1
|
Radoszkiewicz K, Rybkowska P, Szymanska M, Krzesniak NE, Sarnowska A. The influence of biomimetic conditions on neurogenic and neuroprotective properties of dedifferentiated fat cells. Stem Cells 2025; 43:sxae066. [PMID: 39576128 PMCID: PMC11811640 DOI: 10.1093/stmcls/sxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 02/12/2025]
Abstract
In the era of a constantly growing number of reports on the therapeutic properties of dedifferentiated, ontogenetically rejuvenated cells and their use in the treatment of neurological diseases, the optimization of their derivation and long-term culture methods seem to be crucial. One of the solutions is seen in the use of dedifferentiated fat cells (DFATs) that are characterized by a greater homogeneity. Moreover, these cells seem to possess a higher expression of transcriptional factors necessary to maintain pluripotency (stemness-related transcriptional factors) as well as a greater ability to differentiate in vitro into 3 embryonic germ layers, and a high proliferative potential in comparison to adipose stem/stromal cells. However, the neurogenic and neuroprotective potential of DFATs is still insufficiently understood; hence, our research goal was to contribute to our current knowledge of the subject. To recreate the brain's physiological (biomimetic) conditions, the cells were cultured at 5% oxygen concentration. The neural differentiation capacity of DFATs was assessed in the presence of the N21 supplement containing the factors that are typically found in the natural environment of the neural cell niche or in the presence of cerebrospinal fluid and under various spatial conditions (microprinting). The neuroprotective properties of DFATs were assessed using the coculture method with the ischemically damaged nerve tissue.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Magdalena Szymanska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Natalia Ewa Krzesniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, 00‐416 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| |
Collapse
|
2
|
Neugebauer J, Raulien N, Arndt L, Akkermann D, Hobusch C, Lindhorst A, Fröba J, Gericke M. The Impact of Resident Adipose Tissue Macrophages on Adipocyte Homeostasis and Dedifferentiation. Int J Mol Sci 2024; 25:13019. [PMID: 39684730 DOI: 10.3390/ijms252313019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is concurrent with immunological dysregulation, resulting in chronic low-grade inflammation and cellular dysfunction. In pancreatic islets, this loss of function has been correlated with mature β-cells dedifferentiating into a precursor-like state through constant exposure to inflammatory stressors. As mature adipocytes likewise have the capability to dedifferentiate in vitro and in vivo, we wanted to analyze this cellular change in relation to adipose tissue (AT) inflammation and adipose tissue macrophage (ATM) activity. Using our organotypic AT explant culture method combined with a double-reporter mouse model for labeling ATMs and mature adipocytes, we were able to visualize and quantify dedifferentiated fat (DFAT) cells in AT explants. Preliminary testing showed increased dedifferentiation after tamoxifen (TAM) stimulation, making TAM-dependent lineage-tracing models unsuitable for quantification of naturally occurring DFAT cells. The regulatory role of ATMs in adipocyte dedifferentiation was shown through macrophage depletion using Plexxicon 5622 or clodronate liposomes, which significantly increased DFAT cell levels. Subsequent bulk RNA sequencing of macrophage-depleted explants revealed enrichment of the tumor necrosis factor α (TNFα) signaling pathway as well as downregulation of associated genes. Direct stimulation with TNFα decreased adipocyte dedifferentiation, while application of a TNFα-neutralizing antibody did not significantly alter DFAT cell levels. Our findings suggest a regulatory role of resident ATMs in maintaining the mature adipocyte phenotype and preventing excessive adipocyte dedifferentiation. The specific regulatory pathways as well as the impact that DFAT cells might have on ATMs, and vice versa, are subject to further investigation.
Collapse
Affiliation(s)
- Julia Neugebauer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Dagmar Akkermann
- Paul-Flechsig-Institute, Leipzig University, 04103 Leipzig, Germany
| | | | | | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Andele PK, Palazzolo S, Corona G, Caligiuri I, Kamensek U, Cemazar M, Canzonieri V, Rizzolio F. Human Omental Mature Adipocytes used as Paclitaxel Reservoir for Cell-Based Therapy in Ovarian Cancer. Adv Healthc Mater 2024; 13:e2304206. [PMID: 38334216 DOI: 10.1002/adhm.202304206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Primary human omental adipocytes and ovarian cancer(OC) cells establish a bidirectional communication in which tumor driven lipolysis is induced in adipocytes and the resulting fatty acids are delivered to cancer cells within the tumor microenvironment. Despite meaningful improvement in the treatment of OC, its efficacy is still limited by hydrophobicity and untargeted effects related to chemotherapeutics. Herein, omental adipocytes are firstly used as a reservoir for paclitaxel, named Living Paclitaxel Bullets (LPB) and secondly benefit from the established dialogue between adipocytes and cancer cells to engineer a drug delivery process that target specifically cancer cells. These results show that mature omental adipocytes can successfully uptake paclitaxel and deliver it to OC cells in a transwell coculture based in vitro model. In addition, the efficacy of this proof-of-concept has been demonstrated in vivo and induces a significant inhibition of tumor growth on a xenograft tumor model. The use of mature adipocytes can be suitable for clinical prospection in a cell-based therapy system, due to their mature and differentiated state, to avoid risks related to uncontrolled cell de novo proliferation capacity after the delivery of the antineoplastic drug as observed with other cell types when employed as drug carriers.
Collapse
Affiliation(s)
- Pacome K Andele
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, 30172, Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| | - Stefano Palazzolo
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, 33081, Italy
| | - Isabella Caligiuri
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Vincenzo Canzonieri
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, 30172, Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
5
|
Lee E, Nam JO. Anti-Obesity and Anti-Diabetic Effects of Ostericum koreanum (Ganghwal) Extract. Int J Mol Sci 2024; 25:4908. [PMID: 38732125 PMCID: PMC11084156 DOI: 10.3390/ijms25094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.
Collapse
Affiliation(s)
- Eunbi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Marinelli Busilacchi E, Morsia E, Poloni A. Bone Marrow Adipose Tissue. Cells 2024; 13:724. [PMID: 38727260 PMCID: PMC11083575 DOI: 10.3390/cells13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
| | - Erika Morsia
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| |
Collapse
|
7
|
Liang Z, He Y, Tang H, Li J, Cai J, Liao Y. Dedifferentiated fat cells: current applications and future directions in regenerative medicine. Stem Cell Res Ther 2023; 14:207. [PMID: 37605289 PMCID: PMC10441730 DOI: 10.1186/s13287-023-03399-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 08/23/2023] Open
Abstract
Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.
Collapse
Affiliation(s)
- Zhuokai Liang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojing Tang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Chen W, Wang C, Yang ZX, Zhang F, Wen W, Schaniel C, Mi X, Bock M, Zhang XB, Qiu H, Wang C. Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023; 6:393. [PMID: 37041280 PMCID: PMC10090171 DOI: 10.1038/s42003-023-04737-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system. While OCT4 was not required to reprogram PBMCs into iMSCs, omission of OCT4 significantly impaired iMSC functionality. The omission of OCT4 resulted in significantly downregulating MSC lineage specific and mesoderm-regulating genes, including SRPX, COL5A1, SOX4, SALL4, TWIST1. When reprogramming PBMCs in the absence of OCT4, 67 genes were significantly hypermethylated with reduced transcriptional expression. These data indicate that transient expression of OCT4 may serve as a universal reprogramming factor by increasing chromatin accessibility and promoting demethylation. Our findings represent an approach to produce functional MSCs, and aid in identifying putative function associated MSC markers.
Collapse
Affiliation(s)
- Wanqiu Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chenguang Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Xue Yang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Feng Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Wei Wen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Christoph Schaniel
- Division of Hematology and Medical Oncology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Matthew Bock
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, University of Arizona - College of Medicine at Phoenix, Phoenix, AZ, USA.
