1
|
Westhauser F, Jacobsen V, Zheng K, Merle C, Boccaccini AR, Renkawitz T, Kunisch E. Insights into ionic medicine: Cerium reduces the presence of reactive oxygen species and favors osteogenic over adipogenic differentiation in human mesenchymal stromal cells. J Trace Elem Med Biol 2025; 89:127668. [PMID: 40345102 DOI: 10.1016/j.jtemb.2025.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
The guided application of metallic ions in bone tissue engineering (BTE) has recently gained popularity being described as one important example of ionic medicine (IM). BTE aims to enhance osteogenic differentiation of precursor cells like bone-marrow-derived mesenchymal stromal cells (BMSCs) and, by that, regenerate bone tissue. BMSCs however can also differentiate into adipogenic lineage. It is known that elevated levels of reactive oxygen species (ROS) stimulate BMSC towards (undesired) adipogenic differentiation. One ion, that is particularly interesting for application in IM-guided BTE is cerium (Ce) since it acts as a self-regenerating ROS-scavenger and has already been successfully incorporated in biomaterials. Ce has demonstrated pro-osteogenic, anti-adipogenic and anti-oxidative effects before, however, so far, there is no direct comparative study available that analyzes these effects on human BMSCs in one and the same setting. Therefore, in this study, the influence of Ce nitrate (CeN) on the expression of osteogenic, adipogenic and ROS-scavenging genes in BMSCs was evaluated as well as its impact on formation of an osseous extracellular matrix (ECM), lipid formation and physical ROS presence. The presence of CeN improved BMSCs viability, enhanced proliferation, and reduced ROS-levels. Furthermore, CeN suppressed adipogenesis while osteogenic differentiation and the formation and maturation of the ECM were enhanced. The presence of CeN reduced the physical presence of ROS and the gene expression patterns shifted towards an anti-oxidant profile. Ce therefore constitutes an attractive ion for application in IM-guided BTE. Further research is necessary to clarify the biological mechanisms and pathways that are involved in the Ce-mediated modulation of BMSC differentiation.
Collapse
Affiliation(s)
- F Westhauser
- Department of Orthopaedics, Regensburg University Medical Center, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, Bad Abbach 93077, Germany; Department of Orthopedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany.
| | - V Jacobsen
- Department of Orthopedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany
| | - K Zheng
- Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Rd., Nanjing 210029, China
| | - C Merle
- Joint Replacement Centre, Orthopedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, Stuttgart 70176, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - T Renkawitz
- Department of Orthopaedics, Regensburg University Medical Center, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, Bad Abbach 93077, Germany; Department of Orthopedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany
| | - E Kunisch
- Department of Orthopedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany
| |
Collapse
|
2
|
Hong C, Li X, Zhang K, Huang Q, Li B, Xin H, Hu B, Meng F, Zhu X, Tang D, Hu C, Tao C, Li J, Cao Y, Wang H, Deng B, Wang S. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1404697. [PMID: 38982993 PMCID: PMC11232368 DOI: 10.3389/fendo.2024.1404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Baohong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyun Xin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianhao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Hai Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health- Hong Kong University (GIBH-HKU) Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
3
|
Liu SS, Fang X, Wen X, Liu JS, Alip M, Sun T, Wang YY, Chen HW. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation. World J Stem Cells 2024; 16:245-256. [PMID: 38577237 PMCID: PMC10989283 DOI: 10.4252/wjsc.v16.i3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiang Fang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xin Wen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Ji-Shan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Miribangvl Alip
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Tian Sun
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yuan-Yuan Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Wei Chen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
4
|
Ekeuku SO, Chin KY, Qian J, Zhang Y, Qu H, Ahmad F, Wong SK, Noor MMM, Soelaiman IN. The effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised rats. Int J Med Sci 2023; 20:1711-1721. [PMID: 37928881 PMCID: PMC10620870 DOI: 10.7150/ijms.84604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Menopause is accompanied by increased oxidative stress, partly contributing to weight gain and bone marrow adiposity. Traditional Chinese medication, E'Jiao, has been demonstrated to reduce excessive bone remodelling during oestrogen deprivation, but its effects on body composition and bone marrow adiposity during menopause remain elusive. Objective: To determine the effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised (OVX) rats. Methods: Seven groups of three-month-old female Sprague Dawley rats were established (n=6/group): baseline, sham, OVX control, OVX-treated with low, medium or high-dose E'Jiao (0.26, 0.53, 1.06 g/kg, p.o.) or calcium carbonate (1% in tap water, ad libitum). The supplementation was terminated after 8 weeks. Whole-body composition analysis was performed monthly using dual-energy X-ray absorptiometry. Analysis of bone-marrow adipocyte numbers and skeletal antioxidant activities were performed on the femur. Results: Increased total mass, lean mass, and bone marrow adipocyte number were observed in the OVX control versus the sham group. Low-dose E'Jiao supplementation counteracted these changes. Besides, E'Jiao at all doses increased skeletal catalase and superoxide dismutase activities but lowered glutathione levels in the OVX rats. Skeletal malondialdehyde level was not affected by ovariectomy but was lowered with E'Jiao supplementation. However, peroxisome proliferator-activated receptor gamma protein expression was not affected by ovariectomy or any treatment. Conclusion: E'Jiao, especially at the low dose, prevented body composition changes and bone marrow adiposity due to ovariectomy. These changes could be mediated by the antioxidant actions of E'Jiao. It has the potential to be used among postmenopausal women to avoid adiposity.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Mohd Mustazil Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysiaa, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Liu J, Lu W, Yan D, Guo J, Zhou L, Shi B, Su X. Mitochondrial respiratory complex I deficiency inhibits brown adipogenesis by limiting heme regulation of histone demethylation. Mitochondrion 2023; 72:22-32. [PMID: 37451354 DOI: 10.1016/j.mito.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial functions play a crucial role in determining the metabolic and thermogenic status of brown adipocytes. Increasing evidence reveals that the mitochondrial oxidative phosphorylation (OXPHOS) system plays an important role in brown adipogenesis, but the mechanistic insights are limited. Herein, we explored the potential metabolic mechanisms leading to OXPHOS regulation of brown adipogenesis in pharmacological and genetic models of mitochondrial respiratory complex I deficiency. OXPHOS deficiency inhibits brown adipogenesis through disruption of the brown adipogenic transcription circuit without affecting ATP levels. Neither blockage of calcium signaling nor antioxidant treatment can rescue the suppressed brown adipogenesis. Metabolomics analysis revealed a decrease in levels of tricarboxylic acid cycle intermediates and heme. Heme supplementation specifically enhances respiratory complex I activity without affecting complex II and partially reverses the inhibited brown adipogenesis by OXPHOS deficiency. Moreover, the regulation of brown adipogenesis by the OXPHOS-heme axis may be due to the suppressed histone methylation status by increasing histone demethylation. In summary, our findings identified a heme-sensing retrograde signaling pathway that connects mitochondrial OXPHOS to the regulation of brown adipocyte differentiation and metabolic functions.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dongyue Yan
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Junyuan Guo
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Li Zhou
- Department of Nutrition, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Campos-Maldonado F, González-Dávalos ML, Piña E, Anaya-Loyola MA, Shimada A, Varela-Echavarria A, Mora O. Fructose promotes more than glucose the adipocytic differentiation of pig mesenchymal stem cells. J Food Biochem 2022; 46:e14429. [PMID: 36153825 DOI: 10.1111/jfbc.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
The goal of this study was to evaluate how glucose and fructose affected the adipose differentiation of pig newborn mesenchymal stem cells (MSCs). Cells were grown with or without inosine in 7.5 mM glucose (substituted with 1.5 or 6 mM fructose). MSCs displayed adipose morphology after 70 days of differentiation. Fructose stimulated the highest levels of PPARγ and C/EBPβ. Fructose at 6 mM, but not glucose at 7.5 mM or fructose at 1.5 mM, promotes differentiation of MSCs into adipocytes and increases 11-hydroxysteroid dehydrogenase (11β-HSD1) and NADPH oxidase 4 (NOX4) mRNA in the absence of hepatic effects (as simulated by the inosine). Fructose and glucose increased xanthine oxide-reductase (XOR) catalytic activity almost 10-fold and elevated their products: intracellular reactive oxygen species (ROS) pool, extracellular H2 O2 pool by 4 orders of magnitude, and uric acid by a factor of 10. Therefore, in our experimental model, differentiation of MSCs into adipocytes occurs exclusively at the blood concentration of fructose detected after ingestion by people on a high fructose diet. PRACTICAL APPLICATIONS: The results of this study provide new evidence for fructose's adipogenic potential in mesenchymal stem cells, a model in which its effects on XOR activity had not been studied. The increased expression of genes such as C/EBPβ, PPARγ, and NOX4, as well as the increased XOR activity and high production of ROS during the differentiation process in the presence of fructose, coincides in pointing to this hexose as an important factor in the development of adipogenesis in young animals, which could have a great impact on the development of future obesity.
