1
|
Hetta HF, Elsaghir A, Sijercic VC, Ahmed AK, Gad SA, Zeleke MS, Alanazi FE, Ramadan YN. Clinical Progress in Mesenchymal Stem Cell Therapy: A Focus on Rheumatic Diseases. Immun Inflamm Dis 2025; 13:e70189. [PMID: 40353645 PMCID: PMC12067559 DOI: 10.1002/iid3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/10/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Rheumatic diseases are chronic immune-mediated disorders affecting multiple organ systems and significantly impairing patients' quality of life. Current treatments primarily provide symptomatic relief without offering a cure. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their ability to differentiate into various cell types and their immunomodulatory, anti-inflammatory, and regenerative properties. This review aims to summarize the clinical progress of MSC therapy in rheumatic diseases, highlight key findings from preclinical and clinical studies, and discuss challenges and future directions. METHODOLOGY A comprehensive review of preclinical and clinical studies on MSC therapy in rheumatic diseases, including systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteoporosis, Sjögren's syndrome, Crohn's disease, fibromyalgia, systemic sclerosis, dermatomyositis, and polymyositis, was conducted. Emerging strategies to enhance MSC efficacy and overcome current limitations were also analyzed. RESULTS AND DISCUSSION Evidence from preclinical and clinical studies suggests that MSC therapy can reduce inflammation, modulate immune responses, and promote tissue repair in various rheumatic diseases. Clinical trials have demonstrated potential benefits, including symptom relief and disease progression delay. However, challenges such as variability in treatment response, optimal cell source and dosing, long-term safety concerns, and regulatory hurdles remain significant barriers to clinical translation. Standardized protocols and further research are required to optimize MSC application. CONCLUSION MSC therapy holds promise for managing rheumatic diseases, offering potential disease-modifying effects beyond conventional treatments. However, large-scale, well-controlled clinical trials are essential to establish efficacy, safety, and long-term therapeutic potential. Addressing current limitations through optimized treatment protocols and regulatory frameworks will be key to its successful integration into clinical practice.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Alaa Elsaghir
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| | | | - Abdulrahman K. Ahmed
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Sayed A. Gad
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mahlet S. Zeleke
- Menelik II Medical and Health Science CollegeAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| |
Collapse
|
2
|
Wang B, Ni J, Yu L, Chen S, Shang W, Fang P, Min W. Loss of chemerin prevents ovariectomy-induced osteoporosis in mice through intraosseous vascular remodeling. Mol Cell Endocrinol 2025; 599:112465. [PMID: 39848432 DOI: 10.1016/j.mce.2025.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2-/-) mice. The results showed that the bone mineral density (BMD) and volume score, trabecular thickness, cortical thickness, bone formation marker BALP and osteocalcin, and angiogenesis markers CD31 and EMCN significantly increased in ovariectomized Rarres2-/- mice. Furthermore, the expression of biomarkers to osteoblasts (β-catenin and Runx2) and angiogenesis markers (VEGF-A, Noggin, and Ang-1) significantly increased in the bone tissue of ovariectomized Rarres2-/- mice, as well as in bone marrow stromal cells and primary intraosseous vascular endothelial cells of Rarres2-/- mice. Conversely, treatment with chemerin significantly inhibited expression of biomarkers for osteoblasts and angiogenesis markers in bone marrow stromal cells and primary intraosseous vascular endothelial cells of Rarres2-/- mice. More importantly, the supernatants of the primary intraosseous vascular endothelial cells of the Rarres2-/- mice could promote the osteogenic differentiation effect of BMSCs, which could be blocked by treating with the chemerin recombinant protein. These data indicate that endogenous chemerin has an inhibitory effect on intraosseous vascular formation as well as osteoblast differentiation and proliferation in ovariectomy-induced osteoporosis mice. Chemerin effectively promoted postmenopausal osteoporosis development, which is associated with the involvement of chemerin in the reduction of microcirculation within the skeleton.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinghuai Ni
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Yu
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Chen
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen Min
- Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Payne NL, Pang SHM, Freeman AJ, Ozkocak DC, Limar JW, Wallis G, Zheng D, Mendonca S, O'Reilly LA, Gray DHD, Poon IKH, Heng TSP. Proinflammatory cytokines sensitise mesenchymal stromal cells to apoptosis. Cell Death Discov 2025; 11:121. [PMID: 40148285 PMCID: PMC11950399 DOI: 10.1038/s41420-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) exert broad therapeutic effects across a range of inflammatory diseases. Their mechanism of action has largely been attributed to paracrine signalling, orchestrated by an array of factors produced by MSCs that are collectively termed the "secretome". Strategies to enhance the release of these soluble factors by pre-exposure to inflammatory cytokines, a concept known as "licensing", is thought to provide a means of enhancing MSC efficacy. Yet, recent evidence shows that intravenously infused MSCs entrapped within the lungs undergo apoptosis, and their subsequent clearance by host phagocytes is essential for their therapeutic efficacy. We therefore sought to clarify the mechanisms governing regulated cell death in MSCs and how exposure to inflammatory cytokines impacts this process. Our results show that MSCs are relatively resistant to cell death induced via the extrinsic pathway of apoptosis, as well as stimuli that induce necroptosis, a form of regulated inflammatory cell death. Instead, efficient killing of MSCs required triggering of the mitochondrial pathway of apoptosis, via inhibition of the pro-survival proteins MCL-1 and BCL-XL. Apoptotic bodies were readily released by MSCs during cell disassembly, a process that was inhibited in vitro and in vivo when the apoptotic effectors BAK and BAX were genetically deleted. Licensing of MSCs by pre-exposure to the inflammatory cytokines TNF and IFN-γ increased the sensitivity of MSCs to intrinsic apoptosis in vitro and accelerated their in vivo clearance by host cells within the lungs after intravenous infusion. Taken together, our study demonstrates that inflammatory "licensing" of MSCs facilitates cell death by increasing their sensitivity to triggers of the intrinsic pathway of apoptosis and accelerating the kinetics of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Natalie L Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Swee Heng Milon Pang
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrew J Freeman
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dilara C Ozkocak
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Justin W Limar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Georgia Wallis
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Senora Mendonca
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ivan K H Poon
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Fenger Carlander AL, Jakobsen KK, Todsen T, Paaske N, Østergaard Madsen AK, Bendtsen SK, Kastrup J, Friborg J, Duch Lynggaard C, Hauge AW, Christensen R, Grønhøj C, von Buchwald C. Long-term Effectiveness and Safety of Mesenchymal Stromal Cell Therapy for Radiation-Induced Hyposalivation in Head and Neck Cancer Survivors: A Randomized Phase II Trial. Clin Cancer Res 2025; 31:824-831. [PMID: 39751638 DOI: 10.1158/1078-0432.ccr-24-2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE The long-term effect of adipose-derived mesenchymal stromal cells (ASC) on restoring radiation-induced salivary gland hypofunction in patients with previous head and neck cancer has not been validated in larger settings. PATIENTS AND METHODS The study was a 12-month follow-up of a randomized trial, including patients with hyposalivation. Patients were randomized to receive allogeneic ASC or placebo in the submandibular glands. The primary endpoint was unstimulated whole saliva (UWS) followed by stimulated whole saliva, patient-reported outcomes (European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire, Head and Neck Module, and the xerostomia questionnaire), and safety. RESULTS Of the 120 enrolled patients, 117 (97.5%) were assessed at 12 months. Treatment with ASC did not increase UWS compared with placebo: Increase in UWS was 0.02 mL/minute [95% confidence interval (CI), 0.01-0.04] in the ASC group and 0.02 mL/minute (95% CI, 0-0.03) in the placebo group (P = 0.56). ASC reduced the symptom burden for dry mouth with -10.07 units (95% CI, -13.39 to -6.75) compared with -4.15 units (95% CI, -7.46 to -0.84) in the placebo group (P = 0.01). Compared with placebo, ASC did not improve sticky saliva (-9.27 vs. -4.55 units; P = 0.13), swallowing (-4.50 vs. 3.49 units; P = 0.5), or xerostomia (-3.12 vs. -2.74 units; P = 0.82). Treatment was safe and associated with a transient immune response. CONCLUSIONS Intraglandular ACS therapy in the submandibular glands significantly relieved subjective dry mouth symptoms. Both ASC and placebo increased UWS, but ASC did not prove superior to placebo in restoring salivary gland function, based on the salivary flow rate.