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Division of Microbiology & Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
9
|
Giuliani A, Sabbatinelli J, Amatori S, Graciotti L, Silvestrini A, Matacchione G, Ramini D, Mensà E, Prattichizzo F, Babini L, Mattiucci D, Busilacchi EM, Bacalini MG, Espinosa E, Lattanzio F, Procopio AD, Olivieri F, Poloni A, Fanelli M, Rippo MR. MiR-422a promotes adipogenesis via MeCP2 downregulation in human bone marrow mesenchymal stem cells. Cell Mol Life Sci 2023; 80:75. [PMID: 36847916 PMCID: PMC9971129 DOI: 10.1007/s00018-023-04719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/16/2022] [Accepted: 01/22/2023] [Indexed: 03/01/2023]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | | | - Lucia Babini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Domenico Mattiucci
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Emma Espinosa
- Geriatrics, Santa Croce Hospital, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| |
Collapse
|
10
|
Li Y, Huang Z, Huang X, Xu R, He Y, Deng F, Chen G. The influences of PEG-functionalized graphdiyne on cell growth and osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:1309-1317. [PMID: 36762569 DOI: 10.1002/jbm.b.35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Guided bone regeneration (GBR) is a frequently used technique for patients with insufficient alveolar bone. The discovery of bone substitutes that can enhance osteogenesis is critical for GBR. Graphdiyne (GDY), a newly discovered carbon-based nanomaterial, has been recognized as the most stable allotrope of acetylene carbon and is anticipated to be able to promote osteogenesis. Whereas it still remains unknown whether it could enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, GDY was modified with polyethylene glycol (PEG) and the influences of GDY-PEG at different concentrations on BMSCs cell growth and osteogenic differentiation were researched for the first time. In this study, we found that GDY-PEG at low concentration possessed premium bio-compatibility and revealed evident facilitation of BMSCs osteogenic differentiation. The cell growth and osteogenic differentiation of BMSCs treated with GDY-PEG were dose-dependent. GDY-PEG at 1 μg/mL demonstrated the optimal promoting effects of BMSCs osteogenic differentiation. Moreover, the regulating effect of BMSCs osteogenic differentiation by GDY-PEG might be associated with the Wnt/β-catenin signaling pathway. In all, the present study indicated a novel application of GDY in promoting bone tissue regeneration, providing a novel biomaterial for bone augmentation in clinics.
Collapse
Affiliation(s)
- Yiming Li
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ziqing Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoqiong Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ruogu Xu
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi He
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
11
|
Tassinari R, Olivi E, Cavallini C, Taglioli V, Zannini C, Marcuzzi M, Fedchenko O, Ventura C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2023; 26:105875. [PMID: 36647385 PMCID: PMC9839966 DOI: 10.1016/j.isci.2022.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanical forces play a fundamental role in cellular dynamics from the molecular level to the establishment of complex heterogeneity in somatic and stem cells. Here, we highlight the role of cytoskeletal mechanics and extracellular matrix in generating mechanical forces merging into oscillatory synchronized patterns. We discuss how cellular mechanosensing/-transduction can be modulated by mechanical forces to control tissue metabolism and set the basis for nonpharmacologic tissue rescue. Control of bone anabolic activity and repair, as well as obesity prevention, through a fine-tuning of the stem cell morphodynamics are highlighted. We also discuss the use of mechanical forces in the treatment of cardiovascular diseases and heart failure through the fine modulation of stem cell metabolic activity and regenerative potential. We finally focus on the new landscape of delivering specific mechanical stimuli to reprogram tissue-resident stem cells and enhance our self-healing potential, without the need for stem cell or tissue transplantation.
Collapse
Affiliation(s)
| | - Elena Olivi
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
| | | | | | | | - Martina Marcuzzi
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Oleksandra Fedchenko
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Carlo Ventura
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
12
|
Association between reversine dose and increased plasticity of dedifferentiated fat (DFAT cells) into cardiac derived cells. COR ET VASA 2022. [DOI: 10.33678/cor.2022.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Huang G, Xia B, Dai Z, Yang R, Chen R, Yang H. Comparative study of DFAT cell and ADSC sheets for periodontal tissue regeneration:
in vivo
and
in vitro
evidence. J Clin Periodontol 2022; 49:1289-1303. [PMID: 35851962 DOI: 10.1111/jcpe.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/29/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Guobin Huang
- Yunnan Key Laboratory of Stomatology Kunming Medical University Kunming Yunnan PR China
- Department of Dental Research The Affiliated Stomatology Hospital of Kunming Medical University Kunming Yunnan PR China
| | - Bin Xia
- Yunnan Key Laboratory of Stomatology Kunming Medical University Kunming Yunnan PR China
- Department of Oral and Maxillofacial Surgery The Affiliated Stomatological Hospital of Kunming Medical University Kunming Yunnan P.R. China
| | - Zichao Dai
- Yunnan Key Laboratory of Stomatology Kunming Medical University Kunming Yunnan PR China
- Department of Dental Research The Affiliated Stomatology Hospital of Kunming Medical University Kunming Yunnan PR China
| | - Rongqiang Yang
- Yunnan Key Laboratory of Stomatology Kunming Medical University Kunming Yunnan PR China
- Department of Dental Research The Affiliated Stomatology Hospital of Kunming Medical University Kunming Yunnan PR China
| | - Rui Chen
- Yunnan Key Laboratory of Stomatology Kunming Medical University Kunming Yunnan PR China
- Department of Dental Research The Affiliated Stomatology Hospital of Kunming Medical University Kunming Yunnan PR China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology Kunming Medical University Kunming Yunnan PR China
- Department of Dental Research The Affiliated Stomatology Hospital of Kunming Medical University Kunming Yunnan PR China
| |
Collapse
|
14
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
15
|
Chai Y, Chen Y, Yin B, Zhang X, Han X, Cai L, Yin N, Li F. Dedifferentiation of Human Adipocytes After Fat Transplantation. Aesthet Surg J 2022; 42:NP423-NP431. [PMID: 35032169 DOI: 10.1093/asj/sjab402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fat transplantation is a common method employed to treat soft-tissue defects. The dedifferentiation of mature adipocytes has been well documented, but whether it occurs after fat transplantation remains unclear. OBJECTIVES The major purpose of this project was to investigate the dedifferentiation of mature adipocytes after fat transplantation. METHODS Human lipoaspirate tissue was obtained from 6 female patients who underwent esthetic liposuction. Mature adipocytes were extracted and labeled with PKH26, mixed with lipoaspirate, and injected into nude mice. In addition, PKH26+ adipocytes were subjected to a ceiling culture. Grafted fat was harvested from nude mice, and stromal vascular fragment cells were isolated. The immunophenotype of PKH26+ cells was detected by flow cytometry analysis at 2 days and 1 week. The PKH26+ cells were sorted and counted at 2 and 4 weeks to verify their proliferation and multilineage differentiation abilities. RESULTS Two days after transplantation, almost no PKH26+ cells were found in the stromal vascular fragment cells. The PKH26+ cells found 1 week after transplantation showed a positive expression of cluster of differentiation (CD) 90 (CD90) and CD105 and a negative expression of CD45. This indicates that the labeled adipocytes were dedifferentiated. Its pluripotency was further demonstrated by fluorescent cell sorting and differentiation culture in vitro. In addition, the number of live PKH26+ cells at week 4 [(6.83 ± 1.67) × 104] was similar with that at week 2 [(7.11 ± 1.82) × 104]. CONCLUSIONS Human mature adipocytes can dedifferentiate into stem cell-like cells in vivo after fat transplantation.
Collapse
Affiliation(s)
- Yimeng Chai
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuanjing Chen
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Bo Yin
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xuefeng Han
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lei Cai
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ningbei Yin
- Cleft Lip and Palate Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Facheng Li
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Niu D, Wu Y, Lei Z, Zhang M, Xie Z, Tang S. Lactic acid, a driver of tumor-stroma interactions. Int Immunopharmacol 2022; 106:108597. [DOI: 10.1016/j.intimp.2022.108597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
|
17
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
18
|
Wysong A, Ortiz P, Bittel D, Ott L, Karanu F, Filla M, Stehno-Bittel L. Viability, yield and expansion capability of feline MSCs obtained from subcutaneous and reproductive organ adipose depots. BMC Vet Res 2021; 17:244. [PMID: 34266445 PMCID: PMC8281647 DOI: 10.1186/s12917-021-02948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures. RESULTS The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability. CONCLUSIONS While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.