Collapse
Affiliation(s)
- Francisco Campos-Maldonado
- Maestría en Ciencias de la Nutrición Humana, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - María L González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| | | | | | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| |
Collapse
|
7
|
Sánchez-Ramírez E, Ung TPL, Alarcón del Carmen A, del Toro-Ríos X, Fajardo-Orduña GR, Noriega LG, Cortés-Morales VA, Tovar AR, Montesinos JJ, Orozco-Solís R, Stringari C, Aguilar-Arnal L. Coordinated metabolic transitions and gene expression by NAD+ during adipogenesis. J Biophys Biochem Cytol 2022; 221:213521. [PMID: 36197339 PMCID: PMC9538974 DOI: 10.1083/jcb.202111137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 12/17/2022] Open
Abstract
Adipocytes are the main cell type in adipose tissue, which is a critical regulator of metabolism, highly specialized in storing energy as fat. Adipocytes differentiate from multipotent mesenchymal stromal cells (hMSCs) through adipogenesis, a tightly controlled differentiation process involving close interplay between metabolic transitions and sequential programs of gene expression. However, the specific gears driving this interplay remain largely obscure. Additionally, the metabolite nicotinamide adenine dinucleotide (NAD+) is becoming increasingly recognized as a regulator of lipid metabolism, and a promising therapeutic target for dyslipidemia and obesity. Here, we explored how NAD+ bioavailability controls adipogenic differentiation from hMSC. We found a previously unappreciated repressive role for NAD+ on adipocyte commitment, while a functional NAD+-dependent deacetylase SIRT1 appeared crucial for terminal differentiation of pre-adipocytes. Repressing NAD+ biosynthesis during adipogenesis promoted the adipogenic transcriptional program, while two-photon microscopy and extracellular flux analyses suggest that SIRT1 activity mostly relies on the metabolic switch. Interestingly, SIRT1 controls subcellular compartmentalization of redox metabolism during adipogenesis.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Alejandro Alarcón del Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ximena del Toro-Ríos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe R. Fajardo-Orduña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Victor A. Cortés-Morales
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France,Chiara Stringari:
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico,Correspondence to Lorena Aguilar-Arnal:
| |
Collapse
|
8
|
Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin. Processes (Basel) 2021. [DOI: 10.3390/pr10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exploring the potential usage of the acellular preparation of porcine hemoglobin (PHb) isolated from slaughterhouse blood as a cell culture media component, we have tested its effects on the functional characteristics of stromal cells of mesodermal origin. Human peripheral blood mesenchymal stromal cells (PB-MSCs) were used in this study as a primary cell model system, along with three mouse cell lines (ATDC5, MC3T3-E1, and 3T3-L1), which represent more uniform model systems. We investigated the effect of PHb at concentrations of 0.1, 1, and 10 μM on these cells’ proliferation, cycle, and clonogenic and migratory potential, and found that PHb’s effect depended on both the cell type and its concentration. At the lowest concentration used (0.1 μM), PHb showed the least evident impact on the cell growth and migration; hence, we analyzed its effect on mesenchymal cell multilineage differentiation capacity at this concentration. Even under conditions that induce a specific type of MSC differentiation (cultivation in particular differentiation media), PHb modulated chondrogenic, osteogenic, and adipogenic differentiation, making it a potential candidate for a supplement of MSC culture. Through a model of porcine hemoglobin, these findings also contribute to improving the knowledge of extracellular hemoglobin’s influence on MSCs >in vivo.
Collapse
|
9
|
Activation of Cx43 Hemichannels Induces the Generation of Ca 2+ Oscillations in White Adipocytes and Stimulates Lipolysis. Int J Mol Sci 2021; 22:ijms22158095. [PMID: 34360859 PMCID: PMC8347185 DOI: 10.3390/ijms22158095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels-carbenoxolone, octanol, proadifen and Gap26-as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.
Collapse
|
10
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
11
|
Sodhi K, Denvir J, Liu J, Sanabria JR, Chen Y, Silverstein R, Xie Z, Abraham NG, Shapiro JI. Oxidant-Induced Alterations in the Adipocyte Transcriptome: Role of the Na,K-ATPase Oxidant Amplification Loop. Int J Mol Sci 2020; 21:ijms21165923. [PMID: 32824688 PMCID: PMC7460641 DOI: 10.3390/ijms21165923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Recently we have noted that adipocyte specific expression of the peptide, NaKtide, which was developed to attenuate the Na,K-ATPase oxidant amplification loop, could ameliorate the phenotypical features of uremic cardiomyopathy. We performed this study to better characterize the cellular transcriptomes that are involved in various biological pathways associated with adipocyte function occurring with renal failure. (2) Methods: RNAseq was performed on the visceral adipose tissue of animals subjected to partial nephrectomy. Specific expression of NaKtide in adipocytes was achieved using an adiponectin promoter. To better understand the cause of gene expression changes in vivo, 3T3L1 adipocytes were exposed to indoxyl sulfate (IS) or oxidized low density lipoprotein (oxLDL), with and without pNaKtide (the cell permeant form of NaKtide). RNAseq was also performed on these samples. (3) Results: We noted a large number of adipocyte genes were altered in experimental renal failure. Adipocyte specific NaKtide expression reversed most of these abnormalities. High correlation with some cardiac specific phenotypical features was noted amongst groups of these genes. In the murine adipocytes, both IS and oxLDL induced similar pathway changes as were noted in vivo, and pNaKtide appeared to reverse these changes. Network analysis demonstrated tremendous similarities between the network revealed by gene expression analysis with IS compared with oxLDL, and the combined in vitro dataset was noted to also have considerable similarity to that seen in vivo with experimental renal failure. (4) Conclusions: This study suggests that the myriad of phenotypical features seen with experimental renal failure may be fundamentally linked to oxidant stress within adipocytes.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Juan R. Sanabria
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.C.); (R.S.)
