression of AK5 was associated with the activation of AMPK signaling, enhanced oxidative phosphorylation, and overall stimulation of energy metabolism. In oligodendrocytes treated with Aβ1-42, overexpression of AK5 resulted in elevated levels of P-AMPK, SIRT1, and BCL-2 proteins, while reducing the levels of BAX, CASPASE-3, and NF-κB proteins. This modulation activated AMPK signaling, thereby inhibiting neuroinflammation and apoptosis. In contrast, low levels of AK5 expression during early differentiation triggered inflammatory responses and increased apoptosis in oligodendrocytes. CONCLUSION AK5 inhibits AD oligodendrocyte apoptosis by activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shiyun Yang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Bolun Chen
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiatong Zhang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinmei Zhou
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuanjing Jiang
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
17
|
Agboraw E, Haese-Hill W, Hentzschel F, Briggs E, Aghabi D, Heawood A, Harding CR, Shiels B, Crouch K, Somma D, Otto TD. paraCell: a novel software tool for the interactive analysis and visualization of standard and dual host-parasite single-cell RNA-seq data. Nucleic Acids Res 2025; 53:gkaf091. [PMID: 39988320 PMCID: PMC11840555 DOI: 10.1093/nar/gkaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
Advances in sequencing technology have led to a dramatic increase in the number of single-cell transcriptomic datasets. In the field of parasitology, these datasets typically describe the gene expression patterns of a given parasite species at the single-cell level under experimental conditions, in specific hosts or tissues, or at different life cycle stages. However, while this wealth of available data represents a significant resource, analysing these datasets often requires expert computational skills, preventing a considerable proportion of the parasitology community from meaningfully integrating existing single-cell data into their work. Here, we present paraCell, a novel software tool that allows the user to visualize and analyse pre-loaded single-cell data without requiring any programming ability. The source code is free to allow remote installation. On our web server, we demonstrated how to visualize and re-analyse published Plasmodium and Trypanosoma datasets. We have also generated Toxoplasma-mouse and Theileria-cow scRNA-seq datasets to highlight the functionality of paraCell for pathogen-host interaction. The analysis of the data highlights the impact of the host interferon-γ response and gene expression profiles associated with disease susceptibility by these intracellular parasites, respectively.
Collapse
Affiliation(s)
- Edward Agboraw
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William Haese-Hill
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- MVLS SRF, Research Software Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Franziska Hentzschel
- Centre for Infectious Diseases, Heidelberg University Medical Faculty, 69120 Heidelberg, Germany
| | - Emma Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH4 2JP Edinburgh, United Kingdom
| | - Dana Aghabi
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Anna Heawood
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Clare R Harding
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, G61 1QH Glasgow, United Kingdom
| | - Kathryn Crouch
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Domenico Somma
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- LPHI, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
18
|
Huang A, Rao J, Feng X, Li X, Xu T, Yao L. Breaking new ground: Unraveling the USP1/ID3/E12/P21 axis in vascular calcification. Transl Res 2025; 276:1-20. [PMID: 39326697 DOI: 10.1016/j.trsl.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Vascular calcification (VC) poses significant challenges in cardiovascular health. This study employs single-cell transcriptome sequencing to dissect cellular dynamics in this process. We identify distinct cell subgroups, notably in vascular smooth muscle cells (VSMCs), and observe differences between calcified atherosclerotic cores and adjacent regions. Further exploration reveals ID3 as a key gene regulating VSMC function. In vitro experiments demonstrate ID3's interaction with USP1 and E12, modulating cell proliferation and osteogenic differentiation. Animal models confirm the critical role of the USP1/ID3/E12/P21 axis in VC. This study sheds light on a novel regulatory mechanism, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China
| | - Jianyun Rao
- Outpatient Management Office, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, PR China
| | - Xin Feng
- Department of Nephrology, Liaoning electric power central hospital, Shenyang 110000, PR China
| | - Xingru Li
- Department of Nephrology, Liaoning electric power central hospital, Shenyang 110000, PR China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China.
| |
Collapse
|
19
|
Cao J, Hu B, Li T, Fang D, Jiang L, Wang J. Cellular heterogeneity and cytokine signatures in acute myeloid leukemia: A novel prognostic model. Transl Oncol 2025; 52:102194. [PMID: 39689517 PMCID: PMC11719339 DOI: 10.1016/j.tranon.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex hematological malignancy distinguished by its heterogeneity in genetic aberrations, cellular composition, and clinical outcomes. This diversity complicates the development of effective, universally applicable therapeutic strategies and highlights the necessity for personalized approaches to treatment. In our study, we utilized high-resolution single-cell RNA sequencing from publicly available datasets to dissect the complex cellular landscape of AML. This approach uncovered a diverse array of cellular subpopulations within the bone marrow samples of AML patients. Through meticulous analysis, we identified 156 differentially expressed cytokine-related genes that underscore the nuanced interplay between AML cells and their microenvironment. Leveraging this comprehensive dataset, we constructed a prognostic risk score model based on seven pivotal cytokine-related genes: CCL23, IL2RA, IL3RA, IL6R, INHBA, TNFSF15, and TNFSF18. The mRNA levels of 7 genes in the risk score model have significant different. This model was rigorously validated across several independent AML patient cohorts, showcasing its robust prognostic capability to stratify patients into distinct risk categories. Patients classified under the high-risk category exhibited significantly poorer survival outcomes compared to their low-risk counterparts, underscoring the model's clinical relevance. Additionally, our in-depth investigation into the immune landscape revealed marked differences in immune cell infiltration and cytokine signaling between the identified risk groups, shedding light on potential immune-mediated mechanisms driving disease progression and treatment resistance. This comprehensive analysis not only advances our understanding of the cellular and molecular underpinnings of AML but also introduces a novel, clinically applicable risk score model. This tool holds significant promise for enhancing the precision of prognostic assessments in AML, thereby paving the way for more tailored and effective therapeutic interventions. Our findings represent a pivotal step toward the realization of personalized medicine in the management of AML, offering new avenues for research and treatment optimization in this challenging disease landscape.
Collapse
Affiliation(s)
- Jinxia Cao
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Bin Hu
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Tianqi Li
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Dan Fang
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Ling Jiang
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China
| | - Jun Wang
- Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Wuling District, Changde, Hunan Province, China.
| |
Collapse
|
20
|
Hao F, Yan Z, Shen L, Hui W, Ling Q, Xiaoyu Y, Hua J. Reverse-engineering the FLT3-PI3K/AKT axis to enhance TILs function and improve prognosis in ovarian and cervical cancers. J Ovarian Res 2025; 18:14. [PMID: 39863894 PMCID: PMC11762100 DOI: 10.1186/s13048-025-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive. METHODS We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators. Seurat and Harmony were employed for batch correction and dimensionality reduction. FLT3 expression was mapped with spatial data from 10 × Genomics. RESULTS FLT3, identified as a regulator through the PI3K/AKT pathway, showed positive correlations with T cells, NK cells, and B cells. FLT3-high regions exhibited increased immune infiltration, particularly in CC, enhancing survival outcomes. CONCLUSION This study provides the first spatially resolved evidence of FLT3's immune-modulatory role in OC and CC, positioning it as a promising immunotherapeutic target. FLT3-targeted strategies may offer new options for patients resistant to conventional therapies.
