1
|
Szulc J, Grzyb T, Gutarowska B, Nizioł J, Krupa S, Ruman T. 3D Mass Spectrometry Imaging as a Novel Screening Method for Evaluating Biocontrol Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8225-8242. [PMID: 40159642 PMCID: PMC11987030 DOI: 10.1021/acs.jafc.5c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The aim of this study was to evaluate innovative mass spectrometry imaging (MSI) for determining the metabolic potential of selected soil bacteria from the genera Bacillus and Priestia in the presence of the phytopathogen Fusarium. This research marks the first application of direct 3D MSI that to visualize interactions between potential biocontrol agents and plant pathogens on agar medium. The LARAPPI/CI-3D-MSI (Laser-Assisted Remote Atmospheric Pressure Imaging/Chemical Ionization-3D Mass Spectrometry Imaging) setup provided valuable insights into the compounds produced by the tested microorganisms, revealing their spatial distributions and their ability to diffuse into the agar medium. Subsequently, a Pathway Impact Analysis of Metabolites was conducted. Ion images based on ultrahigh resolution mass spectrometry data were obtained, including for potentially bioactive compounds. Statistical analysis of the entire MS data set showed that the metabolites identified for Bacillus licheniformis samples were distinctly separated from the Priestia megaterium samples and could be helpful tools for screening biocontrol strains. The LARAPPI/CI MSI technique offers significant advantages over existing MSI methods. Further research using this technology could help validate the effectiveness of various biopreparations and contribute to enhancing the quality of biological plant protection products available on the market.
Collapse
Affiliation(s)
- Justyna Szulc
- Department
of Environmental Biotechnology, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Wólczańska Street
171/173, 90-530 Łódź, Poland
| | - Tomasz Grzyb
- Department
of Environmental Biotechnology, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Wólczańska Street
171/173, 90-530 Łódź, Poland
| | - Beata Gutarowska
- Department
of Environmental Biotechnology, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Wólczańska Street
171/173, 90-530 Łódź, Poland
| | - Joanna Nizioł
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy
Street 6, 35-959 Rzeszów, Poland
| | - Sumi Krupa
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy
Street 6, 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy
Street 6, 35-959 Rzeszów, Poland
| |
Collapse
|
2
|
Zhao Y, Ding WJ, Xu L, Sun JQ. A comprehensive comparative genomic analysis revealed that plant growth promoting traits are ubiquitous in strains of Stenotrophomonas. Front Microbiol 2024; 15:1395477. [PMID: 38817968 PMCID: PMC11138164 DOI: 10.3389/fmicb.2024.1395477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Stenotrophomonas strains, which are often described as plant growth promoting (PGP) bacteria, are ubiquitous in many environments. A total of 213 genomes of strains of Stenotrophomonas were analyzed using comparative genomics to better understand the ecological roles of these bacteria in the environment. The pan-genome of the 213 strains of Stenotrophomonas consists of 27,186 gene families, including 710 core gene families, 11,039 unique genes and 15,437 accessory genes. Nearly all strains of Stenotrophomonas harbor the genes for GH3-family cellulose degradation and GH2- and GH31-family hemicellulose hydrolase, as well as intact glycolysis and tricarboxylic acid cycle pathways. These abilities suggest that the strains of this genus can easily obtain carbon and energy from the environment. The Stenotrophomonas strains can respond to oxidative stress by synthesizing catalase, superoxide dismutase, methionine sulfoxide reductase, and disulfide isomerase, as well as managing their osmotic balance by accumulating potassium and synthesizing compatible solutes, such as betaine, trehalose, glutamate, and proline. Each Stenotrophomonas strain also contains many genes for resistance to antibiotics and heavy metals. These genes that mediate stress tolerance increase the ability of Stenotrophomonas strains to survive in extreme environments. In addition, many functional genes related to attachment and plant colonization, growth promotion and biocontrol were identified. In detail, the genes associated with flagellar assembly, motility, chemotaxis and biofilm formation enable the strains of Stenotrophomonas to effectively colonize host plants. The presence of genes for phosphate-solubilization and siderophore production and the polyamine, indole-3-acetic acid, and cytokinin biosynthetic pathways confer the ability to promote plant growth. These strains can produce antimicrobial compounds, chitinases, lipases and proteases. Each Stenotrophomonas genome contained 1-9 prophages and 17-60 genomic islands, and the genes related to antibiotic and heavy metal resistance and the biosynthesis of polyamines, indole-3-acetic acid, and cytokinin may be acquired by horizontal gene transfer. This study demonstrates that strains of Stenotrophomonas are highly adaptable for different environments and have strong potential for use as plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wen-Jing Ding
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Usmanova A, Brazhnikova Y, Omirbekova A, Kistaubayeva A, Savitskaya I, Ignatova L. Biopolymers as Seed-Coating Agent to Enhance Microbially Induced Tolerance of Barley to Phytopathogens. Polymers (Basel) 2024; 16:376. [PMID: 38337265 DOI: 10.3390/polym16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against phytopathogens. A microbial association of biocompatible endophytic bacteria has been created, including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone IAA (from 45.2 to 69.2 µg mL-1), antagonistic activity against Fusarium oxysporum and Fusarium solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5-15% NaCl), and PHA production (2.77-4.54 g L-1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate (from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at 8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicating that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens.