| | - Roy Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.C.); (R.S.)
| | - Zijian Xie
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
- Correspondence: ; Tel.: +1-(304)-691-1704
| |
Collapse
|
12
|
Kostka T, Fohrer J, Guigas C, Briviba K, Seiwert N, Fahrer J, Steinberg P, Empl MT. Synthesis and in vitro characterization of the genotoxic, mutagenic and cell-transforming potential of nitrosylated heme. Arch Toxicol 2020; 94:3911-3927. [PMID: 32671443 PMCID: PMC7603461 DOI: 10.1007/s00204-020-02846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer. Up to now, neither in vitro nor in vivo studies characterizing the mutagenic and cell transforming potential of NO-heme have been published due to the fact that the pure compound is not readily available. Therefore, in the present study, an already existing synthesis protocol was modified to yield, for the first time, purified NO-heme. Thereafter, newly synthesized NO-heme was chemically characterized and used in various in vitro approaches at dietary concentrations to determine whether it can lead to DNA damage and malignant cell transformation. While NO-heme led to a significant dose-dependent increase in the number of DNA strand breaks in the comet assay and was mutagenic in the HPRT assay, this compound tested negative in the Ames test and failed to induce malignant cell transformation in the BALB/c 3T3 cell transformation assay. Interestingly, the non-nitrosylated heme control showed similar effects, but was additionally able to induce malignant transformation in BALB/c 3T3 murine fibroblasts. Taken together, these results suggest that it is the heme molecule rather than the NO moiety which is involved in driving red meat-associated carcinogenesis.
Collapse
Affiliation(s)
- Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Hannover, Germany.
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Claudia Guigas
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Nina Seiwert
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Sylvetsky AC, Sen S, Merkel P, Dore F, Stern DB, Henry CJ, Cai H, Walter PJ, Crandall KA, Rother KI, Hubal MJ. Consumption of Diet Soda Sweetened with Sucralose and Acesulfame-Potassium Alters Inflammatory Transcriptome Pathways in Females with Overweight and Obesity. Mol Nutr Food Res 2020; 64:e1901166. [PMID: 32281732 DOI: 10.1002/mnfr.201901166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/03/2020] [Indexed: 12/16/2022]
Abstract
SCOPE Low-calorie sweetener (LCS) consumption is associated with metabolic disease in observational studies. However, physiologic mechanisms underlying LCS-induced metabolic impairments in humans are unclear. This study is aimed at identifying molecular pathways in adipose impacted by LCSs. METHODS AND RESULTS Seven females with overweight or obesity, who did not report LCS use, consumed 12 ounces of diet soda containing sucralose and acesulfame-potassium (Ace-K) three times daily for 8 weeks. A subcutaneous adipose biopsy from the left abdomen and a fasting blood sample were collected at baseline and post-intervention. Global gene expression were assessed using RNA-sequencing followed by functional pathway analysis. No differences in circulating metabolic or inflammatory biomarkers were observed. However, ANOVA detected 828 differentially expressed annotated genes after diet soda consumption (p < 0.05), including transcripts for inflammatory cytokines. Fifty-eight of 140 canonical pathways represented in pathway analyses regulated inflammation, and several key upstream regulators of inflammation (e.g., TNF-alpha) were also represented. CONCLUSION Consumption of diet soda with sucralose and Ace-K alters inflammatory transcriptomic pathways (e.g., NF-κB signaling) in subcutaneous adipose tissue but does not significantly alter circulating biomarkers. Findings highlight the need to examine molecular and metabolic effects of LCS exposure in a larger randomized control trial for a longer duration.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA
| | - Sabyasachi Sen
- Division of Endocrinology, George Washington University School of Medicine, 2120 L. St NW, Suite 450, Washington, DC, 20037, USA
| | - Patrick Merkel
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA
| | - Fiona Dore
- Division of Endocrinology, George Washington University School of Medicine, 2120 L. St NW, Suite 450, Washington, DC, 20037, USA
| | - David B Stern
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street, NW, 7000 Science and Engineering Hall, Washington, DC, 20052, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr., Room 433A, Atlanta, GA, 30322, USA
| | - Hongyi Cai
- Intramural Research Program, NIDDK, NIH (PJW, KIR), 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD, 20892, USA
| | - Peter J Walter
- Intramural Research Program, NIDDK, NIH (PJW, KIR), 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD, 20892, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street, NW, 7000 Science and Engineering Hall, Washington, DC, 20052, USA.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA
| | - Kristina I Rother
- Intramural Research Program, NIDDK, NIH (PJW, KIR), 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD, 20892, USA
| | - Monica J Hubal
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA.,Department of Kinesiology, School of Health and Human Services, Indiana University Purdue University Indianapolis, PE 266, 901 W. New York Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
14
|
Transcriptome profiling reveals multiple pathways responsible for the beneficial metabolic effects of Smilax glabra flavonoids in mouse 3T3-L1 adipocytes. Biomed Pharmacother 2020; 125:110011. [DOI: 10.1016/j.biopha.2020.110011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
|
15
|
Tobore TO. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav Brain Res 2020; 384:112560. [DOI: 10.1016/j.bbr.2020.112560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
16
|
Concise Review: The Regulatory Mechanism of Lysine Acetylation in Mesenchymal Stem Cell Differentiation. Stem Cells Int 2020; 2020:7618506. [PMID: 32399051 PMCID: PMC7204305 DOI: 10.1155/2020/7618506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Nowadays, the use of MSCs has attracted considerable attention in the global science and technology field, with the self-renewal and multidirectional differentiation potential for diabetes, obesity treatment, bone repair, nerve repair, myocardial repair, and so on. Epigenetics plays an important role in the regulation of mesenchymal stem cell differentiation, which has become a research hotspot in the medical field. This review focuses on the role of lysine acetylation modification on the determination of MSC differentiation direction. During this progress, the recruitment of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) is the crux of transcriptional mechanisms in the dynamic regulation of key genes controlling MSC multidirectional differentiation.
Collapse
|
17
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
18
|
Beneficial Role of HO-1-SIRT1 Axis in Attenuating Angiotensin II-Induced Adipocyte Dysfunction. Int J Mol Sci 2019; 20:ijms20133205. [PMID: 31261892 PMCID: PMC6650875 DOI: 10.3390/ijms20133205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Angiotensin II (Ang II), released by the renin–angiotensin–aldosterone system (RAAS), contributes to the modulatory role of the RAAS in adipose tissue dysfunction. Investigators have shown that inhibition of AngII improved adipose tissue function and insulin resistance in mice with metabolic syndrome. Heme Oxygenase-1 (HO-1), a potent antioxidant, has been demonstrated to improve oxidative stress and adipocyte phenotype. Molecular effects of high oxidative stress include suppression of sirtuin-1 (SIRT1), which is amenable to redox manipulations. The mechanisms involved, however, in these metabolic effects of the RAAS remain incompletely understood. Hypothesis: We hypothesize that AngII-induced oxidative stress has the potential to suppress adipocyte SIRT1 via down regulation of HO-1. This effect of AngII will, in turn, upregulate mineralocorticoid receptor (MR). The induction of HO-1 will rescue SIRT1, hence improving oxidative stress and adipocyte phenotype. Methods and Results: We examined the effect of AngII on lipid accumulation, oxidative stress, and inflammatory cytokines in mouse pre-adipocytes in the presence and absence of cobalt protoporphyrin (CoPP), HO-1 inducer, tin mesoporphyrin (SnMP), and HO-1 inhibitor. Our results show that treatment of mouse pre-adipocytes with AngII increased lipid accumulation, superoxide levels, inflammatory cytokine levels, interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), and adiponectin levels. This effect was attenuated by HO-1 induction, which was further reversed by SnMP, suggesting HO-1 mediated improvement in adipocyte phenotype. AngII-treated pre-adipocytes also showed upregulated levels of MR and suppressed SIRT1 that was rescued by HO-1. Subsequent treatment with CoPP and SIRT1 siRNA in mouse pre-adipocytes increased lipid accumulation and fatty acid synthase (FAS) levels, suggesting that beneficial effects of HO-1 are mediated via SIRT1. Conclusion: Our study demonstrates for the first time that HO-1 has the ability to restore cellular redox, rescue SIRT1, and prevent AngII-induced impaired effects on adipocytes and the systemic metabolic profile.