Collapse
Affiliation(s)
- Feng Hao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Zhang Yan
- Department of Cervical, Xiamen Women and Children's Healthcare Hospital, Women's and Children's Hospital of Xiamen University, #10 Zhenhai Road, Xiamen, 361000, People's Republic of China
| | - Luo Shen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Wang Hui
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Qiu Ling
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Yang Xiaoyu
- HK International Regenerative Centre, MIRAMAR TWR 132 NATHAN RD Tsim Sha Tsui, Hong Kong Special Administrative Region, China.
| | - Jiang Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
21
|
Ongaro L, Zhou X, Wang Y, Schultz H, Zhou Z, Buddle ERS, Brûlé E, Lin YF, Schang G, Hagg A, Castonguay R, Liu Y, Su GH, Seidah NG, Ray KC, Karp SJ, Boehm U, Ruf-Zamojski F, Sealfon SC, Walton KL, Lee SJ, Bernard DJ. Muscle-derived myostatin is a major endocrine driver of follicle-stimulating hormone synthesis. Science 2025; 387:329-336. [PMID: 39818879 DOI: 10.1126/science.adi4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins. Our results both challenge activin's eponymous role in FSH synthesis and establish an unexpected endocrine axis between skeletal muscle and the pituitary gland. Our data also suggest that efforts to antagonize myostatin to increase muscle mass may have unintended consequences on fertility.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Ziyue Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adam Hagg
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM)-University of Montreal, Montreal, Quebec, Canada
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Frederique Ruf-Zamojski
- Cedars-Sinai Medical Center, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Los Angeles, CA, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Yang T, Zhang N, Yang N. Single-cell sequencing in diabetic retinopathy: progress and prospects. J Transl Med 2025; 23:49. [PMID: 39806376 PMCID: PMC11727737 DOI: 10.1186/s12967-024-06066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic retinopathy is a major ocular complication of diabetes, characterized by progressive retinal microvascular damage and significant visual impairment in working-age adults. Traditional bulk RNA sequencing offers overall gene expression profiles but does not account for cellular heterogeneity. Single-cell RNA sequencing overcomes this limitation by providing transcriptomic data at the individual cell level and distinguishing novel cell subtypes, developmental trajectories, and intercellular communications. Researchers can use single-cell sequencing to draw retinal cell atlases and identify the transcriptomic features of retinal cells, enhancing our understanding of the pathogenesis and pathological changes in diabetic retinopathy. Additionally, single-cell sequencing is widely employed to analyze retinal organoids and single extracellular vesicles. Single-cell multi-omics sequencing integrates omics information, whereas stereo-sequencing analyzes gene expression and spatiotemporal data simultaneously. This review discusses the protocols of single-cell sequencing for obtaining single cells from retina and accurate sequencing data. It highlights the applications and advancements of single-cell sequencing in the study of normal retinas and the pathological changes associated with diabetic retinopathy. This underscores the potential of these technologies to deepen our understanding of the pathogenesis of diabetic retinopathy that may lead to the introduction of new therapeutic strategies.
Collapse
Affiliation(s)
- Tianshu Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China.
| |
Collapse
|
23
|
Sim SY, Baek IC, Cho WK, Jung MH, Kim TG, Suh BK. Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves' Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study. Cells 2025; 14:93. [PMID: 39851522 PMCID: PMC11764232 DOI: 10.3390/cells14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Turner syndrome (TS) can be determined by karyotype analysis, marked by the loss of one X chromosome in females. However, the genes involved in autoimmunity in TS patients remain unclear. In this study, we aimed to analyze differences in immune gene expression between a patient with TS, a healthy female, and a female patient with Graves' disease using single-cell RNA sequencing (scRNA-seq) analysis of antigen-specific CD4(+) T cells. We identified 43 differentially expressed genes in the TS patient compared with the healthy female and the female patient with Graves' disease. Many of these genes have previously been suggested to play a role in immune system regulation. This study provides valuable insights into the differences in immune-related gene expression between TS patients, healthy individuals, and those with autoimmune diseases.
Collapse
Affiliation(s)
- Soo Yeun Sim
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.Y.S.); (B.-K.S.)
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Won Kyoung Cho
- Department of Pediatrics, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Min Ho Jung
- Department of Pediatrics, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea;
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Byung-Kyu Suh
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.Y.S.); (B.-K.S.)
| |
Collapse
|
24
|
Wang H, Li F, Wang Q, Guo X, Chen X, Zou X, Yuan J. Identifying ADME-related gene signature for immune landscape and prognosis in KIRC by single-cell and spatial transcriptome analysis. Sci Rep 2025; 15:1294. [PMID: 39779746 PMCID: PMC11711672 DOI: 10.1038/s41598-024-84018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of kidney cancer. Although multiple therapeutic agents have been proven effective in KIRC, their clinical application has been hindered by a lack of reliable biomarkers. This study focused on the prognostic value and function of drug absorption, distribution, metabolism, and excretion- (ADME-) related genes (ARGs) in KIRC to enhance personalized therapy. The critical role of ARGs in KIRC microenvironment was confirmed by single cell RNA-seq analysis and spatial transcriptome sequencing analysis for the first time. Then, an ADME-related prognostic signature (ARPS) was developed by the bulk RNA-seq analysis. The ARPS, created through Cox regression, LASSO, and stepAIC analyses, identified eight ARGs that stratified patients into high-risk and low-risk groups. High-risk patients had significantly poorer overall survival. Multivariate analysis confirmed the independent predictive ability of ARPS, and an ARPS-based nomogram was constructed for clinical application. Gene ontology and KEGG pathway analyses revealed immune-related functions and pathways enriched in these groups, with low-risk patients showing better responses to immunotherapy. Finally, the expression of ARGs was validated by qRT-PCR and Western blotting experiments. These findings underscore the prognostic significance of ARPS in KIRC and its potential application in guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Feizhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Qiong Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyuan Guo
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinbing Chen
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinrong Zou
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Institute of Chinese Medicine Nephrology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine (Hubei Province Hospital of Traditional Chinese Medicine), Wuhan, 430061, China.
