1
|
Lin CW, Yang SC, Klochkov V, Chen TC, Huang WK, Chen WL. The effects of pigment epithelium-derived factor and associated peptides on the differentiation of retinal ganglion cells from human-induced pluripotent stem cells. Exp Eye Res 2025; 257:110440. [PMID: 40409357 DOI: 10.1016/j.exer.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/13/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
Retinal ganglion cell degeneration is the main cause of irreversible vision loss in optic neuropathies. Pigment epithelium-derived factor (PEDF) and its smaller peptide components (44-mer and 17-mer) have shown neuroprotective effects. In this study, using a stepwise protocol we investigated their effects on human-induced pluripotent stem cell differentiation to retinal ganglion cells. Various concentrations of PEDF, 44-mer and 17-mer were added at day 18. Investigated compounds significantly upregulated the expression of retinal ganglion cells-specific (Brn3b, Sncg), retinal progenitor (Pax6) and neuroaxonal markers (Tau, NFH). They also highly increased Brn3b expression, as well as neurite length and density, supporting their neurotrophic properties. Our findings suggest that PEDF and its smaller peptide components, 44-mer and 17-mer, can be suggested as neuroprotective agents for the promotion of retinal ganglion cell differentiation from human-induced pluripotent stem cells. 44-mer and 17-mer have comparable or even higher effects to full-length PEDF and might also bypass PEDF usage limitations.
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Chih Yang
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Vladlen Klochkov
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Kai Huang
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Yu J, Hu X, Niu Y, Li Z, Tang C, Yang J, Peng J, Chen G, Xing L, Peng L. Multifunctional Pluronic F-127 Gels Loaded With PEDF, Tacrolimus, and Tobramycin for Advanced Corneal Disease Treatment. J Biomed Mater Res A 2025; 113:e37907. [PMID: 40192939 DOI: 10.1002/jbm.a.37907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/17/2025]
Abstract
Corneal transplantation is a common surgical procedure for restoring vision in patients with severe corneal diseases. However, post-operative complications, including inflammation, immune rejection, and fibrosis, pose significant challenges to the long-term success of corneal transplants. This study aims to develop and evaluate new composite ophthalmic gels combining Tobramycin, Tacrolimus, and pigment epithelium-derived factor (PEDF) for enhancing post-transplant recovery. Four formulations-Tobramycin/PF127, Tobramycin/PEDF/PF127, Tobramycin/Tacrolimus/PF127, and Tobramycin/PEDF/Tacrolimus/PF127 were prepared and evaluated for their effects on human corneal epithelial cells (HCE-T) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assays revealed that PEDF-containing gels significantly promoted HCE-T cell proliferation and migration, while Tacrolimus exhibited strong immunosuppressive properties, reducing immune activation and promoting a stable healing environment. Additionally, PEDF demonstrated potent anti-angiogenic effects, suppressing tube formation in HUVECs. A 60-day rabbit corneal transplantation model further confirmed the therapeutic potential of the composite gels. Gels containing PEDF and Tacrolimus significantly improved corneal transparency, reduced inflammation and fibrosis, and minimized immune rejection. These findings suggest that Tobramycin/PEDF/Tacrolimus/PF127 gel holds promise as an advanced post-operative treatment, offering a comprehensive approach to addressing the challenges of corneal transplant recovery by enhancing cell proliferation, reducing immune responses, and preventing fibrosis and angiogenesis.