Collapse
|
19
|
Liu J, Lu W, Shi B, Klein S, Su X. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 2019; 24:101167. [PMID: 30921635 PMCID: PMC6434164 DOI: 10.1016/j.redox.2019.101167] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Gao J, Wang Y, Li W, Zhang J, Che Y, Cui X, Sun B, Zhao G. Loss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cells. Gene 2018; 678:1-7. [DOI: 10.1016/j.gene.2018.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
|
21
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
22
|
Uremic Toxins Activates Na/K-ATPase Oxidant Amplification Loop Causing Phenotypic Changes in Adipocytes in In Vitro Models. Int J Mol Sci 2018; 19:ijms19092685. [PMID: 30201874 PMCID: PMC6164729 DOI: 10.3390/ijms19092685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Oxidant stress plays a key role in the development of chronic kidney disease (CKD). Experimental CKD leads to accumulation of uremic toxins (UT) in the circulation resulting in increased ROS production, which in turn, is known to activate the Na/K-ATPase/ROS amplification loop. Studies in a murine model of obesity have shown that increased oxidative stress in plasma is due to increased ROS and cytokine production from dysfunctional adipocytes. Therefore, we hypothesized that adipocytes exposed to UTs will activate the Na/K-ATPase oxidant amplification loop causing redox imbalance and phenotypic alterations in adipocytes. We also aimed to demonstrate that the Na/K-ATPase signaling antagonist, pNaKtide, attenuates these pathophysiological consequences. Methods: In the first set of experiments, 3T3-L1 murine pre-adipocytes were treated with varying concentrations of UTs, indoxyl sulfate (IS) (50, 100 and 250 µM) and p-cresol (50, 100 and 200 µM), with or without pNaKtide (0.7 µM) for five days in adipogenic media, followed by Oil Red O staining to study adipogenesis. RT-PCR analysis was performed to study expression of adipogenic, apoptotic and inflammatory markers, while DHE staining evaluated the superoxide levels in UT treated cells. In a second set of experiments, visceral fat was obtained from the West Virginian population. MSCs were isolated and cultured in adipogenic media for 14 days, which was treated with indoxyl sulfate (0, 25, 50 and 100 µM) with or without pNaKtide (1 µM). MSC-derived adipocytes were evaluated for morphological and molecular analysis of the above markers. Results: Our results demonstrated that 3T3-L1 cells and MSCs-derived adipocytes, treated with UTs, exhibited a significant decrease in adipogenesis and apoptosis through activation of the Na/K-ATPase/ROS amplification loop. The treatment with pNaKtide in 3T3-L1 cells and MSC-derived adipocytes negated the effects of UTs and restored cellular redox in adipocytes. We noted a varying effect of pNaKtide, in adipocytes treated with UTs, on inflammatory markers, adipogenic marker and superoxide levels in 3T3-L1 cells and MSC-derived adipocytes. Conclusions: This study demonstrates for the first time that the Na/K-ATPase/ROS amplification loop activated by elevated levels of UTs has varying effect on phenotypic alterations in adipocytes in various in vitro models. Thus, we propose that, if proven in humans, inhibition of Na/K-ATPase amplification of oxidant stress in CKD patients may ultimately be a novel way to combat adipocyte dysfunction and metabolic imbalance in these patients.
Collapse
|
23
|
The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19072139. [PMID: 30041449 PMCID: PMC6073138 DOI: 10.3390/ijms19072139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aging has been associated with a series of pathophysiological processes causing general decline in the overall health of the afflicted population. The cumulative line of evidence suggests an important role of oxidative stress in the development and progression of the aging process and metabolic abnormalities, exacerbating adipocyte dysfunction, cardiovascular diseases, and associated complications at the same time. In recent years, robust have established the implication of Na/K-ATPase signaling in causing oxidative stress and alterations in cellular mechanisms, in addition to its distinct pumping function. Understanding the underlying molecular mechanisms and exploring the possible sources of pro-oxidants may allow for developing therapeutic targets in these processes and formulate novel intervention strategies for patients susceptible to aging and associated complications, such as obesity and cardiovascular disease. The attenuation of oxidative stress with targeted treatment options can improve patient outcomes and significantly reduce economic burden.
Collapse
|
24
|
Nowak WN, Taha H, Kachamakova-Trojanowska N, Stępniewski J, Markiewicz JA, Kusienicka A, Szade K, Szade A, Bukowska-Strakova K, Hajduk K, Klóska D, Kopacz A, Grochot-Przęczek A, Barthenheier K, Cauvin C, Dulak J, Józkowicz A. Murine Bone Marrow Mesenchymal Stromal Cells Respond Efficiently to Oxidative Stress Despite the Low Level of Heme Oxygenases 1 and 2. Antioxid Redox Signal 2018; 29:111-127. [PMID: 29065700 PMCID: PMC6003402 DOI: 10.1089/ars.2017.7097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 μmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 μmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Witold Norbert Nowak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Hevidar Taha
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,2 Department of Animal Production, College of Agriculture, University of Duhok , Duhok, Iraq
| | - Neli Kachamakova-Trojanowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Jacek Stępniewski
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Joanna Agata Markiewicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Kusienicka
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Krzysztof Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Agata Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Karolina Bukowska-Strakova
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,3 Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College , Kraków, Poland
| | - Karolina Hajduk
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Damian Klóska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Aleksandra Kopacz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Grochot-Przęczek
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Kathrin Barthenheier
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Camille Cauvin
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Józef Dulak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,4 Kardio-Med Silesia, Zabrze, Poland
| | - Alicja Józkowicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| |
Collapse
|
25
|
Melatonin Modulation of Sirtuin-1 Attenuates Liver Injury in a Hypercholesterolemic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516009 PMCID: PMC5817311 DOI: 10.1155/2018/7968452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia increases and exacerbates stress signals leading also to liver damage (LD) and failure. Sirtuin1 (SIRT1) is involved in lifespan extension and it plays an essential role in hepatic lipid metabolism. However, its involvement in liver hypercholesterolemic damage is not yet completely defined. This in vivo study evaluated the role of SIRT1 in the hypercholesterolemic-related LD and, then, investigated how oral supplementation of melatonin, pleiotropic indoleamine, may be protective. Control mice and apolipoprotein E-deficient mice (ApoE−/−) of 6 and 15 weeks of age were treated or not treated with melatonin at the dose of 10 mg/kg/day for 9 weeks. In this study, we evaluated serum biochemical markers, liver SIRT1 expression, and oxidative stress markers. We observed that hypercholesterolemia increased significantly serum cholesterol and triglycerides, reduced significantly liver SIRT1, and, in turn, induced hepatic oxidative stress in untreated ApoE−/− mice with respect to control mice. Interestingly, melatonin treatment improved serum biochemical markers and hepatic morphological impairment and inhibited oxidative stress through its antioxidant properties and also by SIRT1 upregulation. In summary, melatonin oral supplementation may represent a new protective approach to block hypercholesterolemic liver alterations involving also a SIRT1-dependent mechanism.