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
25
|
Wang Z, Xie Z, Li T, Chen R, Zeng Z, Guo J. Energy Metabolism Dysregulation in Myocardial Infarction: An Integrative Analysis of Ischemic Cardiomyopathy. Curr Vasc Pharmacol 2025; 23:57-66. [PMID: 39069811 DOI: 10.2174/0115701611289159240724114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Myocardial metabolism is closely related to functional changes after myocardial infarction (MI). OBJECTIVE This study aimed to present an integrative examination of human ischemic cardiomyopathy. METHODS We used both GSE121893 single-cell suspension sequencing and GSE19303 transcription microarray data sets from the GEO database, along with a murine MI model for full-spectrum metabolite detection. Through a systematic investigation that involved differential metabolite identification and functional enrichment analysis, we shed light on the pivotal role of energy metabolism dysregulation in the progression of MI. RESULTS Our findings revealed an association between the core regulatory genes CDKN1A, FOS, ITGB4, and MAP2K1 and the underlying pathophysiology of the disease. These genes are identified as critical elements in the complex landscape of myocardial ischemic disorder, highlighting novel insights into therapeutic targets and the intricate biological mechanisms involved. CONCLUSION This analysis provides a framework for future research on the metabolic alterations associated with MI.
Collapse
Affiliation(s)
- Zongtao Wang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhixin Xie
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Tudi Li
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Rong Chen
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhihuan Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
26
|
Lu J, Zhang L, Cao H, Ma X, Bai Z, Zhu H, Qi Y, Zhang S, Zhang P, He Z, Yang H, Liu Z, Jia W. The Low Tumorigenic Risk and Subtypes of Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells. Curr Stem Cell Res Ther 2025; 20:317-335. [PMID: 40351082 DOI: 10.2174/011574888x318139240621051224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2025]
Abstract
BACKGROUND Clinical application of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a promising approach for the treatment of heart diseases. However, the tumorigenicity of hiPSC-CMs remains a concern for their clinical applications and the composition of the hiPSC-CM subtypes need to be clearly identified. METHODS In the present study, hiPSC-CMs were induced from hiPSCs via modulation of Wnt signaling followed by glucose deprivation purification. The structure, function, subpopulation composition, and tumorigenic risk of hiPSC-CMs were evaluated by single-cell RNA sequencing (scRNAseq), whole exome sequencing (WES), and integrated molecular biology, cell biology, electrophysiology, and/or animal experiments. RESULTS The high purity of hiPSC-CMs, determined by flow cytometry analysis, was generated. ScRNAseq analysis of differentiation day (D) 25 hiPSC-CMs did not identify the transcripts representative of undifferentiated hiPSCs. WES analysis showed a few newly acquired confidently identified mutations and no mutations in tumor susceptibility genes. Further, no tumor formation was observed after transplanting hiPSC-CMs into NOD-SCID mice for 3 months. Moreover, D25 hiPSC-CMs were composed of subtypes of ventricular-like cells (23.19%) and atrial-like cells (66.45%) in different cell cycle stages or mature levels, based on the scRNAseq analysis. Furthermore, a subpopulation of more mature ventricular cells (3.21%) was identified, which displayed significantly up-regulated signaling pathways related to myocardial contraction and action potentials. Additionally, a subpopulation of cardiomyocytes in an early differentiation stage (3.44%) experiencing nutrient stress-induced injury and heading toward apoptosis was observed. CONCLUSIONS This study confirmed the biological safety of hiPSC-CMs and described the composition and expression profile of cardiac subtypes in hiPSC-CMs which provide standards for quality control and theoretical supports for the translational applications of hiPSC-CMs.
Collapse
Affiliation(s)
- Jizhen Lu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Lu Zhang
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Hongxia Cao
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Xiaoxue Ma
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Zhihui Bai
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Hanyu Zhu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Yiyao Qi
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Shoumei Zhang
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Zhiying He
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Huangtian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Zhongmin Liu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Wenwen Jia
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Bozhkova M, Gardzheva P, Rangelova V, Taskov H, Murdjeva M. Cutting-edge assessment techniques for B cell immune memory: an overview. BIOTECHNOL BIOTEC EQ 2024; 38. [DOI: 10.1080/13102818.2024.2345119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 10/31/2024] Open
Affiliation(s)
- Martina Bozhkova
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Petya Gardzheva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University–Plovdiv, Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| |
Collapse
|
28
|
Yao Y, Liu Y, Lu B, Ji G, Wang L, Dong K, Zhao Z, Lyu D, Wei M, Tu S, Lyu X, Li Y, Huang R, Zhou W, Xu G, Pan X, Cui X. Construction and validation of a regulatory T cells-based classification of renal cell carcinoma: an integrated bioinformatic analysis and clinical cohort study. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01030-9. [PMID: 39714755 DOI: 10.1007/s13402-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Renal cell carcinoma (RCC), exhibiting remarkable heterogeneity, can be highly infiltrated by regulatory T cells (Tregs). However, the relationship between Treg and the heterogeneity of RCC remains to be explored. METHODS We acquired single-cell RNA-seq profiles and 537 bulk RNA-seq profiles of TCGA-KIRC cohort. Through clustering, monocle2 pseudotime and prognostic analyses, we identified Treg states-related prognostic genes (TSRPGs), then constructing the RCC Treg states-related prognostic classification (RCC-TSC). We also explored its prognostic significance and multi-omics landmarks. Additionally, we utilized correlation analysis to establish regulatory networks, and predicted candidate inhibitors. More importantly, in Xinhua cohort of 370 patients with kidney neoplasm, we used immunohistochemical (IHC) staining for classification, then employing statistical analyses including Chi-square tests and multivariate Cox proportional hazards regression analysis to explore its clinical relevance. RESULTS We defined 44 TSRPGs in four different monocle states, and identified high immune infiltration RCC (HIRC, LAG3+, Mki67+) as the highly exhausted subtype with the worst prognosis in RCC-TSC (p < 0.001). BATF-LAG3-immune cells axis might be its underlying metastasis-related mechanism. Immunotherapy and inhibitors including sunitinib potentially conferred best therapeutic effects for HIRC. Furthermore, we successfully validated HIRC subtype as an independent prognostic factor within the Xinhua cohort (OS, HR = 16.68, 95% CI = 1.88-148.1, p = 0.011; PFS, HR = 4.43, 95% CI = 1.55-12.6, p = 0.005). CONCLUSION Through integrated bioinformatics analysis and a large-sample retrospective clinical study, we successfully established RCC-TSC and a diagnostic kit, which could stratify RCC patients with different prognosis and to guide personalized treatment.
Collapse
Affiliation(s)
- Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maodong Wei
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siqi Tu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xukun Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Guofeng Xu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
29
|
Zhang Z, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Advancements in the Application of scRNA-Seq in Breast Research: A Review. Int J Mol Sci 2024; 25:13706. [PMID: 39769466 PMCID: PMC11677372 DOI: 10.3390/ijms252413706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Single-cell sequencing technology provides apparent advantages in cell population heterogeneity, allowing individuals to better comprehend tissues and organs. Sequencing technology is currently moving beyond the standard transcriptome to the single-cell level, which is likely to bring new insights into the function of breast cells. In this study, we examine the primary cell types involved in breast development, as well as achievements in the study of scRNA-seq in the microenvironment, stressing the finding of novel cell subsets using single-cell approaches and analyzing the problems and solutions to scRNA-seq. Furthermore, we are excited about the field's promising future.
