1
|
Miyamoto T. Osteoporosis and Rheumatoid Arthritis: Mechanisms Underlying Osteoclast Differentiation and Activation or Factors Associated with Hip Fractures. J Clin Med 2025; 14:1138. [PMID: 40004668 PMCID: PMC11856638 DOI: 10.3390/jcm14041138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoporosis is defined as a condition of increased risk of fracture due to decreased bone strength. In developed countries, the number of patients with osteoporosis and fragility fractures has been increasing in recent years due to the growing elderly population, posing a social challenge not only to fracture patients and their families but also to the social healthcare economy. Osteoporosis can be divided into two categories: primary osteoporosis caused by aging or menopause and secondary osteoporosis caused by metabolic or inflammatory diseases or drugs such as glucocorticoids. The majority of patients have primary osteoporosis, and the pathogenesis of postmenopausal osteoporosis and factors associated with fragility fractures in the elderly have been elucidated. On the other hand, rheumatoid arthritis (RA) is one of the causes of secondary osteoporosis. RA is a chronic inflammatory disease characterized by joint swelling and destruction. Most often, treatment focuses on suppressing these symptoms. However, physicians should be aware of the risk of osteoporosis in RA patients, because (1) RA is a chronic inflammatory disease, which itself can be a risk factor for osteoporosis; (2) glucocorticoids, which are sometimes administered to treat RA, can be a risk factor for osteoporosis; and (3) patients with RA are becoming older, and aging is an osteoporosis risk factor. A comprehensive understanding of the pathogenesis of osteoporosis and its fragility fractures requires elucidating the mechanisms underlying osteoclast activation, which drives their development. Furthermore, identifying the factors associated with fragility fractures is essential. This review summarizes the pathogenesis of osteoporosis, the factors associated with fragility fractures, and the associations between RA and osteoporosis development.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Chawla P, Sharma I, Gau D, Eder I, Chen F, Yu V, Welling N, Boone D, Taboas J, Lee AV, Larregina A, Galson DL, Roy P. Breast cancer cells promote osteoclast differentiation in an MRTF-dependent paracrine manner. Mol Biol Cell 2025; 36:ar8. [PMID: 39630611 PMCID: PMC11742114 DOI: 10.1091/mbc.e24-06-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced OCL differentiation. This is partly attributed to MRTFs' critical role in maintaining the basal cellular expression of connective tissue growth factor (CTGF), findings that align with a strong positive correlation between CTGF expression and MRTF-A gene signature in the human disease context. Luminex analyses reveal that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extend beyond CTGF. Experimental metastasis studies demonstrate that MRTF depletion diminishes OCL abundance and bone colonization of breast cancer cells in vivo, suggesting that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis.
Collapse
Affiliation(s)
- Pooja Chawla
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Ishani Sharma
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - David Gau
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Ian Eder
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
| | - Niharika Welling
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206
| | - Juan Taboas
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Adrian V. Lee
- Pharmacology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Deborah L. Galson
- Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
4
|
Freeman C, A S MD, A S P. Unraveling the Intricacies of OPG/RANKL/RANK Biology and Its Implications in Neurological Disorders-A Comprehensive Literature Review. Mol Neurobiol 2024; 61:10656-10670. [PMID: 38777981 DOI: 10.1007/s12035-024-04227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The OPG/RANKL/RANK framework, along with its specific receptors, plays a crucial role in bone remodeling and the functioning of the central nervous system (CNS) and associated disorders. Recent research and investigations provide evidence that the components of osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and receptor activator of NF-kB (RANK) are expressed in the CNS. The CNS structure encompasses cells involved in neuroinflammation, including local macrophages, inflammatory cells, and microglia that cross the blood-brain barrier. The OPG/RANKL/RANK trio modulates the neuroinflammatory response based on the molecular context. The levels of OPG/RANKL/RANK components can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectants following brain injuries and also participate in the regulation of body weight, internal body temperature, brain ischemia, autoimmune encephalopathy, and energy metabolism. Although the OPG/RANKL/RANK system is primarily known for its role in bone remodeling, further exploring deeper into its multifunctional nature can uncover new functions and novel drug targets for diseases not previously associated with OPG/RANKL/RANK signaling.
Collapse
Affiliation(s)
- Chrisanne Freeman
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India.
| | - Merlyn Diana A S
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| | - Priscilla A S
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| |
Collapse
|
5
|
Yang H, Xu G, Li Q, Zhu L. Ligustrazine alleviates the progression of coronary artery calcification by inhibiting caspase-3/GSDME mediated pyroptosis. Biosci Trends 2024; 18:482-491. [PMID: 38972749 DOI: 10.5582/bst.2024.01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Coronary artery calcification (CAC) is an early marker for atherosclerosis and is mainly induced by the osteoblast-like phenotype conversion of vascular smooth muscle cells (VSMCs). Recent reports indicate that NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis plays a significant role in the calcification of vascular smooth muscle cells (VSMCs), making it a promising target for treating calcific aortic valve disease (CAC). Ligustrazine, or tetramethylpyrazine (TMP), has been found effective in various cardiovascular and cerebrovascular diseases and is suggested to inhibit NLRP3-mediated pyroptosis. However, the function of TMP in CAC is unknown. Herein, influences of TMP on β-glycerophosphate (β-GP)-stimulated VSMCs and OPG-/- mice were explored. Mouse Aortic Vascular Smooth Muscle (MOVAS-1) cells were stimulated by β-GP with si- caspase-3, si- Gasdermin E (GSDME) or TMP. Increased calcification, reactive oxygen species (ROS) level, Interleukin-1beta (IL-1β) and Interleukin-18 (IL-18) levels, lactate dehydrogenase (LDH) release, enhanced apoptosis, and activated cysteine-aspartic acid protease-3 (caspase-3)/GSDME signaling were observed in β-GP-stimulated MOVAS-1 cells, which was sharply alleviated by si-caspase-3, si-GSDME or TMP. Furthermore, the impact of TMP on the β-GP-induced calcification and injury in MOVAS-1 cells was abolished by raptinal, an activator of caspase-3. Subsequently, OPG-/- mice were dosed with TMP or TMP combined with raptinal. Calcium deposition, increased nodules, elevated IL-1β and IL-18 levels, upregulated CASP3 and actin alpha 2, smooth muscle (ACTA2), and activated caspase-3/GSDME signaling in OPG-/- mice were markedly alleviated by TMP, which were notably reversed by the co-administration of raptinal. Collectively, TMP mitigated CAC by inhibiting caspase-3/GSDME mediated pyroptosis.
Collapse
MESH Headings
- Animals
- Pyroptosis/drug effects
- Mice
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- Caspase 3/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Mice, Knockout
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Reactive Oxygen Species/metabolism
- Cell Line
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Osteoprotegerin/metabolism
- Disease Progression
- Phosphate-Binding Proteins/metabolism
- Gasdermins
Collapse
Affiliation(s)
- Honghui Yang
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| | - Guian Xu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| | - Qingman Li
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Chawla P, Sharma I, Gau D, Eder I, Chen F, Yu V, Welling N, Boone D, Taboas J, Lee AV, Larregina A, Galson DL, Roy P. Breast cancer cells promote osteoclast differentiation in an MRTF-dependent paracrine manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570453. [PMID: 38106226 PMCID: PMC10723471 DOI: 10.1101/2023.12.06.570453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone is a frequent site for breast cancer metastasis. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL (receptor activator for nuclear factor κB)-induced differentiation of bone marrow-derived macrophages (BMDMs) to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that Myocardin-related transcription factor (MRTF) in breast cancer cells plays an important role in paracrine modulation of RANKL-induced osteoclast differentiation. This is partly attributed to MRTF's critical role in maintaining the basal cellular expression of connective tissue growth factor (CTGF), findings that align with a strong positive correlation between CTGF expression and MRTF-A gene signature in the human disease context. Luminex analyses reveal that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extend beyond CTGF. Experimental metastasis studies demonstrate that MRTF depletion diminishes OCL abundance and bone colonization breast cancer cells in vivo , suggesting that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis. SIGNIFICANCE STATEMENT MRTF, a transcriptional coactivator of SRF, is known to promote breast cancer progression through its tumor-cell-intrinsic function. Whether and how MRTF activity in tumor cells modulates other types of cells in the tumor microenvironment are not clearly understood.This study uncovers a novel tumor-cell-extrinsic function of MRTF in breast cancer cells in promoting osteoclast differentiation partly through CTGF regulation, and further demonstrates MRTF's requirement for bone colonization of breast cancer cells in vivo.Our studies suggest that MRTF inhibition could be an effective strategy to diminish osteoclast formation and skeletal involvement in metastatic breast cancer.