Collapse
Affiliation(s)
- Amy Wysong
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | | | - Douglas Bittel
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Francis Karanu
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Michael Filla
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lisa Stehno-Bittel
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.
- Department of Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd, KS, 66160, Kansas City, USA.
| |
Collapse
|
19
|
Nilforoushzadeh MA, Heidari-Kharaji M, Alavi S, Nouri M, Nikkhah N, Jahangiri F, Mahmoudbeyk M, Peyrovan A, Baiat Tork B, Torkamaniha E, Zare S. Transplantation of autologous fat, stromal vascular fraction (SVF) cell, and platelet-rich plasma (PRP) for cell therapy of atrophic acne scars: Clinical evaluation and biometric assessment. J Cosmet Dermatol 2021; 21:2089-2098. [PMID: 34228901 DOI: 10.1111/jocd.14333] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Scarring is an unfortunate result of acne because it causes the psychological and cosmetic problems for the patients. Unfortunately, no single treatment is suitable, and using multiple methods may have a better result. The autologous fat and stromal vascular fraction (SVF) cells and their secretory factors can enhance the angiogenesis, collagen synthesis, and migration of fibroblasts, therefore regenerate hurt tissues. Moreover, other treatments for acne scarring, such as platelet-rich plasma (PRP), induce the increase in scare. AIMS This study aimed to verify the effectiveness of transplantation of autologous fat, SVF cells, and PRP as cell therapy techniques on atrophic acne scars. PATIENTS/METHODS This study included 9 adult patients with atrophic acne scars on face. All patients received the transplantation of autologous fat, stromal vascular fraction (SVF) cells, and PRP. The treatment outcome was measured by biometric assessment (VisioFace 1000 D, Colorimeter, multi-probe adapter Cutometer, Tewameter, Mexameter, and skin ultrasound imaging system), and also, the satisfaction of patients was evaluated. The patients were followed 6 months after the treatment. RESULTS There was a significant improvement in the skin pores, spots, skin lightness and melanin content of skin, skin elasticity, and TEWL (transepidermal water loss) after 6 months of the treatment. Furthermore, denser skin layers were observed both in the epidermis and in the dermis. Moreover, 66.6% of patients showed good satisfaction after the treatment. CONCLUSION In brief, the transplantation of autologous fat, SVF cells, and PRP is an effective cell therapy for atrophic acne scars.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Maryam Heidari-Kharaji
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Shiva Alavi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Nikkhah
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Jahangiri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Mahmoudbeyk
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aisan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Batool Baiat Tork
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Torkamaniha
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Fujisaki S, Kajiya H, Yanagi T, Maeshiba M, Kakura K, Kido H, Ohno J. Enhancement of jaw bone regeneration via ERK1/2 activation using dedifferentiated fat cells. Cytotherapy 2021; 23:608-616. [PMID: 33863640 DOI: 10.1016/j.jcyt.2021.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue-derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear. METHODS The authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo. RESULTS Osteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs. CONCLUSIONS DFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.
Collapse
Affiliation(s)
- Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Tsukasa Yanagi
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
21
|
Adipocyte-induced transdifferentiation of osteoblasts and its potential role in age-related bone loss. PLoS One 2021; 16:e0245014. [PMID: 33497412 PMCID: PMC7837466 DOI: 10.1371/journal.pone.0245014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Our preliminary findings have lead us to propose bone marrow adipocyte secretions as new contributors to bone loss. Indeed, using a coculture model based on human bone marrow stromal cells, we previously showed that soluble factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this study, microarray gene expression profiling showed profound transcriptomic changes in osteoblasts following coculture and confirmed the enrichment of the adipocyte gene signature. Double immunofluorescence microscopic analyses demonstrated the coexpression of adipogenic and osteoblastic specific markers in individual cells, providing evidence for a transdifferentiation event. At the molecular level, this conversion was associated with upregulated expression levels of reprogramming genes and a decrease in the DNA methylation level. In line with these in vitro results, preliminary immunohistochemical analysis of bone sections revealed adipogenic marker expression in osteoblasts from elderly subjects. Altogether, these data suggest that osteoblast transdifferentiation could contribute to decreased bone mass upon ageing.
Collapse
|
22
|
Hou Y, Lin W, Li Y, Sun Y, Liu Y, Chen C, Jiang X, Li G, Xu L. De-osteogenic-differentiated mesenchymal stem cells accelerate fracture healing by mir-92b. J Orthop Translat 2020; 27:25-32. [PMID: 33344169 PMCID: PMC7736910 DOI: 10.1016/j.jot.2020.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are promising targets for therapeutic use in regenerative medicine and tissue engineering. In the previous study, we have found that MSCs could be reverted to a primitive stem cell population after in vitro induction of osteogenic and de-osteogenic differentiation (de-osteogenic differentiated MSCs, De-Os-MSCs). De-Os-MSCs showed improved cell survival and osteogenic potential. However, the underlying mechanism and its potential effect on fracture healing has not been explored. Methods MSCs were isolated from the rat bone marrow. MicroRNAs were cloned into lentiviral vectors and transduced into MSCs to observe the effects on osteogenesis. The expression levels of marker genes were evaluated by quantitative RT-PCR. Ectopic bone formation model was used to evaluate the bone regeneration ability of mir-92b transduced MSCs in vivo. An open femur fracture model was established, and MSCs or De-Os-MSCs were administrated to the fracture sites. Histological, biomechanical and microCT analysis were used to evaluate the quality of bone. Results In the present study, we found that mir-92b was significantly increased in the secretions of De-Os-MSCs. And mir-92b could promote the osteogenic differentiation potential of MSCs by activating pERK and JNK signaling pathways. The ectopic bone formation assay showed that MSCs overexpressing mir-92b formed more bone like tissues in vivo. Most importantly, we found local administration of De-Os-MSCs could accelerate fracture healing using an open femur fracture model in rats. The quality of bone property was much better as shown by microCT and biomechanical testing. Conclusion Taken together, our study demonstrated that mir-92b promoted osteogenesis of MSCs, which was partially accounted for the enhanced osteogenic differentiation potential of De-Os-MSCs. And De-Os-MSCs had shown better regenerative capacity in accelerating fracture healing when they were locally given. The translational potential of this article De-Os-MSCs could be used to accelerate fracture healing, and reduce the occurrence of delayed unions and non-unions.
