1
|
Burgess CL, Huang J, Bawa PS, Alysandratos KD, Minakin K, Ayers LJ, Morley MP, Babu A, Villacorta-Martin C, Yampolskaya M, Hinds A, Thapa BR, Wang F, Matschulat A, Mehta P, Morrisey EE, Varelas X, Kotton DN. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 2024; 31:657-675.e8. [PMID: 38642558 PMCID: PMC11147407 DOI: 10.1016/j.stem.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.
Collapse
Affiliation(s)
- Claire L Burgess
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lauren J Ayers
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Adeline Matschulat
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
2
|
Aoki H. Generation of iPSCs Using Sendai Virus Vectors. Methods Mol Biol 2024; 2794:121-140. [PMID: 38630225 DOI: 10.1007/978-1-0716-3810-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are in vitro-derived cells capable of giving rise to several different cell types. The generation of iPSCs holds great promise for regenerative medicine and drug discovery research because it allows mature cells to be reprogrammed into a state of pluripotency. These highly versatile cells can then be induced to produce a variety of cell lineages and tissues by activating specific regulatory genes that drive their differentiation along distinct lineages. The great potential of these cells was recognized by Shinya Yamanaka who was awarded the 2012 Nobel Prize for the discovery of iPSCs. Following their discovery, various methods have now been developed for generating iPSCs. Here, we describe a method for deriving iPSCs from human dental pulp using Sendai virus vectors.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
3
|
Burgess CL, Huang J, Bawa P, Alysandratos KD, Minakin K, Morley MP, Babu A, Villacorta-Martin C, Hinds A, Thapa BR, Wang F, Matschulat AM, Morrisey EE, Varelas X, Kotton DN. Generation of human alveolar epithelial type I cells from pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524655. [PMID: 36711505 PMCID: PMC9882278 DOI: 10.1101/2023.01.19.524655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the distal lung, alveolar epithelial type I cells (AT1s) comprise the vast majority of alveolar surface area and are uniquely flattened to allow the diffusion of oxygen into the capillaries. This structure along with a quiescent, terminally differentiated phenotype has made AT1s particularly challenging to isolate or maintain in cell culture. As a result, there is a lack of established models for the study of human AT1 biology, and in contrast to alveolar epithelial type II cells (AT2s), little is known about the mechanisms regulating their differentiation. Here we engineer a human in vitro AT1 model system through the directed differentiation of induced pluripotent stem cells (iPSC). We first define the global transcriptomes of primary adult human AT1s, suggesting gene-set benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, that are enriched in these cells. Next, we generate iPSC-derived AT2s (iAT2s) and find that activating nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier which produces characteristic extracellular matrix molecules and secreted ligands. Our results indicate a role for Hippo-LATS-YAP signaling in the differentiation of human AT1s and demonstrate the generation of viable AT1-like cells from iAT2s, providing an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s that until now have been challenging to viably obtain from patients.
Collapse
Affiliation(s)
- Claire L Burgess
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Adeline M Matschulat
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
An Alternate Approach to Generate Induced Pluripotent Stem Cells with Precise CRISPR/Cas9 Tool. Stem Cells Int 2022; 2022:4537335. [PMID: 36187228 PMCID: PMC9522500 DOI: 10.1155/2022/4537335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The induced pluripotent stem cells (iPSCs) are considered powerful tools in pharmacology, biomedicine, toxicology, and cell therapy. Multiple approaches have been used to generate iPSCs with the expression of reprogramming factors. Here, we generated iPSCs by integrating the reprogramming cassette into a genomic safe harbor, CASH-1, with the use of a precise genome editing tool, CRISPR/Cas9. The integration of cassette at CASH-1 into target cells did not alter the pattern of proliferation and interleukin-6 secretion as a response to ligands of multiple signaling pathways involving tumor necrosis factor-α receptor, interleukin-1 receptor, and toll-like receptors. Moreover, doxycycline-inducible expression of OCT4, SOX2, and KLF4 reprogrammed engineered human dermal fibroblasts and human embryonic kidney cell line into iPSCs. The generated iPSCs showed their potential to make embryoid bodies and differentiate into the derivatives of all three germ layers. Collectively, our data emphasize the exploitation of CASH-1 by CRISPR/Cas9 tool for therapeutic and biotechnological applications including but not limited to reprogramming of engineered cells into iPSCs.
Collapse
|
5
|
A real-time pluripotency reporter for the long-term and real-time monitoring of pluripotency changes in induced pluripotent stem cells. Aging (Albany NY) 2022; 14:4445-4458. [PMID: 35575836 PMCID: PMC9186763 DOI: 10.18632/aging.204083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
To master the technology of reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs), which will lay a good foundation for setting up a technology platform on reprogramming human cancer cells into iPSCs. Mouse iPSCs (i.e., Oct4-GFP miPSCs) was successfully generated from mouse embryonic fibroblasts (MEFs) harboring Oct4-EGFP transgene by introducing four factors, Oct4, Sox2, c-Myc and Klf4, under mESC (Murine embryonic stem cells) culture conditions. Oct4-GFP miPSCs were similar to mESCs in morphology, proliferation, mESC-specific surface antigens and gene expression. Additionally, Oct4-GFP miPSCs could be cultured in suspension to form embryoid bodies (EBs) and differentiate into cell types of the three germ layers in vitro. Moreover, Oct4-GFP miPSCs could develop to teratoma and chimera in vivo. Unlike cell cycle distribution of MEFs, Oct4-GFP miPSCs are similar to mESCs in the cell cycle structure which consists of higher S phase and lower G1 phase. More importantly, our data demonstrated that MEFs harboring Oct4-EGFP transgene did not express GFP, until they were reprogrammed to the pluripotent stage (iPSCs), while the GFP expression was progressively lost when these pluripotent Oct4-GFP miPSCs exposed to EB-mediated differentiation conditions, suggesting the pluripotency of Oct4-GFP miPSCs can be real-time monitored over long periods of time via GFP assay. Altogether, our findings demonstrate that Oct4-GFP miPSC line is successfully established, which will lay a solid foundation for setting up a technology platform on reprogramming cancer cells into iPSCs. Furthermore, this pluripotency reporter system permits the long-term real-time monitoring of pluripotency changes in a live single-cell, and its progeny.
Collapse
|
6
|
Yu B, Zhao SR, Yan CD, Zhang M, Wu JC. Deconvoluting the Cells of the Human Heart with iPSC Technology: Cell Types, Protocols, and Uses. Curr Cardiol Rep 2022; 24:487-496. [PMID: 35244869 PMCID: PMC12007454 DOI: 10.1007/s11886-022-01670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Induced pluripotent stem cells (iPSCs) have become widely adopted tools in cardiovascular biology due to their ability to differentiate into patient-specific cell types. Here, we describe the current protocols, important discoveries, and experimental limitations from the iPSC-derived cell types of the human heart: cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, endothelial cells, and pericytes. In addition, we also examine the progress of 3D-based cell culture systems. RECENT FINDINGS There has been rapid advancement in methods to generate cardiac iPSC-derived cell types. These advancements have led to improved cardiovascular disease modeling, elucidation of interactions among different cell types, and the creation of 3D-based cell culture systems able to provide more physiologically relevant insights into cardiovascular diseases. iPSCs have become an instrumental model system in the toolbox of cardiovascular biologists. Ongoing research continues to advance the use of iPSCs in (1) disease modeling, (2) drug screening, and (3) clinical trials in a dish.