Collapse
|
7
|
Gravina AG, Pellegrino R, Iascone V, Palladino G, Federico A, Zagari RM. Impact of Helicobacter pylori Eradication on Inflammatory Bowel Disease Onset and Disease Activity: To Eradicate or Not to Eradicate? Diseases 2024; 12:179. [PMID: 39195178 PMCID: PMC11353643 DOI: 10.3390/diseases12080179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Helicobacter pylori infection has significant epidemiological relevance due to the carcinogenic nature of this bacterium, which is potentially associated with cancer. When detected, it should ideally be eradicated using a treatment that currently involves a combination of gastric acid suppressors and multiple antibiotics. However, this treatment raises questions regarding efficacy and safety profiles in patients with specific comorbidities, including inflammatory bowel diseases (IBD). Eradication therapy for H. pylori includes components associated with adverse gastrointestinal events, such as Clostridioides difficile colitis. This necessitates quantifying this risk through dedicated studies to determine whether this antimicrobial treatment could be significantly associated with IBD relapse or exacerbation of pre-existing IBD, as well as whether it could potentially lead to the de novo onset of IBD. Although the available evidence is reassuring about the safety of eradication therapy in patients with IBD, it is limited, and there are no specific recommendations for this particular situation in the leading international IBD and H. pylori guidelines. Therefore, studies need to evaluate the efficacy and safety profiles of the available antimicrobial regimens for H. pylori eradication in patients with IBD, both in clinical trial settings and in real-life studies.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Veronica Iascone
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Esophagus and Stomach Organic Diseases Unit, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rocco Maurizio Zagari
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Esophagus and Stomach Organic Diseases Unit, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Cavalcanti de Araújo PH, Cezine MER, Vulczak A, Vieira LC, Matsuo FS, Remoto JM, Santos ADR, Miyabara EH, Alberici LC, Osako MK. RANKL signaling drives skeletal muscle into the oxidative profile. J Bone Miner Res 2024; 39:753-764. [PMID: 38619281 DOI: 10.1093/jbmr/zjae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The bone-muscle unit refers to the reciprocal regulation between bone and muscle by mechanical interaction and tissue communication via soluble factors. The RANKL stimulation induces mitochondrial biogenesis and increases the oxidative capacity in osteoclasts and adipocytes. RANKL may bind to the membrane bound RANK or to osteoprotegerin (OPG), a decoy receptor that inhibits RANK-RANKL activation. RANK is highly expressed in skeletal muscle, but the contribution of RANKL to healthy skeletal muscle fiber remains elusive. Here we show that RANKL stimulation in C2C12-derived myotubes induced activation of mitochondrial biogenesis pathways as detected by RNA-seq and western blot. RANKL expanded the mitochondrial reticulum, as shown by mitochondrial DNA quantification and MitoTracker staining, and boosted the spare respiratory capacity. Using MEK and MAPK inhibitors, we found that RANKL signals via ERK and p38 to induce mitochondrial biogenesis. The soleus from OPG-/- and OPG+/- mice showed higher respiratory rates compared to C57BL6/J WT mice, which correlates with high serum RANKL levels. RANKL infusion using a mini-osmotic pump in WT mice increased the number of mitochondria, boosted the respiratory rate, increased succinate dehydrogenase activity in skeletal muscle, and improved the fatigue resistance of gastrocnemius. Therefore, our findings reveal a new role of RANKL as an osteokine-like protein that impacts muscle fiber metabolism.
Collapse
Affiliation(s)
- Paulo Henrique Cavalcanti de Araújo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Maria Eduarda Ramos Cezine
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Anderson Vulczak
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Luiz Carlos Vieira
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Flávia Sayuri Matsuo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Júlia Maranghetti Remoto
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Audrei Dos Reis Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Elen Haruka Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Mariana Kiomy Osako
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
9
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Takada A, Asano T, Nakahama KI, Ono T, Nakata T, Ishii T. Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light. Sci Rep 2024; 14:1749. [PMID: 38242937 PMCID: PMC10799070 DOI: 10.1038/s41598-024-52056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.
Collapse
Affiliation(s)
- Aiko Takada
- Department of Orthodontic Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Tomohiro Ishii
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Present Address: Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
11
|
Deo R, Dubin RF, Ren Y, Murthy AC, Wang J, Zheng H, Zheng Z, Feldman H, Shou H, Coresh J, Grams M, Surapaneni AL, Bhat Z, Cohen JB, Rahman M, He J, Saraf SL, Go AS, Kimmel PL, Vasan RS, Segal MR, Li H, Ganz P. Proteomic cardiovascular risk assessment in chronic kidney disease. Eur Heart J 2023; 44:2095-2110. [PMID: 37014015 PMCID: PMC10281556 DOI: 10.1093/eurheartj/ehad115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/21/2023] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
AIMS Chronic kidney disease (CKD) is widely prevalent and independently increases cardiovascular risk. Cardiovascular risk prediction tools derived in the general population perform poorly in CKD. Through large-scale proteomics discovery, this study aimed to create more accurate cardiovascular risk models. METHODS AND RESULTS Elastic net regression was used to derive a proteomic risk model for incident cardiovascular risk in 2182 participants from the Chronic Renal Insufficiency Cohort. The model was then validated in 485 participants from the Atherosclerosis Risk in Communities cohort. All participants had CKD and no history of cardiovascular disease at study baseline when ∼5000 proteins were measured. The proteomic risk model, which consisted of 32 proteins, was superior to both the 2013 ACC/AHA Pooled Cohort Equation and a modified Pooled Cohort Equation that included estimated glomerular filtrate rate. The Chronic Renal Insufficiency Cohort internal validation set demonstrated annualized receiver operating characteristic area under the curve values from 1 to 10 years ranging between 0.84 and 0.89 for the protein and 0.70 and 0.73 for the clinical models. Similar findings were observed in the Atherosclerosis Risk in Communities validation cohort. For nearly half of the individual proteins independently associated with cardiovascular risk, Mendelian randomization suggested a causal link to cardiovascular events or risk factors. Pathway analyses revealed enrichment of proteins involved in immunologic function, vascular and neuronal development, and hepatic fibrosis. CONCLUSION In two sizeable populations with CKD, a proteomic risk model for incident cardiovascular disease surpassed clinical risk models recommended in clinical practice, even after including estimated glomerular filtration rate. New biological insights may prioritize the development of therapeutic strategies for cardiovascular risk reduction in the CKD population.