Collapse
Affiliation(s)
- Zhenyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoming Ma
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Yongfu La
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Min Chu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Pengjia Bao
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Ping Yan
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoyun Wu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Chunnian Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| |
Collapse
|
30
|
Liu X, Wang H, Gao J. scIALM: A method for sparse scRNA-seq expression matrix imputation using the Inexact Augmented Lagrange Multiplier with low error. Comput Struct Biotechnol J 2024; 23:549-558. [PMID: 38274995 PMCID: PMC10809077 DOI: 10.1016/j.csbj.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology that quantifies gene expression profiles of specific cell populations at the single-cell level, providing a foundation for studying cellular heterogeneity and patient pathological characteristics. It is effective for developmental, fertility, and disease studies. However, the cell-gene expression matrix of single-cell sequencing data is often sparse and contains numerous zero values. Some of the zero values derive from noise, where dropout noise has a large impact on downstream analysis. In this paper, we propose a method named scIALM for imputation recovery of sparse single-cell RNA data expression matrices, which employs the Inexact Augmented Lagrange Multiplier method to use sparse but clean (accurate) data to recover unknown entries in the matrix. We perform experimental analysis on four datasets, calling the expression matrix after Quality Control (QC) as the original matrix, and comparing the performance of scIALM with six other methods using mean squared error (MSE), mean absolute error (MAE), Pearson correlation coefficient (PCC), and cosine similarity (CS). Our results demonstrate that scIALM accurately recovers the original data of the matrix with an error of 10e-4, and the mean value of the four metrics reaches 4.5072 (MSE), 0.765 (MAE), 0.8701 (PCC), 0.8896 (CS). In addition, at 10%-50% random masking noise, scIALM is the least sensitive to the masking ratio. For downstream analysis, this study uses adjusted rand index (ARI) and normalized mutual information (NMI) to evaluate the clustering effect, and the results are improved on three datasets containing real cluster labels.
Collapse
Affiliation(s)
- Xiaohong Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Han Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingyang Gao
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
31
|
Shi S, Huang C, Tang X, Liu H, Feng W, Chen C. Identification and verification of diagnostic biomarkers for deep infiltrating endometriosis based on machine learning algorithms. J Biol Eng 2024; 18:70. [PMID: 39587559 PMCID: PMC11590220 DOI: 10.1186/s13036-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
This study addresses the challenges in the early diagnosis of deep infiltrating endometriosis (DIE) by exploring the potential role of the deubiquitinating enzyme USP14. By analyzing the GSE141549 dataset from the Gene Expression Omnibus (GEO) database, using bioinformatics methods and three machine learning algorithms (LASSO, Random Forest, and Support Vector Machine), the key feature gene USP14 was identified. The results indicated that USP14 is significantly upregulated in DIE and exhibits good predictive value (AUC = 0.786). Further analysis revealed the important role of USP14 in muscle function, cellular growth factor response, and maintenance of chromosome structure, and its close association with various immune cell functions. Immunohistochemical staining confirmed the high expression of USP14 in DIE tissues. This study provides a new molecular target for the early diagnosis of DIE, which holds significant clinical implications and potential application value.
Collapse
Affiliation(s)
- Shanping Shi
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Chao Huang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Xiaojian Tang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| | - Chen Chen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| |
Collapse
|
32
|
Wang X, Wang Y, Bai B, Shaha A, Bao W, He L, Wang T, Kitange GJ, Kang N. PKMζ, a Brain-specific PKCζ Isoform, is Required for Glycolysis and Myofibroblastic Activation of Hepatic Stellate Cells. Cell Mol Gastroenterol Hepatol 2024; 19:101429. [PMID: 39542399 PMCID: PMC11750446 DOI: 10.1016/j.jcmgh.2024.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND & AIMS Transforming growth factor (TGF)β1 induces plasma membrane (PM) accumulation of glucose transporter 1 (Glut1) required for glycolysis of hepatic stellate cells (HSCs) and HSC activation. This study aimed to understand how Glut1 is anchored/docked onto the PM of HSCs. METHODS HSC expression of protein kinase M zeta isoform (PKMζ) was detected by reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. PKMζ level was manipulated by short hairpin RNA (shRNA) or overexpression; HSC activation was assessed by cell expression of activation markers; PM Glut1, glucose uptake, and glycolysis of HSCs were analyzed by biotinylation, 2-NBDG-based assay, and Seahorse Glycolysis Stress Test. Phospho-mutants of vasodilator-stimulated phosphorylated protein (VASP) were created by site-directed mutagenesis. TGFβ transcriptome was obtained by RNA sequencing. Single-cell RNA sequencing datasets and immunofluorescence were leveraged to analyze PKMζ expression in cancer-associated fibroblasts (CAFs) of colorectal liver metastases. Function of HSC PKMζ was determined by tumor/HSC co-implantation study. RESULTS Primary human and murine HSCs express PKMζ, but not full-length PKCζ. PKMζ knockdown suppresses, whereas PKMζ overexpression potentiates PM accumulation of Glut1, glycolysis, and HSC activation induced by TGFβ1. Mechanistically, PKMζ binds to and induces VASP phosphorylation at serines 157 and 239 facilitating anchoring/docking of Glut1 onto the PM of HSCs. PKMζ expression is increased in the CAFs of murine and patient colorectal liver metastases compared with quiescent HSCs. Targeting PKMζ suppresses transcriptome, CAF activation of HSCs, and colorectal tumor growth in mice. CONCLUSIONS Because HSCs are also a major contributor of liver fibrosis, our data highlight PKMζ and VASP as targets to inhibit metabolic reprogramming, HSC activation, liver fibrosis, and the pro-metastatic microenvironment of the liver.