Collapse
Affiliation(s)
- Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, PR China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Chen Chen
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Watanabe H, Kanemaru K, Hagikura K, Matsumoto T, Ayusawa M, Morioka I. Soluble factors released by dedifferentiated fat cells reduce the functional activity of iPS cell-derived cardiomyocytes. Cell Biol Int 2020; 45:295-304. [PMID: 33073424 DOI: 10.1002/cbin.11487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 11/09/2022]
Abstract
Interactions between tissues such as epicardial adipose (EAT), and myocardial tissues is important in the pathogenesis of heart failure. Changes in adipose tissues in obesity or diabetes impair preadipocyte differentiation. Furthermore, proinflammatory cytokine secretion is higher in preadipocytes than in mature adipocytes in diabetes and obesity. However, how undifferentiated cells committed to the adipose lineage directly influence cardiomyocytes is not yet understood. We used human-derived dedifferentiated fat (DFAT) cells as models of undifferentiated cells committed to an adipose lineage. Here, we evaluated the effects of soluble factor interactions in indirect cocultures of DFAT cells and induced pluripotent stem cell-derived cardiomyocytes. Our RNA sequencing findings showed that these interactions were predominantly inflammatory responses. Furthermore, proinflammatory cytokines secreted by DFAT cells reduced myocardial functions such as contraction frequency and catecholamine sensitivity, and simultaneously increased apoptosis, decreased antioxidative stress tolerance, and reduced oxygen consumption rates in cardiomyocytes. These adverse effects might be attributable to monocyte chemoattractant protein-1, chemokine (C-X-C motif) ligands 1 (CXCL1), and 12, granulocyte colony-stimulating factor, interleukins 6 and 8, macrophage migration inhibitory factor (MIF), and plasminogen activator inhibitor 1-A among the proinflammatory mediators secreted by DFAT cells. Our results could be useful for understanding the pathogenesis of EAT-related heart failure in terms of the involvement of undifferentiated cells committed to the adipose lineage. Furthermore, we suggest the importance of focusing on surrounding adipose tissues as a strategy with which to maximize the survival and function of transplanted stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Wata Clinic, Tokyo, Japan
| | - Kazunori Kanemaru
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhiro Hagikura
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Mamoru Ayusawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158841. [PMID: 33075494 DOI: 10.1016/j.bbalip.2020.158841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
MicroRNA-221-3p (miR-221-3p) is associated with both metabolic diseases and cancers. However, its role in terminal adipocyte differentiation and lipid metabolism are uncharacterized. miR-221-3p or its inhibitor was transfected into differentiating or mature human adipocytes. Triglyceride (TG) content and adipogenic gene expression were monitored, global lipidome analysis was carried out, and mechanisms underlying the effects of miR-221-3p were investigated. Finally, cross-talk between miR-221-3p expressing adipocytes and MCF-7 breast carcinoma (BC) cells was studied, and miR-221-3p expression in tumor-proximal adipose biopsies from BC patients analyzed. miR-221-3p overexpression inhibited terminal differentiation of adipocytes, as judged from reduced TG storage and gene expression of the adipogenic markers SCD1, GLUT4, FAS, DGAT1/2, AP2, ATGL and AdipoQ, whereas the miR-221-3p inhibitor increased TG storage. Knockdown of the predicted miR-221-3p target, 14-3-3γ, had similar antiadipogenic effects as miR-221-3p overexpression, indicating it as a potential mediator of mir-221-3p function. Importantly, miR-221-3p overexpression inhibited de novo lipogenesis but increased the concentrations of ceramides and sphingomyelins, while reducing diacylglycerols, concomitant with suppression of sphingomyelin phosphodiesterase, ATP citrate lyase, and acid ceramidase. miR-221-3p expression was elevated in tumor proximal adipose tissue from patients with invasive BC. Conditioned medium of miR-221-3p overexpressing adipocytes stimulated the invasion and proliferation of BC cells, while medium of the BC cells enhanced miR-221-3p expression in adipocytes. Elevated miR-221-3p impairs adipocyte lipid storage and differentiation, and modifies their ceramide, sphingomyelin, and diacylglycerol content. These alterations are relevant for metabolic diseases but may also affect cancer progression.
Collapse
|
25
|
Evaluation of Fat Accumulation and Adipokine Production during the Long-Term Adipogenic Differentiation of Porcine Intramuscular Preadipocytes and Study of the Influence of Immunobiotics. Cells 2020; 9:cells9071715. [PMID: 32708964 PMCID: PMC7408200 DOI: 10.3390/cells9071715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
The degree of fat accumulation and adipokine production are two major indicators of obesity that are correlated with increased adipose tissue mass and chronic inflammatory responses. Adipocytes have been considered effector cells for the inflammatory responses due to their capacity to express Toll-like receptors (TLRs). In this study, we evaluated the degree of fat accumulation and adipokine production in porcine intramuscular preadipocyte (PIP) cells maintained for in vitro differentiation over a long period without or with stimulation of either TNF-α or TLR2-, TLR3-, or TLR4-ligands. The cytosolic fat accumulation was measured by liquid chromatography and the expression of adipokines (CCL2, IL-6, IL-8 and IL-10) were quantified by RT-qPCR and ELISA at several time points (0 to 20 days) of PIP cells differentiation. Long-term adipogenic differentiation (LTAD) induced a progressive fat accumulation in the adipocytes over time. Activation of TLR3 and TLR4 resulted in an increased rate of fat accumulation into the adipocytes over the LTAD. The production of CCL2, IL-8 and IL-6 were significantly increased in unstimulated adipocytes during the LTAD, while IL-10 expression remained stable over the studied period. An increasing trend of adiponectin and leptin production was also observed during the LTAD. On the other hand, the stimulation of adipocytes with TLRs agonists or TNF-α resulted in an increasing trend of CCL2, IL-6 and IL-8 production while IL-10 remained stable in all four treatments during the LTAD. We also examined the influences of several immunoregulatory probiotic strains (immunobiotics) on the modulation of the fat accumulation and adipokine production using supernatants of immunobiotic-treated intestinal immune cells and the LTAD of PIP cells. Immunobiotics have shown a strain-specific ability to modulate the fat accumulation and adipokine production, and differentiation of adipocytes. Here, we expanded the utility and potential application of our in vitro PIP cells model by evaluating an LTAD period (20 days) in order to elucidate further insights of chronic inflammatory pathobiology of adipocytes associated with obesity as well as to explore the prospects of immunomodulatory intervention for obesity such as immunobiotics.
Collapse
|
26
|
Reply: Mechanical Signals Induce Dedifferentiation of Mature Adipocytes and Increase the Retention Rate of Fat Grafts. Plast Reconstr Surg 2020; 146:507e-508e. [PMID: 32649597 DOI: 10.1097/prs.0000000000007207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
28
|
Tansriratanawong K, Tabei I, Ishikawa H, Ohyama A, Toyomura J, Sato S. Characterization and comparative DNA methylation profiling of four adipogenic genes in adipose-derived stem cells and dedifferentiated fat cells from aging subjects. Hum Cell 2020; 33:974-989. [PMID: 32495194 PMCID: PMC7505878 DOI: 10.1007/s13577-020-00379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Adipose-derived stem cells (ASCs) and dedifferentiated fat (DFAT) cells are alternative cell sources in tissue engineering and regeneration because they are easily obtained and exhibit multilineage differentiation. However, aging may attenuate their regenerative potential and metabolic functions. Reports characterizing DFAT cells derived from aging donors are rare, and comparisons of DNA methylation profiles between aging ASCs and DFAT cells are poorly understood. Therefore, this study aimed to characterize DFAT cells relative to ASCs derived from aging subjects and compare the DNA methylation profiles of four adipogenic genes in these cells. ASCs and DFAT cells from aging donors exhibited characteristics similar to those of stem cells, including colony formation, proliferation, and multilineage differentiation abilities. However, compared with ASCs, DFAT cells exhibited increased proliferation, smooth muscle actin alpha (SMA-α) expression and decreased cellular senescence. DNA methylation profiling of ASCs and DFAT cells by combined bisulfite restriction analysis (COBRA) demonstrated hypermethylation patterns in three potent adipogenic genes—peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid-binding protein 4 (FABP4), and lipoprotein lipase (LPL)—but hypomethylation of CCAAT/enhancer binding protein alpha (C/EBPα) in the aging group. Statistically significant differences were observed between the aging group and the young group. Epigenetic regulation maintains the stability of ASCs and DFAT cells in an age-dependent manner. Our findings suggested that although the DNA methylation patterns of three adipogenic genes correlated with hypermethylation and aging, ASCs and DFAT cells exhibited cellular stability and several stem cell characteristics, offering further opportunities for personalized regeneration and energy maintenance by adipogenesis during aging.