Collapse
Affiliation(s)
- Brian Yu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Christopher D Yan
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Mao Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
- , 265 Campus Drive G1120B, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Jeong J, Kim TH, Kim M, Jung YK, Kim KS, Shim S, Jang H, Jang WI, Lee SB, Choi D. Elimination of Reprogramming Transgenes Facilitates the Differentiation of Induced Pluripotent Stem Cells into Hepatocyte-like Cells and Hepatic Organoids. BIOLOGY 2022; 11:493. [PMID: 35453693 PMCID: PMC9030920 DOI: 10.3390/biology11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Hepatocytes and hepatic organoids (HOs) derived from human induced pluripotent stem cells (hiPSCs) are promising cell-based therapies for liver diseases. The removal of reprogramming transgenes can affect hiPSC differentiation potential into the three germ layers but not into hepatocytes and hepatic organoids in the late developmental stage. Herein, we generated hiPSCs from normal human fibroblasts using an excisable polycistronic lentiviral vector based on the Cre recombinase-mediated removal of the loxP-flanked reprogramming cassette. Comparing the properties of transgene-carrying and transgene-free hiPSCs with the same genetic background, the pluripotent states of all hiPSCs were quite similar, as indicated by the expression of pluripotent markers, embryonic body formation, and tri-lineage differentiation in vitro. However, after in vitro differentiation into hepatocytes, transgene-free hiPSCs were superior to the transgene-residual hiPSCs. Interestingly, the generation and hepatic differentiation of human hepatic organoids (hHOs) were significantly enhanced by transgene elimination from hiPSCs, as observed by the upregulated fetal liver (CK19, SOX9, and ITGA6) and functional hepatocyte (albumin, ASGR1, HNF4α, CYP1A2, CYP3A4, and AAT) markers upon culture in differentiation media. Thus, the elimination of reprogramming transgenes facilitates hiPSC differentiation into hepatocyte-like cells and hepatic organoids with properties of liver progenitor cells. Our findings thus provide significant insights into the characteristics of iPSC-derived hepatic organoids.
Collapse
Affiliation(s)
- Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea; (J.J.); (T.H.K.); (M.K.); (Y.K.J.); (K.S.K.)
| | - Tae Hun Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea; (J.J.); (T.H.K.); (M.K.); (Y.K.J.); (K.S.K.)
| | - Myounghoi Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea; (J.J.); (T.H.K.); (M.K.); (Y.K.J.); (K.S.K.)
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea; (J.J.); (T.H.K.); (M.K.); (Y.K.J.); (K.S.K.)
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea; (J.J.); (T.H.K.); (M.K.); (Y.K.J.); (K.S.K.)
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea; (S.S.); (H.J.); (W.I.J.)
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea; (S.S.); (H.J.); (W.I.J.)
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea; (S.S.); (H.J.); (W.I.J.)
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea; (S.S.); (H.J.); (W.I.J.)
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea; (J.J.); (T.H.K.); (M.K.); (Y.K.J.); (K.S.K.)
- Hanyang Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
8
|
Casalia ML, Casabona JC, García C, Cavaliere Candedo V, Quintá HR, Farías MI, Gonzalez J, Gonzalez Morón D, Córdoba M, Consalvo D, Mostoslavsky G, Urbano FJ, Pasquini J, Murer MG, Rela L, Kauffman MA, Pitossi FJ. A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Res Ther 2021; 12:590. [PMID: 34823607 PMCID: PMC8620942 DOI: 10.1186/s13287-021-02658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease.
Methods Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. Results Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. Conclusions We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02658-2.
Collapse
Affiliation(s)
| | | | - Corina García
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Héctor Ramiro Quintá
- CONICET and Laboratorio de Medicina Experimental "Dr. J Toblli", Hospital Alemán, Buenos Aires, Argentina
| | | | - Joaquín Gonzalez
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | - Dolores Gonzalez Morón
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Marta Córdoba
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Damian Consalvo
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Gustavo Mostoslavsky
- Center For Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, USA
| | - Francisco J Urbano
- Department of Physiology, Molecular and Cellular Biology "Dr. Héctor Maldonado", Faculty of Exact and Natural Sciences, University of Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Juana Pasquini
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
9
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells. Methods Mol Biol 2020; 2239:135-151. [PMID: 33226617 DOI: 10.1007/978-1-0716-1084-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human-induced pluripotent stem cells (iPSCs) can be generated from patient-specific somatic cells by forced expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Sustained expression of the transgenes during reprogramming is crucial for the successful derivation of iPSCs. Integrating retroviruses have been used to achieve the required prolonged expression; however, issues of undesirable transgene expression in the iPSC-derived cell types post reprogramming can occur. Alternative non-integrating approaches to reprogram somatic cells into pluripotency have been established. Here, we describe a detailed method for generating human iPSCs from fibroblasts and peripheral blood mononuclear cells (PBMCs) using the non-integrating episomal plasmids. The delivery of the episomal plasmids into the somatic cells is achieved using a nucleofection technique, and reprogramming is performed in chemically defined media. This process takes approximately 30 days to establish the iPSC colonies. We also describe a method for growing iPSCs on vitronectin as well as procedures for the long-term expansion of iPSCs on human fibroblast feeder cells.
Collapse
|
11
|
Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells. Cell Div 2020; 15:12. [PMID: 33292330 PMCID: PMC7641821 DOI: 10.1186/s13008-020-00068-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) has opened new therapeutic possibilities. However, karyotypic abnormalities detected in iPSCs compromised their utility, especially chromosomal aberrations found at early passages raised serious safety concerns. The mechanism underlying the chromosomal abnormality in early-passage iPSCs is not known. Methods Human dermal fibroblasts (HDFs) were stimulated with KMOS (KLF4, cMYC, OCT4 and SOX2) proteins to enhance their proliferative capacity and many vigorous clones were obtained. Clonal reprogramming was carried out by KMOS mRNAs transfection to confirm the ‘chromosomal mutagenicity’ of reprogramming process. Subculturing was performed to examine karyotypic stability of iPSCs after the re-establishment of stemness. And antioxidant N-acetyl-cysteine (NAC) was added to the culture medium for further confirmming the mutagenicity in the first few days of reprogramming. Results Chromosomal aberrations were found in a small percentage of newly induced iPS clones by reprogramming transcription factors. Clonal reprogramming ruled out the aberrant chromosomes inherited from rare karyotypically abnormal parental cell subpopulation. More importantly, the antioxidant NAC effectively reduced the occurrence of chromosomal aberrations at the early stage of reprogramming. Once iPS cell lines were established, they restored karyotypic stability in subsequent subculturing. Conclusions Our results provided the first line of evidence for the ‘chromosomal mutagenicity’ of reprogramming process.
Collapse
|
12
|
Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, Buganim Y, Kaji K, García P. Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming. Cell Rep 2020; 24:1496-1511.e8. [PMID: 30089261 PMCID: PMC6092268 DOI: 10.1016/j.celrep.2018.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
During somatic reprogramming, Yamanaka’s pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process.
Deletion and overexpression of MYBL2 pluripotency factor inhibit somatic reprogramming Mybl2 overexpression affects the accessibility of pioneer factors to the chromatin Mybl2 overexpression promotes accessibility of reprogramming blockers to the chromatin High Mybl2 levels deregulate key genes for proper MET, a requirement for reprogramming
Collapse
Affiliation(s)
- Carl Ward
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Blakemore
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Monica Nafria
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Doris Kestner
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jon Frampton
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - George Murphy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yosef Buganim
- The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Paloma García
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Induced Pluripotent Stem Cell Derivation and Ex Vivo Gene Correction Using a Mucopolysaccharidosis Type 1 Disease Mouse Model. Stem Cells Int 2019; 2019:6978303. [PMID: 31065277 PMCID: PMC6466856 DOI: 10.1155/2019/6978303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/18/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type 1 (MPS-1), also known as Hurler's disease, is a congenital metabolic disorder caused by a mutation in the alpha-L-iduronidase (IDUA) gene, which results in the loss of lysosomal enzyme function for the degradation of glycosaminoglycans. Here, we demonstrate the proof of concept of ex vivo gene editing therapy using induced pluripotent stem cell (iPSC) and CRISPR/Cas9 technologies with MPS-1 model mouse cell. Disease-affected iPSCs were generated from Idua knockout mouse embryonic fibroblasts, which carry a disrupting neomycin-resistant gene cassette (Neor) in exon VI of the Idua gene. Double guide RNAs were used to remove the Neor sequence, and various lengths of donor templates were used to reconstruct the exon VI sequence. A quantitative PCR-based screening method was used to identify Neor removal. The sequence restoration without any indel mutation was further confirmed by Sanger sequencing. After induced fibroblast differentiation, the gene-corrected iPSC-derived fibroblasts demonstrated Idua function equivalent to the wild-type iPSC-derived fibroblasts. The Idua-deficient cells were competent to be reprogrammed to iPSCs, and pluripotency was maintained through CRISPR/CAS9-mediated gene correction. These results support the concept of ex vivo gene editing therapy using iPSC and CRISPR/Cas9 technologies for MPS-1 patients.