Collapse
Affiliation(s)
- Amanda-Louise Fenger Carlander
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Section for Biostatistics and Evidence-Based Research, The Parker Institute, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Tobias Todsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Natasja Paaske
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne Kathrine Østergaard Madsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Simone Kloch Bendtsen
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Jeppe Friborg
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Duch Lynggaard
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne Werner Hauge
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, The Parker Institute, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Research, Research Unit of Rheumatology, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Wu W, An X, Gong W, Yang L, Liu N, Liu B, Guo B, Jiang Q, Li L. ShK-modified UCMSCs Inhibit M1-Like Macrophage Polarization and Alleviate Osteoarthritis Progression via PI3K/Akt Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406822. [PMID: 39721037 PMCID: PMC11884619 DOI: 10.1002/advs.202406822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The potassium channel Kv1.3 plays an important role in regulating immune cell functions in many inflammatory diseases whereas rarely in osteoarthritis (OA). Here, it is demonstrated that the Kv1.3 of macrophages is upregulated in response to LPS stimulation, as well as in human OA synovium samples than non-OA. Administration of Stichodactyla toxin (ShK), a Kv1.3 blocker, significantly inhibited cartilage degeneration and synovial inflammation in animal models of OA in vivo by inhibiting M1 macrophage polarization and reducing the production of inflammatory factors. In this study, a transgenically engineered human umbilical cord mesenchymal stem cell (UCMSC) delivery system is developed that secreted a peptide ShK, a Kv1.3 potassium blocker, into the knee articular cavity. Collectively, the results identified Kv1.3 as a potential therapeutic target for OA and demonstrated the efficacy of using ShK transgenic engineered UCMSCs as a delivery for the peptide in OA treatment.
Collapse
Affiliation(s)
- Wenshu Wu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Xueying An
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Wang Gong
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Lin Yang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjing210008P.R. China
| | - Na Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Baosheng Guo
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjing210008P.R. China
| | - Lan Li
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| |
Collapse
|
6
|
Zeng L, Liu C, Wu Y, Liu S, Zheng Y, Hao W, Wang D, Sun L. Efficacy and safety of mesenchymal stromal cell transplantation in the treatment of autoimmune and rheumatic immune diseases: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2025; 16:65. [PMID: 39934871 PMCID: PMC11817852 DOI: 10.1186/s13287-025-04184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE This study aims to assess the effectiveness and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune and rheumatic immune diseases through randomized controlled trials (RCTs). METHODS Two researchers conducted a comprehensive search of Chinese and English databases from their inception until Dec. 2023. The literature screening and data extraction were then performed. Statistical analysis was carried out using RevMan 5.4 software. RESULTS A total of 42 relevant RCTs, involving 2,183 participants, were ultimately included in this study. These RCTs encompassed four types of rheumatic immune and bone diseases, namely rheumatoid arthritis (RA), osteoarthritis (OA), spondyloarthritis, systemic sclerosis arthritis, systemic lupus erythematosus (SLE), inflammatory bowel disease, multiple sclerosis, primary Sjögren's syndrome (PSS). The systematic review indicates that MSC transplantation may improve spondyloarthritis, RA, PSS. The meta-analysis reveals that MSC transplantation significantly improved symptoms in patients with OA [VAS (visual analogue scale): bone marrow: SMD = - 0.95, 95% CI - 1.55 to - 0.36, P = 0.002; umbilical cord: SMD = - 1.25, 95% CI - 2.04 to - 0.46, P = 0.002; adipose tissue: SMD = -1.26, 95% CI -1.99 to - 0.52, P = 0.0009)], SLE [Systemic lupus erythematosus disease activity index (SLEDAI): SMD = - 2.32, 95% CI - 3.59 to - 1.06, P = 0.0003], inflammatory bowel disease [clinical efficacy: RR = 2.02, 95% CI 1.53 to 2.67, P < 0.00001]. However, MSC transplantation may not improve the symptoms of multiple sclerosis and systemic sclerosis (Ssc). Importantly, MSC transplantation did not increase the incidence of adverse events (OA: RR = 1.23, 95% CI 0.93 to 1.65, P = 0.15; SLE: RR = 0.83, 95% CI 0.28 to 2.51, P = 0.76; Inflammatory bowel disease: RR = 0.99, 95% CI 0.81 to 1.22, P = 0.96; Multiple sclerosis: RR = 1.12, 95% CI 0.81 to 1.53, P = 0.50), supporting its safety profile across the included studies. These findings suggest that MSC transplantation holds promise for several rheumatic and autoimmune diseases while highlighting areas where further research is warranted. CONCLUSION MSC transplantation may have the potential to treat autoimmune and rheumatic immune diseases. Moreover. MSC transplantation appears to be relatively safe and could be considered as a viable alternative treatment option for autoimmune and rheumatic immune diseases.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Chang Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yang Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuman Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yaru Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Che H, Hart ML, Lauer JC, Selig M, Voelker M, Kurz B, Rolauffs B. A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications. Biomed Mater 2025; 20:025008. [PMID: 39719129 DOI: 10.1088/1748-605x/ada335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g. fetal bovine serum (FBS), are established for use with micro-patterns (MPs). Thus, there are currently no good manufacturing practice (GMP)-compliant media available for MPs. This study tested a xenogenic-free human plasma and platelet lysate (hP + PL) medium supplement to determine its compatibility with MPs. Unfiltered hP + PL medium resulted in significant protein deposition, creating a 'carpet-like' layer that rendered MPs ineffective. Filtration (3×/5×) eliminated this effect. Importantly, quantitative comparison using droplet digital PCR revealed that human MSCs in all media types exhibited similar profiles with strong myogenic Calponin 1/Transgelin 2 (TAGLN2) and weaker osteogenic alkaline phosphatase/Runt-related transcription factor 2 marker expression, and much weaker adipogenic (lipoprotein lipase/peroxisome proliferator-activated receptor gamma) and chondrogenic (collagen type II/aggrecan) expression, with profiles being dominated by myogenic markers. Within these similar profiles, an even stronger induction of the myogenic marker TAGLN2 by all hP + PL- compared to FBS-containing media. Overall, this suggested that FBS can be replaced with hP + PL without altering differentiation profiles. However, assessing individual MSC responses to various MP types with defined categories revealed that unfiltered hP + PL medium was unusable. Importantly, FBS- and 3× filtered hP + PL media were comparable in each differentiation category. Summarized, this study recommends 3× filtered hP + PL as a xenogenic-free and potentially GMP-compliant alternative to FBS as a culture medium supplement for micro-patterning cell populations in both basic and translational research that will ensure consistent and reliable MSC micro-patterning for therapeutic use.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Zhang Y, Wang W, Chen L, Wang H, Dong D, Zhu J, Guo Y, Zhou Y, Liu T, Fu W. Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift. Bioeng Transl Med 2025; 10:e10711. [PMID: 39801749 PMCID: PMC11711206 DOI: 10.1002/btm2.10711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate. In vitro experiments demonstrated that IL-10 modRNA-transfected hADSCs effectively modulated macrophage polarization towards an anti-inflammatory phenotype. In vivo experiments with a well-established murine model demonstrated that transplantation of hADSCsmodIL-10 on postoperative day 5 (POD5) significantly improved wound healing outcomes, including accelerated wound closure, enhanced re-epithelialization, promoted M2 polarization, improved collagen deposition, and increased neovascularization. This study concludes that IL-10 modRNA-enriched hADSCs offer a promising therapeutic approach for diabetic wound healing, with the timing of IL-10 administration playing a crucial role in its effectiveness. These cells modulate macrophage polarization and promote tissue repair, demonstrating their potential for improving the management of diabetic wounds.
Collapse
Affiliation(s)
- Yuxin Zhang
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Wei Wang
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Liang Chen
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Heng Wang
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Dong Dong
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Jingjing Zhu
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Yu Guo
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Yiqun Zhou
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Tianyi Liu
- Shanghai Key Laboratory of Clinical Geriatric MedicineHuadong HospitalShanghaiChina
- Department of Plastic Surgery, Huadong Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Di SJ, Cui XW, Liu TJ, Shi YY. Therapeutic potential of human breast milk-derived exosomes in necrotizing enterocolitis. Mol Med 2024; 30:243. [PMID: 39701931 DOI: 10.1186/s10020-024-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%. In recent years, exosomes, particularly those derived from breast milk, have emerged as potential candidates for NEC therapy. Human breast milk-derived exosomes (BME) have been shown to enhance intestinal barrier function, protect intestinal epithelial cells from oxidative stress, promote the proliferation and migration of intestinal epithelial cells, and reduce the severity of experimental NEC models. As a subset of extracellular vesicles, BME possess the membrane structure, low immunogenicity, and high permeability, making them ideal vehicles for the treatment of NEC. Additionally, exosomes derived from various sources, including stem cells, intestinal epithelial cells, plants, and bacteria, have been implicated in the development and protection of intestinal diseases. This article summarizes the mechanisms through which exosomes, particularly BME, exert their effects on NEC and discusses the feasibility and obstacles associated with this novel therapeutic strategy.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Wei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
10
|
Bates SM, Evans KV, Delsing L, Wong R, Cornish G, Bahjat M. Immune safety challenges facing the preclinical assessment and clinical progression of cell therapies. Drug Discov Today 2024; 29:104239. [PMID: 39521331 DOI: 10.1016/j.drudis.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The promise of curative outcomes for life-limiting diseases using cell therapies is starting to become a reality, not only for patients with end-stage cancer, but also increasingly for regenerative therapies, including dentistry, ocular, neurodegenerative, and cardiac diseases. The introduction of often genetically modified cells into a patient can come with an extensive range of safety considerations. From an immune perspective, cell-based therapies carry inherent consequences and consideration of factors, such as the cell source (donor-derived autologous cells versus allogeneic cells), the intrinsic cellular nature of the therapy, and engineering/manufacturing methods, all of which influence the likelihood of inducing unwanted immune responses. Here, we provide an overview of the potential immune safety risks associated with cell therapies and explore possible mitigation approaches.