Collapse
Affiliation(s)
- Rajat Deo
- Division of Cardiovascular Medicine, Electrophysiology Section, Perelman School of Medicine at the University of Pennsylvania, One Convention Avenue, Level 2 / City Side, Philadelphia, PA 19104, USA
| | - Ruth F Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Ashwin C Murthy
- Division of Cardiovascular Medicine, Electrophysiology Section, Perelman School of Medicine at the University of Pennsylvania, One Convention Avenue, Level 2 / City Side, Philadelphia, PA 19104, USA
| | - Jianqiao Wang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Harold Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Josef Coresh
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, 2024 E. Monument Street, Room 2-635, Suite 2-600, Baltimore, MD 21287, USA
| | - Morgan Grams
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, 2024 E. Monument Street, Room 2-635, Suite 2-600, Baltimore, MD 21287, USA
| | - Aditya L Surapaneni
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Zeenat Bhat
- Division of Nephrology, University of Michigan, 5100 Brehm Tower, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Jordana B Cohen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, 831 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Mahboob Rahman
- Department of Medicine, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Wearn Bldg. 3 Floor. Rm 352, Cleveland, OH 44106, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, SL 18, New Orleans, LA 70112, USA
| | - Santosh L Saraf
- Division of Hematology and Oncology, University of Illinois at Chicago, 1740 West Taylor Street, Chicago, IL 60612, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA
- Departments of Epidemiology, Biostatistics and Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, 2nd Floor, Box #0560, San Francisco, CA 94143, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Peter Ganz
- Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California, San Francisco, 1001 Potrero Avenue, 5G1, San Francisco, CA 94110, USA
| |
Collapse
|
12
|
Hye T, Hossain MR, Saha D, Foyez T, Ahsan F. Emerging biologics for the treatment of pulmonary arterial hypertension. J Drug Target 2023; 31:1-15. [PMID: 37026714 PMCID: PMC10228297 DOI: 10.1080/1061186x.2023.2199351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 04/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disorder, wherein mean systemic arterial pressure (mPAP) becomes abnormally high because of aberrant changes in various proliferative and inflammatory signalling pathways of pulmonary arterial cells. Currently used anti-PAH drugs chiefly target the vasodilatory and vasoconstrictive pathways. However, an imbalance between bone morphogenetic protein receptor type II (BMPRII) and transforming growth factor beta (TGF-β) pathways is also implicated in PAH predisposition and pathogenesis. Compared to currently used PAH drugs, various biologics have shown promise as PAH therapeutics that elicit their therapeutic actions akin to endogenous proteins. Biologics that have thus far been explored as PAH therapeutics include monoclonal antibodies, recombinant proteins, engineered cells, and nucleic acids. Because of their similarity with naturally occurring proteins and high binding affinity, biologics are more potent and effective and produce fewer side effects when compared with small molecule drugs. However, biologics also suffer from the limitations of producing immunogenic adverse effects. This review describes various emerging and promising biologics targeting the proliferative/apoptotic and vasodilatory pathways involved in PAH pathogenesis. Here, we have discussed sotatercept, a TGF-β ligand trap, which is reported to reverse vascular remodelling and reduce PVR with an improved 6-minute walk distance (6-MWDT). We also elaborated on other biologics including BMP9 ligand and anti-gremlin1 antibody, anti-OPG antibody, and getagozumab monoclonal antibody and cell-based therapies. Overall, recent literature suggests that biologics hold excellent promise as a safe and effective alternative to currently used PAH therapeutics.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Md Riajul Hossain
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
| | - Tahmina Foyez
- Department of Hematology Blood Research Center School of Medicine, The University of North Carolina at Chapel Hill, North Carolina
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
- MedLuidics LLC, Elk Grove, California, USA
| |
Collapse
|
13
|
Fischer V, Bülow JM, Krüger BT, Ragipoglu D, Vikman A, Haffner-Luntzer M, Katsoulis-Dimitriou K, Dudeck A, Ignatius A. Role of Mast-Cell-Derived RANKL in Ovariectomy-Induced Bone Loss in Mice. Int J Mol Sci 2023; 24:ijms24119135. [PMID: 37298085 DOI: 10.3390/ijms24119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Jasmin Maria Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Konstantinos Katsoulis-Dimitriou
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| |
Collapse
|
14
|
Jiang X, Kong X. Regulation of Wnt Signaling Pathway by Costic Acid Derivative, An Efficient Strategy for Treatment of Glucocorticoid‐Induced Osteoporosis in Rat Model. ChemistrySelect 2023. [DOI: 10.1002/slct.202204912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xue Jiang
- Department of Pharmaceutical Sciences The First People's Hospital of Lianyungang The Affiliated Lianyungang Hospital of Xuzhou Medical University Lianyungang 222000 China
| | - Xiangying Kong
- Bone and casualty Department Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine Lianyungang 222000 China
| |
Collapse
|
15
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Lee UL, Yun S, Lee H, Cao HL, Woo SH, Jeong YH, Jung TG, Kim CM, Choung PH. Osseointegration of 3D-printed titanium implants with surface and structure modifications. Dent Mater 2022; 38:1648-1660. [PMID: 36075761 DOI: 10.1016/j.dental.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The purpose of this study was to establish a mechanical and histological basis for the development of biocompatible maxillofacial reconstruction implants by combining 3D-printed porous titanium structures and surface treatment. Improved osseointegration of 3D-printed titanium implants for reconstruction of maxillofacial segmental bone defect could be advantageous in not only quick osseointegration into the bone tissue but also in stabilizing the reconstruction. METHODS Various macro-mesh titanium scaffolds were fabricated by 3D-printing. Human mesenchymal stem cells were used for cell attachment and proliferation assays. Osteogenic differentiation was confirmed by quantitative polymerase chain reaction analysis. The osseointegration rate was measured using micro computed tomography imaging and histological analysis. RESULTS In three dimensional-printed scaffold, globular microparticle shape was observed regardless of structure or surface modification. Cell attachment and proliferation rates increased according to the internal mesh structure and surface modification. However, osteogenic differentiation in vitro and osseointegration in vivo revealed that non-mesh structure/non-surface modified scaffolds showed the most appropriate treatment effect. CONCLUSION 3D-printed solid structure is the most suitable option for maxillofacial reconstruction. Various mesh structures reduced osteogenesis of the mesenchymal stem cells and osseointegration compared with that by the solid structure. Surface modification by microarc oxidation induced cell proliferation and increased the expression of some osteogenic genes partially; however, most of the markers revealed that the non-anodized solid scaffold was the most suitable for maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ui-Lyong Lee
- Department of Oral & Maxillofacial Surgery, Chung-Ang University Hospital, Seoul 06973, South Korea; Department of Oral & Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, South Korea.
| | - Seokhwan Yun
- Research Institute, Sphebio Co., Ltd., Pohang-si, Gyeongsanbuk 37666, South Korea
| | - Ho Lee
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Hua-Lian Cao
- Department of Oral & Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, South Korea
| | - Su-Heon Woo
- R&D Center, Medyssey Co, Ltd, Jechon, Chungcheongbuk-do 27159, South Korea
| | - Yong-Hoon Jeong
- Biomaterial Team, Dept. of Research & Development, Medical Device Development Center/Osong Medical Innovation Foundation, Cheongju, Chungcheongbuk-do 28160, South Korea
| | - Tae-Gon Jung
- Biomaterial Team, Dept. of Research & Development, Medical Device Development Center/Osong Medical Innovation Foundation, Cheongju, Chungcheongbuk-do 28160, South Korea
| | - Chul Min Kim
- Department of Mechatronics, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, South Korea
| | - Pill-Hoon Choung
- Department of Oral & Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, South Korea
| |
Collapse
|
17
|
Abstract
Bone science has over the last decades unraveled many important pathways in bone and mineral metabolism and the interplay between genetic factors and the environment. Some of these discoveries have led to the development of pharmacological treatments of osteoporosis and rare bone diseases. Other scientific avenues have uncovered a role for the gut microbiome in regulating bone mass, which have led to investigations on the possible therapeutic role of probiotics in the prevention of osteoporosis. Huge advances have been made in identifying the genes that cause rare bone diseases, which in some cases have led to therapeutic interventions. Advances have also been made in understanding the genetic basis of the more common polygenic bone diseases, including osteoporosis and Paget's disease of bone (PDB). Polygenic profiles are used for establishing genetic risk scores aiming at early diagnosis and intervention, but also in Mendelian randomization (MR) studies to investigate both desired and undesired effects of targets for drug design.