Collapse
Affiliation(s)
- Jing Yu
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Xiaojia Hu
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Yu Niu
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Zhengya Li
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Cuicui Tang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Junling Yang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Jinyan Peng
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Gang Chen
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Liyuan Xing
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| | - Lianghong Peng
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, Guangzhou City, Guangdong Province, China
| |
Collapse
|
3
|
Porreca V, Corbella E, Palmisano B, Peres M, Angelone P, Barbagallo C, Stella M, Mignogna G, Mennini G, Melandro F, Rossi M, Ragusa M, Corsi A, Riminucci M, Maras B, Mancone C. Pigment Epithelium-Derived Factor Inhibits Cell Motility and p-ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma Cell Lines. BIOLOGY 2025; 14:155. [PMID: 40001923 PMCID: PMC11851717 DOI: 10.3390/biology14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional soluble glycoprotein, primarily known for its potent anti-angiogenic properties. In recent years, its ability to counteract cell proliferation and motility has generated interest in PEDF as a potential tumor suppressor. In the intrahepatic Cholangiocarcinoma (iCCA), PEDF, Thrombospondin 1 (THBS1), and Thrombospondin 2 (THBS2) are expressed and released into the tumor microenvironment (TME), where they promote lymphangiogenesis at the expense of the neoangiogenic program, aiding the dissemination of cancer cells via lymphatic vessels. Recently, we demonstrated that THBS1 and THBS2 directly affect iCCA cells, exacerbating their malignant behavior, while the direct role of PEDF remains to be elucidated. In this study, through a cell-based assay and molecular analysis, we investigate the direct function of PEDF on two well-established iCCA cell lines. Our results show that PEDF affects cancer cell motility in a paracrine manner, reducing their migratory and invasive capabilities. Notably, our data suggest that the PEDF-induced inhibition of motility in iCCA cells occurs through the MAPK/ERK signaling pathway, as indicated by the reduced phosphorylation of ERK1/2. Overall, this study provides the first evidence of PEDF acting as a tumor suppressor in iCCA.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Pietro Angelone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemical Science, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Gianluca Mennini
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Fabio Melandro
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Massimo Rossi
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemical Science, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| |
Collapse
|
4
|
Masuda R, Phyu Thant KP, Kawahara K, Oki H, Kadonosono T, Kobayashi Y, Koide T. A yeast two-hybrid system to obtain triple-helical ligands from combinatorial random peptide libraries. J Biol Chem 2024; 300:107794. [PMID: 39305955 PMCID: PMC11533527 DOI: 10.1016/j.jbc.2024.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Many bioactive proteins interact with collagen, recognizing amino acid sequences displayed on the triple helix. We report here a selection strategy to obtain triple-helical peptides that interact with the proteins from a combinatorial random library constructed in yeast cells. This system enables us to select them using the standard two-hybrid protocol, detecting interactions between triple-helical peptides and target proteins fused to the GAL4-activating and binding domains, respectively. The library was constructed having triple-helical peptides with a "host-guest" design in which host helix-stabilizing regions flanked guest random sequences. Using this system, we selected peptides that bind to pigment epithelium-derived factor (PEDF), a collagen-binding protein that shows anti-angiogenic and neurotrophic activities, from the libraries. Two-step selections from the total random library and subsequently from the second focused library yielded new PEDF-binding sequences that exhibited a comparable affinity to or more potent than that of the native PEDF-binding sequence in collagen. The obtained sequences also contained a variant of the PEDF-binding motif that did not match the known motif identified from the native collagen sequences. This combinatorial library system allows the chemical space of triple-helical peptides to be screened more widely than that found in native collagen, thus increasing the expectation of obtaining more specific and high-affinity peptides.
Collapse
Affiliation(s)
- Ryo Masuda
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Khine Phyu Phyu Thant
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Kadonosono
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yuji Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takaki Koide
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
5
|
Tarabeih R, Nemerovsky L, Bar-Joseph H, Eldar-Boock A, Elmechaly CL, Ben-Ami I, Shalgi R. Pigment epithelium-derived factor expression and role in follicular development. Reprod Biomed Online 2024; 49:103981. [PMID: 38870625 DOI: 10.1016/j.rbmo.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 06/15/2024]
Abstract
RESEARCH QUESTION What is the involvement of pigment epithelium-derived factor (PEDF), expressed in granulosa cells, in folliculogenesis? DESIGN mRNA expression of PEDF and other key factors [Cyp19, anti-Müllerian hormone receptor (AMHR) and vascular endothelial growth factor (VEGF)] in mice follicles was examined in order to typify the expression of PEDF in growing follicles and in human primary granulosa cells (hpGC), and to follow the interplay between PEDF and the other main players in folliculogenesis: FSH and AMH. RESULTS mRNA expression of PEDF increased through folliculogenesis, although the pattern differed from that of the other examined genes, affecting the follicular angiogenic and oxidative balance. In hpGC, prolonged exposure to FSH stimulated the up-regulation of PEDF mRNA. Furthermore, a negative correlation between AMH and PEDF was observed: AMH stimulation reduced the expression of PEDF mRNA and PEDF stimulation reduced the expression of AMHR mRNA. CONCLUSIONS Folliculogenesis, an intricate process that requires close dialogue between the oocyte and its supporting granulosa cells, is mediated by various endocrine and paracrine factors. The current findings suggest that PEDF, expressed in granulosa cells, is a pro-folliculogenesis player that interacts with FSH and AMH in the process of follicular growth. However, the mechanism of this process is yet to be determined.