Collapse
Affiliation(s)
- Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, 6 Yothi Street Rajthevi, Bangkok, 10400, Thailand.
| | - Isao Tabei
- Department of Surgery, Jikei University School of Medicine, Tokyo, 105-0003, Japan
| | - Hiroshi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akihiro Ohyama
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Junko Toyomura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Soh Sato
- Department of Periodontology, Nippon Dental University, Niigata, 951-1500, Japan
| |
Collapse
|
29
|
Yu Z, Liu S, Cui J, Song Y, Wang T, Song B, Peng P, Ma X. Early histological and ultrastructural changes in expanded murine scalp. Ultrastruct Pathol 2020; 44:141-152. [PMID: 31989853 DOI: 10.1080/01913123.2020.1720876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhou Yu
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shiqiang Liu
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jiangbo Cui
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Pai Peng
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
30
|
Zhang X, Wei C, Li Y, Li Y, Chen G, He Y, Yi C, Wang C, Yu D. Dose‐dependent cytotoxicity induced by pristine graphene oxide nanosheets for potential bone tissue regeneration. J Biomed Mater Res A 2019; 108:614-624. [PMID: 31742875 DOI: 10.1002/jbm.a.36841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Xiliu Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Changbo Wei
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
- Department of Oral and Maxillofacial Surgery The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital Suzhou Jiangsu China
| | - Yiming Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Ye Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Guanhui Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Yi He
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Chen Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Chao Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
| |
Collapse
|
31
|
Kolodziej M, Strauss S, Lazaridis A, Bucan V, Kuhbier JW, Vogt PM, Könneker S. Influence of glucose and insulin in human adipogenic differentiation models with adipose-derived stem cells. Adipocyte 2019; 8:254-264. [PMID: 31280651 PMCID: PMC6768274 DOI: 10.1080/21623945.2019.1636626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autologous fat grafting represents an attractive source for tissue engineering applications in the field of reconstructive medicine. However, in adipogenic differentiation protocols for human adipose-derived stem cells, the concentration of glucose and insulin varies considerably. With the intent to gain maximum tissue augmentation, we focused on the late phase of adipogenesis. In this study, we modified the differentiation protocol for adipose-derived stem cells by prolongation of the induction period and the application highly concentrated glucose and insulin. Human adipose-derived stem cells were isolated from subcutaneous depots and differentiated in a standard induction medium for the first two weeks, followed by two weeks with varying glucose and insulin concentrations. Morphological changes assessed using Oil-Red-O staining were examined for corresponding alterations in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase (LPL). Furthermore, glucose and lactate levels in conditioned media were monitored over the period of differentiation. We found high-glucose media increasing the level of lipid accumulation and the size of single droplets whereas insulin significantly showed a dose-dependent negative effect on fat storage. However, whereas high glucose stimulated PPARγ transcription, expression levels in insulin-treated cells remained constant. Results permit assumptions that a high-glucose medium intensifies the degree of differentiation in mature adipocytes providing conditions to promote graft volume while we have identified highly concentrated insulin treatment as an inhibitor of lipid storage in the late adipogenic differentiation.
Collapse
Affiliation(s)
- Michaela Kolodziej
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Andrea Lazaridis
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Jörn W. Kuhbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Sören Könneker
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| |
Collapse
|
32
|
Ma J, Xia M D J, Gao J, Lu F, Liao Y. Mechanical Signals Induce Dedifferentiation of Mature Adipocytes and Increase the Retention Rate of Fat Grafts. Plast Reconstr Surg 2019; 144:1323-1333. [PMID: 31764645 DOI: 10.1097/prs.0000000000006272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mature adipocytes dedifferentiate in vivo on application of a soft-tissue expander. Dedifferentiated adipocytes can proliferate and redifferentiate. This study used tissue expanders to pretreat adipose flaps, to increase the retention rate after fat graft. METHODS A soft-tissue expander and silicone sheet were implanted beneath the left and right inguinal fat pads of rats, respectively. After 7 days of expansion, the adipose tissue derived from the pads was transplanted beneath dorsal skin. Samples were harvested at various time points, and histologic, immunohistochemical, and gene expression analyses were conducted. Mature adipocytes were cultured in vitro under a pressure of 520 Pa. Changes in cell morphology, the cytoskeleton, and expression of mechanical signal-related proteins were investigated. RESULTS Pressure in adipose flaps increased to 25 kPa on expansion. Mature adipocytes dedifferentiated following expansion. At 1 week after transplantation, the expression of vascular endothelial growth factor (p < 0.05) was higher in the expanded group. The retention rate at 12 weeks after transplantation was higher in the expanded group (56 ± 3 percent) than in the control group (32 ± 3 percent) (p < 0.05), and the surviving/regenerating zones (p < 0.01) were wider. The lipid content of mature adipocytes gradually decreased on culture under increased pressure, and these cells regained a proliferative capacity. This was accompanied by increased expression of mechanical signal--related proteins (p < 0.05). CONCLUSIONS Mechanical signals may induce dedifferentiation of mature adipocytes. Dedifferentiated adipocytes increase the retention rate of fat grafts by acting as seed cells.
Collapse
Affiliation(s)
- Jingjing Ma
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jing Xia M D
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jianhua Gao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunjun Liao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
33
|
Eymard F, Pigenet A, Rose C, Bories A, Flouzat-Lachaniette CH, Berenbaum F, Chevalier X, Houard X, Nourissat G. Contribution of adipocyte precursors in the phenotypic specificity of intra-articular adipose tissues in knee osteoarthritis patients. Arthritis Res Ther 2019; 21:252. [PMID: 31775901 PMCID: PMC6882235 DOI: 10.1186/s13075-019-2058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/08/2019] [Indexed: 01/15/2023] Open
Abstract
Background Intra-articular adipose tissues (IAATs) are involved in osteoarthritis (OA) pathophysiology. We hypothesize that mesenchymal cells residing in IAATs may account for the specific inflammatory and metabolic patterns in OA patients. Methods Adipocyte precursors (preadipocytes and dedifferentiated fat cells (DFATc)) from IAATs (infrapatellar and suprapatellar fat pads) and autologous subcutaneous adipose tissues (SCATs) were isolated from knee OA patients. The ability of these precursors to differentiate into adipocytes was assessed by oil red O staining after 14 days of culture in adipogenic medium. The gene expression of adipocyte-related transcription factors (C/EBP-α and PPAR-γ) and development-related factors (EN1 and SFRP2) were analyzed. The inflammatory pattern was assessed by RT-qPCR and ELISA (interleukin 6 (IL-6), IL-8, Cox2, and prostaglandin E2 (PGE2)) after a 24-h stimulation by IL-1β (1 ng/mL) and by conditioned medium from OA synovium. Results IAAT preadipocytes displayed a significantly higher ability to differentiate into adipocytes and expressed significantly more C/EBP-α mRNA than SCAT preadipocytes. IAAT preadipocytes expressed significantly less EN-1 and SFRP2 mRNA than SCAT preadipocytes. Unstimulated IAAT preadipocytes displayed a less inflammatory pattern (IL-6, IL-8, and Cox2/PGE2) than SCAT preadipocytes. In contrast, the response of IAAT preadipocytes to an inflammatory stimulus (IL-1β and conditioned media of OA synovium) was exacerbated compared to that of SCAT preadipocytes. Similar results were obtained with DFATc. Conclusion IAAT adipocyte precursors from OA patients have a specific phenotype, which may account for the unique phenotype of OA IAATs. The exacerbated response of IAAT preadipocytes to inflammatory stimulation may contribute to OA pathophysiology.