Collapse
Affiliation(s)
- Bente L Langdahl
- Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - André G Uitterlinden
- Laboratory for Population Genomics, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
18
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Dis 2022; 8:252. [PMID: 35523775 PMCID: PMC9076607 DOI: 10.1038/s41420-022-01042-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Osteoprotegerin (OPG), also known as tumor necrosis factor receptor superfamily member 11B (TNFRSF11B), is a member of the tumor necrosis factor (TNF) receptor superfamily. Characterized by its ability to bind to receptor activator of nuclear factor kappa B ligand (RANKL), OPG is critically involved in bone remodeling. Emerging evidence implies that OPG is far beyond a bone-specific modulator, and is involved in multiple physiological and pathological processes, such as immunoregulation, vascular function, and fibrosis. Notably, numerous preclinical and clinical studies have been conducted to assess the participation of OPG in tumorigenesis and cancer development. Mechanistic studies have demonstrated that OPG is involved in multiple hallmarks of cancer, including tumor survival, epithelial to mesenchymal transition (EMT), neo-angiogenesis, invasion, and metastasis. In this review, we systematically summarize the basis and advances of OPG from its molecular structure to translational applications. In addition to its role in bone homeostasis, the physiological and pathological impacts of OPG on human health and its function in cancer progression are reviewed, providing a comprehensive understanding of OPG. We aim to draw more attention to OPG in the field of cancer, and to propose it as a promising diagnostic or prognostic biomarker as well as potential therapeutic target for cancer.
Collapse
|
20
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
21
|
Tsuruda T, Yamashita A, Otsu M, Koide M, Nakamichi Y, Sekita-Hatakeyama Y, Hatakeyama K, Funamoto T, Chosa E, Asada Y, Udagawa N, Kato J, Kitamura K. Angiotensin II Induces Aortic Rupture and Dissection in Osteoprotegerin-Deficient Mice. J Am Heart Assoc 2022; 11:e025336. [PMID: 35411794 PMCID: PMC9238451 DOI: 10.1161/jaha.122.025336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The biological mechanism of action for osteoprotegerin, a soluble decoy receptor for the receptor activator of nuclear factor‐kappa B ligand in the vascular structure, has not been elucidated. The study aim was to determine if osteoprotegerin affects aortic structural integrity in angiotensin II (Ang II)‐induced hypertension. Methods and Results Mortality was higher (P<0.0001 by log‐rank test) in 8‐week‐old male homozygotes of osteoprotegerin gene‐knockout mice given subcutaneous administration of Ang II for 28 days, with an incidence of 21% fatal aortic rupture and 23% aortic dissection, than in age‐matched wild‐type mice. Ang II‐infused aorta of wild‐type mice showed that osteoprotegerin immunoreactivity was present with proteoglycan. The absence of osteoprotegerin was associated with decreased medial and adventitial thickness and increased numbers of elastin breaks as well as with increased periostin expression and soluble receptor activator of nuclear factor‐kappa B ligand concentrations. PEGylated human recombinant osteoprotegerin administration decreased all‐cause mortality (P<0.001 by log‐rank test), the incidence of fatal aortic rupture (P=0.08), and aortic dissection (P<0.001) with decreasing numbers of elastin breaks, periostin expressions, and soluble receptor activator of nuclear factor‐kappa B ligand concentrations in Ang II‐infused osteoprotegerin gene‐knockout mice. Conclusions These data suggest that osteoprotegerin protects against aortic rupture and dissection in Ang II‐induced hypertension by inhibiting receptor activator of nuclear factor‐kappa B ligand activity and periostin expression.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Division of Internal Medicine, Cardiovascular Medicine and Nephrology Faculty of Medicine University of Miyazaki Japan
| | - Atsushi Yamashita
- Department of Pathology Faculty of Medicine University of Miyazaki Japan
| | - Misa Otsu
- Division of Internal Medicine, Cardiovascular Medicine and Nephrology Faculty of Medicine University of Miyazaki Japan
| | - Masanori Koide
- Institute for Oral Science Matsumoto Dental University Nagano Japan
| | - Yuko Nakamichi
- Institute for Oral Science Matsumoto Dental University Nagano Japan
| | | | - Kinta Hatakeyama
- Department of Pathology National Cerebral and Cardiovascular Center Osaka Japan
| | - Taro Funamoto
- Division of Orthopedic Surgery Department of Medicine of Sensory and Motor Organs Faculty of Medicine University of Miyazaki Japan
| | - Etsuo Chosa
- Division of Orthopedic Surgery Department of Medicine of Sensory and Motor Organs Faculty of Medicine University of Miyazaki Japan
| | - Yujiro Asada
- Department of Pathology Faculty of Medicine University of Miyazaki Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry Matsumoto Dental University Nagano Japan
| | - Johji Kato
- Frontier Science Research Center University of Miyazaki Japan
| | - Kazuo Kitamura
- Frontier Science Research Center University of Miyazaki Japan
| |
Collapse
|
22
|
Martin TJ. PTH1R Actions on Bone Using the cAMP/Protein Kinase A Pathway. Front Endocrinol (Lausanne) 2022; 12:833221. [PMID: 35126319 PMCID: PMC8807523 DOI: 10.3389/fendo.2021.833221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
After the initial signaling action of parathyroid hormone (PTH) on bone was shown to be activation of adenylyl cyclase, its target was found to be cells of the osteoblast lineage, to the exclusion of osteoclasts and their precursors. This led to the view that the osteoblast lineage regulated osteoclast formation, a proposal that was established when the molecular mechanisms of osteoclast formation were discovered. This is in addition to the effect of PTH1Rv signaling throughout the osteoblast differentiation process to favour the formation of bone-forming osteoblasts. Initial signaling in the PTH target cells through cAMP and protein kinase A (PKA) activation is extremely rapid, and marked by an amplification process in which the later event, PKA activation, precedes cAMP accumulation in time and is achieved at lower concentrations. All of this is consistent with the existence of "spare receptors", as is the case with several other peptide hormones. PTH-related protein (PTHrP), that was discovered as a cancer product, shares structural similarity with PTH in the amino-terminal domain that allows the hormone, PTH, and the autocrine/paracrine agent, PTHrP, to share actions upon a common G protein coupled receptor, PTH1R, through which they activate adenylyl cyclase with equivalent potencies. Studies of ligand-receptor kinetics have revealed that the PTH/PTH1R ligand-receptor complex, after initial binding and adenylyl cyclase activation at the plasma membrane, is translocated to the endosome, where adenylyl cyclase activation persists for a further short period. This behavior of the PTH1R resembles that of a number of hormones and other agonists that undergo such endosomal translocation. It remains to be determined whether and to what extent the cellular effects through the PTH1R might be influenced when endosomal is added to plasma membrane activation.
Collapse
Affiliation(s)
- T. John Martin
- Department of Medicine, St Vincent’s Institute of Medical Research, St Vincent’s Health, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
23
|
John Martin T. Aspects of intercellular communication in bone and implications in therapy. Bone 2021; 153:116148. [PMID: 34389478 DOI: 10.1016/j.bone.2021.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/18/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
Communication processes among the cells of bone are essential for the structure and function of the organ. After it was proposed that communication from the osteoblast lineage to hemopoietic cells initiated osteoclastogenesis, the molecular controls were identified to be the tumour necrosis factor ligand and receptor families. This was followed by revelation of very many signalling processes among the cells of bone that regulate the three phases of bone remodelling, the resorption, reversal and formation phases. In many instances the ways in which these mechanisms operate can determine how drugs act on bone, whether they be inhibitors of resorption or promoters of formation.
Collapse
Affiliation(s)
- T John Martin
- St Vincent's Institute of Medical Research, The University of Melbourne Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
24
|
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13:1696-1713. [PMID: 34909118 PMCID: PMC8641017 DOI: 10.4252/wjsc.v13.i11.1696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.