Collapse
Affiliation(s)
- Stephanie M Bates
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kelly V Evans
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Louise Delsing
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Wong
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Georgina Cornish
- Oncology Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mahnoush Bahjat
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
11
|
Gao P, Kajiya M, Motoike S, Ikeya M, Yang J. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:95-108. [PMID: 38314143 PMCID: PMC10837070 DOI: 10.1016/j.jdsr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Guided tissue regeneration (GTR) has been widely used in the periodontal treatment of intrabony and furcation defects for nearly four decades. The treatment outcomes have shown effectiveness in reducing pocket depth, improving attachment gain and bone filling in periodontal tissue. Although applying GTR could reconstruct the periodontal tissue, the surgical indications are relatively narrow, and some complications and race ethic problems bring new challenges. Therefore, it is challenging to achieve a consensus concerning the clinical benefits of GTR. With the appearance of stem cell-based regenerative medicine, mesenchymal stem/stromal cells (MSCs) have been considered a promising cell resource for periodontal regeneration. In this review, we highlight preclinical and clinical periodontal regeneration using MSCs derived from distinct origins, including non-odontogenic and odontogenic tissues and induced pluripotent stem cells, and discuss the transplantation procedures, therapeutic mechanisms, and concerns to evaluate the effectiveness of MSCs.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Souta Motoike
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jingmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024; 8:1682-1699. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
14
|
Albougha MS, Sugii H, Adachi O, Mardini B, Soeno S, Hamano S, Hasegawa D, Yoshida S, Itoyama T, Obata J, Maeda H. Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone. Biomolecules 2024; 14:1455. [PMID: 39595630 PMCID: PMC11591890 DOI: 10.3390/biom14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is mediated through the secretion of trophic factors, particularly exosomes. This study investigated the effects of exosomes from human PDLSCs (HPDLSCs-Exo) on human osteoblast-like cells in vitro and on the healing of rat calvarial bone defects in vivo. HPDLSCs-Exo were isolated and characterized by their particle shape, size (133 ± 6.4 nm), and expression of surface markers (CD9, CD63, and CD81). In vitro results showed that HPDLSCs-Exo promoted the migration, mineralization, and expression of bone-related genes such as alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), and osteopontin (OPN) in human osteoblast-like cells. Furthermore, in vivo results showed that more newly formed bone was observed in the HPDLSCs-Exo-treated group than in the non-treated group at the defect sites in rats. These results indicated that HPDLSCs-Exo could promote osteogenesis in vitro and in vivo, and this suggests that HPDLSCs-Exo may be an attractive treatment tool for bone healing in defective periodontal tissue.
Collapse
Affiliation(s)
- Mhd Safwan Albougha
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Orie Adachi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Serina Soeno
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Junko Obata
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Wang Y, Xiao Y, Yang X, He F, Hu J, Yang G, Wang W. Bone marrow mesenchymal stem cells overexpressing stromal cell- derived factor 1 aid in bone formation in osteoporotic mice. BMC Musculoskelet Disord 2024; 25:878. [PMID: 39497150 PMCID: PMC11536944 DOI: 10.1186/s12891-024-07957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells. Stromal cell-derived factor 1 (SDF1) is a chemokine that induces targeted cell migration through the SDF1/CXCR4 (C-X-C chemokine receptor 4) axis and can induce migration of exogenous mesenchymal stem cells to sites of high SDF1 concentration. There are no studies on BMSCs overexpressing SDF1 (SDF1-BMSCs) in osteoporotic mice in vivo. We aimed to investigate if the increased SDF1 concentration facilitated cell migration to the bone. METHODS We used lentivirus to construct BMSCs overexpressing SDF1 or knocking down CXCR4. We verified the proliferation ability of the cells in vitro using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridinc (BrdU), the migration ability of the cells using Transwell, and the osteogenic and lipogenic ability of the cells using osteogenic and lipogenic induction solutions. In in vivo experiments, we induced osteoporosis in 72 female mice by ovariectomy and injected different groups of cells via the tail vein. Femoral tissue samples were collected for a fixed time, and the osteogenic and homing abilities of the cells were verified by MicroCT and tissue section staining. RESULTS We successfully demonstrated that high expression of SDF1 promoted cell proliferation and migration in vitro, without affecting their cell differentiation ability. In an ovariectomized mouse model, SDF1-BMSCs were more likely to be home to the femur than the BMSCs, had a better pro-osteogenic ability, and had higher expression of Wnt-1. Blocking the SDF1/CXCR4 axis reduced the homing of exogenous mesenchymal stem cells (MSCs) to the femur and their osteogenic capacity. CONCLUSIONS SDF1-BMSCs can further promote bone formation by increasing the number of cells homing to the femur in osteoporotic mice. Our study shows that stem cells can promote their proliferation and home to the femur via the SDF1/CXCR4 axis and further help bone formation via Wnt-1 signaling.
Collapse
Affiliation(s)
- Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya Xiao
- First Clinical College, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - XinYu Yang
- Clinical Oncology College, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Jun Hu
- Department of Orthopedic, The First People's Hospital of Kunming, Kunming, Yunnan, China
| | - Guang Yang
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Weizhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
16
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Zhang P, Yang J, Wang Z, Wang H, An M, Yakufu M, Wang W, Liu Y, Liu W, Li C. An injectable self-lubricating supramolecular polymer hydrogel loaded with platelet lysate to boost osteoarthritis treatment. J Control Release 2024; 376:20-36. [PMID: 39362609 DOI: 10.1016/j.jconrel.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Globally, osteoarthritis (OA) is the most prevalent joint disease and is characterized by infiltration of M1 macrophages in the synovium, anabolic-catabolic imbalance of the extracellular matrix (ECM), increased articular shear force and overproduction of reactive oxygen species (ROS). Disease-modifying OA drugs are not yet available, and treatments for OA focus solely on reducing pain and inflammation and have limited therapeutic effect. Herein, we developed an injectable self-lubricating poly(N-acryloyl alaninamide) (PNAAA) hydrogel loaded with platelet lysate (PL) (termed "PNAAA@PL") for treating OA. Tribological and drug release tests revealed suitable lubrication properties and sustained release of bioactive factors in PNAAA@PL. In vitro experiments showed that PNAAA@PL alleviated interleukin-1β (IL-1β)-induced anabolic-catabolic imbalance of chondrocytes and repolarized pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype via intracellular ROS scavenging. Additionally, the PNAAA@PL hydrogel enhanced the migratory capacity and chemotaxis ability of stem cells, which are essential for chondrogenesis. In vivo, the functionalized PNAAA@PL hydrogel acted like synovial fluid following intra-articular injection into a rat OA model with anterior cruciate ligament transection, ultimately attenuating cartilage degeneration and synovitis. According to molecular mechanism studies, PNAAA@PL repairs cartilage in the OA model by inhibiting the NF-ĸB pathway. Overall, this self-lubricating PNAAA@PL hydrogel offers a comprehensive strategy for preventing OA progression by engineering a biophysiochemical microenvironment to generate high-quality hyaline cartilage.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Mingyang An
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihemuti Yakufu
- Department of Orthopedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, China
| | - Wenliang Wang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yujie Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunbao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
18
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
19
|
Krupczak B, Farruggio C, Van Vliet KJ. Manufacturing mesenchymal stromal cells in a microcarrier-microbioreactor platform can enhance cell yield and quality attributes: case study for acute respiratory distress syndrome. J Transl Med 2024; 22:614. [PMID: 38956643 PMCID: PMC11220991 DOI: 10.1186/s12967-024-05373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks. First, we evaluated total cell yield harvested from dissolvable, gelatin microcarriers within a microbioreactor cassette (Mobius Breez) or a flask control with matched initial cell seeding density and culture duration. Next, we identified 24 genes implicated in a therapeutic role for a specific motivating indication, acute respiratory distress syndrome (ARDS); expression of these genes served as our pCQAs for initial in vitro evaluation of product potency. We evaluated mRNA expression for three distinct donors to assess inter-donor repeatability, as well as for one donor in three distinct batches to assess within-donor, inter-batch variability. Finally, we assessed gene expression at the protein level for a subset of the panel to confirm successful translation. Our results indicated that MSCs expanded with this microcarrier-microbioreactor approach exhibited reasonable donor-to-donor repeatability and reliable batch-to-batch reproducibility of pCQAs. Interestingly, the baseline conditions of this microcarrier-microbioreactor approach also significantly improved expression of several key pCQAs at the gene and protein expression levels and reduced total media consumption relative to TCPS culture. This proof-of-concept study illustrates key benefits of this approach to therapeutic cell process development for MSCs and other anchorage-dependent cells that are candidates for cell therapies.