Collapse
|
14
|
Schlaeger TM. Nonintegrating Human Somatic Cell Reprogramming Methods. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:1-21. [PMID: 29075799 DOI: 10.1007/10_2017_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional biomedical research and preclinical studies frequently rely on animal models and repeatedly draw on a relatively small set of human cell lines, such as HeLa, HEK293, HepG2, HL60, and PANC1 cells. However, animal models often fail to reproduce important clinical phenotypes and conventional cell lines only represent a small number of cell types or diseases, have very limited ethnic/genetic diversity, and either senesce quickly or carry potentially confounding immortalizing mutations. In recent years, human pluripotent stem cells have attracted a lot of attention, in part because these cells promise more precise modeling of human diseases. Expectations are also high that pluripotent stem cell technologies can deliver cell-based therapeutics for the cure of a wide range of degenerative and other diseases. This review focuses on episomal and Sendai viral reprogramming modalities, which are the most popular methods for generating transgene-free human induced pluripotent stem cells (hiPSCs) from easily accessible cell sources. Graphical Abstract.
Collapse
Affiliation(s)
- Thorsten M Schlaeger
- Stem Cell Program, Boston Children's Hospital, Karp RB09213, 1 Blackfan Circle, Boston, MA, 02446, USA.
| |
Collapse
|
15
|
Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol 2018; 1722:261-302. [PMID: 29264811 DOI: 10.1007/978-1-4939-7553-2_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Use of experimentally derived induced pluripotent stem cells (iPSCs) has led to the development of cell models for differentiation, drug testing and understanding disease pathogenesis. For these models to be informative, reprogrammed cell lines need to be adequately characterized and shown to preserve all of the critical characteristics of pluripotency and differentiation. Here, we report a detailed protocol for the generation of iPSCs from human fibroblasts containing mutations in COL3A1 using a Sendai virus mediated integration-free reprogramming approach. We describe how to characterize the putative iPSCs in vivo and in vitro to ensure potency and differentiation potential. As an example of how these mutations may affect cell surface and extracellular matrix (ECM) interactions, we provide protocols for the differentiation of these cells into smooth muscle cells to illustrate how different cell types may display cell autonomous differences in collagen receptors that may affect their phenotype. These cells, when applied to mechanical model systems (see Chapter 18 by Bose et al.) facilitate an assessment of stiffness and stress-strain relationships useful for understanding how extracellular matrix dysfunction and its interactions with surface proteins contribute to disease processes.
Collapse
|
16
|
Park S, Mostoslavsky G. Generation of Human Induced Pluripotent Stem Cells Using a Defined, Feeder-Free Reprogramming System. ACTA ACUST UNITED AC 2018; 45:e48. [PMID: 30040234 DOI: 10.1002/cpsc.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer great opportunities for the study of human development and disease modeling and have enormous potential for use in future clinical cell-based therapies. However, most current systems to create hiPSCs often expose the cells to animal feeder layers or xenogeneic reagents; this raises safety concerns about using hiPSC-derived cells for therapeutic purposes. Here, we describe protocols to generate hiPSCs without exposing the cells to xenogeneic materials that uses a defined, feeder-free reprogramming system. With this method, we were able to successfully reprogram not only patient-derived peripheral blood mononuclear cells but also amniocytes from the amniotic fluid of stillborn fetuses using two independent reprogramming platforms. Importantly, hiPSCs generated in this fashion expressed pluripotent markers and had normal karyotypes. The protocols allowed us to generate and culture hiPSCs under Good Manufacturing Practice-like conditions, a necessary step for the future clinical application of these cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Seonmi Park
- Center for Regenerative Medicine (CReM) and Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine (CReM) and Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Apatoff MBL, Sengillo JD, White EC, Bakhoum MF, Bassuk AG, Mahajan VB, Tsang SH. Autologous stem cell therapy for inherited and acquired retinal disease. Regen Med 2018; 13:89-96. [PMID: 29360008 DOI: 10.2217/rme-2017-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian retina, derived from neural ectoderm, has little regenerative potential. For conditions where irreversible retinal pigment epithelium or photoreceptor cell loss occurs, advanced techniques are required to restore vision. Inherited retinal dystrophies and some acquired conditions, such as age-related macular degeneration, have a similar end result of photoreceptor cell death leading to debilitating vision loss. These diseases stand to benefit from future regenerative medicine as dietary recommendations and current pharmacologic therapy only seek to prevent further disease progression. Cell-based strategies, such as autologously derived induced pluripotent stem cells, have come a long way in overcoming previous technical and ethical concerns. Clinical trials for such techniques are already underway. These trials and the preceding preclinical studies will be discussed in the context of retinal disease.
Collapse
Affiliation(s)
- Mary Ben L Apatoff
- Jonas Children's Vision Care & Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY 10032, USA.,Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Jesse D Sengillo
- Jonas Children's Vision Care & Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY 10032, USA.,Department of Ophthalmology, Columbia University, New York, NY 10032, USA.,College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Eugenia C White
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Mathieu F Bakhoum
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA.,Department of Ophthalmology, Palo Alto Veterans Administration, Palo Alto, CA 94304, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care & Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY 10032, USA.,Department of Ophthalmology, Columbia University, New York, NY 10032, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.,Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Tammam S, Malak P, Correa D, Rothfuss O, Azzazy HME, Lamprecht A, Schulze-Osthoff K. Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells. Oncotarget 2018; 7:37728-37739. [PMID: 27183911 PMCID: PMC5122344 DOI: 10.18632/oncotarget.9276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
Protein-based reprogramming of somatic cells is a non-genetic approach for the generation of induced pluripotent stem cells (iPSCs), whereby reprogramming factors, such as OCT4, SOX2, KLF4 and c-MYC, are delivered as functional proteins. The technique is considered safer than transgenic methods, but, unfortunately, most protein-based protocols provide very low reprogramming efficiencies. In this study, we developed exemplarily a nanoparticle (NP)-based delivery system for the reprogramming factor OCT4. To this end, we expressed human OCT4 in Sf9 insect cells using a baculoviral expression system. Recombinant OCT4 showed nuclear localization in Sf9 cells indicating proper protein folding. In comparison to soluble OCT4 protein, encapsulation of OCT4 in nuclear-targeted chitosan NPs strongly stabilized its DNA-binding activity even under cell culture conditions. OCT4-loaded NPs enabled cell treatment with high micromolar concentrations of OCT4 and successfully delivered active OCT4 into human fibroblasts. Chitosan NPs therefore provide a promising tool for the generation of transgene-free iPSCs.