Collapse
Affiliation(s)
- Jelena Krstić
- Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11129, Serbia
| | - Sonja S Mojsilović
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade 11129, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Chile 8370993, Chile
| |
Collapse
|
25
|
Wei H, Chen Y, Nian H, Wang J, Liu Y, Wang J, Yang K, Zhao Q, Zhang R, Bao J. Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens. Animals (Basel) 2021; 11:ani11113133. [PMID: 34827866 PMCID: PMC8614394 DOI: 10.3390/ani11113133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Keel is an essential structural bone, providing anchorage for the attachment of large breast muscles in birds, allowing them to flap wings and provide proper ventilation for their lungs during flight. Previous studies reported that keel bone damage (especially fractures) negatively affects the welfare, health, production performance, eggshell quality, and mobility of laying hens contained in different housing systems. Furthermore, various factors affect keel bone damage, including nutrition, age, housing systems, and strains of laying hens. However, studies on the effects of abnormal bone metabolism and development on keel bone damage in laying hens are limited. Therefore, this study aimed to investigate the impacts of bone metabolism and development status on keel bone damage by determining the levels of serum bone turnover markers in laying hens. The results showed that laying hens with impaired keel bone had significantly altered levels of serum Ca and P metabolism-related and osteoblast and osteoclast activity-related markers compared to those in laying hens with normal keel bone. Thus, these results indicated that abnormal bone metabolism before keel bone damage reflected by varying levels of serum bone turnover markers might be a pivotal factor causing keel bone damage in laying hens. Our results also provide new insights into the occurrence of keel bone damage in laying hens. Abstract Keel bone damage negatively affects the welfare, production performance, egg quality, and mobility of laying hens. This study aimed to investigate whether abnormal bone metabolism causes keel bone damage in laying hens. Eighty Hy-line Brown laying hens were housed in eight furnished cages with 10 birds per cage and studied from 18 to 29 weeks of age (WOA). Accordingly, keel bone status was assessed at 18, 22, 25, and 29 WOA using the X-ray method, and the serum samples of laying hens with normal keel (NK), deviated keel (DK), and fractured keel (FK) that occurred at 29 WOA were collected across all the time-points. Subsequently, the serum samples were used to measure markers related to the metabolism of Ca and P and activities of osteoblast and osteoclast. The results showed that FK laying hens had lighter bodyweight than NK and DK birds throughout the trial (p < 0.05), while the keel bone length and weight were not different in NK, DK, and FK hens at 29 WOA (p > 0.05). Moreover, bone hematoxylin and eosin (H&E) staining and tartrate-resistant acid phosphatase (TRAP) staining indicated that damaged keel bone had evident pathological changes. In the FK hens, serum P level was reduced but serum 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and 25-hydroxyvitamin D3 (25-OHD3) levels were elevated compared to NK hens (p < 0.05). Additionally, DK hens had higher levels of serum 1,25-(OH)2D3, parathyroid hormone (PTH) and calcitonin (CT), and lower level of serum 25-OHD3 than the NK birds (p < 0.05). Furthermore, serum alkaline phosphatase (ALP), osteocalcin (OC), osteoprotegerin (OPG), TRAP, and corticosterone (CORT) levels were elevated in DK and FK hens compared to NK hens (p < 0.05). The levels of serum Ca, P, PTH, ALP, TRAP, OPG, OC, and CORT in laying hens fluctuated with the age of the birds. Generally, the results of this study indicate that keel bone damage, especially fractures, could be associated with abnormal bone metabolism in laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Yanqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.W.)
| | - Yilin Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Jianxing Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.W.)
| | - Kaiqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| |
Collapse
|
26
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
27
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
28
|
Rajakumar SA, Papp E, Lee KK, Grandal I, Merico D, Liu CC, Allo B, Zhang L, Grynpas MD, Minden MD, Hitzler JK, Guidos CJ, Danska JS. B cell acute lymphoblastic leukemia cells mediate RANK-RANKL-dependent bone destruction. Sci Transl Med 2021; 12:12/561/eaba5942. [PMID: 32938796 DOI: 10.1126/scitranslmed.aba5942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Although most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the p53 -/-; Rag2 -/-; Prkdcscid/scid triple mutant (TM) mice and p53 -/-; Prkdcscid/scid double mutant (DM) mouse models of spontaneous B-ALL. In contrast to DM animals, leukemic TM mice displayed brittle bones, and the TM leukemic cells overexpressed Rankl, encoding receptor activator of nuclear factor κB ligand. RANKL is a key regulator of osteoclast differentiation and bone loss. Transfer of TM leukemic cells into immunodeficient recipient mice caused trabecular bone loss. To determine whether human B-ALL can exert similar effects, we evaluated primary human B-ALL blasts isolated at diagnosis for RANKL expression and their impact on bone pathology after their transplantation into NOD.Prkdcscid/scidIl2rgtm1Wjl /SzJ (NSG) recipient mice. Primary B-ALL cells conferred bone destruction evident in increased multinucleated osteoclasts, trabecular bone loss, destruction of the metaphyseal growth plate, and reduction in adipocyte mass in these patient-derived xenografts (PDXs). Treating PDX mice with the RANKL antagonist recombinant osteoprotegerin-Fc (rOPG-Fc) protected the bone from B-ALL-induced destruction even under conditions of heavy tumor burden. Our data demonstrate a critical role of the RANK-RANKL axis in causing B-ALL-mediated bone pathology and provide preclinical support for RANKL-targeted therapy trials to reduce acute and long-term bone destruction in these patients.
Collapse
Affiliation(s)
- Sujeetha A Rajakumar
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eniko Papp
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kathy K Lee
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ildiko Grandal
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Daniele Merico
- Center for Applied Genomics, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Careesa C Liu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bedilu Allo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Lucia Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Pediatrics, Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
29
|
Interleukin-20 Acts as a Promotor of Osteoclastogenesis and Orthodontic Tooth Movement. Stem Cells Int 2021; 2021:5539962. [PMID: 34122555 PMCID: PMC8172288 DOI: 10.1155/2021/5539962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast–osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. Methods For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague–Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. Results In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF-κB/NFATc1 acted as downstream signalling molecule for IL-20. In vivo analysis showed that OTM speed was significantly increased after intraperitoneal injection of IL-20; additionally, mechanical stress sensing proteins were markedly activated. Conclusions IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-κB/NFATc1 signalling pathway. IL-20 inhibition can effectively reduce osteoclast differentiation and diminish bone resorption. Furthermore, IL-20 can accelerate orthodontic tooth movement and activate mechanical stress sensing proteins.
Collapse
|
30
|
Abstract
Almost a quarter century has passed since discovery of receptor activator of NF-κB ligand (RANKL). This discovery had a major impact on identification of mechanisms regulating osteoclast differentiation and function, establishment of a research field bridging bone and the immune system (osteoimmunology), and development of a fully human anti-RANKL neutralizing antibody (denosumab). Denosumab is now clinically available for treatment of osteoporosis and cancer-induced bone diseases in the US, Europe and many other countries, including Japan. Denosumab is a so-called blockbuster drug, with sales of 5.0 billion US dollars in 2019. This is a real success story from bench to bedside. In this review, the pivotal roles of the RANKL/RANK/OPG system in osteoclast differentiation and function are shown. RANKL is a ligand required for osteoclast generation, RANK is the receptor for RANKL, and osteoprotegerin (OPG) is a decoy receptor for RANKL. The review covers recent results showing the importance of RANKL on osteoblasts in regulation of osteogenesis and the role of RANKL-RANK dual signaling in coupling of bone resorption and formation, including demonstration of RANKL reverse signaling that we had previously hypothesized. Possible applications of anti-RANKL antibody in treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50, Kano-cho, Nagahama, Shiga, 526-0804, Japan.
| |
Collapse
|
31
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
32
|
Bär I, Ast V, Meyer D, König R, Rauner M, Hofbauer LC, Müller JP. Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks. Cells 2020; 9:cells9112443. [PMID: 33182501 PMCID: PMC7697865 DOI: 10.3390/cells9112443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a haematopoietic malignancy caused by a combination of genetic and epigenetic lesions. Activation of the oncoprotein FLT3 ITD (Fms-like tyrosine kinase with internal tandem duplications) represents a key driver mutation in 25–30% of AML patients. FLT3 is a class III receptor tyrosine kinase, which plays a role in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Mutant FLT3 ITD results in an altered signalling quality, which causes cell transformation. Recent evidence indicates an effect of FLT3 ITD on bone homeostasis in addition to haematological aberrations. Using gene expression data repositories of FLT3 ITD-positive AML patients, we identified activated cytokine networks that affect the formation of the haematopoietic niche by controlling osteoclastogenesis and osteoblast functions. In addition, aberrant oncogenic FLT3 signalling of osteogenesis-specific cytokines affects survival of AML patients and may be used for prognosis. Thus, these data highlight the intimate crosstalk between leukaemic and osteogenic cells within the osteohaematopoietic niche.