Collapse
Affiliation(s)
- Brandon Krupczak
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Camille Farruggio
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore.
- Departments of Materials Science & Engineering and Biomedical Engineering, Cornell University, 144 Feeney Way, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Vaheb S, Afshin S, Ghoshouni H, Ghaffary EM, Farzan M, Shaygannejad V, Thapa S, Zabeti A, Mirmosayyeb O. Neurological efficacy and safety of mesenchymal stem cells (MSCs) therapy in people with multiple sclerosis (pwMS): An updated systematic review and meta-analysis. Mult Scler Relat Disord 2024; 87:105681. [PMID: 38838423 DOI: 10.1016/j.msard.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Current therapeutic strategies for multiple sclerosis (MS) aim to suppress the immune response and reduce relapse rates. As alternative treatments, mesenchymal stem cells (MSCs) are being explored. MSCs show promise in repairing nerve tissue and reducing autoimmune responses in people with MS (pwMS). OBJECTIVE This review delves into the literature on the efficacy and safety of MSC therapy for pwMS. METHODS A comprehensive search strategy was employed to identify relevant articles from five databases until January 2024. The inclusion criteria encompassed interventional studies. Efficacy and safety data concerning MSC therapy in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS) groups were extracted and analyzed. RESULTS A comprehensive analysis encompassing 30 studies revealed that individuals who underwent intrathecal (IT) protocol-based transplantation of MSCs experienced a noteworthy improvement in their expanded disability status scale (EDSS) compared to the placebo group. Weighted mean difference (WMD) was -0.28; 95 % CI -0.53 to -0.03, I2 = 0 %, p-value = 0.028); however, the intravenous (IV) group did not show significant changes in EDSS scores. The annualized relapse rate (ARR) did not significantly decrease among pwMS (WMD = -0.34; 95 % CI -1.05 to 0.38, I2 = 98 %, p-value = 0.357). Favorable results were observed in magnetic resonance imaging (MRI), with only 19.11 % of pwMS showing contrast-enhanced lesions (CEL) in the short term and no long-term MRI activity. The most common complications in both short-term and long-term follow-ups were infection, back pain, and gastrointestinal symptoms. CONCLUSIONS The study highlights the safety potential of MSC therapy for pwMS. While MRI-based neural regeneration shows significant treatment potential, the effectiveness of MSC therapy remains uncertain due to study limitations and ineffective outcome measures. Further research is needed to establish efficacy and optimize evaluation methods for MSC therapy on pwMS.
Collapse
Affiliation(s)
- Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahra Afshin
- Department of Neurology, School of Medicine, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahour Farzan
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sangharsha Thapa
- Jacobs School of Biomedical Sciences, University of Buffalo, Department of Neurology, Buffalo, USA
| | - Aram Zabeti
- University of Cincinnati, Cincinnati, OH, USA
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
23
|
Sagar RL, Åström E, Chitty LS, Crowe B, David AL, DeVile C, Forsmark A, Franzen V, Hermeren G, Hill M, Johansson M, Lindemans C, Lindgren P, Nijhuis W, Oepkes D, Rehberg M, Sahlin NE, Sakkers R, Semler O, Sundin M, Walther-Jallow L, Verweij EJTJ, Westgren M, Götherström C. An exploratory open-label multicentre phase I/II trial evaluating the safety and efficacy of postnatal or prenatal and postnatal administration of allogeneic expanded fetal mesenchymal stem cells for the treatment of severe osteogenesis imperfecta in infants and fetuses: the BOOSTB4 trial protocol. BMJ Open 2024; 14:e079767. [PMID: 38834319 PMCID: PMC11163617 DOI: 10.1136/bmjopen-2023-079767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. METHODS AND ANALYSIS BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial.Each subject receives four intravenous doses of 3×106/kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally.The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. ETHICS AND DISSEMINATION The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. TRIAL REGISTRATION NUMBERS EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482.
Collapse
Affiliation(s)
- Rachel L Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Belinda Crowe
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Catherine DeVile
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Göran Hermeren
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mats Johansson
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Caroline Lindemans
- Department of Pediatrics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Lindgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Wouter Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirko Rehberg
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Nils-Eric Sahlin
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Ralph Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - O Semler
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Section of Pediatic Hematology, Immunology and HCT, Karolinska University Hospital, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - E J T Joanne Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Jakobsen KK, Carlander ALF, Todsen T, Melchiors J, Paaske N, Østergaard Madsen AK, Kloch Bendtsen S, Mordhorst C, Stampe H, Kastrup J, Ekblond A, Haack-Sørensen M, Farhadi M, Maare C, Friborg J, Lynggaard CD, Werner Hauge A, Christensen R, Grønhøj C, von Buchwald C. Mesenchymal Stem/Stromal Cell Therapy for Radiation-Induced Xerostomia in Previous Head and Neck Cancer Patients: A Phase II Randomized, Placebo-Controlled Trial. Clin Cancer Res 2024; 30:2078-2084. [PMID: 38441659 PMCID: PMC11094414 DOI: 10.1158/1078-0432.ccr-23-3675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE No effective treatment exists for radiation-induced xerostomia. The objective of this study was to compare the effect of adipose-derived mesenchymal stem/stromal cell (ASC) injection, relative to placebo, on salivary gland function in patients with radiation-induced xerostomia. PATIENT AND METHODS In this single-centre, double-blind, placebo-controlled trial, patients with hyposalivation were randomised to receive ultrasound-guided injections of allogeneic ASCs or placebo into the submandibular glands. Patients were followed for 4 months. We evaluated unstimulated whole salivary flow rate (UWS), stimulated salivary flow rate, and patient-reported outcomes. Adverse events were recorded and immune response determined in blood samples. RESULTS We enrolled 120 patients. ASC treatment resulted in a statistically significant UWS increase of 0.04 [95% confidence interval (CI), 0.02-0.06] mL/min (38%) compared with pretreatment baseline whereas placebo treatment did not cause a significant increase [0.01 (95% CI, -0.01 to 0.04) mL/min (21%)]. Both the ASC and placebo treatment yielded notable symptom reductions, with dry mouth decreasing by 13.6 and 7.7 units, sticky saliva decreased by 14.8 and 9.3 units, swallowing difficulties decreased by 7.9 and 8.0 units, and the summary score of the Xerostomia Questionnaire decreased 5.9 and 5.1 units for the ASC and placebo arms, respectively. We found no statistically significant group difference between the ASC and placebo arms for any of the outcomes. CONCLUSIONS We could not confirm superiority of the ASC relative to placebo. ASC therapy significantly improved UWS in previous patients with head and neck cancer, whereas placebo resulted in an insignificant increase.
Collapse
Affiliation(s)
- Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Amanda-Louise Fenger Carlander
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Tobias Todsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Jacob Melchiors
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Natasja Paaske
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Anne Kathrine Østergaard Madsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Simone Kloch Bendtsen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Christine Mordhorst
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Helene Stampe
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Denmark
| | | | - Christian Maare
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Jeppe Friborg
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Charlotte D. Lynggaard
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Anne Werner Hauge
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Copenhagen University Hospital - Rigshospitalet, Denmark
| |
Collapse
|
25
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
26
|
Wang Y, Wen J, Lu T, Han W, Jiao K, Li H. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone-Related Diseases: Intercellular Communication Messengers and Therapeutic Engineering Protagonists. Int J Nanomedicine 2024; 19:3233-3257. [PMID: 38601346 PMCID: PMC11005933 DOI: 10.2147/ijn.s441467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.
Collapse
Affiliation(s)
- Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Tong Lu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Han
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
27
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
28
|
Li G, Wang Q, Liu H, Yang Z, Wu Y, He L, Deng X. Fabricating Composite Cell Sheets for Wound Healing: Cell Sheets Based on the Communication Between BMSCs and HFSCs Facilitate Full-Thickness Cutaneous Wound Healing. Tissue Eng Regen Med 2024; 21:421-435. [PMID: 37995084 PMCID: PMC10987453 DOI: 10.1007/s13770-023-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.