Collapse
Affiliation(s)
- Salma Tammam
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,Department of Chemistry, The American University in Cairo, 11835 Cairo, Egypt
| | - Peter Malak
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Daphne Correa
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Oliver Rothfuss
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Hassan M E Azzazy
- Department of Chemistry, The American University in Cairo, 11835 Cairo, Egypt
| | - Alf Lamprecht
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,Laboratory of Pharmaceutical Engineering, University of Franche-Comté, 25000 Besançon, France
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Preza E, Hardy J, Warner T, Wray S. Review: Induced pluripotent stem cell models of frontotemporal dementia. Neuropathol Appl Neurobiol 2017; 42:497-520. [PMID: 27291591 DOI: 10.1111/nan.12334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of dementia in the ageing population combined with the lack of treatments and the burden on national health care systems globally make dementia a public health priority. Despite the plethora of important research findings published over the past two decades, the mechanisms underlying dementia are still poorly understood and the progress in pharmacological interventions is limited. Recent advances in cellular reprogramming and genome engineering technologies offer an unprecedented new paradigm in disease modeling. Induced pluripotent stem cells (iPSCs) have enabled the study of patient-derived neurons in vitro, a significant progress in the field of dementia research. The first studies using iPSCs to model dementia have recently emerged, holding promise for elucidating disease pathogenic mechanisms and accelerating drug discovery. In this review, we summarize the major findings of iPSC-based studies in frontotemporal dementia (FTD) and FTD overlapping with amyotrophic lateral sclerosis (FTD/ALS). We also discuss some of the main challenges in the use of iPSCs to model complex, late-onset neurodegenerative diseases such as dementias.
Collapse
Affiliation(s)
- E Preza
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 1PJ, UK.
| | - J Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 1PJ, UK
| | - T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, WC1N 1PJ, UK
| | - S Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 1PJ, UK
| |
Collapse
|
20
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
21
|
Rawat N, Singh MK. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology. Vet World 2017; 10:640-649. [PMID: 28717316 PMCID: PMC5499081 DOI: 10.14202/vetworld.2017.640-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs) paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.
Collapse
Affiliation(s)
- N Rawat
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - M K Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
22
|
Roh KH, Nerem RM, Roy K. Biomanufacturing of Therapeutic Cells: State of the Art, Current Challenges, and Future Perspectives. Annu Rev Chem Biomol Eng 2017; 7:455-78. [PMID: 27276552 DOI: 10.1146/annurev-chembioeng-080615-033559] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stem cells and other functionally defined therapeutic cells (e.g., T cells) are promising to bring hope of a permanent cure for diseases and disorders that currently cannot be cured by conventional drugs or biological molecules. This paradigm shift in modern medicine of using cells as novel therapeutics can be realized only if suitable manufacturing technologies for large-scale, cost-effective, reproducible production of high-quality cells can be developed. Here we review the state of the art in therapeutic cell manufacturing, including cell purification and isolation, activation and differentiation, genetic modification, expansion, packaging, and preservation. We identify current challenges and discuss opportunities to overcome them such that cell therapies become highly effective, safe, and predictively reproducible while at the same time becoming affordable and widely available.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Robert M Nerem
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332.,The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
23
|
Yada RC, Hong SG, Lin Y, Winkler T, Dunbar CE. Rhesus Macaque iPSC Generation and Maintenance. ACTA ACUST UNITED AC 2017; 41:4A.11.1-4A.11.13. [PMID: 28510330 DOI: 10.1002/cpsc.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rhesus macaque (Macaca mulatta) is physiologically and phylogenetically similar to humans, and therefore represents an invaluable model for the pre-clinical assessment of the safety and feasibility of iPSC-derived cell therapies. The use of an excisable polycistronic lentiviral STEMCCA vector to reprogram rhesus fibroblasts or bone marrow stromal cells (BMSCs) into RhiPSCs is described. After reprogramming, the pluripotency transgenes can be removed by transient expression of Cre, leaving a residual genetic tag that may be useful for identification of RhiPSC-derived tissues in vivo. Finally, the steps to maintain pluripotency during passaging of RhiPSCs, required for successful utilization of RhiPSCs, is described. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ravi Chandra Yada
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland
| | - So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland
| | - Yongshun Lin
- iPSC Core, Center for Molecular Medicine, NHLBI, National Institutes of Health, Bethesda, Maryland
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Park JW, Yan L, Stoddard C, Wang X, Yue Z, Crandall L, Robinson T, Chang Y, Denton K, Li E, Jiang B, Zhang Z, Martins-Taylor K, Yee SP, Nie H, Gu F, Si W, Xie T, Yue L, Xu RH. Recapitulating and Correcting Marfan Syndrome in a Cellular Model. Int J Biol Sci 2017; 13:588-603. [PMID: 28539832 PMCID: PMC5441176 DOI: 10.7150/ijbs.19517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in FBN1 gene, which encodes a key extracellular matrix protein FIBRILLIN-1. The haplosufficiency of FBN1 has been implicated in pathogenesis of MFS with manifestations primarily in cardiovascular, muscular, and ocular tissues. Due to limitations in animal models to study the late-onset diseases, human pluripotent stem cells (PSCs) offer a homogeneic tool for dissection of cellular and molecular pathogenic mechanism for MFS in vitro. Here, we first derived induced PSCs (iPSCs) from a MFS patient with a FBN1 mutation and corrected the mutation, thereby generating an isogenic "gain-of-function" control cells for the parental MFS iPSCs. Reversely, we knocked out FBN1 in both alleles in a wild-type (WT) human embryonic stem cell (ESC) line, which served as a loss-of-function model for MFS with the WT cells as an isogenic control. Mesenchymal stem cells derived from both FBN1-mutant iPSCs and -ESCs demonstrated reduced osteogenic differentiation and microfibril formation. We further demonstrated that vascular smooth muscle cells derived from FBN1-mutant iPSCs showed less sensitivity to carbachol as demonstrated by contractility and Ca2+ influx assay, compared to the isogenic controls cells. These findings were further supported by transcriptomic anaylsis of the cells. Therefore, this study based on both gain- and loss-of-function approaches confirmed the pathogenetic role of FBN1 mutations in these MFS-related phenotypic changes.
Collapse
Affiliation(s)
- Jung Woo Park
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Chris Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xiaofang Wang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Zhichao Yue
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Leann Crandall
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tiwanna Robinson
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kyle Denton
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhenwu Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kristen Martins-Taylor
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Siu-Pok Yee
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
25
|
Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi K, Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Prolif 2017; 50:e12321. [PMID: 27905670 PMCID: PMC6529104 DOI: 10.1111/cpr.12321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are frequently used for bone regeneration, however, they are limited in quantity. Moreover, their proliferation and differentiation capabilities reduce during cell culture expansion. Potential application of induced pluripotent stem cells (iPSCs) has been reported as a promising alternative source for bone regeneration. This study aimed to systematically review the available literature on osteogenic potential of iPSCs and to discuss methods applied to enhance their osteogenic potential. METHODS AND MATERIALS A thorough search of MEDLINE database was performed from January 2006 to September 2016, limited to English-language articles. All in vitro and in vivo studies on application of iPSCs in bone regeneration were included. RESULTS The current review is organized according to the PRISMA statement. Studies were categorized according to three different approaches used for osteo-induction of iPSCs. Data are summarized and reported according to the following variables: types of study, cell sources used for iPSC generation, applied reprogramming methods, applied osteo-induction methods and treatment groups. CONCLUSION According to the articles reviewed, osteo-induced iPSCs revealed osteogenic capability equal to or superior than MSCs; cell sources do not significantly affect osteogenic potential of iPSCs; addition of resveratrol to the osteogenic medium (OM) and irradiatiation after osteogenic induction reduce teratoma formation in animal models; transfection with lentiviral bone morphogenetic protein 2 results in higher mineralization compared to osteo-induction in OM; addition of TGF-β, IGF-1 and FGF-β to OM increases osteogenic capability of iPSCs.