Collapse
Affiliation(s)
- Isabel Bär
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
| | - Volker Ast
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany;
| | - Daria Meyer
- Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; (D.M.); (R.K.)
| | - Rainer König
- Center for Infectious Diseases and Infection Control, Jena University Hospital, 07745 Jena, Germany; (D.M.); (R.K.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), 07745 Jena, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany;
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technical University Dresden, 01069 Dresden, Germany;
- Correspondence: (L.C.H.); (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.)
| | - Jörg P. Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
- Correspondence: (L.C.H.); (J.P.M.); Tel.: +49-351-458-3173 (L.C.H.); +49-364-1939-5634 (J.P.M.)
| |
Collapse
|
33
|
Tianma Gouteng Decoction Exerts Cardiovascular Protection by Upregulating OPG and TRAIL in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3439191. [PMID: 33133215 PMCID: PMC7593748 DOI: 10.1155/2020/3439191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Abstract
Tianma Gouteng Decoction (TGD) is widely used in traditional Chinese medicine for the treatment of hypertension and its related complications, but its mechanisms remain incompletely defined. We now aim to assess the protective effect of TGD against cardiovascular damage and to investigate its characteristics and underlying mechanisms. Blood pressure was determined in TGD-treated spontaneously hypertensive rats (SHR) by noninvasive measurements. Echocardiography was performed to assess cardiac function and structure and sirius red staining to evaluate cardiac fibrosis, and the degree of vascular remodeling was evaluated. Additionally, vasoconstriction and relaxation factor expression changes were examined by means of ELISA. Protein expression changes were verified by western blot. Compared with untreated SHR, TGD-treated SHR exhibited cardiovascular traits more akin to those of the normotensive Wistar Kyoto (WKY) rats. That is, they had lower diastolic blood pressure, systolic blood pressure and mean BP, and increased expression of vasodilation factor. We also found that TGD reduces ventricular and vascular remodeling and improves cardiac function in SHR. Finally, we tested the antiapoptosis effect TGD exerts in SHR, ostensibly by upregulating the expression of OPG, TRAIL, and death receptor 5 (DR5) and downregulating caspases 8, 7, and 3. TRAIL may also exert antiapoptotic and prosurvival effects by upregulating AKT expression. Therefore, TGD may reverse cardiovascular remodeling in SHR by upregulating the expression of OPG and TRAIL, upregulating AKT, and inhibiting apoptosis, at least in part. For the first time, we have shown that OPG and TRAIL play complimentary cardioprotective roles in SHR.
Collapse
|
34
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
35
|
Pertusa C, Tarín JJ, Cano A, García-Pérez MA. Association of a single nucleotide polymorphism of RANK gene with blood pressure in Spanish women. Medicine (Baltimore) 2020; 99:e22436. [PMID: 33019425 PMCID: PMC7535656 DOI: 10.1097/md.0000000000022436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 12/30/2022] Open
Abstract
In addition to governing key functions in bone metabolism and the immune system, the RANK/RANKL/OPG system plays a role in the vascular system, particularly in vascular calcification and atherosclerosis.Given that these 2 phenotypes are considered a major cause of high blood pressure (BP), in this study we analyzed the association of SNPs in RANK and OPG genes with blood pressure. An observational study was conducted of 2 SNPs in the RANK gene (rs884205 and rs78326403) and 1 in the OPG gene (rs4876869) with systolic (SBP) and diastolic blood pressure (DBP) in a cohort of 695 women.Data analysis revealed a statistically significant association between the SNP rs884205 and BP pressure (SBP and DBP). Analyzing this relationship by the dominant inheritance model for this SNP (allele risk: A), women of the AA/AC genotype showed higher BP than women of the CC genotype, both for SBP (P = .001) and for DBP (P = .003), and these associations both surpassed the Bonferroni threshold for multiple comparisons. Multivariate regression analysis including known predictors of BP as independent variables was performed to evaluate the strength of this association, which in the case of the SNP rs884205 of the RANK gene remained statistically significant after adjustment for both SBP (P = .0006) and DBP (P = .005), demonstrating the key role of this SNP in BP.We report a robust association between the SNP rs884205 in RANK gene and BP in women, and this SNP is validated as a candidate in cardiovascular risk studies.
Collapse
Affiliation(s)
- Clara Pertusa
- Research Foundation, INCLIVA Institute of Health Research, Valencia
| | - Juan J. Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia
| | - Miguel Angel García-Pérez
- Research Foundation, INCLIVA Institute of Health Research, Valencia
- Department of Genetics, University of Valencia, Burjassot, Spain
| |
Collapse
|
36
|
Nacaroglu HT, Büke Ö, Gayret ÖB, Erol M, Zengi O. Serum osteoprotegerin levels in school-aged children with asthma. Allergol Immunopathol (Madr) 2020; 48:484-489. [PMID: 32284263 DOI: 10.1016/j.aller.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Various inflammatory biomarkers have been used in asthma cases for evaluating inflammation, however it has been determined that the majority of these biomarkers are insufficient for putting forth the course and severity of the disease. Osteoprotegerin is a glycoprotein mediator in the lung and macrophages. As far as we know, there are no studies about the role played by osteoprotegerin in child patients with asthma. OBJECTIVE It was planned to examine the relationship between osteoprotegerin levels in childhood asthma and respiratory functions and airway inflammation and to assess its use as a biomarker. METHODS The study included patients aged 6-16 years who were diagnosed with asthma at the pediatric allergy outpatient clinic of Bagcilar Training and Research Hospital in Turkey. The correlation analyses for the osteoprotegerin levels of asthma patients and their respiratory functions were examined. RESULTS The age average of asthma cases was 10.61±3.04 years and 51.2 % were female. No statistically significant difference was observed between the osteoprotegerin levels of the groups (p>0.05). A negative and statistically significant correlation was observed between the FEV1 and FVC values and osteoprotegerin levels (p=0.015, p=0.003). CONCLUSIONS This was the first study to examine the relationship between osteoprotegerin levels and airway inflammation in children with asthma. We believe that there is a need for wider scale studies in which clinical symptoms and more parameters are evaluated for defining the role played by osteoprotegerin level in children with asthma and for determining its usability as a biomarker.