Collapse
|
26
|
Moreno-Navarrete JM, Rodríguez A, Ortega F, Becerril S, Girones J, Sabater-Masdeu M, Latorre J, Ricart W, Frühbeck G, Fernández-Real JM. Heme Biosynthetic Pathway is Functionally Linked to Adipogenesis via Mitochondrial Respiratory Activity. Obesity (Silver Spring) 2017; 25:1723-1733. [PMID: 28857503 DOI: 10.1002/oby.21956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate key enzymes of heme biosynthesis in human adipocytes and adipose tissue (AT). METHODS Heme biosynthesis-related gene expression (ALAS1, ALAD, HMBS) was investigated in whole AT from humans (n = 178 and n = 75) and rats according to obesity status and during adipogenesis of human preadipocytes. The effects of aminotriazole (an ALAD inhibitor) and of ALAD knockdown were also studied. RESULTS Consistent heme biosynthesis-related gene expression was detected in both subcutaneous AT (SAT) and visceral AT (VAT) and was significantly increased in SAT. ALAS1, ALAD, and HMBS mRNAs were positively associated with adipogenic gene expression in human AT and significantly decreased in subjects with obesity. These results were replicated in an independent cohort. Both SAT and VAT heme levels were positively correlated with ALAS1, ALAD, and HMBS mRNAs. ALAD and HMBS were mainly expressed in adipocytes and increased during differentiation of human adipocytes in parallel to adipogenic genes. In rats, high-fat diet-induced weight gain resulted in decreased Alad and Hmbs mRNAs in a similar way to what was observed with Adipoq. Aminotriazole administration or ALAD knockdown attenuated adipogenesis in parallel with decreased glucose uptake and impaired mitochondrial respiratory function during human adipocyte differentiation. CONCLUSIONS Current data suggest a possible role of heme biosynthesis in human adipogenesis.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jordi Girones
- Department of Surgery, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Mònica Sabater-Masdeu
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Jéssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| |
Collapse
|
27
|
Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice. J Nutr Metab 2017; 2017:4964571. [PMID: 29062571 PMCID: PMC5618758 DOI: 10.1155/2017/4964571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO) is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p < 0.05); increased levels of proinflammatory cytokines (MCP-1, IL-6, p < 0.05); oxidative stress (p < 0.05); and increased hepatic hepcidin levels (p < 0.05). Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p < 0.05). However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP-) induced HO-1 upregulation in obese mice reversed these alterations (p < 0.05), while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP) (p < 0.05). Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.
Collapse
|
28
|
Luan Y, Zhang F, Cheng Y, Liu J, Huang R, Yan M, Wang Y, He Z, Lai H, Wang H, Ying H, Guo F, Zhai Q. Hemin Improves Insulin Sensitivity and Lipid Metabolism in Cultured Hepatocytes and Mice Fed a High-Fat Diet. Nutrients 2017; 9:nu9080805. [PMID: 28933767 PMCID: PMC5579599 DOI: 10.3390/nu9080805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
Hemin is a breakdown product of hemoglobin. It has been reported that the injection of hemin improves lipid metabolism and insulin sensitivity in various genetic models. However, the effect of hemin supplementation in food on lipid metabolism and insulin sensitivity is still unclear, and whether hemin directly affects cellular insulin sensitivity is yet to be elucidated. Here we show that hemin enhances insulin-induced phosphorylation of insulin receptors, Akt, Gsk3β, FoxO1 and cytoplasmic translocation of FoxO1 in cultured primary hepatocytes under insulin-resistant conditions. Furthermore, hemin diminishes the accumulation of triglyceride and increases in free fatty acid content in primary hepatocytes induced by palmitate. Oral administration of hemin decreases body weight, energy intake, blood glucose and triglyceride levels, and improves insulin and glucose tolerance as well as hepatic insulin signaling and hepatic steatosis in male mice fed a high-fat diet. In addition, hemin treatment decreases the mRNA and protein levels of some hepatic genes involved in lipogenic regulation, fatty acid synthesis and storage, and increases the mRNA level and enzyme activity of CPT1 involved in fatty acid oxidation. These data demonstrate that hemin can improve lipid metabolism and insulin sensitivity in both cultured hepatocytes and mice fed a high-fat diet, and show the potential beneficial effects of hemin from food on lipid and glucose metabolism.
Collapse
Affiliation(s)
- Yi Luan
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Fang Zhang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yalan Cheng
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Jun Liu
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Rui Huang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Menghong Yan
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yuangao Wang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Zhishui He
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Hejin Lai
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Hui Wang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Sciences, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200093, China.
| |
Collapse
|
29
|
Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism. Sci Rep 2017; 7:5305. [PMID: 28706239 PMCID: PMC5509649 DOI: 10.1038/s41598-017-05597-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Iron status is known to be associated with the physiology of adipose tissue (AT). We aimed to investigate AT heme and expression of heme exporter (FLVCR1) in association with obesity and type 2 diabetes (T2D). Substantial amounts of FLVCR1 mRNA and protein levels were detected in AT, being significantly increased in subjects with T2D, and positively correlated with fasting glucose, fasting triglycerides and with circulating markers of iron stores (serum ferritin, blood hemoglobin and hematocrit). In both visceral (VAT) and subcutaneous AT (SAT), increased heme levels were found in subjects with T2D. Reinforcing these associations, FLVCR1 mRNA levels were positively linked to fasting glucose in an independent cohort. Longitudianlly, the percent change of FLVCR1 positively correlated with the percent change in fasting glucose (r = 0.52, p = 0.03) after bariatric surgery-induced weight loss. High-fat diet-induced weight gain in rats did not result in significant changes in AT Flvcr1 mRNA but, remarkably, the expression of this gene positively correlated with fasting glucose and negatively with insulin sensitivity (QUICKI). Altogether, these findings showed a direct association between FLVCR1 mRNA levels and hyperglycemia, suggesting that increased adipose tissue heme exportation might disrupt, or is the consequence of, impaired systemic glucose metabolism during the progression to T2D.