Collapse
Affiliation(s)
- Farshid Bastami
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Pantea Nazeman
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hamidreza Moslemi
- School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Rezai Rad
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Kazem Sharifi
- Department of BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arash Khojasteh
- Department of Tissue EngineeringSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
26
|
Katayama M, Hirayama T, Kiyono T, Onuma M, Tani T, Takeda S, Nishimori K, Fukuda T. Immortalized prairie vole-derived fibroblasts (VMF-K4DTs) can be transformed into pluripotent stem cells and provide a useful tool with which to determine optimal reprogramming conditions. J Reprod Dev 2017; 63:311-318. [PMID: 28331164 PMCID: PMC5481634 DOI: 10.1262/jrd.2016-164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular conditions required to establish induced pluripotent stem cells (iPSCs), such as the number of reprogramming factors and/or promoter selection, differ among species. The establishment of iPSCs derived from cells of
previously unstudied species therefore requires the extensive optimization of programming conditions, including promoter selection and the optimal number of reprogramming factors, through a trial-and-error approach. While the four
Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc are sufficient for iPSC establishment in mice, we reported previously that six reprogramming factors were necessary for the creation of iPSCs from primary prairie vole-derived cells.
Further to this study, we now show detailed data describing the optimization protocol we developed in order to obtain iPSCs from immortalized prairie vole-derived fibroblasts. Immortalized cells can be very useful tools in the
optimization of cellular reprogramming conditions, as cellular senescence is known to dramatically decrease the efficiency of iPSC establishment. The immortalized prairie vole cells used in this optimization were designated K4DT
cells as they contained mutant forms of CDK4, cyclin D, and telomerase reverse transcriptase (TERT). We show that iPSCs derived from these immortalized cells exhibit the transcriptional silencing of exogenous reprogramming factors
while maintaining pluripotent cell morphology. There were no observed differences between the iPSCs derived from primary and immortalized prairie vole fibroblasts. Our data suggest that cells that are immortalized with mutant
CDK4, cyclin D, and TERT provide a useful tool for the determination of the optimal conditions for iPSC establishment.
Collapse
Affiliation(s)
- Masafumi Katayama
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.,National Institute for Environmental Studies, Japan, Center for Environmental Biology and Ecosystem Studies, Ibaraki 305-8506, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Takashi Hirayama
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo 113-8421, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Manabu Onuma
- National Institute for Environmental Studies, Japan, Center for Environmental Biology and Ecosystem Studies, Ibaraki 305-8506, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, Department of Agriculture, Kindai University, Nara 3327-204, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo 113-8421, Japan
| | - Katsuhiko Nishimori
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Tomokazu Fukuda
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Ibaraki 305-8506, Japan.,United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8551, Japan
| |
Collapse
|
27
|
Palakkan AA, Nanda J, Ross JA. Pluripotent stem cells to hepatocytes, the journey so far. Biomed Rep 2017; 6:367-373. [PMID: 28413633 DOI: 10.3892/br.2017.867] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Over the past several years, there has been substantial progress in the field of regenerative medicine, which has enabled new possibilities for research and clinical application. For example, there are ongoing efforts directed at generating functional hepatocytes from adult-derived pluripotent cells for toxicity screening, generating disease models or, in the longer term, for the treatment of liver failure. In the present review, the authors summarise recent developments in regenerative medicine and pluripotent stem cells, the methods and tissues used for reprogramming and the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells. In addition, the hepatic disease models developed using iPSC technologies are discussed, as well as the potential for gene editing.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Jyoti Nanda
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - James A Ross
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| |
Collapse
|
28
|
Bharathan SP, Manian KV, Aalam SMM, Palani D, Deshpande PA, Pratheesh MD, Srivastava A, Velayudhan SR. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open 2017; 6:100-108. [PMID: 28089995 PMCID: PMC5278432 DOI: 10.1242/bio.022111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Low efficiency of somatic cell reprogramming and heterogeneity among human induced pluripotent stem cells (hiPSCs) demand extensive characterization of isolated clones before their use in downstream applications. By monitoring human fibroblasts undergoing reprogramming for their morphological changes and expression of fibroblast (CD13), pluripotency markers (SSEA-4 and TRA-1-60) and a retrovirally expressed red fluorescent protein (RV-RFP), we compared the efficiency of these features to identify bona fide hiPSC colonies. The co-expression kinetics of fibroblast and pluripotency markers in the cells being reprogrammed and the emerging colonies revealed the heterogeneity within SSEA-4+ and TRA-1-60+ cells, and the inadequacy of these commonly used pluripotency markers for the identification of bona fide hiPSC colonies. The characteristic morphological changes in the emerging hiPSC colonies derived from fibroblasts expressing RV-RFP showed a good correlation between hiPSC morphology acquisition and silencing of RV-RFP and facilitated the easy identification of hiPSCs. The kinetics of retroviral silencing and pluripotency marker expression in emerging colonies suggested that combining both these markers could demarcate the stages of reprogramming with better precision than with pluripotency markers alone. Our results clearly demonstrate that the pluripotency markers that are routinely analyzed for the characterization of established iPSC colonies are not suitable for the isolation of pluripotent cells in the early stages of reprogramming, and silencing of retrovirally expressed reporter genes helps in the identification of colonies that have attained a pluripotent state and the morphology of human embryonic stem cells (hESCs). Summary: The use of hESC-like morphology, retroviral transgene silencing and temporal expression of pluripotency markers are compared as methods to aid in the identification of hiPSC clones.
Collapse
Affiliation(s)
- Sumitha Prameela Bharathan
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Kannan Vrindavan Manian
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Syed Mohammed Musheer Aalam
- Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Dhavapriya Palani
- Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | | | - Mankuzhy Damodaran Pratheesh
- Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Shaji Ramachandran Velayudhan
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India .,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
29
|
Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:219-240. [PMID: 29127683 DOI: 10.1007/978-1-4939-7299-9_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, breakthroughs in human pluripotent stem cell (hPSC) research, namely cellular reprogramming and the emergence of sophisticated genetic engineering technologies, have opened new frontiers for cell and gene therapy. The prospect of using hPSCs, either autologous or histocompatible, as targets of genetic modification and their differentiated progeny as cell products for transplantation, presents a new paradigm of regenerative medicine of potential tremendous value for the treatment of blood disorders, including beta-thalassemia (BT) and sickle cell disease (SCD). Despite advances at a remarkable pace and great promise, many roadblocks remain before clinical translation can be realistically considered. Here we discuss the theoretical advantages of cell therapies utilizing hPSC derivatives, recent proof-of-principle studies and the main challenges towards realizing the potential of hPSC therapies in the clinic.
Collapse
|
30
|
Brouwer M, Zhou H, Nadif Kasri N. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Rev Rep 2016; 12:54-72. [PMID: 26424535 PMCID: PMC4720703 DOI: 10.1007/s12015-015-9622-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, 6500, HB, The Netherlands.
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience, Nijmegen, 6525, AJ, The Netherlands.
| |
Collapse
|
31
|
Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc Natl Acad Sci U S A 2016; 113:11871-11876. [PMID: 27698142 DOI: 10.1073/pnas.1606857113] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional enhancers control cell-type-specific gene expression. Primed enhancers are marked by histone H3 lysine 4 (H3K4) mono/di-methylation (H3K4me1/2). Active enhancers are further marked by H3K27 acetylation (H3K27ac). Mixed-lineage leukemia 4 (MLL4/KMT2D) is a major enhancer H3K4me1/2 methyltransferase with functional redundancy with MLL3 (KMT2C). However, its role in cell fate maintenance and transition is poorly understood. Here, we show in mouse embryonic stem cells (ESCs) that MLL4 associates with, but is surprisingly dispensable for the maintenance of, active enhancers of cell-identity genes. As a result, MLL4 is dispensable for cell-identity gene expression and self-renewal in ESCs. In contrast, MLL4 is required for enhancer-binding of H3K27 acetyltransferase p300, enhancer activation, and induction of cell-identity genes during ESC differentiation. MLL4 protein, rather than MLL4-mediated H3K4 methylation, controls p300 recruitment to enhancers. We also show that, in somatic cells, MLL4 is dispensable for maintaining cell identity but essential for reprogramming into induced pluripotent stem cells. These results indicate that, although enhancer priming by MLL4 is dispensable for cell-identity maintenance, it controls cell fate transition by orchestrating p300-mediated enhancer activation.