Collapse
Affiliation(s)
- Aizhamal Usmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| |
Collapse
|
4
|
Shi J, Wu X, Qi H, Xu X, Hong S. Application and discoveries of metabolomics and proteomics in the study of female infertility. Front Endocrinol (Lausanne) 2024; 14:1315099. [PMID: 38274228 PMCID: PMC10810415 DOI: 10.3389/fendo.2023.1315099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Female infertility is defined as the absence of clinical pregnancy after 12 months of regular unprotected sexual intercourse. Methods This study employed metabolomics and proteomics approaches to investigate the relationship between metabolites and proteins and female infertility. The study used metabolomics and proteomics data from the UK Biobank to identify metabolites and proteins linked to infertility. Results The results showed that GRAM domain-containing protein 1C and metabolites fibrinogen cleavage peptides ADpSGEGDFXAEGGGVR and 3-Hydroxybutyrate had a positive correlation with infertility, whereas proteins such as Interleukin-3 receptor subunit alpha, Thrombospondin type-1 domain-containing protein 1, Intestinal-type alkaline phosphatase, and platelet and endothelial cell adhesion molecule 1 exhibited a negative correlation. These findings provide new clues and targets for infertility diagnosis and treatment. However, further research is required to validate these results and gain a deeper understanding of the specific roles of these metabolites and proteins in infertility pathogenesis. Discussion In conclusion, metabolomics and proteomics techniques have significant application value in the study of infertility, allowing for a better understanding of the biological mechanisms underlying infertility and providing new insights and strategies for its diagnosis and treatment. These research findings provide a crucial biological mechanistic basis for early infertility screening, prevention, and treatment.
Collapse
Affiliation(s)
- Junhua Shi
- Nursing Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingjie Wu
- Department of Obstetrics, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, China
| | - Haiou Qi
- Nursing Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Nursing Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihao Hong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Liu C, Hu X, Zhou X, Ma Y, Leung PHM, Xin JH, Fei B. Guanidine-containing double-network silks with enhanced tensile and antibacterial property. Int J Biol Macromol 2023:125470. [PMID: 37336382 DOI: 10.1016/j.ijbiomac.2023.125470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The bacterial infection of surgical wounds results in prolonged hospitalization and even death of patients, calling for antibacterial function in modern suture products. To tackle this challenge, cationic guanidine-containing copolymer was synthesized, exhibiting antibacterial potency over 5 log reduction against both Gram-positive S. aureus and Gram-negative E. coli. Furthermore, we developed a double-network silk suture by integrating a guanidine-containing copolymer network into the silk fibroin network. This suture exhibited biocidal activity against S. aureus and E. coli, and superior strength compared to the commercial product in both dry and wet conditions. These results may bring general benefits to public health and medical equipment sustainability.