Collapse
Affiliation(s)
- Xianghu Wang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Bing Bai
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Wenming Bao
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Lianping He
- School of Medicine, Taizhou University, Taizhou, Zhejiang, P. R. China
| | - Tian Wang
- School of Public Health, Anhui University of Science and Technology, Huainan, Anhui, P. R. China
| | - Gaspar J Kitange
- Cancer Therapy Resistance and Drug Target Discovery, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, The Hormel Institute, University of Minnesota, Austin, Minnesota.
| |
Collapse
|
33
|
Yu G, Ge X, Li W, Ji L, Yang S. Interspecific cross-talk: The catalyst driving microbial biosynthesis of secondary metabolites. Biotechnol Adv 2024; 76:108420. [PMID: 39128577 DOI: 10.1016/j.biotechadv.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiaoxuan Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
34
|
Liu X, Li X, Li H, Guan B, Jiang Y, Zheng C, Kong D. Annexin A1: a key regulator of T cell function and bone marrow adiposity in aplastic anaemia. J Physiol 2024; 602:6125-6152. [PMID: 39373986 DOI: 10.1113/jp286148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
This study investigates the role of Annexin A1 (ANXA1) in regulating T cell function and its implications in bone marrow adiposity in aplastic anaemia (AA). Utilizing single-cell sequencing analysis, we compared bone marrow tissues from AA patients and healthy individuals, focusing on T cell subgroups and their impact on bone marrow pathology. Our findings reveal a significant activation of CD8+ T cells in AA, driven by reduced ANXA1 expression. This heightened T cell activity promotes adipogenesis in bone marrow-derived mesenchymal stem cells via IFN-γ secretion. Overexpression of ANXA1 was found to suppress this process, suggesting its therapeutic potential in AA treatment. The study highlights ANXA1 as a crucial regulator in the AA-associated immune microenvironment and bone marrow adiposity. KEY POINTS: This study found that ANXA1 is significantly downregulated in AA and provides detailed insights into its critical role in the disease. The study demonstrates the excessive activation of CD8+ T cells in the progression of AA. The research shows that the overexpression of ANXA1 can effectively inhibit the activation of CD8+ T cells. The study confirms that overexpression of ANXA1 reduces the secretion of the cytokine IFN-γ, decreases adipogenesis in bone marrow-derived mesenchymal stem cells and may improve AA symptoms. This research provides new molecular targets for the treatment of AA.
Collapse
Affiliation(s)
- Xia Liu
- Department of Respiratory Intervention, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- JiNan Key Laboratory of Basic and Clinical Translational Research in Radiobiology, Jinan, China
| | - Hui Li
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiang
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| | - Dexiao Kong
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China
- Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research, Shandong University, Jinan, China
| |
Collapse
|
35
|
Yu Y, Li Y, Zhou L, Cheng X, Gong Z. Hepatic stellate cells promote hepatocellular carcinoma development by regulating histone lactylation: Novel insights from single-cell RNA sequencing and spatial transcriptomics analyses. Cancer Lett 2024; 604:217243. [PMID: 39260669 DOI: 10.1016/j.canlet.2024.217243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
This study evaluated the cellular heterogeneity and molecular mechanisms of hepatocellular carcinoma (HCC). Single cell RNA sequencing (scRNA-seq), transcriptomic data, histone lactylation-related genes were collected from public databases. Cell-cell interaction, trajectory, pathway, and spatial transcriptome analyses were executed. Differential expression and survival analyses were conducted. Western blot, Real-time reverse transcription PCR (qRT-PCR), and Cell Counting Kit 8 (CCK8) assay were used to detect the expression of αSMA, AKR1B10 and its target genes, and verify the roles of AKR1B10 in HCC cells. Hepatic stellate cell (HSC) subgroups strongly interacted with tumor cell subgroups, and their spatial distribution was heterogeneous. Two candidate prognostic genes (AKR1B10 and RMRP) were obtained. LONP1, NPIPB3, and ZSWIM6 were determined as AKR1B10 targets. Besides, the expression levels of AKR1B10 and αSMA were significantly increased in LX-2 + HepG2 and LX-2 + HuH7 groups compared to those in LX-2 group, respectively. sh-AKR1B10 significantly inhibited the HCC cell proliferation and change the expression of AKR1B10 target genes, Bcl-2, Bax, Pan Kla, and H3K18la at protein levels. Our findings unveil the pivotal role of HSCs in HCC pathogenesis through regulating histone lactylation.
Collapse
Affiliation(s)
- Yifan Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yongnan Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Xiaoli Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Zheng Gong
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
36
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
37
|
Na M, Kang H, Kim N, Jo A, Lee HO. Characterization of an orthotopic mouse transplant model reveals early changes in the tumor microenvironment of lung cancer. BMB Rep 2024; 57:484-489. [PMID: 39044458 PMCID: PMC11608852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 03/23/2024] [Indexed: 07/25/2024] Open
Abstract
To understand the cellular and molecular dynamics in the early stages of lung cancer, we explored a mouse model of orthotopic tumor transplant created from the Lewis Lung Carcinoma (LLC) cell line. Employing single-cell RNA sequencing, we analyzed the cellular landscape during tumor engraftment, focusing particularly on LLC cells harboring the Kras G12C mutation. This allowed us to identify LLC tumor cells via the detection of mutant Kras transcripts and observe elevated levels of Myc and mesenchymal gene expression. Moreover, our study revealed significant alterations in the lung microenvironment, including the activation of tissue remodeling genes in fibroblasts and the downregulation of MHC class II genes in myeloid subsets. Additionally, T/NK cell subsets displayed more regulatory phenotypes, coupled with reduced proliferation in CD8+ T cells. Collectively, these findings enhance our understanding of lung cancer progression, particularly in a tumor microenvironment with low immunogenicity. [BMB Reports 2024; 57(11): 484-489].
Collapse
Affiliation(s)
- Minsu Na
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Huiram Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Areum Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
38
|
Han S, Xu Q, Du Y, Tang C, Cui H, Xia X, Zheng R, Sun Y, Shang H. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes Dis 2024; 11:101163. [PMID: 39224111 PMCID: PMC11367031 DOI: 10.1016/j.gendis.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) impose a significant burden worldwide. Despite the elucidation of the etiology and underlying molecular mechanisms of CVDs by numerous studies and recent discovery of effective drugs, their morbidity, disability, and mortality are still high. Therefore, precise risk stratification and effective targeted therapies for CVDs are warranted. Recent improvements in single-cell RNA sequencing and spatial transcriptomics have improved our understanding of the mechanisms and cells involved in cardiovascular phylogeny and CVDs. Single-cell RNA sequencing can facilitate the study of the human heart at remarkably high resolution and cellular and molecular heterogeneity. However, this technique does not provide spatial information, which is essential for understanding homeostasis and disease. Spatial transcriptomics can elucidate intracellular interactions, transcription factor distribution, cell spatial localization, and molecular profiles of mRNA and identify cell populations causing the disease and their underlying mechanisms, including cell crosstalk. Herein, we introduce the main methods of RNA-seq and spatial transcriptomics analysis and highlight the latest advances in cardiovascular research. We conclude that single-cell RNA sequencing interprets disease progression in multiple dimensions, levels, perspectives, and dynamics by combining spatial and temporal characterization of the clinical phenome with multidisciplinary techniques such as spatial transcriptomics. This aligns with the dynamic evolution of CVDs (e.g., "angina-myocardial infarction-heart failure" in coronary artery disease). The study of pathways for disease onset and mechanisms (e.g., age, sex, comorbidities) in different patient subgroups should improve disease diagnosis and risk stratification. This can facilitate precise individualized treatment of CVDs.