Collapse
Affiliation(s)
- Gongjian Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yuhan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li He
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
29
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
30
|
Tao X, Wang J, Liu B, Cheng P, Mu D, Du H, Niu B. Plasticity and crosstalk of mesenchymal stem cells and macrophages in immunomodulation in sepsis. Front Immunol 2024; 15:1338744. [PMID: 38352879 PMCID: PMC10861706 DOI: 10.3389/fimmu.2024.1338744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis is a multisystem disease characterized by dysregulation of the host immune response to infection. Immune response kinetics play a crucial role in the pathogenesis and progression of sepsis. Macrophages, which are known for their heterogeneity and plasticity, actively participate in the immune response during sepsis. These cells are influenced by the ever-changing immune microenvironment and exhibit two-sided immune regulation. Recently, the immunomodulatory function of mesenchymal stem cells (MSCs) in sepsis has garnered significant attention. The immune microenvironment can profoundly impact MSCs, prompting them to exhibit dual immunomodulatory functions akin to a double-edged sword. This discovery holds great importance for understanding sepsis progression and devising effective treatment strategies. Importantly, there is a close interrelationship between macrophages and MSCs, characterized by the fact that during sepsis, these two cell types interact and cooperate to regulate inflammatory processes. This review summarizes the plasticity of macrophages and MSCs within the immune microenvironment during sepsis, as well as the intricate crosstalk between them. This remains an important concern for the future use of these cells for immunomodulatory treatments in the clinic.
Collapse
Affiliation(s)
- Xingyu Tao
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Jialian Wang
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bin Liu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Peifeng Cheng
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Dan Mu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Niu
- Department of Critical Care Medicine, Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, Li H, Wang S, Wang C, Yan J, Kang DD, Deng B, McComb DW, Irvine DJ, Weiss R, Dong Y. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun 2024; 15:739. [PMID: 38272900 PMCID: PMC10811230 DOI: 10.1038/s41467-024-45094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Adipose stem cells (ASCs) have attracted considerable attention as potential therapeutic agents due to their ability to promote tissue regeneration. However, their limited tissue repair capability has posed a challenge in achieving optimal therapeutic outcomes. Herein, we conceive a series of lipid nanoparticles to reprogram ASCs with durable protein secretion capacity for enhanced tissue engineering and regeneration. In vitro studies identify that the isomannide-derived lipid nanoparticles (DIM1T LNP) efficiently deliver RNAs to ASCs. Co-delivery of self-amplifying RNA (saRNA) and E3 mRNA complex (the combination of saRNA and E3 mRNA is named SEC) using DIM1T LNP modulates host immune responses against saRNAs and facilitates the durable production of proteins of interest in ASCs. The DIM1T LNP-SEC engineered ASCs (DS-ASCs) prolong expression of hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 12 (CXCL12), which show superior wound healing efficacy over their wild-type and DIM1T LNP-mRNA counterparts in the diabetic cutaneous wound model. Overall, this work suggests LNPs as an effective platform to engineer ASCs with enhanced protein generation ability, expediting the development of ASCs-based cell therapies.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yichen Zhong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chang Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Jamali F, Aldughmi M, Atiani S, Al-Radaideh A, Dahbour S, Alhattab D, Khwaireh H, Arafat S, Jaghbeer JA, Rahmeh R, Abu Moshref K, Bawaneh H, Hassuneh MR, Hourani B, Ababneh O, Alghwiri A, Awidi A. Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Multiple Sclerosis Patients: Phase I/II Dose-Finding Clinical Study. Cell Transplant 2024; 33:9636897241233045. [PMID: 38450623 PMCID: PMC10921855 DOI: 10.1177/09636897241233045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neuro-inflammatory disease resulting in disabilities that negatively impact patients' life quality. While current treatment options do not reverse the course of the disease, treatment using mesenchymal stromal/stem cells (MSC) is promising. There has yet to be a consensus on the type and dose of MSC to be used in MS. This work aims to study the safety and efficacy of two treatment protocols of MSCs derived from the umbilical cord (UC-MSCs) and their secretome. The study included two groups of MS patients; Group A received two intrathecal doses of UC-MSCs, and Group B received a single dose. Both groups received UC-MSCs conditioned media 3 months post-treatment. Adverse events in the form of a clinical checklist and extensive laboratory tests were performed. Whole transcriptome analysis was performed on patients' cells at baseline and post-treatment. Results showed that all patients tolerated the cellular therapy without serious adverse events. The general disability scale improved significantly in both groups at 6 months post-treatment. Examining specific aspects of the disease revealed more parameters that improved in Group A compared to Group B patients, including a significant increase in the (CD3+CD4+) expressing lymphocytes at 12 months post-treatment. In addition, better outcomes were noted regarding lesion load, cortical thickness, manual dexterity, and information processing speed. Both protocols impacted the transcriptome of treated participants with genes, transcription factors, and microRNAs (miRNAs) differentially expressed compared to baseline. Inflammation-related and antigen-presenting (HLA-B) genes were downregulated in both groups. In contrast, TNF-alpha, TAP-1, and miR142 were downregulated only in Group A. The data presented indicate that both protocols are safe. Furthermore, it suggests that administering two doses of stem cells can be more beneficial to MS patients. Larger multisite studies should be initiated to further examine similar or higher doses of MSCs.
Collapse
Affiliation(s)
- Fatima Jamali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mayis Aldughmi
- Department of Physical Therapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan
| | - Serin Atiani
- Data Science Department, Princess Sumaya University for Technology, Amman, Jordan
| | - Ali Al-Radaideh
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Jordan University Hospital, The University of Jordan, Amman, Jordan
- Laboratory of Nanomedicine, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Said Dahbour
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Department of Medical Radiography, School of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Hind Khwaireh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Sally Arafat
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Joud Al Jaghbeer
- Department of Physical Therapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Hisham Bawaneh
- Hematology Department, Jordan University Hospital, Amman, Jordan
| | - Mona R. Hassuneh
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biology, Faculty of Sciences, The University of Jordan, Amman, Jordan
| | - Bayan Hourani
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Osameh Ababneh
- Department of Ophthalmology, Jordan University Hospital, School of Medicine, The University of Jordan, Amman, Jordan
| | - Alia Alghwiri
- Department of Physical Therapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Hematology Department, Jordan University Hospital, Amman, Jordan
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
33
|
Dyachkova U, Vigovskiy M, Basalova N, Efimenko A, Grigorieva O. M2-Macrophage-Induced Chronic Inflammation Promotes Reversible Mesenchymal Stromal Cell Senescence and Reduces Their Anti-Fibrotic Properties. Int J Mol Sci 2023; 24:17089. [PMID: 38069411 PMCID: PMC10707628 DOI: 10.3390/ijms242317089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Fibrosis and the associated decline in organ functionality lead to an almost 50% mortality rate in developed countries. Multipotent mesenchymal stromal cells (MSC) were shown to suppress the development and progression of fibrosis through secreted factors including specific non-coding RNAs transferred within extracellular vesicles (EV). However, age-associated chronic inflammation can provoke MSC senescence and change secretome composition, thereby affecting their antifibrotic properties. Alternatively activated macrophages (M2-type) are key players in chronic inflammation that may interact with MSC through paracrine mechanisms and decrease their antifibrotic functions. To confirm this hypothesis, we evaluated the M2-macrophage conditioned medium (CM-M2) effect on human adipose-tissue-derived MSC senescence in vitro. We found that CM-M2, as well as a pro-senescence agent, hydrogen peroxide (H2O2), increased p21+-MSC number and secretion of IL-6 and MCP-1, which are considered main senescence-associated secretory phenotype (SASP) components. Thus, both exposures led to the senescent phenotype acquisition of MSC. EV from both CM-M2 and H2O2-exposed MSC, which showed a decreased effect on the suppression of TGFβ-induced fibroblast-to-myofibroblast differentiation compared to EV from control MSC according to αSMA level and the αSMA+-stress fiber reduction. After two weeks of subsequent cultivation under standard conditions, MSC demonstrated a decrease in senescence hallmarks and fibroblast differentiation suppression via EV. These results suggest that M2-macrophage-induced chronic inflammation can reversibly induce MSC senescence, which reduces the MSC's ability to inhibit fibroblast-to-myofibroblast differentiation.
Collapse
Affiliation(s)
- Uliana Dyachkova
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (U.D.); (M.V.); (N.B.); (A.E.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Maksim Vigovskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (U.D.); (M.V.); (N.B.); (A.E.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (U.D.); (M.V.); (N.B.); (A.E.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (U.D.); (M.V.); (N.B.); (A.E.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (U.D.); (M.V.); (N.B.); (A.E.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
34
|
Jia L, Wang W, Liang J, Niu S, Wang Y, Yang J, Li L, Wang G, Xu X, Mu L, Cheng K, Yang X, Wang Y, Luo H, Xia G, Ke Y, Zhang Y, Zhang H. Analyzing the cellular and molecular atlas of ovarian mesenchymal cells provides a strategy against female reproductive aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2818-2836. [PMID: 37460714 DOI: 10.1007/s11427-022-2335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/22/2023] [Indexed: 12/18/2023]
Abstract
Ovarian mesenchymal cells (oMCs) constitute a distinct microenvironment that supports folliculogenesis under physiological conditions. Supplementation of exogenous non-ovarian mesenchymal-related cells has been reported to be an efficient approach to improve ovarian functions. However, the development and cellular and molecular characteristics of endogenous oMCs remain largely unexplored. In this study, we surveyed the single-cell transcriptomic landscape to dissect the cellular and molecular changes associated with the aging of oMCs in mice. Our results showed that the oMCs were composed of five ovarian differentiated MC (odMC) populations and one ovarian mesenchymal progenitor (oMP) cell population. These cells could differentiate into various odMCs via an oMP-derived route to construct the ovarian stroma structures. Comparative analysis revealed that ovarian aging was associated with decreased quantity of oMP cells and reduced quality of odMCs. Based on the findings of bioinformatics analysis, we designed different strategies involving supplementation with young oMCs to examine their effects on female fertility and health. Our functional investigations revealed that oMCs supplementation prior to ovarian senescence was the optimal method to improve female fertility and extend the reproductive lifespan of aged females in the long-term.