Collapse
Affiliation(s)
- Chang Liu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Xin Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Ma
- Jinzhou Central Hospital, Jinzhou, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
6
|
Oppong-Danquah E, Miranda M, Blümel M, Tasdemir D. Bioactivity Profiling and Untargeted Metabolomics of Microbiota Associated with Mesopelagic Jellyfish Periphylla periphylla. Mar Drugs 2023; 21:md21020129. [PMID: 36827170 PMCID: PMC9958851 DOI: 10.3390/md21020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The marine mesopelagic zone extends from water depths of 200 m to 1000 m and is home to a vast number and diversity of species. It is one of the least understood regions of the marine environment with untapped resources of pharmaceutical relevance. The mesopelagic jellyfish Periphylla periphylla is a well-known and widely distributed species in the mesopelagic zone; however, the diversity or the pharmaceutical potential of its cultivable microbiota has not been explored. In this study, we isolated microorganisms associated with the inner and outer umbrella of P. periphylla collected in Irminger Sea by a culture-dependent approach, and profiled their chemical composition and biological activities. Sixteen mostly gram-negative bacterial isolates were selected and subjected to an OSMAC cultivation regime approach using liquid and solid marine broth (MB) and glucose-yeast-malt (GYM) media. Their ethyl acetate (EtOAc) extracts were assessed for cytotoxicity and antimicrobial activity against fish and human pathogens. All, except one extract, displayed diverse levels of antimicrobial activities. Based on low IC50 values, four most bioactive gram-negative strains; Polaribacter sp. SU124, Shewanella sp. SU126, Psychrobacter sp. SU143 and Psychrobacter sp. SU137, were prioritized for an in-depth comparative and untargeted metabolomics analysis using feature-based molecular networking. Various chemical classes such as diketopiperazines, polyhydroxybutyrates (PHBs), bile acids and other lipids were putatively annotated, highlighting the biotechnological potential in P. periphylla-associated microbiota as well as gram-negative bacteria. This is the first study providing an insight into the cultivable bacterial community associated with the mesopelagic jellyfish P. periphylla and, indeed, the first to mine the metabolome and antimicrobial activities of these microorganisms.
Collapse
Affiliation(s)
- Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Martina Miranda
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-6004430
| |
Collapse
|
7
|
Synthesis of Polylactic Acid Oligomers for Broad-Spectrum Antimicrobials. Polymers (Basel) 2022; 14:polym14204399. [PMID: 36297975 PMCID: PMC9611500 DOI: 10.3390/polym14204399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Infectious microbial diseases are a major public health hazard, calling for more innovative antimicrobials. Herein, polylactic acid (PLA) oligomers have been explored and reported as a bio-safe and eco-friendly functional antimicrobial agent against pathogens, such as viruses (H1N1, H3N2, and SARS-CoV-2), bacteria (E. coli, S. aureus, K. pneumoniae, MRSA), and fungi (C. albicans). The PLA oligomers were prepared by direct catalyst-free condensation polymerization of l-lactic acid monomers and characterized by FT-IR and 1H-NMR. The antiviral results demonstrate that PLA oligomers possess robust (inhibiting rate > 99%) and rapid (<20 min) antiviral activity against two pandemic ssRNA viruses, including influenza A virus (IAV) and coronavirus (CoV). Furthermore, the PLA oligomers exhibit high antibacterial activities against both Gram negative (G−) and Gram positive (G+) bacteria. The PLA oligomers also perform efficiently in killing a large amount of C. albicans as high as 105 cfu/mL down to zero at the concentration of 10 mg/mL. Thus, the broad-spectrum antimicrobial activity endowed the PLA oligomers with a promising biocidal option, except antibiotics in a wide range of applications, such as medical textiles, food preservation, water disinfection, and personal hygiene, in light of their unique biodegradability and biocompatibility.
Collapse
|
8
|
Antibacterial Activity of Jojoba Seed residue and Its Possible Active Compound. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.6.218-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Jojoba (Simmondsia chinensis) (Link) C.K. is a shrub plant widely used in cosmetics, especially jojoba oil. The residue will remain when producing jojoba oil and become waste. This study aimed to determine the antibacterial activity of Jojoba seed residue (JSR) and its possible active antibacterial compounds. JSR was collected from Sudan and extracted by maceration with n-hexane, ethyl acetate, and 70% ethanol. The antibacterial activity was determined with the microdilution method against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The 70% ethanol extract showed the value of MIC and MBC against E. coli, which was 7.8 mg/ml; meanwhile, against S. aureus was 3.9 mg/mL and 7.8 mg/mL, respectively. Fractionation of 70% ethanol extract using silica gel column chromatography with gradient elution produced ten fractions. Fraction 3 showed the MIC and MBC values in E. coli which were 3.1 mg/mL and 12 mg/ml, and in S. aureus, which were 3.1 mg/mL and 6.2 mg/mL. The fractionation continued to Fraction 3 using preparative thin layer chromatography to collect subfraction 3.2 at an Rf value of 0.76, actively based on contact autobiography against E. coli and S. aureus. Embelin was detected in Subfraction 3.2 using liquid chromatography-mass spectrometry (UHPLC-Q-Orbitrap HRMS) and suggested as the active antibacterial component in JSR.