Collapse
|
37
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Bumdelger B, Otani M, Karasaki K, Sakai C, Ishida M, Kokubo H, Yoshizumi M. Disruption of Osteoprotegerin has complex effects on medial destruction and adventitial fibrosis during mouse abdominal aortic aneurysm formation. PLoS One 2020; 15:e0235553. [PMID: 32614927 PMCID: PMC7331998 DOI: 10.1371/journal.pone.0235553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023] Open
Abstract
Aortic aneurysm refers to dilatation of the aorta due to loss of elasticity and degenerative weakening of its wall. A preventive role for osteoprotegerin (Opg) in the development of abdominal aortic aneurysm has been reported in the CaCl2-induced aneurysm model, whereas Opg was found to promote suprarenal aortic aneurysm in the AngII-induced ApoE knockout mouse aneurysm model. To determine whether there is a common underlying mechanism to explain the impact of Opg deficiency on the vascular structure of the two aneurysm models, we analyzed suprarenal aortic tissue of 6-month-old ApoE-/-Opg-/- mice after AngII infusion for 28 days. Less aortic dissection and aortic lumen dilatation, more adventitial thickening, and higher expression of collagen I and Trail were observed in ApoE-/-Opg-/- mice relative to ApoE-/-Opg+/+ mice. An accumulation of α-smooth muscle actin and vimentin double-positive myofibroblasts was noted in the thickened adventitia of ApoE-/-Opg-/- mice. Our results suggest that fibrotic remodeling of the aorta induced by myofibroblast accumulation might be an important pathological event which tends to limit AngII-induced aortic dilatation in ApoE-/-Opg-/- mice.
Collapse
Affiliation(s)
- Batmunkh Bumdelger
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikage Otani
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Karasaki
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (HK); (MY)
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (HK); (MY)
| |
Collapse
|
39
|
Kobayashi-Sakamoto M, Maeda T, Yusa J, Kato Y, Kiyoura Y. RANK-RANKL signaling upregulates Il-10 mRNA expression in mucosal Candida infection in vivo. Microb Pathog 2020; 149:104285. [PMID: 32585292 DOI: 10.1016/j.micpath.2020.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Osteoprotegerin (OPG) prevents binding of receptor activator of nuclear factor-kappa B ligand (RANKL) to RANK. Recent studies have reported that immune cell RANK-RANKL interactions are critical to the infection process. Candida albicans is an opportunistic pathogenic fungus and a common cause of candidiasis. This study utilized an orally inoculated mouse model of C. albicans infection to determine whether superficial or systemic candidiasis was associated with alterations in RANK/RANKL/OPG expression. Invasive systemic C. albicans infection increased serum OPG levels in mice. In addition, tongue Opg, Rankl, and Rank mRNA expression were upregulated in mice with superficial oral cavity C. albicans infection. Moreover, administration of exogenous soluble RANKL upregulated Rank and interleukin-10 (Il-10) mRNA in superficially infected tissue, suggesting suppression of localized inflammation. Taken together, these findings suggested that RANK/RANKL/OPG signaling contributes to the pathogenesis of candidiasis. This is the first in vivo study to identify a relationship between this opportunistic infection and the RANK/RANKL/OPG axis.
Collapse
Affiliation(s)
- Michiyo Kobayashi-Sakamoto
- Department of Preventive Dentistry, Ohu University School of Dentistry, Koriyama, Fukushima, 963-8611, Japan.
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Japan
| | - Junko Yusa
- Department of Oral of Pathology, Ohu University School of Dentistry, Japan
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Japan
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, Japan
| |
Collapse
|
40
|
Bouzid A, Tekari A, Jbeli F, Chakroun A, Hansdah K, Souissi A, Singh N, Mosrati MA, Achour I, Ghorbel A, Charfeddine I, Ramchander PV, Masmoudi S. Osteoprotegerin gene polymorphisms and otosclerosis: an additional genetic association study, multilocus interaction and meta-analysis. BMC MEDICAL GENETICS 2020; 21:122. [PMID: 32493243 PMCID: PMC7268516 DOI: 10.1186/s12881-020-01036-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Otosclerosis (OTSC) is among the most common causes of a late-onset hearing loss in adults and is characterized by an abnormal bone growth in the otic capsule. Alteration in the osteoprotegerin (OPG) expression has been suggested in the implication of OTSC pathogenesis. METHODS A case-control association study of rs2228568, rs7844539, rs3102734 and rs2073618 single nucleotide polymorphisms (SNPs) in the OPG gene was performed in a Tunisian-North African population composed of 183 unrelated OTSC patients and 177 healthy subjects. In addition, a multilocus association and a meta-analysis of existing studies were conducted. RESULTS Rs3102734 (p = 0.013) and rs2073618 (p = 0.007) were significantly associated with OTSC, which were predominantly detected in females after multiple corrections. Among the OPG studied SNPs, the haplotypes A-A-C-G (p = 0.0001) and A-A-C-C (p = 0.0004) were significantly associated with OTSC in females. Multilocus association revealed that the SNPs: rs2073618 in OPG, rs1800472 in TGFβ1, rs39335, rs39350 and rs39374 in RELN, and rs494252 in chromosome 11 showed significant OTSC-associated alleles in Tunisian individuals. In addition, meta-analysis of the rs2073618 SNP in Tunisian, Indian and Italian populations revealed evidence of an association with OTSC (OR of 0.826, 95% CI [0.691-0.987], p = 0.035). CONCLUSIONS Our findings suggest that rs3102734 and rs2073618 variants are associated with OTSC in North African ethnic Tunisian population. Meta-analysis of the rs2073618 in three different ethnic population groups indicated an association with OTSC.
Collapse
Affiliation(s)
- Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia.
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Fida Jbeli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Amine Chakroun
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | - Kirtal Hansdah
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Neha Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mohamed Ali Mosrati
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Imen Achour
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | - Abdelmonem Ghorbel
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | - Ilhem Charfeddine
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | | | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| |
Collapse
|
41
|
Geerts D, Chopra C, Connelly L. Osteoprotegerin: Relationship to Breast Cancer Risk and Prognosis. Front Oncol 2020; 10:462. [PMID: 32318347 PMCID: PMC7154067 DOI: 10.3389/fonc.2020.00462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 01/14/2023] Open
Abstract
Osteoprotegerin (OPG) is a secreted member of the Tumor Necrosis Factor (TNF) receptor superfamily (TNFRSF11B), that was first characterized and named for its protective role in bone remodeling. In this context, OPG binds to another TNF superfamily member Receptor Activator of NF-kappaB Ligand (RANKL; TNFSF11) and blocks interaction with RANK (TNFRSF11A), preventing RANKL/RANK stimulation of osteoclast maturation, and bone breakdown. Further studies revealed that OPG protein is also expressed by tumor cells and led to investigation of the role of OPG in tumor biology. An increasing body of data has demonstrated that OPG modulates breast tumor behavior. Initially, research was focused on OPG in the bone microenvironment as a potential inhibitor of RANKL-driven osteolysis. More recently, attention has shifted to include OPG expression and interactions in the primary breast tumor independent of RANKL. In the primary tumor, OPG may interact with another TNF superfamily member, TNF-Related Apoptosis Inducing Ligand (TRAIL; TNFSF10) to prevent apoptosis induction. Additional interest in OPG in breast cancer has been stimulated by the tumor-promoting role of its binding partner RANKL in association with BRCA1 gene mutations. We and others have previously summarized the functional studies on OPG and breast cancer (1, 2). After basic research studies on the in vitro role for OPG (and RANKL) in breast cancer, the field now expands to assess the in vivo role for OPG by examining the correlation between OPG expression and breast cancer risk or patient prognosis. However, the data reported so far is conflicting, since OPG expression appears linked to both good and poor patient survival. In the current review we will summarize these studies. Our goal is to provide stimulus for further research to bridge the basic research findings and clinical data regarding OPG in breast cancer.