Collapse
Affiliation(s)
- Longzhong Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenji Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Jing Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shudong Niu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yibo Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingyu Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ge Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Mu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaixin Cheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yijing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Haoshu Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Yuwen Ke
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
35
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Smolinská V, Boháč M, Danišovič Ľ. Current status of the applications of conditioned media derived from mesenchymal stem cells for regenerative medicine. Physiol Res 2023; 72:S233-S245. [PMID: 37888967 PMCID: PMC10669946 DOI: 10.33549/physiolres.935186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Recently published studies suggest that the paracrine substances released by mesenchymal stem cells (MSCs) are the primary motive behind the therapeutic action reported in these cells. Pre-clinical and clinical research on MSCs has produced promising outcomes. Furthermore, these cells are generally safe for therapeutic use and may be extracted from a variety of anatomical regions. Recent research has indicated, however, that transplanted cells do not live long and that the advantages of MSC treatment may be attributable to the large diversity of bioactive substances they create, which play a crucial role in the control of essential physiological processes. Secretome derivatives, such as conditioned media or exosomes, may provide significant benefits over cells in terms of manufacture, preservation, handling, longevity of the product, and potential as a ready-to-use biologic product. Despite their immunophenotypic similarities, the secretome of MSCs appears to vary greatly depending on the host's age and the niches in which the cells live. The secretome's effect on multiple biological processes such as angiogenesis, neurogenesis, tissue repair, immunomodulation, wound healing, anti-fibrotic, and anti-tumor for tissue maintenance and regeneration has been discovered. Defining the secretome of cultured cultivated MSC populations by conditioned media analysis will allow us to assess its potential as a novel treatment approach. This review will concentrate on accumulating data from pre-clinical and clinical trials pointing to the therapeutic value of the conditioned medium. At last, the necessity of characterizing the conditioned medium for determining its potential for cell-free treatment therapy will be emphasized in this study.
Collapse
|
37
|
Perico N, Remuzzi G, Griffin MD, Cockwell P, Maxwell AP, Casiraghi F, Rubis N, Peracchi T, Villa A, Todeschini M, Carrara F, Magee BA, Ruggenenti PL, Rota S, Cappelletti L, McInerney V, Griffin TP, Islam MN, Introna M, Pedrini O, Golay J, Finnerty AA, Smythe J, Fibbe WE, Elliman SJ, O'Brien T. Safety and Preliminary Efficacy of Mesenchymal Stromal Cell (ORBCEL-M) Therapy in Diabetic Kidney Disease: A Randomized Clinical Trial (NEPHSTROM). J Am Soc Nephrol 2023; 34:1733-1751. [PMID: 37560967 PMCID: PMC10561817 DOI: 10.1681/asn.0000000000000189] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Mesenchymal stromal cells (MSCs) may offer a novel therapy for diabetic kidney disease (DKD), although clinical translation of this approach has been limited. The authors present findings from the first, lowest dose cohort of 16 adults with type 2 diabetes and progressive DKD participating in a randomized, placebo-controlled, dose-escalation phase 1b/2a trial of next-generation bone marrow-derived, anti-CD362 antibody-selected allogeneic MSCs (ORBCEL-M). A single intravenous (iv) infusion of 80×10 6 cells was safe and well-tolerated, with one quickly resolved infusion reaction in the placebo group and no subsequent treatment-related serious adverse events (SAEs). Compared with placebo, the median annual rate of decline in eGFR was significantly lower with ORBCEL-M, although mGFR did not differ. The results support further investigation of ORBCEL-M in this patient population in an appropriately sized phase 2b study. BACKGROUND Systemic therapy with mesenchymal stromal cells may target maladaptive processes involved in diabetic kidney disease progression. However, clinical translation of this approach has been limited. METHODS The Novel Stromal Cell Therapy for Diabetic Kidney Disease (NEPHSTROM) study, a randomized, placebo-controlled phase 1b/2a trial, assesses safety, tolerability, and preliminary efficacy of next-generation bone marrow-derived, anti-CD362-selected, allogeneic mesenchymal stromal cells (ORBCEL-M) in adults with type 2 diabetes and progressive diabetic kidney disease. This first, lowest dose cohort of 16 participants at three European sites was randomized (3:1) to receive intravenous infusion of ORBCEL-M (80×10 6 cells, n =12) or placebo ( n =4) and was followed for 18 months. RESULTS At baseline, all participants were negative for anti-HLA antibodies and the measured GFR (mGFR) and estimated GFR were comparable between groups. The intervention was safe and well-tolerated. One placebo-treated participant had a quickly resolved infusion reaction (bronchospasm), with no subsequent treatment-related serious adverse events. Two ORBCEL-M recipients died during follow-up of causes deemed unrelated to the trial intervention; one recipient developed low-level anti-HLA antibodies. The median annual rate of kidney function decline after ORBCEL-M therapy compared with placebo did not differ by mGFR, but was significantly lower by eGFR estimated by the Chronic Kidney Disease Epidemiology Collaboration and Modification of Diet in Renal Disease equations. Immunologic profiling provided evidence of preservation of circulating regulatory T cells, lower natural killer T cells, and stabilization of inflammatory monocyte subsets in those receiving the cell therapy compared with placebo. CONCLUSIONS Findings indicate safety and tolerability of intravenous ORBCEL-M cell therapy in the trial's lowest dose cohort. The rate of decline in eGFR (but not mGFR) over 18 months was significantly lower among those receiving cell therapy compared with placebo. Further studies will be needed to determine the therapy's effect on CKD progression. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrial.gov NCT02585622 .
Collapse
Affiliation(s)
- Norberto Perico
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Paul Cockwell
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Ageing and Immunity, University of Birmingham, Birmingham, United Kingdom
| | | | - Federica Casiraghi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Nadia Rubis
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Tobia Peracchi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Fabiola Carrara
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Bernadette A. Magee
- Northern Ireland Histocompatibility and Immunogenetics Laboratory, Belfast City Hospital, Belfast, Northern Ireland
| | - Piero L. Ruggenenti
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Rota
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Cappelletti
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Veronica McInerney
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
- HRB Clinical Research Facility, University of Galway, Galway, Ireland
| | - Tomás P. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Martino Introna
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Olga Pedrini
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- Fondazione per la Ricerca Ospedale di Bergamo (FROM), Bergamo, Italy
| | - Josée Golay
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Andrew A. Finnerty
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
- HRB Clinical Research Facility, University of Galway, Galway, Ireland
- Centre for Cell Manufacturing Ireland, University of Galway, Galway, Ireland
| | - Jon Smythe
- NHS Blood and Transplant Oxford Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
38
|
Couto PS, Stibbs DJ, Rotondi MC, Takeuchi Y, Rafiq QA. Scalable manufacturing of gene-modified human mesenchymal stromal cells with microcarriers in spinner flasks. Appl Microbiol Biotechnol 2023; 107:5669-5685. [PMID: 37470820 PMCID: PMC10439856 DOI: 10.1007/s00253-023-12634-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Due to their immunomodulatory properties and in vitro differentiation ability, human mesenchymal stromal cells (hMSCs) have been investigated in more than 1000 clinical trials over the last decade. Multiple studies that have explored the development of gene-modified hMSC-based products are now reaching early stages of clinical trial programmes. From an engineering perspective, the challenge lies in developing manufacturing methods capable of producing sufficient doses of ex vivo gene-modified hMSCs for clinical applications. This work demonstrates, for the first time, a scalable manufacturing process using a microcarrier-bioreactor system for the expansion of gene-modified hMSCs. Upon isolation, umbilical cord tissue mesenchymal stromal cells (UCT-hMSCs) were transduced using a lentiviral vector (LV) with green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) transgenes. The cells were then seeded in 100 mL spinner flasks using Spherecol microcarriers and expanded for seven days. After six days in culture, both non-transduced and transduced cell populations attained comparable maximum cell concentrations (≈1.8 × 105 cell/mL). Analysis of the culture supernatant identified that glucose was fully depleted after day five across the cell populations. Lactate concentrations observed throughout the culture reached a maximum of 7.5 mM on day seven. Immunophenotype analysis revealed that the transduction followed by an expansion step was not responsible for the downregulation of the cell surface receptors used to identify hMSCs. The levels of CD73, CD90, and CD105 expressing cells were above 90% for the non-transduced and transduced cells. In addition, the expression of negative markers (CD11b, CD19, CD34, CD45, and HLA-DR) was also shown to be below 5%, which is aligned with the criteria established for hMSCs by the International Society for Cell and Gene Therapy (ISCT). This work provides a foundation for the scalable manufacturing of gene-modified hMSCs which will overcome a significant translational and commercial bottleneck. KEY POINTS: • hMSCs were successfully transduced by lentiviral vectors carrying two different transgenes: GFP and VEGF • Transduced hMSCs were successfully expanded on microcarriers using spinner flasks during a period of 7 days • The genetic modification step did not cause any detrimental impact on the hMSC immunophenotype characteristics.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Dale J. Stibbs