Collapse
Affiliation(s)
- Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yawen Du
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chuwei Tang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Herong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaofeng Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
39
|
Ding J, Li Y, Wang Z, Han F, Chen M, Du J, Yang T, Zhang M, Wang Y, Xu J, Wang G, Xu Y, Wu X, Hao J, Liu X, Zhang G, Zhang N, Sun W, Cai Z, Wei W. A distinct immune landscape in anti-synthetase syndrome profiled by a single-cell genomic study. Front Immunol 2024; 15:1436114. [PMID: 39512337 PMCID: PMC11540782 DOI: 10.3389/fimmu.2024.1436114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives The objective of this study was to profile the transcriptional profiles of peripheral blood mononuclear cells (PBMCs) and their immune repertoires affected by anti-synthetase syndrome (ASS) at the single-cell level. Methods We performed single-cell RNA sequencing (scRNA-seq) analysis of PBMCs and bulk RNA sequencing for patients with ASS (N=3) and patients with anti-melanoma differentiation-associated gene 5-positive dermatomyositis (MDA5+ DM, N=3) along with healthy controls (HCs, N=4). As ASS and MDA5+ DM have similar organ involvements, MDA5+ DM was used as a disease control. The immune repertoire was constructed by reusing the same scRNA-seq datasets. Importantly, flow cytometry was performed to verify the results from the scRNA-seq analysis. Results After meticulous annotation of PBMCs, we noticed a significant decrease in the proportion of mucosal-associated invariant T (MAIT) cells in ASS patients compared to HCs, while there was a notable increase in the proportion of proliferative NKT cells. Compared with MDA5+ DM patients, in their PBMCs ASS patients presented substantial enrichment of interferon pathways, which were primarily mediated by IFN-II, and displayed a weak immune response. Furthermore, ASS patients exhibited more pronounced metabolic abnormalities, which may in turn affect oxidative phosphorylation pathways. Monocytes from ASS patients appear to play a crucial role as receptive signaling cells for the TNF pathway. Immunophenotyping analysis of PBMCs from ASS patients revealed an increasing trend for the clone type CQQSYSTPWTF. Conclusion Using single-cell genomic datasets of ASS PBMCs, we revealed a distinctive profile in the immune system of individuals with ASS, compared to that with MDA5+ DM or healthy controls.
Collapse
Affiliation(s)
- Jiayu Ding
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanmei Li
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Zhiqin Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Han
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Ming Chen
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Jun Du
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Tong Yang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Yingai Wang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gaoya Wang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Yong Xu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Xiuhua Wu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Jian Hao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Xinlei Liu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Guangxin Zhang
- Department of Research and Development, Seekgene Biotechnology Co, Ltd, Beijing, China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Wenwen Sun
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| | - Zhigang Cai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin Science and Technology Bureau, Tianjin, China
| |
Collapse
|
40
|
Zou Z, Tang H, Xiao E, Zhou Y, Yin X, Hu Z, Cai Y, Han Q, Wang L. Ensuring Clinical Excellence: The Mindray SAL9000 Biochemical Immunoassay System. Cell Biochem Biophys 2024:10.1007/s12013-024-01568-3. [PMID: 39419930 DOI: 10.1007/s12013-024-01568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to evaluate the performance and clinical laboratory adaptability of the Mindray SAL9000 biochemical immunoassay automation system, ensuring compliance with ISO 15189 standards and relevant national requirements. We conducted comprehensive performance verification tests on 21 biochemical analytes and 15 immunoassays, including precision, accuracy, linear bias, measurement range assessments, interference testing, reference range validation, inter-instrument comparison, and carryover verification. The Mindray SAL9000 demonstrated high performance across various parameters, with all analytes showing good linearity and minimal bias. While specific interfering substances affected some analytes, the system showed excellent resistance to common interferences such as hemolysis, ascorbic acid, and jaundice. The inter-instrument comparison with the BS2000M and Roche 702 indicated a good correlation, with most parameters showing biases of less than 10%, although exceptions were noted for ALT and AST. In conclusion, the Mindray SAL9000 meets clinical requirements through its high precision, excellent accuracy, and broad measurement range, making it a reliable and adaptable choice for clinical outpatient and emergency laboratories.
Collapse
Affiliation(s)
- Zhenzhen Zou
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Honghui Tang
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Erya Xiao
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yu Zhou
- Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215000, China
| | - Xuebei Yin
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhen Hu
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yang Cai
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Qingzhen Han
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Lin Wang
- Center of Clinical Laboratory, The Fourth Affiliated of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
41
|
Lestringant V, Guermouche-Flament H, Jimenez-Pocquet M, Gaillard JB, Penther D. Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization. Curr Res Transl Med 2024; 72:103440. [PMID: 38447270 DOI: 10.1016/j.retram.2024.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Genomic characterization is an essential part of the clinical management of hematological malignancies for diagnostic, prognostic and therapeutic purposes. Although CBA and FISH are still the gold standard in hematology for the detection of CNA and SV, some alternative technologies are intended to complement their deficiencies or even replace them in the more or less near future. In this article, we provide a technological overview of these alternatives. CMA is the historical and well established technique for the high-resolution detection of CNA. For SV detection, there are emerging techniques based on the study of chromatin conformation and more established ones such as RTMLPA for the detection of fusion transcripts and RNA-seq to reveal the molecular consequences of SV. Comprehensive techniques that detect both CNA and SV are the most interesting because they provide all the information in a single examination. Among these, OGM is a promising emerging higher-solution technique that offers a complete solution at a contained cost, at the expense of a relatively low throughput per machine. WGS remains the most adaptable solution, with long-read approaches enabling very high-resolution detection of CAs, but requiring a heavy bioinformatics installation and at a still high cost. However, the development of high-resolution genome-wide detection techniques for CAs allows for a much better description of chromoanagenesis. Therefore, we have included in this review an update on the various existing mechanisms and their consequences and implications, especially prognostic, in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
42
|
Xiang L, Rao J, Yuan J, Xie T, Yan H. Single-Cell RNA-Sequencing: Opening New Horizons for Breast Cancer Research. Int J Mol Sci 2024; 25:9482. [PMID: 39273429 PMCID: PMC11395021 DOI: 10.3390/ijms25179482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent malignant tumor among women with high heterogeneity. Traditional techniques frequently struggle to comprehensively capture the intricacy and variety of cellular states and interactions within breast cancer. As global precision medicine rapidly advances, single-cell RNA sequencing (scRNA-seq) has become a highly effective technique, revolutionizing breast cancer research by offering unprecedented insights into the cellular heterogeneity and complexity of breast cancer. This cutting-edge technology facilitates the analysis of gene expression profiles at the single-cell level, uncovering diverse cell types and states within the tumor microenvironment. By dissecting the cellular composition and transcriptional signatures of breast cancer cells, scRNA-seq provides new perspectives for understanding the mechanisms behind tumor therapy, drug resistance and metastasis in breast cancer. In this review, we summarized the working principle and workflow of scRNA-seq and emphasized the major applications and discoveries of scRNA-seq in breast cancer research, highlighting its impact on our comprehension of breast cancer biology and its potential for guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