Collapse
Affiliation(s)
- Florent Eymard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France.,Department of Rheumatology, AP-HP Henri Mondor Hospital, F-94010, Créteil Cedex, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Cindy Rose
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Anouchka Bories
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | | | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France. .,Department of Rheumatology, AP-HP Saint-Antoine Hospital, Labex Transimmunomics, DHU i2B, F-75012, Paris, France. .,INSERM UMR-S 938 "Metabolism and Age-related Joint Diseases", Saint-Antoine Research Center, 27 rue Chaligny, F-75571, Paris Cedex 12, France.
| | - Xavier Chevalier
- Department of Rheumatology, AP-HP Henri Mondor Hospital, F-94010, Créteil Cedex, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Geoffroy Nourissat
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France.,Groupe Ramsay Générale de Santé, Clinique Maussins Nollet, F-75019, Paris, France
| |
Collapse
|
34
|
Bielczyk-Maczynska E. White Adipocyte Plasticity in Physiology and Disease. Cells 2019; 8:E1507. [PMID: 31775295 PMCID: PMC6953026 DOI: 10.3390/cells8121507] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular plasticity is a transformation of a terminally differentiated cell into another cell type, which has been long known to occur in disease and regeneration. However, white adipocytes (fat cells) have only recently been observed to undergo different types of cellular plasticity. Adipocyte transdifferentiation into myofibroblasts and cancer-associated fibroblasts occurs in fibrosis and cancer, respectively. On the other hand, reversible adipocyte dedifferentiation into adipocyte progenitor cells (preadipocytes) has been demonstrated in mammary gland and in dermal adipose tissue. Here we discuss the research on adipocyte plasticity, including the experimental approaches that allowed to detect and study it, the current state of the knowledge, major research questions which remain to be addressed, and the advances required to stimulate adipocyte plasticity research. In the future, the knowledge of the molecular mechanisms of adipocyte plasticity can be utilized both to prevent adipocyte plasticity in disease and to stimulate it for use in regenerative medicine.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczynska
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Deng Z, Zou J, Wang W, Nie Y, Tung WT, Ma N, Lendlein A. Dedifferentiation of mature adipocytes with periodic exposure to cold. Clin Hemorheol Microcirc 2019; 71:415-424. [PMID: 31006679 DOI: 10.3233/ch-199005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10°C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37°C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1α, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37°C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells.
Collapse
Affiliation(s)
- Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wing-Tai Tung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| |
Collapse
|
36
|
Côté JA, Ostinelli G, Gauthier MF, Lacasse A, Tchernof A. Focus on dedifferentiated adipocytes: characteristics, mechanisms, and possible applications. Cell Tissue Res 2019; 378:385-398. [PMID: 31289929 DOI: 10.1007/s00441-019-03061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
|
37
|
Hormoz S, Singer ZS, Linton JM, Antebi YE, Shraiman BI, Elowitz MB. Inferring Cell-State Transition Dynamics from Lineage Trees and Endpoint Single-Cell Measurements. Cell Syst 2019; 3:419-433.e8. [PMID: 27883889 DOI: 10.1016/j.cels.2016.10.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/01/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
As they proliferate, living cells undergo transitions between specific molecularly and developmentally distinct states. Despite the functional centrality of these transitions in multicellular organisms, it has remained challenging to determine which transitions occur and at what rates without perturbations and cell engineering. Here, we introduce kin correlation analysis (KCA) and show that quantitative cell-state transition dynamics can be inferred, without direct observation, from the clustering of cell states on pedigrees (lineage trees). Combining KCA with pedigrees obtained from time-lapse imaging and endpoint single-molecule RNA-fluorescence in situ hybridization (RNA-FISH) measurements of gene expression, we determined the cell-state transition network of mouse embryonic stem (ES) cells. This analysis revealed that mouse ES cells exhibit stochastic and reversible transitions along a linear chain of states ranging from 2C-like to epiblast-like. Our approach is broadly applicable and may be applied to systems with irreversible transitions and non-stationary dynamics, such as in cancer and development.
Collapse
Affiliation(s)
- Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Zakary S Singer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute (HHMI) and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
38
|
Fang B, Wang D, Zheng J, Wei Q, Zhan D, Liu Y, Yang X, Wang H, Li G, He W, Xu L. Involvement of tumor necrosis factor alpha in steroid-associated osteonecrosis of the femoral head: friend or foe? Stem Cell Res Ther 2019; 10:5. [PMID: 30606261 PMCID: PMC6318982 DOI: 10.1186/s13287-018-1112-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background The etiology and pathology osteonecrosis of the femoral head (ONFH) are not completely clarified. As a cytokine participating in systemic inflammation, tumor necrosis factor alpha (TNFα) has been shown to be involved in the pathogenesis of ONFH. However, the role of TNFα in ONFH is not clearly clarified. In the present study, we investigated the effects of TNFα on proliferation, angiogenesis, and osteogenic differentiation of rat bone mesenchymal stem cells (rMSCs) and the underlying mechanisms. Methods All femoral bone tissues were separated in surgeries. After extracting total RNA and protein, we evaluated TNFα content by ELISA and the relative expression levels of genes by quantitative real-time PCR and western blot. Also, immunohistochemistry staining was performed to observe the expression of Runx2 in the bone samples. Chick embryo chorioallantoic membrane (CAM) assay was performed to observe the effect of TNFα on angiogenesis. The genomic DNAs were treated by bisulfite modification, and methylation status of CpG sites in the CpG islands of human and rat Runx2 gene promoter was determined by DNA sequencing. The binding of H3K4me3 and H3K27me3 in Runx2 promoter was checked by ChIP assay. RNA-seq analysis was used to find out the genes and pathways changed by TNFα in rMSCs. Results The results demonstrate TNFα promotes cell proliferation and angiogenesis whereas inhibits osteogenesis. Epigenetic regulations including DNA methylation and histone modifications play important roles in mediating the effect of TNFα on osteogenic differentiation. We find an increased rate of CpG methylation in rat Runx2 promoter in TNFα-treated rMSCs, as well as significantly increased occupancy of H3K27me3 in Runx2 gene promoter. The content of TNFα in necrotic tissue is much lower than that of normal tissue. And relevantly, human Runx2 promoter is demethylated in necrotic tissue using bone samples from patient with ONFH. In addition, we have observed that Wnt signaling pathway is inhibited by TNFα as multiple Wnts are markedly decreased in TNFα-treated rMSCs by RNA-seq analysis. Conclusion Taken together, our study shows that TNFα plays complicated roles in the pathogenesis of ONFH, including proliferation, angiogenesis, and osteogenesis. Targeting TNFα should not be considered as an applicable strategy to inhibit the progression of ONFH. Electronic supplementary material The online version of this article (10.1186/s13287-018-1112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Fang
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Ding Wang
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jiaqian Zheng
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qiushi Wei
- Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dongxiang Zhan
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Haibin Wang
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.