Collapse
|
30
|
Feng G, Zheng K, Song D, Xu K, Huang D, Zhang Y, Cao P, Shen S, Zhang J, Feng X, Zhang D. SIRT1 was involved in TNF-α-promoted osteogenic differentiation of human DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim 2016; 52:1001-1011. [PMID: 27530621 DOI: 10.1007/s11626-016-0070-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Dental pulp stem cells (DPSCs), as one type of mesenchymal stem cells (MSCs), have the capability of self-renewal and differentiating along the various directions, including osteogenic, chondrogenic, neurogenic, and adipogenic. We previously study and found that tumor necrosis factor-α (TNF-α) promoted osteogenic differentiation of human DPSCs via the Wnt/β-catenin signaling pathway in low concentration while inhibited that in high concentration. In the abovementioned process, we found that sirtuin-1 (SIRT1) had the same change compared with the characteristic protein of bone formation, such as bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), and collagen I (COL1). We asked whether SIRT1 could regulate osteogenesis of DPSCs. In inflammation microenvironment constructed by TNF-α, we tested the expression changing of SIRT1 and analyzed the function of SIRT1 on osteogenic differentiation of DPSCs. SIRT1 deacetylated β-catenin, and then promote its accumulation in the nucleus. Accumulated β-catenin can lead to transcription of osteogenic characteristic genes. Using the activator of SIRT1, resveratrol, could promote the above-mentioned process of osteogenic differentiation. SIRT1 could regulate osteogenesis of DPSCs through Wnt/β-catenin signal. SIRT1, as a regulator of differentiation of DPSCs, may be a new target for cell-based therapy in oral diseases and other regenerative medicine.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Donghui Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, China.
| |
Collapse
|
31
|
Singh SP, Schragenheim J, Cao J, Falck JR, Abraham NG, Bellner L. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 2016; 125:8-18. [PMID: 27418542 DOI: 10.1016/j.prostaglandins.2016.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), increased inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs attenuate mitochondrial ROS. We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which controls mitochondrial function, oxidative metabolism and induction of HO-1. METHODS Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess functional relationship between EETs, HO-1 and (PGC-1α) using an EET analogue (EET-A) and lentivirus to knock down the PPARGC1A gene. RESULTS EET-A increased PGC-1α and HO-1 in cultured adipocytes and increased the expression of genes involved in thermogenesis and adipocyte browning (UCP1 and PRDM16, respectively). PGC-1α knockdown prevented EET-A-induced HO-1expression, suggesting that PGC-1α is upstream of HO-1. MRI data obtained from fat tissues showed that EET-A administration to mice on a HF diet significantly reduced total body fat content, subcutaneous and visceral fat deposits and reduced the VAT: SAT ratio. Moreover EET-A normalized the VO2 and RQ (VCO2/VO2) in mice fed a HF diet, an effect that was completely prevented in PGC-1α deficient mice. In addition, EET-A increased mitochondrial biogenesis and function as measured by OPA1, MnSOD, Mfn1, Mfn2, and SIRT3, an effect that was inhibited by knockdown of PGC-1α. CONCLUSION Taken together, our findings show that EET-A increased PGC-1α thereby increasing mitochondrial viability, increased fusion potential thereby providing metabolic protection and increased VO2 consumption in HF-induced obesity in mice, thus demonstrating that the EET-mediated increase in HO-1 levels require PGC-1α expression.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Joseph Schragenheim
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jian Cao
- First Geriatric Cardiology Division, Chinese PLA General Hospital, Beijing, China
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, United States.
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
32
|
Anter J, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Effect of Hydroxytyrosol on Human Mesenchymal Stromal/Stem Cell Differentiation into Adipocytes and Osteoblasts. Arch Med Res 2016; 47:162-71. [PMID: 27393375 DOI: 10.1016/j.arcmed.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Natural phenolic compounds are known for their antioxidant capacity, showing biological activity in numerous physiological processes. Such chemicals have been proposed for prevention or treatment of pathologies like osteoporosis and diabetes. One of these is hydroxytyrosol (HT), which may be involved in the differentiation of human mesenchymal stromal/stem cells (MSCs), which are precursors of osteoblasts and adipocytes. Yet, little information is available. Therefore, our objective was to study the possible effect of HT on MSC differentiation. METHODS Differentiation markers were analyzed while human bone marrow MSCs were differentiated into osteoblasts or adipocytes in the presence of 1 or 100 μmol HT. RESULTS High HT concentrations repressed the expression of osteoblastic markers in MSCs differentiating into osteoblasts, whereas they increased the expression of adipogenic genes and the formation of fat vesicles in MSCs differentiating into adipocytes. CONCLUSIONS High HT concentrations may inhibit osteoblastogenesis and promote adipogenesis, which can lead to bone loss. Therefore, the possible pharmacological use of extracts rich in HT should take into account this undesirable effect.
Collapse
Affiliation(s)
- Jaouad Anter
- Departamento de Genética, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Metabolismo Mineral, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Metabolismo Mineral, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
33
|
Waldman M, Bellner L, Vanella L, Schragenheim J, Sodhi K, Singh SP, Lin D, Lakhkar A, Li J, Hochhauser E, Arad M, Darzynkiewicz Z, Kappas A, Abraham NG. Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function. Stem Cells Dev 2016; 25:1084-94. [PMID: 27224420 DOI: 10.1089/scd.2016.0072] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation.
Collapse
Affiliation(s)
- Maayan Waldman
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,2 Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University , Petah-Tikva, Israel
| | - Lars Bellner
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Luca Vanella
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,3 University of Catania , Department of Drug Science/Section of Biochemistry, Catania, Italy
| | | | - Komal Sodhi
- 4 Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University , Huntington, West Virginia
| | - Shailendra P Singh
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Daohong Lin
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Anand Lakhkar
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York
| | - Jiangwei Li
- 5 Department of Pathology, New York Medical College , Valhalla, New York
| | - Edith Hochhauser
- 2 Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University , Petah-Tikva, Israel
| | - Michael Arad
- 6 Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University , Tel Hashomer, Israel
| | | | | | - Nader G Abraham
- 1 Department of Pharmacology, New York Medical College , Valhalla, New York.,4 Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University , Huntington, West Virginia.,7 The Rockefeller University , New York, New York.,8 Department of Medicine, New York Medical College , Valhalla, New York
| |
Collapse
|
34
|
Casado-Díaz A, Anter J, Dorado G, Quesada-Gómez JM. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. J Nutr Biochem 2016; 32:151-62. [DOI: 10.1016/j.jnutbio.2016.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
|
35
|
Peterson SJ, Vanella L, Bialczak A, Schragenheim J, Li M, Bellner L, Shapiro JI, Abraham NG. Oxidized HDL and Isoprostane Exert a Potent Adipogenic Effect on Stem Cells: Where in the Lineage? ACTA ACUST UNITED AC 2016; 2. [PMID: 29430566 PMCID: PMC5807016 DOI: 10.16966/2472-6990.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen J Peterson
- Weill Cornell Medical College, Department of Medicine, New York Methodist Hospital, Brooklyn, NY 11215, USA
| | - Luca Vanella
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA.,Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Angelica Bialczak
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph Schragenheim
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ming Li
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Lars Bellner
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph I Shapiro
- Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Nader G Abraham
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA.,Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| |
Collapse
|
36
|
Kurylowicz A. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins. Int J Mol Sci 2016; 17:ijms17040572. [PMID: 27104517 PMCID: PMC4849028 DOI: 10.3390/ijms17040572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs), enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed.