Collapse
|
32
|
Hansen SK, Stummann TC, Borland H, Hasholt LF, Tümer Z, Nielsen JE, Rasmussen MA, Nielsen TT, Daechsel JCA, Fog K, Hyttel P. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res 2016; 17:306-317. [PMID: 27596958 DOI: 10.1016/j.scr.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/09/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method and the resulting SCA3 iPSCs were differentiated into neurons. These neuronal lines harbored the disease causing mutation, expressed comparable levels of several neuronal markers and responded to the neurotransmitters, glutamate/glycine, GABA and acetylcholine. Additionally, all neuronal cultures formed networks displaying synchronized spontaneous calcium oscillations within 28days of maturation, and expressed the mature neuronal markers NeuN and Synapsin 1 implying a relatively advanced state of maturity, although not comparable to that of the adult human brain. Interestingly, we were not able to recapitulate the glutamate-induced ataxin-3 aggregation shown in a previously published iPSC-derived SCA3 model. In conclusion, we have generated a panel of SCA3 patient iPSCs and a robust protocol to derive neurons of relatively advanced maturity, which could potentially be valuable for the study of SCA3 disease mechanisms.
Collapse
Affiliation(s)
- Susanne K Hansen
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegårdsvej 7, 1870 Frb C, Denmark; H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.
| | | | | | - Lis F Hasholt
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup 2600, Denmark
| | - Jørgen E Nielsen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark; Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Mikkel A Rasmussen
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegårdsvej 7, 1870 Frb C, Denmark
| | - Troels T Nielsen
- Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegårdsvej 7, 1870 Frb C, Denmark
| |
Collapse
|
33
|
Spitalieri P, Talarico RV, Botta A, Murdocca M, D'Apice MR, Orlandi A, Giardina E, Santoro M, Brancati F, Novelli G, Sangiuolo F. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Cell Reprogram 2016; 17:275-87. [PMID: 26474030 DOI: 10.1089/cell.2015.0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications.
Collapse
Affiliation(s)
- Paola Spitalieri
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Rosa V Talarico
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Annalisa Botta
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Michela Murdocca
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | | | - Augusto Orlandi
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Emiliano Giardina
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,3 Molecular Genetics Laboratory UILDM , Santa Lucia Foundation, Rome, 00142, Italy
| | | | - Francesco Brancati
- 2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Giuseppe Novelli
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Federica Sangiuolo
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| |
Collapse
|
34
|
Li M, Izpisua Belmonte JC. Looking to the future following 10 years of induced pluripotent stem cell technologies. Nat Protoc 2016; 11:1579-85. [PMID: 27490631 DOI: 10.1038/nprot.2016.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
The development of induced pluripotent stem cells (iPSCs) has fundamentally changed our view on developmental cell-fate determination and led to a cascade of technological innovations in regenerative medicine. Here we provide an overview of the progress in the field over the past decade, as well as our perspective on future directions and clinical implications of iPSC technology.
Collapse
Affiliation(s)
- Mo Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.,Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | | |
Collapse
|
35
|
Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 2016; 8:118-35. [PMID: 27114745 PMCID: PMC4835672 DOI: 10.4252/wjsc.v8.i4.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/21/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Recent and advanced protocols are now available to derive human induced pluripotent stem cells (hiPSCs) from patients affected by genetic diseases. No curative treatments are available for many of these diseases; thus, hiPSCs represent a major impact on patient' health. hiPSCs represent a valid model for the in vitro study of monogenic diseases, together with a better comprehension of the pathogenic mechanisms of the pathology, for both cell and gene therapy protocol applications. Moreover, these pluripotent cells represent a good opportunity to test innovative pharmacological treatments focused on evaluating the efficacy and toxicity of novel drugs. Today, innovative gene therapy protocols, especially gene editing-based, are being developed, allowing the use of these cells not only as in vitro disease models but also as an unlimited source of cells useful for tissue regeneration and regenerative medicine, eluding ethical and immune rejection problems. In this review, we will provide an up-to-date of modelling monogenic disease by using hiPSCs and the ultimate applications of these in vitro models for cell therapy. We consider and summarize some peculiar aspects such as the type of parental cells used for reprogramming, the methods currently used to induce the transcription of the reprogramming factors, and the type of iPSC-derived differentiated cells, relating them to the genetic basis of diseases and to their inheritance model.
Collapse
Affiliation(s)
- Paola Spitalieri
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Valentina Rosa Talarico
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Michela Murdocca
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giuseppe Novelli
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Federica Sangiuolo
- Paola Spitalieri, Valentina Rosa Talarico, Michela Murdocca, Giuseppe Novelli, Federica Sangiuolo, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
36
|
Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues. Stem Cells Int 2016; 2016:4370142. [PMID: 26880963 PMCID: PMC4736817 DOI: 10.1155/2016/4370142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/26/2015] [Indexed: 01/30/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC) and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.
Collapse
|
37
|
Li Y, Liu T, Van Halm-Lutterodt N, Chen J, Su Q, Hai Y. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther 2016; 7:31. [PMID: 26883322 PMCID: PMC4756426 DOI: 10.1186/s13287-016-0290-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
Background An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. Methods We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. Results hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC–MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC–MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. Conclusions This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0290-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tie Liu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.
| | - Nicholas Van Halm-Lutterodt
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.
| | - JiaYu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Qingjun Su
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
38
|
Suzuki S, Sargent RG, Illek B, Fischer H, Esmaeili-Shandiz A, Yezzi MJ, Lee A, Yang Y, Kim S, Renz P, Qi Z, Yu J, Muench MO, Beyer AI, Guimarães AO, Ye L, Chang J, Fine EJ, Cradick TJ, Bao G, Rahdar M, Porteus MH, Shuto T, Kai H, Kan YW, Gruenert DC. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e273. [PMID: 26730810 PMCID: PMC5012545 DOI: 10.1038/mtna.2015.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - R Geoffrey Sargent
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Beate Illek
- Childrens Hospital Oakland Research Institute, Oakland, California, USA
| | - Horst Fischer
- Childrens Hospital Oakland Research Institute, Oakland, California, USA
| | - Alaleh Esmaeili-Shandiz
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
| | - Michael J Yezzi
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Albert Lee
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- Present address: Graduate Program in Biochemistry, Molecular, Cellular, and Developmental Biology, University of California–Davis, Davis, California, USA
| | - Yanu Yang
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Present address: Molecular Department, Hunter Laboratories, Campbell, California, USA
| | - Soya Kim
- Liver Center, University of California–San Francisco, San Francisco, California, USA
- Present address: Heinrich-Heine-Universität Düsseldorf, Institut für Genetik, Düsseldorf, Germany
| | - Peter Renz
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Present address: Graduate Program in the Department of Biosystems Science and Engineering, ETH, Zürich, Switzerland
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Marcus O Muench
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
- Liver Center, University of California–San Francisco, San Francisco, California, USA
- Blood Systems Research Institute, San Francisco, California, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, California, USA
| | | | - Lin Ye
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Judy Chang
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thomas J Cradick
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghdad Rahdar
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W Kan
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California, USA
| | - Dieter C Gruenert
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
39
|
Pini J, Rouleau M, Desnuelle C, Sacconi S, Bendahhou S. Modeling Andersen's Syndrome in Human Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 25:151-9. [PMID: 26573604 DOI: 10.1089/scd.2015.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Andersen's syndrome (AS) is a rare disorder characterized by a triad of symptoms: periodic paralysis, cardiac arrhythmia, and bone developmental defects. Most of the patients carry mutations on the inward rectifier potassium channel Kir2.1 encoded by the KCNJ2 gene. kcnj2 knockout mice are lethal at birth preventing, hence, thorough investigations of the physiological and pathophysiological events. We have generated induced pluripotent stem (iPS) cells from healthy as well as from AS patient muscular biopsies using the four-gene cassette required for cellular reprogramming (Oct4, Sox2, Klf4, and c-Myc). The generated AS-iPS cells exhibited the gold standard requirement for iPS cells: expression of genetics and surface pluripotent markers, strong alkaline phosphatase activity, self-renewal, and could be differentiated by the formation of embryoid bodies (EBs) into the three germ layers. Sequencing of the entire coding sequence of the KCNJ2 gene, in AS-iPS cells, revealed that the reprogramming process did not revert the Andersen's syndrome-associated mutation. Moreover, no difference was observed between control and AS-iPS cells in terms of pluripotent markers' expression, self-renewal, and three germ layer differentiation. Interestingly, expression of osteogenic markers are lower in EB-differentiated AS-iPS compared to control iPS cells. Our results showed that the Kir2.1 channel is not important for the reprogramming process and the early step of the development in vitro. However, the osteogenic machinery appears to be hastened in AS-iPS cells, strongly indicating that the generated AS-iPS cells could be a good model to better understand the AS pathophysiology.