| | - Wei He
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China. .,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Liangliang Xu
- Key laboratory of Orthopaedics and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China. .,Department of Orthopaedics Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
39
|
Poggi A, Zocchi MR. Immunomodulatory Properties of Mesenchymal Stromal Cells: Still Unresolved "Yin and Yang". Curr Stem Cell Res Ther 2019; 14:344-350. [PMID: 30516112 DOI: 10.2174/1574888x14666181205115452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are mesodermal elements characterized by the ability to differentiate into several types of cells present mainly in connective tissues. They play a key function in tissue homeostasis and repair. Furthermore, they exert a strong effect on both innate and adaptive immune response. The main current of thought considers MSC as strong inhibitors of the immune system. Indeed, the first description of MSC immunomodulation pointed out their inability to induce alloimmune responses and their veto effects on mixed lymphocyte reactions. This inhibition appears to be mediated both by direct MSC interaction with immune cells and by soluble factors. Unfortunately, evidence to support this notion comes almost exclusively from in vitro experiments. In complex experimental systems, it has been shown that MSC can exert immunosuppressive effects also in vivo, either in murine models or in transplanted patients to avoid the graft versus host disease. However, it is still debated how the small number of administered MSC can regulate efficiently a large number of host effector lymphocytes. In addition, some reports in the literature indicate that MSC can trigger rather than inhibit lymphocyte activation when a very low number of MSC are co-cultured with lymphocytes. This would imply that the ratio between the number of MSC and immune cells is a key point to forecast whether MSC will inhibit or activate the immune system. Herein, we discuss the conflicting results reported on the immunomodulatory effects of MSC to define which features are relevant to understand their behavior and cross-talk with immune cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria R Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Côté JA, Gauthier MF, Ostinelli G, Brochu D, Bellmann K, Marette A, Julien F, Lebel S, Tchernof A. Characterization and visualization of the liposecretion process taking place during ceiling culture of human mature adipocytes. J Cell Physiol 2018; 234:10270-10280. [PMID: 30561036 DOI: 10.1002/jcp.27931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate and further characterize the process of mature adipocyte dedifferentiation. Our hypothesis was that dedifferentiation does not involve mitosis but rather a phenomenon of liposecretion. METHODS Mature adipocytes were isolated by collagenase digestion of human adipose tissue samples. Ceiling cultures were established using our six-well plate model. Cells were treated with cytosine β-d-arabinofuranoside (AraC) or vincristine (VCR), two agents blocking cell division, and were compared with vehicle. Liposecretion events were visualized by time-lapse microscopy, with and without AraC in adipocytes transducted with a baculovirus. Microscopic analyses were performed after labeling phosphorylated histone 3 and cyclin B1 in ceiling cultures. RESULTS Treatment with AraC almost entirely prevented the formation of fibroblasts up to 12 days of ceiling culture. Similar results were obtained with VCR. The antimitotic effectiveness of the treatment was confirmed in fibroblast cultures from the adipose tissue stromal-vascular fraction by proliferation assays and colony-forming unit experiments. Using time-lapse microscopy, we visualized liposecretion events in which a large lipid droplet was rapidly secreted from isolated mature adipocytes. The same phenomenon was observed with AraC. This was observed in conjunction with histone 3 phosphorylation and cyclin B1 segregation to the nucleus. CONCLUSION Our results support the notion that dedifferentiation involves rapid secretion of the lipid droplet by the adipocytes with concomitant generation of fibroblast-like cells that subsequently proliferate to generate the dedifferentiated adipocyte population during ceiling culture. The presence of mitotic markers suggests that this process involves cell cycle progression, although cell division does not occur.
Collapse
Affiliation(s)
- Julie Anne Côté
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada.,École de Nutrition, Université Laval, Québec, Québec, Canada
| | - Marie-Frédérique Gauthier
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Giada Ostinelli
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada.,École de Nutrition, Université Laval, Québec, Québec, Canada
| | - Dannick Brochu
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Kerstin Bellmann
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - André Marette
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - François Julien
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - Stéfane Lebel
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada.,École de Nutrition, Université Laval, Québec, Québec, Canada
| |
Collapse
|
41
|
Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, Monraz-Preciado F, Ordoñez-Ortega S, Becerril-Elias V, Baay-Guzmán G, Obando-Monge R, García-García E, Palacios-González B, Villarreal-Molina MT, Sierra-Salazar M, Antuna-Puente B. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol 2018; 9:1781. [PMID: 30618796 PMCID: PMC6297830 DOI: 10.3389/fphys.2018.01781] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023] Open
Abstract
While the effect of exercise on white adipose tissue browning and metabolic improvement in rodents is clear, there are few studies in humans with inconclusive results. Thus, the aim of the study was to assess whether an exercise intervention promotes subcutaneous adipose tissue browning in humans, and whether this response is associated with metabolic improvement in three groups of individuals defined by body mass index (BMI) (kg/m2). Sedentary adult subjects with different BMI were enrolled in a 12-week bicycle-training program (3 times per week, intensity 70-80% HRmax). Brown and beige gene expression in subcutaneous adipose tissue (scWAT) biopsies, and serum glucose, insulin, lipid, adipokine, and myokine levels were compared before and after the exercise intervention. Thirty-three non-diabetic subjects (mean age 30.4 ± 4.6 years; 57.57% female; 13 normal weight, 10 overweight and 10 with obesity) completed the exercise intervention. Without any significant change in body composition, exercise improved several metabolic parameters, most notably insulin resistance and particularly in the overweight group. Circulating adiponectin, apelin, and irisin exercise-induced changes predicted 60% of the insulin sensitivity improvement. After exercise UCP1, TBX1, CPT1B scWAT expression significantly increased, along with P2RX5 significant positive staining. These changes are compatible with scWAT browning, however, they were not associated with glucose metabolism improvement. In conclusion, 12-weeks of exercise training produced brown/beige gene expression changes in abdominal scWAT of non-diabetic individuals with different BMI, which did not contribute to the metabolic improvement. However, this result should not be interpreted as a lack of effect of browning on metabolic parameters. These findings suggest that a bigger effect is needed and should not preclude the development of more effective strategies of browning. Furthermore, exercise-induced changes in adiponectin, apelin, and irisin predicted insulin sensitivity improvement, supporting the important role of adipokines and myokines in metabolism homeostasis.
Collapse
Affiliation(s)
- Berenice Otero-Díaz
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marcela Rodríguez-Flores
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Verónica Sánchez-Muñoz
- Centro de Nutrición y Obesidad, The American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | - Fernando Monraz-Preciado
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Samuel Ordoñez-Ortega
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Vicente Becerril-Elias
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rodolfo Obando-Monge
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Eduardo García-García
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | | | | | - Mauricio Sierra-Salazar
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Barbara Antuna-Puente
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
42
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
43
|
Maurizi G, Babini L, Della Guardia L. Potential role of microRNAs in the regulation of adipocytes liposecretion and adipose tissue physiology. J Cell Physiol 2018; 233:9077-9086. [PMID: 29932216 DOI: 10.1002/jcp.26523] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Adipose tissue is a dynamic endocrine organ playing a pivotal role in metabolism modulation. Adipocytes differentiation requires a highly orchestrated series of changes of gene expression in precursor cells. At the same time, white mature adipocytes are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells via the liposecretion process, returning back to a non-committed status of the cells. In particular, adipose tissue microenvironment along with external signaling molecules such as adipokines, cytokines and growth factors can regulate adipocytes physiology through complex molecular networks. MicroRNAs (miRNAs), a type of non-coding RNA, acting as fine regulators of biological processes and their expression is sensible to the environment and cellular status changes. MiRNAs are thought to play a pivotal role in regulating the physiology of adipose tissue as well as in the development of obesity and associated metabolic disturbances, although the underlying mechanisms have not been identified so far. Elucidating the molecular mechanisms orchestrating adipose tissue biology is required to better characterize obesity and its associated diseases. In this respect, the review aims to analyze the microRNAs potentially involved in adipogenesis highlighting their role in the process of liposecretion, adipocyte proliferation, and adipokines secretion. The role of microRNAs in the development of obesity and obesity-associated disorders is also discussed.
Collapse
Affiliation(s)
| | - Lucia Babini
- Università Politecnica delle Marche, Ancona, Italy
| | - Lucio Della Guardia
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Unità di Scienza dell'Alimentazione, Università degli studi di Pavia, Pavia, Italy
| |
Collapse
|
44
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Saito-Tamura Y, Tonogi M, Shimizu N, Honda M. Effect of collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Oral Sci 2018; 60:14-23. [PMID: 29479028 DOI: 10.2334/josnusd.16-0786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dedifferentiated fat (DFAT) cells were isolated from mature adipocytes using the ceiling culture method. Recently, we successfully isolated DFAT cells from adipocytes with a relatively small size (<40 μm). DFAT cells have a higher osteogenic potential than that of medium adipocytes. Therefore, the objective of this study was to determine the optimal concentration of collagenase solution for isolating small adipocytes from human buccal fat pads (BFPs). Four concentrations of collagenase solution (0.01%, 0.02%, 0.1%, and 0.5%) were used, and their effectiveness was assessed by the number of small adipocytes and DFAT cells isolated. The total number of floating adipocytes that dissociated with 0.02% collagenase was 2.5 times of that dissociated with 0.1% collagenase. The number of floating adipocytes with a diameter of ≤29 μm that dissociated with 0.02% collagenase was thrice of those dissociated with 0.1% and 0.5% collagenase. The number of DFAT cells that dissociated with 0.02% collagenase was 1.5 times of that dissociated with 0.1% collagenase. In addition, DFAT cells that dissociated with 0.02% collagenase had a higher osteogenic differentiation potential than those that dissociated with 0.1% collagenase. These results suggest that 0.02% is the optimal collagenase concentration for isolating small adipocytes from BFPs.