43
|
Holman DR, Rubin SJS, Ferenc M, Holman EA, Koron AN, Daniel R, Boland BS, Nolan GP, Chang JT, Rogalla S. Automated spatial omics landscape analysis approach reveals novel tissue architectures in ulcerative colitis. Sci Rep 2024; 14:18934. [PMID: 39147769 PMCID: PMC11327370 DOI: 10.1038/s41598-024-68397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
The utility of spatial omics in leveraging cellular interactions in normal and diseased states for precision medicine is hampered by a lack of strategies for matching disease states with spatial heterogeneity-guided cellular annotations. Here we use a spatial context-dependent approach that matches spatial pattern detection to cell annotation. Using this approach in existing datasets from ulcerative colitis patient colonic biopsies, we identified architectural complexities and associated difficult-to-detect rare cell types in ulcerative colitis germinal-center B cell follicles. Our approach deepens our understanding of health and disease pathogenesis, illustrates a strategy for automating nested architecture detection for highly multiplexed spatial biology data, and informs precision diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Derek R Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Mariusz Ferenc
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Elizabeth A Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alexander N Koron
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robel Daniel
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Brigid S Boland
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - John T Chang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Stephan Rogalla
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
44
|
Wang Y, Zhang J, Yang Y, Chen J, Tan F, Zheng J. Single-cell analysis revealed that MTIF2 could promote hepatocellular carcinoma progression through modulating the ROS pathway. Heliyon 2024; 10:e34438. [PMID: 39082024 PMCID: PMC11284438 DOI: 10.1016/j.heliyon.2024.e34438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Aims To analyze the expression of mitochondrial translational initiation factor 2 (MTIF2) and the biological functions of the gene in hepatocellular carcinoma (HCC). Background The treatment of HCC treatment and its prognostic prediction are limited by a lack of comprehensive understanding of the molecular mechanisms in HCC. OBJECTIVE: To determine the cells expressing MTIF2 in HCC and the function of the MTIF2+ cell subpopulation. Methods Gene expression analysis on TIMER 2.0, UALCAN, and GEPIA databases was performed to measure the expression of MTIF2 in HCC tissues. Cell clustering subgroups and annotation were conducted based on the single-cell sequencing data of HCC and paracancerous tissues in the Gene Expression Omnibus (GEO) database. MTIF2 expression in different cell types was analyzed. Further, biological pathways potentially regulated by MTIF2 in each cell type were identified. In addition, protein-protein interaction (PPI) networks of MTIF2 with genes in its regulated biological pathways were developed. The cell function assay was performed to verify the effects of superoxide dismutase-2 (SOD2) and MTIF2 on HCC cells. Finally, we screened virtual drugs targeting MTIF2 and SOD2 employing database screening, molecular docking and molecular dynamics. Results MTIF2 showed a remarkably high expression in HCC tissues. We identified a total of 10 cell types between HCC tissues and paracancerous tissues. MTIF2 expression was upregulated in epithelial cells, macrophages, and hepatocytes. More importantly, high-expressed MTIF2 in HCC tissues was mainly derived from epithelial cells and hepatocytes, in which the reactive oxygen species (ROS) pathway was significantly positively correlated with MTIF2. In the PPI network, there was a unique interaction pair between SOD2 and MTIF2 in the ROS pathway. Cell function experiments showed that overexpression of MTIF2 enhanced the proliferative and invasive capacities of HCC, which could synergize with SOD2 to co-promote the development of HCC. Finally, molecular dynamics simulations showed that DB00183 maintained a high structural stability with MTIF2 and SOD2 proteins during the simulation process. Conclusion Our study confirmed that the high-expressed MTIF2 in HCC tissues was derived from epithelial cells and hepatocytes. MTIF2 might act on SOD2 to regulate the ROS pathway, thereby affective the progression of HCC.
Collapse
Affiliation(s)
- Yu Wang
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jingqiu Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jinhao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Fengwu Tan
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| |
Collapse
|
45
|
Lause J, Ziegenhain C, Hartmanis L, Berens P, Kobak D. Compound models and Pearson residuals for single-cell RNA-seq data without UMIs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551637. [PMID: 37577688 PMCID: PMC10418209 DOI: 10.1101/2023.08.02.551637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Recent work employed Pearson residuals from Poisson or negative binomial models to normalize UMI data. To extend this approach to non-UMI data, we model the additional amplification step with a compound distribution: we assume that sequenced RNA molecules follow a negative binomial distribution, and are then replicated following an amplification distribution. We show how this model leads to compound Pearson residuals, which yield meaningful gene selection and embeddings of Smart-seq2 datasets. Further, we suggest that amplification distributions across several sequencing protocols can be described by a broken power law. The resulting compound model captures previously unexplained overdispersion and zero-inflation patterns in non-UMI data.
Collapse
|
46
|
Asaad W, Utkina M, Shcherbakova A, Popov S, Melnichenko G, Mokrysheva N. scRNA sequencing technology for PitNET studies. Front Endocrinol (Lausanne) 2024; 15:1414223. [PMID: 39114291 PMCID: PMC11303145 DOI: 10.3389/fendo.2024.1414223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, most likely benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNET types are classified according to their expression of specific transcriptional factors (TFs) and hormone secretion levels. Some types show aggressive, invasive, and reoccurrence behavior. Current research is being conducted to understand the molecular mechanisms regulating these high-heterogeneous neoplasms originating from adenohypophysis, and single-cell RNA sequencing (scRNA-seq) technology is now playing an essential role in these studies due to its remarkable resolution at the single-cell level. This review describes recent studies on human PitNETs performed with scRNA-seq technology, highlighting the potential of this approach in revealing these tumor pathologies, behavior, and regulatory mechanisms.
Collapse
Affiliation(s)
| | - Marina Utkina
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Moscow, Russia
| | | | | | | | | |
Collapse
|
47
|
Tirumalasetty MB, Bhattacharya I, Mohiuddin MS, Baki VB, Choubey M. Understanding testicular single cell transcriptional atlas: from developmental complications to male infertility. Front Endocrinol (Lausanne) 2024; 15:1394812. [PMID: 39055054 PMCID: PMC11269108 DOI: 10.3389/fendo.2024.1394812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Spermatogenesis is a multi-step biological process where mitotically active diploid (2n) spermatogonia differentiate into haploid (n) spermatozoa via regulated meiotic programming. The alarming rise in male infertility has become a global concern during the past decade thereby demanding an extensive profiling of testicular gene expression. Advancements in Next-Generation Sequencing (NGS) technologies have revolutionized our empathy towards complex biological events including spermatogenesis. However, despite multiple attempts made in the past to reveal the testicular transcriptional signature(s) either with bulk tissues or at the single-cell, level, comprehensive reviews on testicular transcriptomics and associated disorders are limited. Notably, technologies explicating the genome-wide gene expression patterns during various stages of spermatogenic progression provide the dynamic molecular landscape of testicular transcription. Our review discusses the advantages of single-cell RNA-sequencing (Sc-RNA-seq) over bulk RNA-seq concerning testicular tissues. Additionally, we highlight the cellular heterogeneity, spatial transcriptomics, dynamic gene expression and cell-to-cell interactions with distinct cell populations within the testes including germ cells (Gc), Sertoli cells (Sc), Peritubular cells (PTc), Leydig cells (Lc), etc. Furthermore, we provide a summary of key finding of single-cell transcriptomic studies that have shed light on developmental mechanisms implicated in testicular disorders and male infertility. These insights emphasize the pivotal roles of Sc-RNA-seq in advancing our knowledge regarding testicular transcriptional landscape and may serve as a potential resource to formulate future clinical interventions for male reproductive health.