Collapse
Affiliation(s)
- Alina Kurylowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
37
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
38
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
39
|
Sodhi K, Maxwell K, Yan Y, Liu J, Chaudhry MA, Getty M, Xie Z, Abraham NG, Shapiro JI. RETRACTED: pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis. SCIENCE ADVANCES 2015; 1:e1500781. [PMID: 26601314 PMCID: PMC4646828 DOI: 10.1126/sciadv.1500781] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed a high-fat diet corroborated our in vitro observations. Administration of pNaKtide in these mice reduced body weight gain, restored systemic redox and inflammatory milieu, and, crucially, improved insulin sensitivity. Thus, we propose that inhibition of Na/K-ATPase amplification of oxidative stress may ultimately be a novel way to combat obesity, insulin resistance, and metabolic syndrome.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Kyle Maxwell
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Yanling Yan
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Jiang Liu
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Muhammad A. Chaudhry
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Morghan Getty
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zijian Xie
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Nader G. Abraham
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph I. Shapiro
- Departments of Medicine, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
40
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
41
|
Sodhi K, Puri N, Favero G, Stevens S, Meadows C, Abraham NG, Rezzani R, Ansinelli H, Lebovics E, Shapiro JI. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet. PLoS One 2015; 10:e0128648. [PMID: 26098879 PMCID: PMC4476565 DOI: 10.1371/journal.pone.0128648] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox. Hypothesis We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction. Methods and Results We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP. Conclusion Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates NAFLD-associated vascular dysfunction; effects that are mediated by activation of SIRT1 gene expression.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| | - Nitin Puri
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Gaia Favero
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Brescia, Italy
| | - Sarah Stevens
- Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Charles Meadows
- Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Nader G. Abraham
- Departments of Medicine and Gastroenterology, New York Medical College, Valhalla, New York, United States of America
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Brescia, Italy
| | - Hayden Ansinelli
- Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Edward Lebovics
- Departments of Medicine and Gastroenterology, New York Medical College, Valhalla, New York, United States of America
| | - Joseph I. Shapiro
- Departments of Medicine and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| |
Collapse
|
42
|
Hong-Wei G, Lan L, De-Guo X, Zhong-Hao L, Peng R, Zhi-Qiang L, Guo-Qiang S, Ming-Zhi G. NCoR negatively regulates adipogenic differentiation of mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2015; 51:749-58. [PMID: 26019118 DOI: 10.1007/s11626-015-9886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
The nuclear receptor corepressor (NCoR) regulates the activities of gene transcription. Mesenchymal stem cells (MSCs) derived from bone marrow are multipotent cells which can differentiate into osteoblasts and adipocytes. This study was conducted to investigate the effects of NCoR on adipogenic differentiation of MSCs isolated from the rats. The results suggested that rat MSCs could differentiate into adipocytes successfully after cultured in adipogenic medium. NCoR protein determined by Western blot showed a lower expression in MSC-derived adipocytes, indicating that NCoR was involved in adipocyte differentiation of rat MSCs. It further proved that small interfering RNA (siRNA)-mediated knockdown of NCoR could promote cell viability and differentiation and enhance messenger RNA (mRNA) expression of lipoprotein lipase (LPL) and protein expression of CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). However, over-expression of NCoR exerted its functions in contrary to NCoR knockdown. It indicated that NCoR could negatively regulate adipogenic differentiation of rat MSCs.
Collapse
Affiliation(s)
- Gao Hong-Wei
- Department of Trauma and Orthopaedics, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250033, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kato S, Kato Y, Shibata H, Saitoh Y, Miwa N. Repressive effects of oat extracts on intracellular lipid-droplet formation in adipocytes and a three-dimensional subcutaneous adipose tissue model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:269-273. [DOI: 10.1016/j.msec.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/02/2014] [Accepted: 01/04/2015] [Indexed: 11/17/2022]
|
44
|
Li M, Guo K, Vanella L, Taketani S, Adachi Y, Ikehara S. Stem cell transplantation upregulates Sirt1 and antioxidant expression, ameliorating fatty liver in type 2 diabetic mice. Int J Biol Sci 2015; 11:472-481. [PMID: 25798066 PMCID: PMC4366645 DOI: 10.7150/ijbs.10809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance, oxidative stress, and obesity. The db/db mouse model displays increased levels of insulin resistance, obesity, and an over-accumulation of hepatic triglycerides, making it an excellent model for studying NAFLD. In db/db mice, intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT+TT) improves type 2 diabetes mellitus (T2 DM) by normalizing the T-cell imbalance. We hypothesized that this approach would improve Sirt1 expression in the liver and benefit liver development. The db/db mice were treated with IBM-BMT+TT, and plasma MCP-1, IL-6, adiponection, LDL, Sirt1, and HO-1 levels were then assessed. Stem cell transplantation decreased the levels of plasma inflammatory cytokines and LDL while it increased the expression of Sirt1 and HO-1, resulting in decreased progression of fatty liver. Moreover, Sirt1 and HO-1 expression were both detected in the thymus and many HO-1-positive cells were observed in the bone marrow. This is the first report of stem cell transplantation improving the antioxidant function in the liver, thymus, and bone marrow of db/db mice by increasing the levels of Sirt1 and HO-1. This approach may prove useful in the treatment of nonalcoholic steatohepatitis and its clinical manifestations.
Collapse
Affiliation(s)
- Ming Li
- 1. Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Kequan Guo
- 2. Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Luca Vanella
- 3. Department of Drug Science, Section of Biochemistry, University of Catania, Catania, Italy
| | - Shigeru Taketani
- 4. Department of Biotechnology, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasushi Adachi
- 5. Division of Surgical Pathology, Toyooka Hospital, Hyogo, Japan
| | - Susumu Ikehara
- 1. Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka, Japan
| |
Collapse
|
45
|
Khitan Z, Harsh M, Sodhi K, Shapiro JI, Abraham NG. HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets. J Nutr Metab 2014; 2014:980547. [PMID: 25295182 PMCID: PMC4175747 DOI: 10.1155/2014/980547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P < 0.05). Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P < 0.05 versus control). Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P < 0.05 versus fructose). Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1.
Collapse
Affiliation(s)
- Zeid Khitan
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Mohit Harsh
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Komal Sodhi
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Joseph I. Shapiro
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Nader G. Abraham
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
46
|
Li M, Guo K, Ikehara S. Intractable diseases treated with intra-bone marrow-bone marrow transplantation. Front Cell Dev Biol 2014; 2:48. [PMID: 25364755 PMCID: PMC4206987 DOI: 10.3389/fcell.2014.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is used to treat hematological disorders, autoimmune diseases (ADs) and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT) has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells (HSCs) but also mesenchymal stromal cells (MSCs). MSCs are multi-potent stem cells that can be isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue. MSCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of BM-derived-MSCs, and the treatment of intractable diseases such as rheumatoid arthritis (RA) and malignant tumors with IBM-BMT.
Collapse
Affiliation(s)
- Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Japan
| | - Kuquan Guo
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University Beijing, China
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Japan
| |
Collapse
|
47
|
Cueno ME, Imai K, Tamura M, Ochiai K. Butyric acid-induced rat jugular blood cytosolic oxidative stress is associated with SIRT1 decrease. Cell Stress Chaperones 2014; 19:295-8. [PMID: 24052229 PMCID: PMC3933618 DOI: 10.1007/s12192-013-0462-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/20/2022] Open
Abstract
Butyric acid (BA) induces jugular blood mitochondrial oxidative stress, whereas heme-induced oxidative stress was previously reported to inhibit SIRT1 in vitro. This would imply that BA-induced oxidative stress may similarly affect SIRT1. Here, we elucidated the BA effects on jugular blood cytosolic oxidative stress and SIRT1. Jugular blood cytosol was collected 0, 60, and 180 min after BA injection into rat gingival tissues and used throughout the study. Blood cytosolic oxidative stress induction, heme accumulation, NADPH oxidase (NOX) activation, nicotinamide adenine dinucleotide (NAD(+)) and NADP pool levels, NAD kinase (NADK), and SIRT1 amounts were determined. We found that BA retention in the gingival tissue induces blood cytosolic oxidative stress and heme accumulation which we correlated to both NOX activation and NADP pool increase. Moreover, we showed that BA-related NADP pool build-up is associated with NADK increase which we suspect decreased NAD(+) levels and consequentially lowered SIRT1 amounts in the rat blood cytosol.