Collapse
Affiliation(s)
- Jonathan Pini
- 1 UMR7370 CNRS, LP2M, Labex ICST, Faculté de Médecine, University Nice Sophia Antipolis , Nice, France
| | - Matthieu Rouleau
- 1 UMR7370 CNRS, LP2M, Labex ICST, Faculté de Médecine, University Nice Sophia Antipolis , Nice, France
| | - Claude Desnuelle
- 2 INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN) , Nice, France .,3 CNRS, UMR 7284, Institute for Research on Cancer and Aging of Nice (IRCAN) , Nice, France .,4 Faculty of Medicine, Neuromuscular Diseases and ALS Specialized Center, University of Nice-Sophia-Antipolis , Nice, France
| | - Sabrina Sacconi
- 2 INSERM, U1081, Institute for Research on Cancer and Aging of Nice (IRCAN) , Nice, France .,3 CNRS, UMR 7284, Institute for Research on Cancer and Aging of Nice (IRCAN) , Nice, France .,4 Faculty of Medicine, Neuromuscular Diseases and ALS Specialized Center, University of Nice-Sophia-Antipolis , Nice, France
| | - Saïd Bendahhou
- 1 UMR7370 CNRS, LP2M, Labex ICST, Faculté de Médecine, University Nice Sophia Antipolis , Nice, France
| |
Collapse
|
40
|
Hartjes KA, Li X, Martinez-Fernandez A, Roemmich AJ, Larsen BT, Terzic A, Nelson TJ. Selection via pluripotency-related transcriptional screen minimizes the influence of somatic origin on iPSC differentiation propensity. Stem Cells 2015; 32:2350-9. [PMID: 24802033 DOI: 10.1002/stem.1734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 01/25/2023]
Abstract
The value of induced pluripotent stem cells (iPSCs) within regenerative medicine is contingent on predictable and consistent iPSC differentiation. However, residual influence of the somatic origin or reprogramming technique may variegate differentiation propensity and confound comparative genotype/phenotype analyses. The objective of this study was to define quality control measures to select iPSC clones that minimize the influence of somatic origin on differentiation propensity independent of the reprogramming strategy. More than 60 murine iPSC lines were derived from different fibroblast origins (embryonic, cardiac, and tail tip) via lentiviral integration and doxycycline-induced transgene expression. Despite apparent equivalency according to established iPSC histologic and cytomorphologic criteria, clustering of clonal variability in pluripotency-related gene expression identified transcriptional outliers that highlighted cell lines with unpredictable cardiogenic propensity. Following selection according to a standardized gene expression profile calibrated by embryonic stem cells, the influence of somatic origin on iPSC methylation and transcriptional patterns was negated. Furthermore, doxycycline-induced iPSCs consistently demonstrated earlier differentiation than lentiviral-reprogrammed lines using contractile cardiac tissue as a measure of functional differentiation. Moreover, delayed cardiac differentiation was predominately associated with upregulation in pluripotency-related gene expression upon differentiation. Starting from a standardized pool of iPSCs, relative expression levels of two pluripotency genes, Oct4 and Zfp42, statistically correlated with enhanced cardiogenicity independent of somatic origin or reprogramming strategy (R(2) = 0.85). These studies demonstrate that predictable iPSC differentiation is independent of somatic origin with standardized gene expression selection criteria, while the residual impact of reprogramming strategy greatly influences predictable output of tissue-specification required for comparative genotype/phenotype analyses.
Collapse
Affiliation(s)
- Katherine A Hartjes
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Kim J, Kim KP, Lim KT, Lee SC, Yoon J, Song G, Hwang SI, Schöler HR, Cantz T, Han DW. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep 2015; 5:15706. [PMID: 26503743 PMCID: PMC4621602 DOI: 10.1038/srep15706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application.
Collapse
Affiliation(s)
- Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Kyung Tae Lim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung Chan Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Guangqi Song
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- University of Münster, Medical Faculty, Domagkstrasse 3, 48149 Münster, Germany
| | - Tobias Cantz
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
42
|
Brouwer M, Zhou H, Nadif Kasri N. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Rev Rep 2015. [PMID: 26424535 DOI: 10.1007/s12015‐015‐9622‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, 6500, HB, The Netherlands.
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Department of Human Genetics, Radboudumc, Nijmegen, 6500, HB, The Netherlands. .,Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience, Nijmegen, 6525, AJ, The Netherlands.
| |
Collapse
|
43
|
Suchorska WM, Lach MS, Richter M, Kaczmarczyk J, Trzeciak T. Bioimaging: An Useful Tool to Monitor Differentiation of Human Embryonic Stem Cells into Chondrocytes. Ann Biomed Eng 2015; 44:1845-59. [PMID: 26354117 PMCID: PMC4837225 DOI: 10.1007/s10439-015-1443-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/01/2015] [Indexed: 01/10/2023]
Abstract
To improve the recovery of damaged cartilage tissue, pluripotent stem cell-based therapies are being intensively explored. A number of techniques exist that enable monitoring of stem cell differentiation, including immunofluorescence staining. This simple and fast method enables changes to be observed during the differentiation process. Here, two protocols for the differentiation of human embryonic stem cells into chondrocytes were used (monolayer cell culture and embryoid body formation). Cells were labeled for markers expressed during the differentiation process at different time points (pluripotent: NANOG, SOX2, OCT3/4, E-cadherin; prochondrogenic: SOX6, SOX9, Collagen type II; extracellular matrix components: chondroitin sulfate, heparan sulfate; beta-catenin, CXCR4, and Brachyury). Comparison of the signal intensity of differentiated cells to control cell populations (articular cartilage chondrocytes and human embryonic stem cells) showed decreased signal intensities of pluripotent markers, E-cadherin and beta-catenin. Increased signal intensities of prochondrogenic markers and extracellular matrix components were observed. The changes during chondrogenic differentiation monitored by evaluation of pluripotent and chondrogenic markers signal intensity were described. The changes were similar to several studies over chondrogenesis. These results were confirmed by semi-quantitative analysis of IF signals. In this research we indicate a bioimaging as a useful tool to monitor and semi-quantify the IF pictures during the differentiation of hES into chondrocyte-like.