Collapse
|
9
|
Gono CMP, Ahmadi P, Hertiani T, Septiana E, Putra MY, Chianese G. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar Drugs 2022; 20:md20070406. [PMID: 35877699 PMCID: PMC9324380 DOI: 10.3390/md20070406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Marine angiosperms produce a wide variety of secondary metabolites with unique structural features that have the potential to be developed as effective and potent drugs for various diseases. Recently, research trends in secondary metabolites have led to drug discovery with an emphasis on their pharmacological activity. Among marine angiosperms, seagrasses have been utilized for a variety of remedial purposes, such as treating fevers, mental disorders, wounds, skin diseases, muscle pain, and stomach problems. Hence, it is essential to study their bioactive metabolites, medical properties, and underlying mechanisms when considering their pharmacological activity. However, there is a scarcity of studies on the compilation of existing work on their pharmacological uses, pharmacological pathways, and bioactive compounds. This review aims to compile the pharmacological activities of numerous seagrass species, their secondary metabolites, pharmacological properties, and mechanism of action. In conclusion, this review highlights the potency of seagrasses as a promising source of natural therapeutical products for preventing or inhibiting human diseases.
Collapse
Affiliation(s)
| | - Peni Ahmadi
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Eris Septiana
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| |
Collapse
|
10
|
Shi Y, Huang W, Li Y, Wang W, Sui M, Yang Q, Tong Y, Yang K, Chen P. Toward heat resistant polylactide blend fibers via incorporation of low poly[(R)‐3‐hydroxybutyrate‐
co
‐4‐hydroxybutyrate] content. J Appl Polym Sci 2022. [DOI: 10.1002/app.52652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yamin Shi
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou China
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
| | - Wei Huang
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
| | - Yi Li
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Wenling Wang
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Miao Sui
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd Ningbo China
| | - Yi Tong
- COFCO (jilin) Bio‐Chemical Technology Co., Ltd Changchun China
| | - Kai Yang
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou China
| | - Peng Chen
- Zhejiang Key Laboratory of Bio‐based Polymeric Materials Technology and Application, Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Materials Technology and Engineering (NIMTE) Ningbo China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
11
|
Suo D, Rao J, WANG H, ZHANG Z, Leung P, Zhang H, Tao X, Zhao X. A universal biocompatible coating for enhanced lubrication and bacterial inhibition. Biomater Sci 2022; 10:3493-3502. [DOI: 10.1039/d2bm00598k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibacterial coatings that inhibit bacterial adhesion are essential for many implanted medical devices. A variety of antibacterial strategies, such as repelling or killing bacteria, have been developed, but not yet...
Collapse
|
12
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
13
|
Mizuno S, Sakurai T, Nabasama M, Kawakami K, Hiroe A, Taguchi S, Tsuge T. The influence of medium composition on the microbial secretory production of hydroxyalkanoate oligomers. J GEN APPL MICROBIOL 2021; 67:134-141. [PMID: 33952784 DOI: 10.2323/jgam.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the aid of a chain transfer (CT) reaction, hydroxyalkanoate (HA) oligomers can be secreted by recombinant Escherichia coli carrying the gene encoding a lactate-polymerizing enzyme (PhaC1PsSTQK) using Luria-Bertani (LB) medium supplemented with a carbon source and CT agent. In this study, HA oligomers were produced through microbial secretion using a mineral-based medium instead of LB medium, and the impact of medium composition on HA oligomer secretion was investigated. The focused targets were medium composition and NaCl concentration related to osmotic conditions. It was observed that 4.21 g/L HA oligomer was secreted by recombinant E. coli in LB medium, but the amount secreted in the mineral-based modified R (MR) medium was negligible. However, when the MR medium was supplemented with 5 g/L yeast extract, 3.75 g/L HA oligomer was secreted. This can be accounted for by the enhanced expression and activity of PhaC1PsSTQK upon supplementation with growth-activated nutrients as supplementation with yeast extract also promoted cell growth and intracellular growth-associated polymer accumulation. Furthermore, upon adding 10 g/L NaCl to the yeast extract-supplemented MR medium, HA oligomer secretion increased to 6.86 g/L, implying that NaCl-induced osmotic pressure promotes HA oligomer secretion. These findings may facilitate the secretory production of HA oligomers using an inexpensive medium.