Collapse
Affiliation(s)
- Rana Tarabeih
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luba Nemerovsky
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hadas Bar-Joseph
- TMCR Unit, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Eldar-Boock
- TMCR Unit, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Cindy L Elmechaly
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ido Ben-Ami
- IVF and Infertility Unit, Department of Obstetrics and Gynaecology, Shaare Zedek Medical Centre, The Hebrew University Medical School of Jerusalem, Jerusalem, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
6
|
Ducommun S, Jannig PR, Cervenka I, Murgia M, Mittenbühler MJ, Chernogubova E, Dias JM, Jude B, Correia JC, Van Vranken JG, Ocana-Santero G, Porsmyr-Palmertz M, McCann Haworth S, Martínez-Redondo V, Liu Z, Carlström M, Mann M, Lanner JT, Teixeira AI, Maegdefessel L, Spiegelman BM, Ruas JL. Mustn1 is a smooth muscle cell-secreted microprotein that modulates skeletal muscle extracellular matrix composition. Mol Metab 2024; 82:101912. [PMID: 38458566 PMCID: PMC10950823 DOI: 10.1016/j.molmet.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.
Collapse
Affiliation(s)
- Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy; Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ekaterina Chernogubova
- Department of Medicine, Cardiovascular Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden; Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Baptiste Jude
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Gabriel Ocana-Santero
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margareta Porsmyr-Palmertz
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Vicente Martínez-Redondo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Johanna T Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ana I Teixeira
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Cardiovascular Unit, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; German Center for Cardiovascular Research DZHK, Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Pharmacology and Stanley and Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Lu C, Yang F, He S, Yu H, Wang Q, Li M, Zeng X, Leng X. Serum proteome analysis identifies a potential biomarker for axial psoriatic arthritis. Eur J Med Res 2024; 29:146. [PMID: 38429803 PMCID: PMC10908212 DOI: 10.1186/s40001-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND To identify potential serum biomarkers for differentiating between axial psoriatic arthritis (axPsA) and peripheral psoriatic arthritis (pPsA). METHODS Serum samples were collected from patients with PsA to create a biomarker discovery cohort and a verification cohort. Patients with PsA were classified into axial or peripheral subtypes based on imaging criteria. Untargeted proteomics technology was used in the discovery phase to screen for biomarkers, and candidate biomarkers were evaluated using enzyme-linked immunosorbent assay (ELISA) in the verification phase. RESULTS We identified 45 significantly differentially expressed proteins (DEPs) between axPsA (n = 20) and pPsA (n = 20) with liquid chromatography-mass spectrometry. Among these DEPs, serum pigment epithelium-derived factor (PEDF) was identified as a candidate biomarker using the Boruta algorithm and lasso regression. Results of ELISA further confirmed that the level of serum PEDF expression was significantly higher in axPsA (n = 37) than in pPsA (n = 51) at the verification cohort (37.9 ± 10.1 vs. 30.5 ± 8.9 μg/mL, p < 0.001). Receiver operating characteristics analysis showed that PEDF had an area under the curve (AUC) of 0.72. Serum PEDF was positively correlated with body mass index and C-reactive protein. Additionally, there was a tendency towards a positive correlation between PEDF and the Bath Ankylosing Spondylitis Disease Activity Index. CONCLUSIONS This study provided a comprehensive characterization of the proteome in axPsA and pPsA and identified a candidate biomarker, PEDF, that may contribute to early diagnosis for axPsA.
Collapse
Affiliation(s)
- Chaofan Lu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Fan Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shihao He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Hongxia Yu
- Department of Rheumatology, Guizhou Xingyi People's Hospital, Xingyi, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| | - Xiaomei Leng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Elmi M, Dass JH, Dass CR. The Various Roles of PEDF in Cancer. Cancers (Basel) 2024; 16:510. [PMID: 38339261 PMCID: PMC10854708 DOI: 10.3390/cancers16030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a natural immunomodulator, anti-inflammatory, anti-angiogenic, anti-tumour growth and anti-metastasis factor, which can enhance tumour response to PEDF but can also conversely have pro-cancerous effects. Inflammation is a major cause of cancer, and it has been proven that PEDF has anti-inflammatory properties. PEDF's functional activity can be investigated through measuring metastatic and metabolic biomarkers that will be discussed in this review.