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Marco C. Rotondi
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines, and Healthcare Products Regulatory Agency, South Mimms, EN6 3QG UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
39
|
Hidalgo-García L, Ruiz-Malagon AJ, Huertas F, Rodríguez-Sojo MJ, Molina-Tijeras JA, Diez-Echave P, Becerra P, Mirón B, Morón R, Rodríguez-Nogales A, Gálvez J, Rodríguez-Cabezas ME, Anderson P. Administration of intestinal mesenchymal stromal cells reduces colitis-associated cancer in C57BL/6J mice modulating the immune response and gut dysbiosis. Pharmacol Res 2023; 195:106891. [PMID: 37586618 DOI: 10.1016/j.phrs.2023.106891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated colorectal cancer (CAC) with poor prognosis. IBD etiology remains undefined but involves environmental factors, genetic predisposition, microbiota imbalance (dysbiosis) and mucosal immune defects. Mesenchymal stromal cell (MSC) injections have shown good efficacy in reducing intestinal inflammation in animal and human studies. However, their effect on tumor growth in CAC and their capacity to restore gut dysbiosis are not clear. METHODS The outcome of systemic administrations of in vitro expanded human intestinal MSCs (iMSCs) on tumor growth in vivo was evaluated using the AOM/DSS model of CAC in C57BL/6J mice. Innate and adaptive immune responses in blood, mesenteric lymph nodes (MLNs) and colonic tissue were analyzed by flow cytometry. Intestinal microbiota composition was evaluated by 16S rRNA amplicon sequencing. RESULTS iMSCs significantly inhibited colitis and intestinal tumor development, reducing IL-6 and COX-2 expression, and IL-6/STAT3 and PI3K/Akt signaling. iMSCs decreased colonic immune cell infiltration, and partly restored intestinal monocyte homing and differentiation. iMSC administration increased the numbers of Tregs and IFN-γ+CD8+ T cells in the MLNs while decreasing the IL-4+Th2 response. It also ameliorated intestinal dysbiosis in CAC mice, increasing diversity and Bacillota/Bacteroidota ratio, as well as Akkermansia abundance, while reducing Alistipes and Turicibacter, genera associated with inflammation. CONCLUSION Administration of iMSCs protects against CAC, ameliorating colitis and partially reverting intestinal dysbiosis, supporting the use of MSCs for the treatment of IBD.
Collapse
Affiliation(s)
- Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Antonio Jesús Ruiz-Malagon
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Francisco Huertas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Benito Mirón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica En Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), School of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18016 Granada, Spain
| |
Collapse
|
40
|
Carlsson PO, Espes D, Sisay S, Davies LC, Smith CIE, Svahn MG. Umbilical cord-derived mesenchymal stromal cells preserve endogenous insulin production in type 1 diabetes: a Phase I/II randomised double-blind placebo-controlled trial. Diabetologia 2023; 66:1431-1441. [PMID: 37221247 PMCID: PMC10317874 DOI: 10.1007/s00125-023-05934-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/25/2023]
Abstract
AIM/HYPOTHESIS This study aimed to investigate the safety and efficacy of treatment with allogeneic Wharton's jelly-derived mesenchymal stromal cells (MSCs) in recent-onset type 1 diabetes. METHODS A combined Phase I/II trial, composed of a dose escalation followed by a randomised double-blind placebo-controlled study in parallel design, was performed in which treatment with allogeneic MSCs produced as an advanced therapy medicinal product (ProTrans) was compared with placebo in adults with newly diagnosed type 1 diabetes. Inclusion criteria were a diagnosis of type 1 diabetes <2 years before enrolment, age 18-40 years and a fasting plasma C-peptide concentration >0.12 nmol/l. Randomisation was performed with a web-based randomisation system, with a randomisation code created prior to the start of the study. The randomisation was made in blocks, with participants randomised to ProTrans or placebo treatment. Randomisation envelopes were kept at the clinic in a locked room, with study staff opening the envelopes at the baseline visits. All participants and study personnel were blinded to group assignment. The study was conducted at Karolinska University Hospital, Stockholm, Sweden. RESULTS Three participants were included in each dose cohort during the first part of the study. Fifteen participants were randomised in the second part of the study, with ten participants assigned to ProTrans treatment and five to placebo. All participants were analysed for the primary and secondary outcomes. No serious adverse events related to treatment were observed and, overall, few adverse events (mainly mild upper respiratory tract infections) were reported in the active treatment and placebo arms. The primary efficacy endpoint was defined as Δ-change in C-peptide AUC for a mixed meal tolerance test at 1 year following ProTrans/placebo infusion compared with baseline performance prior to treatment. C-peptide levels in placebo-treated individuals declined by 47%, whereas those in ProTrans-treated individuals declined by only 10% (p<0.05). Similarly, insulin requirements increased in placebo-treated individuals by a median of 10 U/day, whereas insulin needs of ProTrans-treated individuals did not change over the follow-up period of 12 months (p<0.05). CONCLUSIONS/INTERPRETATION This study suggests that allogeneic Wharton's jelly-derived MSCs (ProTrans) is a safe treatment for recent-onset type 1 diabetes, with the potential to preserve beta cell function. TRIAL REGISTRATION ClinicalTrials.gov NCT03406585 FUNDING: The sponsor of the clinical trial is NextCell Pharma AB, Stockholm, Sweden.
Collapse
Affiliation(s)
- Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden.
| | - Daniel Espes
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sofia Sisay
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden
- NextCell Pharma AB, Huddinge, Sweden
| | - Lindsay C Davies
- NextCell Pharma AB, Huddinge, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - C I Edvard Smith
- NextCell Pharma AB, Huddinge, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mathias G Svahn
- NextCell Pharma AB, Huddinge, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
41
|
Wang R, Hao M, Kou X, Sui B, Sanmillan ML, Zhang X, Liu D, Tian J, Yu W, Chen C, Yang R, Sun L, Liu Y, Giraudo C, Rao DA, Shen N, Shi S. Apoptotic vesicles ameliorate lupus and arthritis via phosphatidylserine-mediated modulation of T cell receptor signaling. Bioact Mater 2023; 25:472-484. [PMID: 37056273 PMCID: PMC10087106 DOI: 10.1016/j.bioactmat.2022.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) influence T cells in health, disease and therapy through messengers of intercellular communication including extracellular vesicles (EVs). Apoptosis is a mode of cell death that tends to promote immune tolerance, and a large number of apoptotic vesicles (apoVs) are generated from MSCs during apoptosis. In an effort to characterize these apoVs and explore their immunomodulatory potential, here we show that after replenishing them systemically, the apoV deficiency in Fas mutant mice and pathological lymphoproliferation were rescued, leading to the amelioration of inflammation and lupus activity. ApoVs directly interacted with CD4+ T cells and inhibited CD25 expression and IL-2 production in a dose-dependent manner. A broad range of Th1/2/17 subsets and cytokines including IFNγ, IL17A and IL-10 were suppressed while Foxp3+ cells were maintained. Mechanistically, exposed phosphatidylserine (PtdSer/PS) on apoVs mediated the interaction with T cells to disrupt proximal T cell receptor signaling transduction. Remarkably, administration of apoVs prevented Th17 differentiation and memory formation, and ameliorated inflammation and joint erosion in murine arthritis. Collectively, our findings unveil a previously unrecognized crosstalk between MSC apoVs and CD4+ T cells and suggest a promising therapeutic use of apoVs for autoimmune diseases.
Collapse
Affiliation(s)
- Runci Wang
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200002, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02105, USA
| | - Meng Hao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Bingdong Sui
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Laura Sanmillan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xiao Zhang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Tian
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruili Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Claudio Giraudo
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02105, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology/Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200002, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
42
|
Wu SCM, Zhu M, Chik SCC, Kwok M, Javed A, Law L, Chan S, Boheler KR, Liu YP, Chan GCF, Poon ENY. Adipose tissue-derived human mesenchymal stromal cells can better suppress complement lysis, engraft and inhibit acute graft-versus-host disease in mice. Stem Cell Res Ther 2023; 14:167. [PMID: 37357314 DOI: 10.1186/s13287-023-03380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.