Collapse
Affiliation(s)
- Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology.,MIRAI, JST
| | - Tetsuo Sakurai
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Mikito Nabasama
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Kyouhei Kawakami
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture.,MIRAI, JST
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology.,MIRAI, JST
| |
Collapse
|
14
|
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial materials: design, platforms and applications. J Mater Chem B 2021; 9:2802-2815. [PMID: 33710247 DOI: 10.1039/d1tb00109d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past decades, the morbidity and mortality caused by pathogen invasion remain stubbornly high even though medical care has increasingly improved worldwide. Besides, impacted by the ever-growing multidrug-resistant bacterial strains, the crisis owing to the abuse and misuse of antibiotics has been further exacerbated. Among the wide range of antibacterial strategies, polymeric antibacterial materials with diversified synthetic strategies exhibit unique advantages (e.g., their flexible structural design, processability and recyclability, tuneable platform construction, and safety) for extensive antibacterial fields as compared to low molecular weight organic or inorganic antibacterial materials. In this review, polymeric antibacterial materials are summarized in terms of four structure styles and the most representative material platforms to achieve specific antibacterial applications. The superiority and defects exhibited by various polymeric antibacterial materials are elucidated, and the design of various platforms to elevate their efficacy is also described. Moreover, the application scope of polymeric antibacterial materials is summarized with regard to tissue engineering, personal protection, and environmental security. In the last section, the subsequent challenges and direction of polymeric antibacterial materials are discussed. It is highly expected that this critical review will present an insight into the prospective development of antibacterial functional materials.
Collapse
Affiliation(s)
- Hao Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | |
Collapse
|
15
|
Mechanistic Study of Synergistic Antimicrobial Effects between Poly (3-hydroxybutyrate) Oligomer and Polyethylene Glycol. Polymers (Basel) 2020; 12:polym12112735. [PMID: 33218029 PMCID: PMC7698724 DOI: 10.3390/polym12112735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Extended from our previous finding that poly (3-hydroxybutyrate) (PHB) oligomer is an effective antimicrobial agent against gram-positive bacteria, gram-negative bacteria, fungi and multi-drug resistant bacteria, this work investigates the effect of polyethylene glycol (PEG) on the antimicrobial effect of PHB oligomer. To investigate and explain this promoting phenomenon, three hypothetic mechanisms were proposed, that is, generation of new antimicrobial components, degradation of PHB macromolecules and dissolution/dispersion of PHB oligomer by PEG. With a series of systematic experiments and characterizations of high-performance liquid chromatography-mass spectrometry (HPLC-MS), it was deducted that PEG promotes the antimicrobial effect of PHB oligomer synergistically through dissolution/dispersion, owing to its amphipathy, which improves the hydrophilicity of PHB oligomer.
Collapse
|
16
|
Voinova V, Bonartseva G, Bonartsev A. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells 2019; 11:764-786. [PMID: 31692924 PMCID: PMC6828591 DOI: 10.4252/wjsc.v11.i10.764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal multipotent stem cells that can differentiate into multiple cell types, including fibroblasts, osteoblasts, chondrocytes, adipocytes, and myoblasts, thus allowing them to contribute to the regeneration of various tissues, especially bone tissue. MSCs are now considered one of the most promising cell types in the field of tissue engineering. Traditional petri dish-based culture of MSCs generate heterogeneity, which leads to inconsistent efficacy of MSC applications. Biodegradable and biocompatible polymers, poly(3-hydroxyalkanoates) (PHAs), are actively used for the manufacture of scaffolds that serve as carriers for MSC growth. The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers, the 3D and surface microstructure of the scaffolds, and the biological activity of PHAs, which was discovered in a series of investigations. The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied. We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs, especially the most widespread representative poly(3-hydroxybutyrate) (PHB). This biopolymer is present in the bacteria of mammalian microbiota, whereas endogenous poly(3-hydroxybutyrate) is found in mammalian tissues. The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate) in bacteria and eukaryotes, including in humans, is discussed in this paper.
Collapse
Affiliation(s)
- Vera Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Garina Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anton Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|