Collapse
Affiliation(s)
| | - Indrashis Bhattacharya
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| | - Vijaya Bhaskar Baki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
48
|
Cheng W, Ni P, Wu H, Miao X, Zhao X, Yan D. Unravelling tumour cell diversity and prognostic signatures in cutaneous melanoma through machine learning analysis. J Cell Mol Med 2024; 28:e18570. [PMID: 39054572 PMCID: PMC11272603 DOI: 10.1111/jcmm.18570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
Melanoma, a highly malignant tumour, presents significant challenges due to its cellular heterogeneity, yet research on this aspect in cutaneous melanoma remains limited. In this study, we utilized single-cell data from 92,521 cells to explore the tumour cell landscape. Through clustering analysis, we identified six distinct cell clusters and investigated their differentiation and metabolic heterogeneity using multi-omics approaches. Notably, cytotrace analysis and pseudotime trajectories revealed distinct stages of tumour cell differentiation, which have implications for patient survival. By leveraging markers from these clusters, we developed a tumour cell-specific machine learning model (TCM). This model not only predicts patient outcomes and responses to immunotherapy, but also distinguishes between genomically stable and unstable tumours and identifies inflamed ('hot') versus non-inflamed ('cold') tumours. Intriguingly, the TCM score showed a strong association with TOMM40, which we experimentally validated as an oncogene promoting tumour proliferation, invasion and migration. Overall, our findings introduce a novel biomarker score that aids in selecting melanoma patients for improved prognoses and targeted immunotherapy, thereby guiding clinical treatment decisions.
Collapse
Affiliation(s)
- Wenhao Cheng
- Department of DermatologyThe First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical UniversityLianyungangChina
| | - Ping Ni
- Department of GeriatricsThe Third People's Hospital of Kunshan CityKunshanChina
| | - Hao Wu
- Department of OncologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| | - Xiaye Miao
- Department of Laboratory MedicineNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsuChina
| | - Xiaodong Zhao
- Department of HematologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Dali Yan
- Department of Traditional Chinese Medicine and OncologyThe Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'anHuai'anChina
| |
Collapse
|
49
|
Lin X, Yang P, Wang M, Huang X, Wang B, Chen C, Xu A, Cai J, Khan M, Liu S, Lin J. Dissecting gastric cancer heterogeneity and exploring therapeutic strategies using bulk and single-cell transcriptomic analysis and experimental validation of tumor microenvironment and metabolic interplay. Front Pharmacol 2024; 15:1355269. [PMID: 38962317 PMCID: PMC11220201 DOI: 10.3389/fphar.2024.1355269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
Gastric cancer, the fifth most prevalent cancer worldwide, is often diagnosed in advanced stages with limited treatment options. Examining the tumor microenvironment (TME) and its metabolic reprogramming can provide insights for better diagnosis and treatment. This study investigates the link between TME factors and metabolic activity in gastric cancer using bulk and single-cell RNA-sequencing data. We identified two molecular subtypes in gastric cancer by analyzing the distinct expression patterns of 81 prognostic genes related to the TME and metabolism, which exhibited significant protein-level interactions. The high-risk subtype had increased stromal content, fibroblast and M2 macrophage infiltration, elevated glycosaminoglycans/glycosphingolipids biosynthesis, and fat metabolism, along with advanced clinicopathological features. It also exhibited low mutation rates and microsatellite instability, associating it with the mesenchymal phenotype. In contrast, the low-risk group showed higher tumor content and upregulated protein and sugar metabolism. We identified a 15-gene prognostic signature representing these characteristics, including CPVL, KYNU, CD36, and GPX3, strongly correlated with M2 macrophages, validated through single-cell analysis and an internal cohort. Despite resistance to immunotherapy, the high-risk group showed sensitivity to molecular targeted agents directed at IGF-1R (BMS-754807) and the PI3K-mTOR pathways (AZD8186, AZD8055). We experimentally validated these promising drugs for their inhibitory effects on MKN45 and MKN28 gastric cells. This study unveils the intricate interplay between TME and metabolic pathways in gastric cancer, offering potential for enhanced diagnosis, patient stratification, and personalized treatment. Understanding molecular features in each subtype enriches our comprehension of gastric cancer heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- XianTao Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ping Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - MingKun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Huang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Baiyao Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chengcong Chen
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Anan Xu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiazuo Cai
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Muhammad Khan
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Sha Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
50
|
Huang K, Xu Y, Feng T, Lan H, Ling F, Xiang H, Liu Q. The Advancement and Application of the Single-Cell Transcriptome in Biological and Medical Research. BIOLOGY 2024; 13:451. [PMID: 38927331 PMCID: PMC11200756 DOI: 10.3390/biology13060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Single-cell RNA sequencing technology (scRNA-seq) has been steadily developing since its inception in 2009. Unlike bulk RNA-seq, scRNA-seq identifies the heterogeneity of tissue cells and reveals gene expression changes in individual cells at the microscopic level. Here, we review the development of scRNA-seq, which has gone through iterations of reverse transcription, in vitro transcription, smart-seq, drop-seq, 10 × Genomics, and spatial single-cell transcriptome technologies. The technology of 10 × Genomics has been widely applied in medicine and biology, producing rich research results. Furthermore, this review presents a summary of the analytical process for single-cell transcriptome data and its integration with other omics analyses, including genomes, epigenomes, proteomes, and metabolomics. The single-cell transcriptome has a wide range of applications in biology and medicine. This review analyzes the applications of scRNA-seq in cancer, stem cell research, developmental biology, microbiology, and other fields. In essence, scRNA-seq provides a means of elucidating gene expression patterns in single cells, thereby offering a valuable tool for scientific research. Nevertheless, the current single-cell transcriptome technology is still imperfect, and this review identifies its shortcomings and anticipates future developments. The objective of this review is to facilitate a deeper comprehension of scRNA-seq technology and its applications in biological and medical research, as well as to identify avenues for its future development in alignment with practical needs.
Collapse
Affiliation(s)
- Kongwei Huang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yixue Xu
- Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530005, China;
| | - Tong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Lan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|