Collapse
Affiliation(s)
- Dirk Geerts
- Department of Medical Biology, Academic Medical Center Amsterdam, Amsterdam, Netherlands
| | - Christina Chopra
- School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States
| | - Linda Connelly
- School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States
| |
Collapse
|
42
|
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020; 40:2. [PMID: 32047573 PMCID: PMC7006158 DOI: 10.1186/s41232-019-0111-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of NF-κB (RANK) ligand (RANKL) induces the differentiation of monocyte/macrophage-lineage cells into the bone-resorbing cells called osteoclasts. Because abnormalities in RANKL, its signaling receptor RANK, or decoy receptor osteoprotegerin (OPG) lead to bone diseases such as osteopetrosis, the RANKL/RANK/OPG system is essential for bone resorption. RANKL was first discovered as a T cell-derived activator of dendritic cells (DCs) and has many functions in the immune system, including organogenesis, cellular development. The essentiality of RANKL in the bone and the immune systems lies at the root of the field of "osteoimmunology." Furthermore, this cytokine functions beyond the domains of bone metabolism and the immune system, e.g., mammary gland and hair follicle formation, body temperature regulation, muscle metabolism, and tumor development. In this review, we will summarize the current understanding of the functions of the RANKL/RANK/OPG system in biological processes.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|
43
|
Deligiorgi MV, Panayiotidis MI, Griniatsos J, Trafalis DT. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis 2020; 37:13-30. [PMID: 31578655 DOI: 10.1007/s10585-019-09997-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
More than 2 decades ago, the discovery of osteoprotegerin (OPG) as inhibitor of the receptor of activator of nuclear factor Kb (RANK) ligand (RANKL) revolutionized our understanding of bone biology and oncology. Besides acting as decoy receptor for RANKL, OPG acts as decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). OPG, RANKL, and TRAIL are ubiquitously expressed, stimulating per se pivotal signaling cascades implicated in cancer. In the context of cancer cell-bone cell interactions, cancer cells skew the OPG/RANKL/RANK (RANKL cognate receptor) balance towards bone destruction and tumor growth through favoring the RANKL/RANK interface, circumventing OPG. Numerous preclinical and clinical studies demonstrate the dual role of OPG in cancer: antitumor and tumor-promoting. OPG potentially conveys an antitumor signal through inhibiting the tumor-promoting RANKL signaling-both the osteoclast-dependent and the osteoclast-independent-and the tumor-promoting TRAIL signaling. On the other hand, the presumed tumor-promoting functions of OPG are: (i) abrogation of TRAIL-induced apoptosis of cancer cells; (ii) abrogation of RANKL-induced antitumor immunity; and (iii) stimulation of oncogenic and prometastatic signaling cascades downstream of the interaction of OPG with diverse proteins. The present review dissects the role of OPG in bone oncology. It presents the available preclinical and clinical data sustaining the dual role of OPG in cancer and focuses on the imbalanced RANKL/RANK/OPG interplay in the landmark "vicious cycle" of skeletal metastatic disease, osteosarcoma, and multiple myeloma. Finally, current challenges and future perspectives in exploiting OPG signaling in bone oncology therapeutics are discussed.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Clinical Pharmacology Unit, Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Goudi, 11527, Athens, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Ellison Building, Room A516, Newcastle upon Tyne, NE1 8ST, UK
| | - John Griniatsos
- 1st Department of Surgery, Faculty of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, 17 Agiou Thoma Str, Goudi, 115-27, Athens, Greece
| | - Dimitrios T Trafalis
- Clinical Pharmacology Unit, Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Goudi, 11527, Athens, Greece
| |
Collapse
|
44
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
45
|
Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46 Suppl 21:52-69. [PMID: 30623453 DOI: 10.1111/jcpe.13056] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
AIM Osteoimmunology covers the cellular and molecular mechanisms responsible for inflammatory osteolysis that culminates in the degradation of alveolar bone. Osteoimmunology also focuses on the interplay of immune cells with bone cells during bone remodelling and regeneration. The aim of this review was to provide insights into how osteoimmunology affects alveolar bone health and disease. METHOD This review is based on a narrative approach to assemble mouse models that provide insights into the cellular and molecular mechanisms causing inflammatory osteolysis and on the impact of immune cells on alveolar bone regeneration. RESULTS Mouse models have revealed the molecular pathways by which microbial and other factors activate immune cells that initiate an inflammatory response. The inflammation-induced alveolar bone loss occurs with the concomitant suppression of bone formation. Mouse models also showed that immune cells contribute to the resolution of inflammation and bone regeneration, even though studies with a focus on alveolar socket healing are rare. CONCLUSIONS Considering that osteoimmunology is evolutionarily conserved, osteolysis removes the cause of inflammation by provoking tooth loss. The impact of immune cells on bone regeneration is presumably a way to reinitiate the developmental mechanisms of intramembranous and endochondral bone formation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Uluköylü E, Karataş E, Albayrak M, Bayır Y. Effect of Calcium Hydroxide Alone or in Combination with Ibuprofen and Ciprofloxacin on Nuclear Factor Kappa B Ligand and Osteoprotegerin Level in Periapical Lesions: A Randomized Controlled Clinical Study. J Endod 2019; 45:1489-1495. [DOI: 10.1016/j.joen.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/02/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
|
47
|
Radzi NFM, Ismail NAS, Alias E. Tocotrienols Regulate Bone Loss through Suppression on Osteoclast Differentiation and Activity: A Systematic Review. Curr Drug Targets 2019; 19:1095-1107. [PMID: 29412105 PMCID: PMC6094554 DOI: 10.2174/1389450119666180207092539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Background There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression. Objective This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone. Results Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers. Conclusion Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.
Collapse
Affiliation(s)
- Nur Fathiah Mohd Radzi
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Yang D, Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol 2019; 41:551-563. [PMID: 31506868 PMCID: PMC6815265 DOI: 10.1007/s00281-019-00754-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022]
Abstract
Emerging evidence suggest that macrophage and osteoclast are two competing differentiation outcomes from myeloid progenitors. In this review, we summarize recent advances in the understanding of the molecular mechanisms controlling the polarization of macrophage and osteoclast. These include nuclear receptors/transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and estrogen-related receptor α (ERRα), their transcription cofactor PPARγ coactivator 1-β (PGC-1β), metabolic factors such as mitochondrial complex I (CI) component NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4), as well as transmembrane receptors such as very-low-density-lipoprotein receptor (VLDLR). These molecular rheostats promote osteoclast differentiation but suppress proinflammatory macrophage activation and inflammation, by acting lineage-intrinsically, systemically or cross generation. These findings provide new insights to the understanding of the interactions between innate immunity and bone remodeling, advancing the field of osteoimmunology.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
49
|
Yasuda H. [The mechanism of anti-RANKL antibody in the treatment of metabolic bone diseases including osteoporosis - possible applications of anti-RANKL antibody to the treatment of cancer patients]. Nihon Yakurigaku Zasshi 2019; 153:11-15. [PMID: 30643086 DOI: 10.1254/fpj.153.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Discovery of RANKL (receptor activator of NF-κB ligand) gave a great impact on identification of the mechanisms regulating osteoclast differentiation and function, establishment of research field bridging bone and mineral research and immunology (osteoimmunology), and development of a fully human anti-RANKL monoclonal neutralizing antibody (denosumab). Denosumab has been clinically available for treatment of osteoporosis and cancer-induced bone diseases in the US, Europe and many countries including Japan. Denosumab is a so-called blockbuster of which sales amount was 3.9 billion US dollars in 2017. Because RANKL is the absolute factor for osteoclast differentiation, anti-RANKL antibody is very effective and its application is good news for many patients. Recent topics are the identification of importance of RANKL on osteoblasts in regulation of osteogenesis and the demonstration of RANKL-RANK (the receptor of RANKL) dual signaling in coupling between bone resorption and bone formation. RANKL reverse signaling that we had hypothesized was demonstrated at last. In this review I describe the mechanism of anti-RANKL antibody in the treatment of metabolic bone diseases including osteoporosis. I also suggest possible applications of anti-RANKL antibody to the treatment of cancer patients.
Collapse
Affiliation(s)
- Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd
| |
Collapse
|
50
|
Galli C, Colangelo M, Pedrazzi G, Guizzardi S. The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature. Calcif Tissue Int 2019; 105:127-147. [PMID: 30997574 DOI: 10.1007/s00223-019-00554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.
Collapse
Affiliation(s)
- C Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - M Colangelo
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| | - G Pedrazzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Via Volturno 39, 43126, Parma, Italy
| | - S Guizzardi
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|