Collapse
Affiliation(s)
- Wiktoria M Suchorska
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
| | - Michał S Lach
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland. .,Postgraduate School of Molecular Medicine, Warsaw University of Medical Sciences, Warsaw, Poland.
| | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Kaczmarczyk
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
44
|
Wenker SD, Casalía M, Candedo VC, Casabona JC, Pitossi FJ. Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Lett 2015; 589:3396-406. [PMID: 26226418 DOI: 10.1016/j.febslet.2015.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Adult cells from patients can be reprogrammed to induced pluripotent stem cells (iPSCs) which successively can be used to obtain specific cells such as neurons. This remarkable breakthrough represents a new way of studying diseases and brought new therapeutic perspectives in the field of regenerative medicine. This is particular true in the neurology field, where few techniques are amenable to study the affected tissue of the patient during illness progression, in addition to the lack of neuroprotective therapies for many diseases. In this review we discuss the advantages and unresolved issues of cell reprogramming and neuronal differentiation. We reviewed evidence using iPSCs-derived neurons from neurological patients. Focusing on data obtained from Parkinson's disease (PD) patients, we show that iPSC-derived neurons possess morphological and functional characteristics of this disease and build a case for the use of this technology to study PD and other neuropathologies while disease is in progress. These data show the enormous impact that this new technology starts to have on different purposes such as the study and design of future therapies of neurological disease, especially PD.
Collapse
|
45
|
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015; 9:80. [PMID: 26190977 PMCID: PMC4486834 DOI: 10.3389/fnana.2015.00080] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/25/2015] [Indexed: 02/03/2023] Open
Abstract
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School Boston, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences and Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
46
|
Drozd AM, Walczak MP, Piaskowski S, Stoczynska-Fidelus E, Rieske P, Grzela DP. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther 2015; 6:122. [PMID: 26088261 PMCID: PMC4515927 DOI: 10.1186/s13287-015-0112-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/25/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The prospect of therapeutic applications of the induced pluripotent stem cells (iPSCs) is based on their ability to generate virtually any cell type present in human body. Generation of iPSCs from somatic cells has opened up new possibilities to investigate stem cell biology, to better understand pathophysiology of human diseases, and to design new therapy approaches in the field of regenerative medicine. In this study, we focus on the ability of the episomal system, a non-viral and integration-free reprogramming method to derive iPSCs from somatic cells of various origin. METHODS Cells originating from neonatal and adult tissue, renal epithelium, and amniotic fluid were reprogrammed by using origin of replication/Epstein-Barr virus nuclear antigen-1 (oriP/EBNA-1)-based episomal vectors carrying defined factors. The iPSC colony formation was evaluated by using immunocytochemistry and alkaline phosphatase assay and by investigating gene expression profiles. The trilineage formation potential of generated pluripotent cells was assessed by embryoid body-mediated differentiation. The impact of additionally introduced factors on episome-based reprogramming was also investigated. RESULTS Reprogramming efficiencies were significantly higher for the epithelial cells compared with fibroblasts. The presence of additional factor miR 302/367 in episomal system enhanced reprogramming efficiencies in fibroblasts and epithelial cells, whereas the downregulation of Mbd3 expression increased iPSC colony-forming efficiency in fibroblasts solely. CONCLUSIONS In this study, we performed a side-by-side comparison of iPSC colony-forming efficiencies in fibroblasts and epithelial cells transiently transfected with episomal plasmids and demonstrated that iPSC generation efficiency was highest when donor samples were derived from epithelial cells. We determined that reprogramming efficiency of episomal system could be further improved. Considering results obtained in the course of this study, we believe that episomal reprogramming provides a simple, reproducible, and efficient tool for generating clinically relevant pluripotent cells.
Collapse
Affiliation(s)
- Anna M Drozd
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.
| | - Maciej P Walczak
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.
| | - Sylwester Piaskowski
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland. .,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland.
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland. .,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland.
| | - Piotr Rieske
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland. .,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland.
| | - Dawid P Grzela
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.
| |
Collapse
|
47
|
Wilson R, Urraca N, Skobowiat C, Hope KA, Miravalle L, Chamberlin R, Donaldson M, Seagroves TN, Reiter LT. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells. Stem Cells Transl Med 2015; 4:905-12. [PMID: 26032749 DOI: 10.5966/sctm.2014-0196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases.
Collapse
Affiliation(s)
- Ryan Wilson
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Nora Urraca
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Cezary Skobowiat
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Kevin A Hope
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Leticia Miravalle
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Reed Chamberlin
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Martin Donaldson
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Tiffany N Seagroves
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| | - Lawrence T Reiter
- Department of Pediatric Dentistry, Department of Neurology, Center for Cancer Research, Department of Pathology, IPBS Program, and Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Genetics Associates Inc., Nashville, Tennessee, USA
| |
Collapse
|
48
|
Alvarez Palomo AB, McLenachan S, Chen FK, Da Cruz L, Dilley RJ, Requena J, Lucas M, Lucas A, Drukker M, Edel MJ. Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. FIBROGENESIS & TISSUE REPAIR 2015; 8:9. [PMID: 25984235 PMCID: PMC4432516 DOI: 10.1186/s13069-015-0026-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.
Collapse
Affiliation(s)
- Ana Belen Alvarez Palomo
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Lyndon Da Cruz
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD England
| | - Rodney J Dilley
- Ear Sciences Centre, 1 Salvado Rd, Subiaco, WA 6008 Australia ; School of Surgery, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| | - Jordi Requena
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Michaela Lucas
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia ; PathWest, SCGH Laboratories Hospital Ave, Nedlands, WA 6009 Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Building 390, Discovery Way, Murdoch, Perth, WA 6150 Australia
| | - Micha Drukker
- Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain ; Division of Pediatrics and Child Health, Westmead Children's Hospital, Corner Hawkesbury Road and Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ; School of Anatomy, Physiology & Human Biology and Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| |
Collapse
|
49
|
Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells. J Clin Med 2015; 4:696-714. [PMID: 26239351 PMCID: PMC4470162 DOI: 10.3390/jcm4040696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 01/29/2023] Open
Abstract
Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming.
Collapse
|
50
|
Griffin TA, Anderson HC, Wolfe JH. Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model. Stem Cell Reports 2015; 4:835-46. [PMID: 25866157 PMCID: PMC4437470 DOI: 10.1016/j.stemcr.2015.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/01/2022] Open
Abstract
Neural stem cell (NSC) transplantation is a promising strategy for delivering therapeutic proteins in the brain. We evaluated a complete process of ex vivo gene therapy using human induced pluripotent stem cell (iPSC)-derived NSC transplants in a well-characterized mouse model of a human lysosomal storage disease, Sly disease. Human Sly disease fibroblasts were reprogrammed into iPSCs, differentiated into a stable and expandable population of NSCs, genetically corrected with a transposon vector, and assessed for engraftment in NOD/SCID mice. Following neonatal intraventricular transplantation, the NSCs engraft along the rostrocaudal axis of the CNS primarily within white matter tracts and survive for at least 4 months. Genetically corrected iPSC-NSCs transplanted post-symptomatically into the striatum of adult Sly disease mice reversed neuropathology in a zone surrounding the grafts, while control mock-corrected grafts did not. The results demonstrate the potential for ex vivo gene therapy in the brain using human NSCs from autologous, non-neural tissues.
Sly disease patient fibroblasts converted to iPSCs yield transplantable NSCs A PiggyBac transposon-based approach corrects the lysosomal enzyme deficiency Widespread migration of transplanted NSCs occurs in neonates, but not in adults Reversal of microglial pathology in a zone surrounding corrected grafts
Collapse
Affiliation(s)
- Tagan A Griffin
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hayley C Anderson
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|