Collapse
Affiliation(s)
- Marni E. Cueno
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| |
Collapse
|
48
|
Sodhi K, Puri N, Kim DH, Hinds TD, Stechschulte LA, Favero G, Rodella L, Shapiro JI, Jude D, Abraham NG. PPARδ binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int J Obes (Lond) 2014; 38:456-65. [PMID: 23779049 PMCID: PMC3950586 DOI: 10.1038/ijo.2013.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/20/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Renin-angiotensin system (RAS) regulates adipogenic response with adipocyte hypertrophy by increasing oxidative stress. Recent studies have shown the role of peroxisome proliferator-activated receptor-δ (PPARδ) agonist in attenuation of angiotensin II-induced oxidative stress. The aim of this study was to explore a potential mechanistic link between PPARδ and the cytoprotective enzyme heme oxygenase-1 (HO-1) and to elucidate the contribution of HO-1 to the adipocyte regulatory effects of PPARδ agonism in an animal model of enhanced RAS, the Goldblatt 2 kidney 1 clip (2K1C) model. METHOD We first established a direct stimulatory effect of the PPARδ agonist (GW 501516) on the HO-1 gene by demonstrating increased luciferase activity in COS-7 cells transfected with a luciferase-HO-1 promoter construct. Sprague-Dawley rats were divided into four groups: sham-operated animals, 2K1C rats and 2K1C rats treated with GW 501516, in the absence or presence of the HO activity inhibitor, stannous mesoporphyrin (SnMP). RESULTS 2K1C animals had increased visceral adiposity, adipocyte hypertrophy, increased inflammatory cytokines, increased circulatory and adipose tisssue levels of renin and Ang II along with increased adipose tissue gp91 phox expression (P<0.05) when compared with sham-operated animals. Treatment with GW 501516 increased adipose tissue HO-1 and adiponectin levels (P<0.01) along with enhancement of Wnt10b and β-catenin expression. HO-1 induction was accompanied by the decreased expression of Wnt5b, mesoderm specific transcript (mest) and C/EBPα levels and an increased number of small adipocytes (P<0.05). These effects of GW501516 were reversed in 2K1C animals exposed to SnMP (P<0.05). CONCLUSION Taken together, our study demonstrates, for the first time, that increased levels of Ang II contribute towards adipose tissue dysregulation, which is abated by PPARδ-mediated upregulation of the heme-HO system. These findings highlight the pivotal role and symbiotic relationship of HO-1, adiponectin and PPARδ in the regulation of metabolic homeostasis in adipose tissues.
Collapse
Affiliation(s)
- K Sodhi
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - N Puri
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - D H Kim
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - T D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - L A Stechschulte
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - G Favero
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia, Italy
| | - L Rodella
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia, Italy
| | - J I Shapiro
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - D Jude
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - N G Abraham
- Department of Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
49
|
Ogino T, Kobuchi H, Fujita H, Matsukawa A, Utsumi K. Erythroid and megakaryocytic differentiation of K562 erythroleukemic cells by monochloramine. Free Radic Res 2014; 48:292-302. [PMID: 24237253 DOI: 10.3109/10715762.2013.865840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The induction of leukemic cell differentiation is a hopeful therapeutic modality. We studied the effects of monochloramine (NH2Cl) on erythroleukemic K562 cell differentiation, and compared the effects observed with those of U0126 and staurosporine, which are known inducers of erythroid and megakaryocytic differentiation, respectively. CD235 (glycophorin) expression, a marker of erythroid differentiation, was significantly increased by NH2Cl and U0126, along with an increase in cd235 mRNA levels. Other erythroid markers such as γ-globin and CD71 (transferrin receptor) were also increased by NH2Cl and U0126. In contrast, CD61 (integrin β3) and CD42b (GP1bα) expression, markers of megakaryocytic differentiation, was increased by staurosporine, but did not change significantly by NH2Cl and U0126. NH2Cl retarded cell proliferation without a marked loss of viability. When ERK phosphorylation (T202/Y204) and CD235 expression were compared using various chemicals, a strong negative correlation was observed (r = -0.76). Paradoxically, NH2Cl and staurosporine, but not U0126, induced large cells with multiple or lobulated nuclei, which was characteristic to megakaryocytes. NH2Cl increased the mRNA levels of gata1 and scl, decreased that of gata2, and did not change those of pu.1 and klf1. The changes observed in mRNA expression were different from those of U0126 or staurosporine. These results suggest that NH2Cl induces the bidirectional differentiation of K562. Oxidative stress may be effective in inducing leukemic cell differentiation.
Collapse
Affiliation(s)
- T Ogino
- Department of Nursing Science, Faculty of Health and Welfare, Okayama Prefectural University , Soja , Japan
| | | | | | | | | |
Collapse
|
50
|
Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res Ther 2013; 4:28. [PMID: 23497794 PMCID: PMC3706794 DOI: 10.1186/scrt176] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Heme oxygenase (HO), a major cytoprotective enzyme, attenuates oxidative stress and obesity. The canonical Wnt signaling cascade plays a pivotal role in the regulation of adipogenesis. The present study examined the interplay between HO-1and the Wnt canonical pathway in the modulation of adipogenesis in mesenchymal stem cell (MSC)-derived adipocytes. Methods To verify the role of HO-1 in generating small healthy adipocytes, cobalt protoporphyrin (CoPP), inducer of HO-1, was used during adipocyte differentiation. Lipid accumulation was measured by Oil red O staining and lipid droplet size was measured by BODIPY staining. Results During adipogenesis in vitro, differentiating pre-adipocytes display transient increases in the expression of genes involved in canonical Wnt signaling cascade. Increased levels of HO-1 expression and HO activity resulted in elevated levels of β-catenin, pGSK3β, Wnt10b, Pref-1, and shh along with increased levels of adiponectin (P < 0.05). In addition, induction of HO-1 resulted in a reduction in C/EBPα, PPARγ, Peg-1/Mest, aP2, CD36 expression and lipid accumulation (P < 0.05). Suppression of HO-1 gene by siRNA decreased Wnt10b, pGSK3β and β-catenin expression, and increased lipid accumulation. The canonical Wnt responsive genes, IL-8 and SFRP1, were upregulated by CoPP and their expression was decreased by the concurrent administration of tin mesoporphyrin (SnMP), an inhibitor of HO activity. Furthermore, knockdown of Wnt10b gene expression by using siRNA showed increased lipid accumulation, and this effect was not decreased by concurrent treatment with CoPP. Also our results show that blocking the Wnt 10b antagonist, Dickkopf 1 (Dkk-1), by siRNA decreased lipid accumulation and this effect was further enhanced by concurrent administration of CoPP. Conclusions This is the first study to demonstrate that HO-1 acts upstream of canonical Wnt signaling cascade and decreases lipogenesis and adipocyte differentiation suggesting that the HO-1 mediated increase in Wnt10b can modulate the adipocyte phenotype by regulating the transcriptional factors that play a role in adipogenesis. This is evidenced by a decrease in lipid accumulation and inflammatory cytokine levels, increased adiponectin levels and elevation of the expression of genes of the canonical Wnt signaling cascade.
Collapse
|