Collapse
Affiliation(s)
- Mitra Elmi
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Joshua H. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
9
|
Sun Z, Li X, Li G, Xu Y, Meng J, Meng W, He S. Potential application value of pigment epithelium-derived factor in sensorineural hearing loss. Front Neurosci 2023; 17:1302124. [PMID: 38164244 PMCID: PMC10757943 DOI: 10.3389/fnins.2023.1302124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
The inner ear is a complex and precise auditory perception system responsible for receiving and converting sound signals into neural signals, enabling us to perceive and understand sound. However, the occurrence and development of inner ear diseases and auditory disorders, such as sensorineural hearing loss, remain a global problem. In recent years, there has been increasing research on the treatment of inner ear diseases and auditory regeneration. Among these treatments, pigment epithelium-derived factor (PEDF), as a multifunctional secretory protein, exhibits diverse biological activities and functions through various mechanisms, and has shown potential applications in the inner ear. This minireview comprehensively evaluates the performance of PEDF in sensorineural hearing loss in inner ear and its potential targets and therapeutic prospects.
Collapse
Affiliation(s)
- Zihui Sun
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Guangfei Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Ying Xu
- Department of Stomatology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Meng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
- Nanjing Tongren ENT Hospital, Nanjing, China
| |
Collapse
|
10
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
11
|
Lecordier S, Menet R, Allain AS, ElAli A. Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1. J Cereb Blood Flow Metab 2023; 43:1873-1890. [PMID: 37340860 PMCID: PMC10676133 DOI: 10.1177/0271678x231183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Romain Menet
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Allain
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
12
|
Hu C, Wang B, Liu Z, Chen Q, Ishikawa M, Lin H, Lian Q, Li J, Li JV, Ma D, The ESA-IC Onco-Anaesthesiology Research Group. Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms. Cell Biol Toxicol 2023; 39:1395-1411. [PMID: 36207479 PMCID: PMC10425485 DOI: 10.1007/s10565-022-09766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Perioperative risk factors, including the choice of anesthetics, may influence ovarian cancer recurrence after surgery. Inhalational anesthetic sevoflurane and intravenous agent propofol might affect cancer cell metabolism and signaling, which, in turn, may influence the malignancy of ovarian cancer cells. The different effects between sevoflurane and propofol on ovarian cancer cell biology and underlying mechanisms were studied. Cultured ovarian cancer cells were exposed to 2.5% sevoflurane, 4 μg/mL propofol, or sham condition as the control for 2 h followed by 24-h recovery. Glucose transporter 1 (GLUT1), mitochondrial pyruvate carrier 1 (MPC1), glutamate dehydrogenase 1 (GLUD1), pigment epithelium-derived factor (PEDF), p-Erk1/2, and hypoxia-inducible factor 1-alpha (HIF-1α) expressions were determined with immunostaining and/or Western blot. Cultured media were collected for 1H-NMR spectroscopy-based metabolomics analysis. Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to analyze metabolomics data. Sevoflurane increased the GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α expressions but decreased the PEDF expression relative to the controls. In contrast to sevoflurane, propofol decreased GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α but increased PEDF expression. Sevoflurane increased metabolite isopropanol and decreased glucose and glutamine energy substrates in the media, but the opposite changes were found after propofol treatment. Our data indicated that, unlike the pro-tumor property of sevoflurane, propofol negatively modulated PEDF/Erk/HIF-1α cellular signaling pathway and inhibited ovarian cancer metabolic efficiency and survival, and hence decreased malignancy. The translational value of this work warrants further study. • Sevoflurane promoted but propofol inhibited ovarian cancer cell biology. • Sevoflurane upregulated but propofol downregulated the GLUT1, MPC1, and GLUD1 expressions of ovarian cancer cells. • Sevoflurane enhanced but propofol inhibited ovarian cancer cellular glucose. metabolism and glutaminolysis. • Sevoflurane downregulated PEDF but upregulated the Erk pathway and HIF-1α, while propofol had the adverse effects on ovarian cancer cells.