Collapse
Affiliation(s)
- Niina Tsurumachi
- Department of Orthodontics, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Taro Matsumoto
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
| | - Tomohiko Kazama
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | | | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | | | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
46
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
47
|
Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S, Mensà E, Pascarella R, Vivarelli M, Olivieri A, Leoni P, Poloni A. Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol 2018; 233:1500-1511. [PMID: 28574591 DOI: 10.1002/jcp.26037] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
In bone marrow (BM), hematopoietic elements are mingled with adipocytes (BM-A), which are the most abundant stromal component in the niche. BM-A progressively increase with aging, eventually occupying up to 50% of BM cavities. In this work, the role played by BM-A was explored by studying primary human BM-A isolated from hip surgery patients at the molecular level, through microarray analysis, and at the functional level, by assessing their relationship with primary human hematopoietic stem cells (HSC) by the long-term culture initiating cell (LTC-IC) assay. Findings demonstrated that BM-A are capable of supporting HSC survival in the LTC-IC assay, since after 5 weeks of co-culture, HSC were still able to proliferate and differentiate. Furthermore, critical molecules such as C-X-C motif chemokine 12 (CXCL12), interleukin (IL)-8, colony-stimulating factor 3 (CSF3), and leukaemia inhibitory factor (LIF), were expressed at similar levels in BM-A and in primary human BM mesenchymal stromal cells (BM-MSC), whereas IL-3 was higher in BM-A. Interestingly, BM-A displayed a different gene expression profile compared with subcutaneous adipose tissue adipocytes (AT-A) collected from abdominal surgery patients, especially in terms of regulation of lipid metabolism, stemness genes, and white-to-brown differentiation pathways. Accordingly, analysis of the gene pathways involved in hematopoiesis regulation showed that BM-A are more closely related to BM-MSC than to AT-A. The present data suggest that BM-A play a supporting role in the hematopoietic niche and directly sustain HSC survival.
Collapse
Affiliation(s)
- Domenico Mattiucci
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Maurizi
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, Center for Cell-Matrix Research and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lorenzo Cenci
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Ciarlantini
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Mancini
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Emanuela Mensà
- Cardiology Unit, Italian National Research Center on Aging (INRCA-IRCCS), Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | | | - Marco Vivarelli
- Hepatobiliary and Abdominal Transplantation Surgery, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Attilio Olivieri
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Pietro Leoni
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Poloni
- Dipartimento Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
48
|
Wang P, Cao Y, Zhan D, Wang D, Wang B, Liu Y, Li G, He W, Wang H, Xu L. Influence of DNA methylation on the expression of OPG/RANKL in primary osteoporosis. Int J Med Sci 2018; 15:1480-1485. [PMID: 30443169 PMCID: PMC6216050 DOI: 10.7150/ijms.27333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Purpose: A key factor in regulating bone absorption is the proportion of RANKL/OPG. Although many reports showing diverse transcription factors or epigenetic modification could be responsible for regulating RANKL&OPG ratio, there is still little exploration on promoter methylation status of both genes in osteoporotic bone tissues. Our aim is to investigate the changes of methylation in CpG island of these genes' promoters in patients with primary osteoporosis. Methods: The diagnosis of osteoporosis was based on the results of dual energy X-ray absorptiometry measurements. All femoral bone tissues were separated in surgeries. After extracting total RNA, we checked the relative expression levels of OPG and RANKL by quantitative real time PCR. The genomic DNA of Non-OPF (Non-osteoporotic fracture bone tissues) & OPF (osteoporotic fracture bone tissues) were treated by bisulfite modification, and methylation status of CpG sites in the CpG island of OPG/RANKL promoters were determined by DNA sequencing. Results: RANKL expression in the OPF group was significantly higher than that in Non-OPF group, and the CpG methylation status in RANKL gene promoter was significantly lower. However, for OPG, lower gene expression level and higher methylation degree were found in the OPF group. Conclusion: Our study demonstrated that DNA methylation influenced the transcriptional expression of OPG and RANKL, which probably take on a "main switch" role in pathogenesis of primary osteoporosis.
Collapse
Affiliation(s)
- Peng Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanming Cao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongxiang Zhan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ding Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Wang
- Department of Orthopedics, People's Hospital of Sanshui, Foshan, China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Wei He
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibin Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
49
|
hASC and DFAT, Multipotent Stem Cells for Regenerative Medicine: A Comparison of Their Potential Differentiation In Vitro. Int J Mol Sci 2017; 18:ijms18122699. [PMID: 29236047 PMCID: PMC5751300 DOI: 10.3390/ijms18122699] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/23/2017] [Accepted: 12/09/2017] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue comprises both adipose and non-adipose cells such as mesenchymal stem cells. These cells show a surface antigenic profile similar to that of bone-marrow-derived MSC. The cells derived from the dedifferentiation of mature adipocytes (DFAT) are another cell population with characteristics of stemness. The aim of this study is to provide evidence of the stemness, proliferation, and differentiation of human adipose stem cells (hASC) and DFAT obtained from human subcutaneous AT and evaluate their potential use in regenerative medicine. Cell populations were studied by histochemical and molecular biology techniques. Both hASC and DFAT were positive for MSC markers. Their proliferative capacity was similar and both populations were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. DFAT were able to accumulate lipids and their lipoprotein lipase and adiponectin gene expression were high. Alkaline phosphatase and RUNX2 gene expression were greater in hASC than in DFAT at 14 days but became similar after three weeks. Both cell populations were able to differentiate into chondrocytes, showing positive staining with Alcian Blue and gene expression of SOX9 and ACAN. In conclusion, both hASC and DFAT populations derived from AT have a high differentiation capacity and thus may have applications in regenerative medicine.
Collapse
|
50
|
Xu L, Liu Y, Sun Y, Wang B, Xiong Y, Lin W, Wei Q, Wang H, He W, Wang B, Li G. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther 2017; 8:275. [PMID: 29208029 PMCID: PMC5718061 DOI: 10.1186/s13287-017-0716-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/09/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the assertion has also been lacking. Methods Human bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ATSCs) were isolated from bone marrow and adipose tissue obtained after total hip arthroplasty. ATSCs and BMSCs were incubated in standard growth medium. Trilineage differentiation including osteogenesis, adipogenesis, and chondrogenesis was performed by addition of relevant induction mediums. The expression levels of trilineage differentiation marker genes were evaluated by quantitative RT-PCR. The methylation status of CpG sites of Runx2, PPARγ, and Sox9 promoters were checked by bisulfite sequencing. In addition, ectopic bone formation and calvarial bone critical defect models were used to evaluate the bone regeneration ability of ATSCs and BMSCs in vivo. Results The results showed that BMSCs possessed stronger osteogenic and lower adipogenic differentiation potentials compared to ATSCs. There was no significant difference in the chondrogenic differentiation potential. The CpG sites of Runx2 promoter in BMSCs were hypomethylated, while in ATSCs they were hypermethylated. The CpG sites of PPARγ promoter in ATSCs were hypomethylated, while in BMSCs they were hypermethylated. The methylation status of Sox9 promoter in BMSCs was only slightly lower than that in ATSCs. Conclusions The epigenetic memory obtained from either bone marrow or adipose tissue favored MSC differentiation along an osteoblastic or adipocytic lineage. The methylation status of the main transcription factors controlling MSC fate contributes to the differential differentiation capacities of different source-derived MSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0716-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region of China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuxin Sun
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region of China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region of China
| | - Yunpu Xiong
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510240, People's Republic of China
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region of China
| | - Qiushi Wei
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibin Wang
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China. .,Department of Traumatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
| | - Bin Wang
- Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510240, People's Republic of China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region of China. .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, Special Administrative Region of China. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China. .,Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.
| |
Collapse
|