Collapse
Affiliation(s)
- Stanley Chun Ming Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manyu Zhu
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stanley C C Chik
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Laalaa Law
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth R Boheler
- Division of Cardiology, Department of Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yin Ping Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- , Doctors' Office, 9/F, Tower B, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Hong Kong SAR, China.
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Rm 226A, 2/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
43
|
Davies LC, Queckbörner S, Jylhä CE, Andrén AT, Forshell TZP, Blanc KL. Lysis and phenotypic modulation of mesenchymal stromal cells upon blood contact triggers anti-inflammatory skewing of the peripheral innate immune repertoire. Cytotherapy 2023:S1465-3249(23)00954-4. [PMID: 37354149 DOI: 10.1016/j.jcyt.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are used to treat immune-related disorders, including graft-versus-host disease. Upon intravenous infusion, MSCs trigger the instant blood-mediated inflammatory response, resulting in activation of both complement and coagulation cascades, and are rapidly cleared from circulation. Despite no/minimal engraftment, long-term immunoregulatory properties are evident. The aim of this study was to establish the effects of blood exposure on MSC viability and immunomodulatory functions. METHODS Human, bone marrow derived MSCs were exposed to human plasma +/- heat inactivation or whole blood. MSC number, viability and cellular damage was assessed using the JC-1 mitochondrial depolarization assay and annexin V staining. C3c binding and expression of the inhibitory receptors CD46, CD55 and CD59 and complement receptors C3aR and C5aR were evaluated by flow cytometry. MSCs pre-exposed to plasma were cultured with peripheral blood mononuclear cells (PBMCs) and monocyte subsets characterized by flow cytometry. The PBMC and MSC secretome was assessed using enzyme-linked immunosorbent assays against tumor necrosis factor alpha, interleukin (IL)-6 and IL-10. Monocyte recruitment towards the MSC secretome was evaluated using Boyden chambers and screened for chemotactic factors including monocyte chemoattractant protein (MCP)-1. MSC effects on the peripheral immune repertoire was also evaluated in whole blood by flow cytometry. RESULTS Plasma induced rapid lysis of 57% of MSCs, which reduced to 1% lysis with heat inactivation plasma. Of those cells that were not lysed, C3c could be seen bound to the surface of the cells, with a significant swelling of the MSCs and induction of cell death. The MSC secretome reduced monocyte recruitment, in part due to a reduction in MCP-1, and downregulated PBMC tumor necrosis factor alpha secretion while increasing IL-6 levels in the co-culture supernatant. A significant decrease in CD14+ monocytes was evident after MSC addition to whole blood alongside a significant increase in IL-6 levels, with those remaining monocytes demonstrating an increase in classical and decrease in non-classical subsets. This was accompanied by a significant increase in both mononuclear and polymorphonuclear myeloid-derived suppressor cells. CONCLUSIONS This study demonstrates that a significant number of MSCs are rapidly lysed upon contact with blood, with those surviving demonstrating a shift in their phenotype, including a reduction in the secretion of monocyte recruitment factors and an enhanced ability to skew the phenotype of monocytes. Shifts in the innate immune repertoire, towards an immunosuppressive profile, were also evident within whole blood after MSC addition. These findings suggest that exposure to blood components can promote peripheral immunomodulation via multiple mechanisms that persists within the system long after the infused MSCs have been cleared.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Suzanna Queckbörner
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Cecilia E Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anton Törnqvist Andrén
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tacha Zi Plym Forshell
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; CAST, Patient Area Cell Therapies and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Imai R, Tamura R, Yo M, Sato M, Fukumura M, Takahara K, Kase Y, Okano H, Toda M. Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury. Stem Cells 2023; 41:603-616. [PMID: 37029780 PMCID: PMC10267696 DOI: 10.1093/stmcls/sxad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis.
Collapse
Affiliation(s)
- Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Yo
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mizuto Sato
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mariko Fukumura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kento Takahara
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
45
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
46
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
47
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
48
|
Warmink K, Rios JL, Varderidou-Minasian S, Torres-Torrillas M, van Valkengoed DR, Versteeg S, Eijkelkamp N, Weinans H, Korthagen NM, Lorenowicz MJ. Mesenchymal stem/stromal cells-derived extracellular vesicles as a potentially more beneficial therapeutic strategy than MSC-based treatment in a mild metabolic osteoarthritis model. Stem Cell Res Ther 2023; 14:137. [PMID: 37226203 DOI: 10.1186/s13287-023-03368-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) hold promise as a disease modifying treatment in osteoarthritis (OA). Obesity, and its associated inflammation, contribute to OA development and metabolic OA represents a specific and significant group of the OA patient population. Given their immunomodulatory properties, MSC and MSC-EVs are especially interesting for this group of patients as a therapeutic option. Here, we were the first to compare the therapeutic efficacy of MSCs and MSC-EVs in a mild OA model taking these metabolic aspects into consideration. METHODS Male Wistar-Han rats (Crl:WI(Han) (n = 36) were fed a high fat diet for 24 weeks, with unilateral induction of OA by groove surgery after 12 weeks. Eight days after surgery rats were randomized in three treatment groups receiving MSCs, MSC-EVs or vehicle injection. Pain-associated behavior, joint degeneration, and local and systemic inflammation were measured. RESULTS We demonstrated that despite not having a significant therapeutic effect, MSC-EV treatment results in lower cartilage degeneration, less pain behaviour, osteophytosis and joint inflammation, than MSC treatment. Suggesting that MSC-EVs could be a more promising therapeutic strategy than MSCs in this mild metabolic OA model. CONCLUSION In summary, we find that MSC treatment has negative effects on the joint in metabolic mild OA. This is an essential finding for the significant group of patients with metabolic OA phenotype, and might help to understand why clinical translation of MSC treatment shows varying therapeutic efficacy thus far. Our results also suggest that MSC-EV-based treatment might be a promising option for these patients, however MSC-EV therapeutic efficacy will need improvement.
Collapse
Affiliation(s)
- Kelly Warmink
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jaqueline L Rios
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Devin R van Valkengoed
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | - Harrie Weinans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
- Department of Biomechanical Engineering, TU Delft, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Nicoline M Korthagen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Magdalena J Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
49
|
Phinney DG, Hwa Lee R, Boregowda SV. Revisiting the Mesenchymal "Stem vs. Stromal" Cell Dichotomy and Its Implications for Development of Improved Potency Metrics. Stem Cells 2023; 41:444-452. [PMID: 36891977 PMCID: PMC10183967 DOI: 10.1093/stmcls/sxad019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapies have been evaluated in over 1500 human clinical trials for a diverse array of disease indication, but outcomes remain unpredictable due to knowledge gaps in the quality attributes that confer therapeutic potency onto cells and their mode of action in vivo. Based on accumulated evidence from pre-clinical models, MSCs exert therapeutic effects by repressing inflammatory and immune-mediated response via paracrine action following reprogramming by the host injury microenvironment, and by polarization of tissue resident macrophages following phagocytosis to an alternatively activated (M2) state. An important tenet of this existing paradigm is that well-established stem/progenitor functions of MSCs are independent of paracrine function and dispensable for their anti-inflammatory and immune suppressive functions. Herein, we review evidence that stem/progenitor and paracrine functions of MSCs are mechanistically linked and organized hierarchically and describe how this link may be exploited to develop metrics that predict MSC potency across a spectrum of activities and regenerative medicine applications.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Siddaraju V Boregowda
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| |
Collapse
|
50
|
Kadri N, Amu S, Iacobaeus E, Boberg E, Le Blanc K. Current perspectives on mesenchymal stromal cell therapy for graft versus host disease. Cell Mol Immunol 2023; 20:613-625. [PMID: 37165014 DOI: 10.1038/s41423-023-01022-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023] Open
Abstract
Graft versus host disease (GvHD) is the clinical condition in which bone marrow-derived mesenchymal stromal cells (MSCs) have been most frequently studied. In this review, we summarize the experience from clinical trials that have paved the way to translation. While MSC-based therapy has shown an exceptional safety profile, identifying potency assays and disease biomarkers that reliably predict the capacity of a specific MSC batch to alleviate GvHD has been difficult. As GvHD diagnosis and staging are based solely on clinical criteria, individual patients recruited in the same clinical trial may have vastly different underlying biology, obscuring trial outcomes and making it difficult to determine the benefit of MSCs in subgroups of patients. An accumulating body of evidence indicates the importance of considering not only the cell product but also patient-specific biomarkers and/or immune characteristics in determining MSC responsiveness. A mode of action where intravascular MSC destruction is followed by monocyte-efferocytosis-mediated skewing of the immune repertoire in a permissive inflammatory environment would both explain why cell engraftment is irrelevant for MSC efficacy and stress the importance of biologic differences between responding and nonresponding patients. We recommend a combined analysis of clinical outcomes and both biomarkers of disease activity and MSC potency assays to identify patients with GvHD who are likely to benefit from MSC therapy.
Collapse
Affiliation(s)
- Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvie Amu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Iacobaeus
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell Therapies and Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|