Collapse
Affiliation(s)
- Cong Hu
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Bincheng Wang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Qiling Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Han Lin
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Qingquan Lian
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jun Li
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - The ESA-IC Onco-Anaesthesiology Research Group
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
13
|
Qu Q, Park K, Zhou K, Wassel D, Farjo R, Criswell T, Ma JX, Zhang Y. Sustained therapeutic effect of an anti-inflammatory peptide encapsulated in nanoparticles on ocular vascular leakage in diabetic retinopathy. Front Cell Dev Biol 2022; 10:1049678. [PMID: 36589744 PMCID: PMC9802579 DOI: 10.3389/fcell.2022.1049678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), an endogenous Wnt signaling inhibitor in the serine proteinase inhibitors (SERPIN) super family, is present in multiple organs, including the vitreous. Significantly low levels of PEDF in the vitreous are found to associate with pathological retinal vascular leakage and inflammation in diabetic retinopathy (DR). Intravitreal delivery of PEDF represents a promising therapeutic approach for DR. However, PEDF has a short half-life after intravitreal injection, which represents a major hurdle for the long-term treatment. Here we report the prolonged therapeutic effects of a 34-mer peptide of the PEDF N-terminus, encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEDF34-NP), on DR. PEDF34-NP inhibited hypoxia-induced expression of vascular endothelial growth factor and reduced levels of intercellular adhesion molecule 1 (ICAM-1) in cultured retinal cells. In addition, PEDF34-NP significantly ameliorated ischemia-induced retinal neovascularization in the oxygen-induced retinopathy rat model, and significantly reduced retinal vascular leakage and inflammation in streptozotocin-induced diabetic rats up to 4 weeks after intravitreal injection, as compared to PLGA-NP control. Intravitreal injection of PEDF34-NP did not display any detectable toxicities to retinal structure and function. Our findings suggest that PEDF34-NP can confer sustained therapeutic effects on retinal inflammation and vascular leakage, having considerable potential to provide long-term treatment options for DR.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Kevin Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Drew Wassel
- EyeCro LLC., Oklahoma City, OK, United States
| | - Rafal Farjo
- EyeCro LLC., Oklahoma City, OK, United States
| | - Tracy Criswell
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jian-xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: Yuanyuan Zhang,
| |
Collapse
|
14
|
The Role of Selected Serpins in Gastrointestinal (GI) Malignancies. J Clin Med 2022; 11:jcm11206225. [PMID: 36294546 PMCID: PMC9604722 DOI: 10.3390/jcm11206225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal (GI) cancers, which are a diverse group of malignant diseases, represent a major healthcare problem around the world. Due to the lack of specific symptoms in the early stages as well as insufficient diagnostic possibilities, these malignancies occupy the leading position in the causes of death worldwide. The currently available tests have too many limitations to be part of routine diagnostics. Therefore, new potential biomarkers that could be used as diagnostic and prognostic factors for these cancers are still being sought. Among the proteins that might fit this role are serpins, which are serine protease inhibitors. Although the serpins themselves have been known for many years, they have recently become the centre of attention for many authors, especially due to the fact that a number of proteins in this family are involved in many stages of neoplasia formation, from angiogenesis through tumour growth to progression. Therefore, the aim of this review is to present the current knowledge about the significance of serpins in GI malignancies, especially their involvement in the development and progression of oesophageal, gastric, pancreatic and colorectal cancers. This review summarises and confirms the important roles of selected serpins in the pathogenesis of various GI cancers and also points to their promising roles as therapeutic targets. However, due to the relatively nonspecific nature of serpins, future research should be carried out to elucidate the mechanisms involved in tumour pathogenesis in more detail.
Collapse
|
15
|
Approaches to Measuring the Activity of Major Lipolytic and Lipogenic Enzymes In Vitro and Ex Vivo. Int J Mol Sci 2022; 23:ijms231911093. [PMID: 36232405 PMCID: PMC9570359 DOI: 10.3390/ijms231911093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1950s, one of the goals of adipose tissue research has been to determine lipolytic and lipogenic activity as the primary metabolic pathways affecting adipocyte health and size and thus representing potential therapeutic targets for the treatment of obesity and associated diseases. Nowadays, there is a relatively large number of methods to measure the activity of these pathways and involved enzymes, but their applicability to different biological samples is variable. Here, we review the characteristics of mean lipogenic and lipolytic enzymes, their inhibitors, and available methodologies for assessing their activity, and comment on the advantages and disadvantages of these methodologies and their applicability in vivo, ex vivo, and in vitro, i.e., in cells, organs and their respective extracts, with the emphasis on adipocytes and adipose tissue.
Collapse
|
16
|
Xu C, Du Y, Tian J, Liu C, Huang Y, Zhou T, Ning Y. Pigment epithelium-derived factor modulates periodontal homeostasis in mice and induces osteogenic differentiation of human periodontal ligament fibroblasts. Connect Tissue Res 2022; 63:485-497. [PMID: 35125056 DOI: 10.1080/03008207.2021.2025224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The aim of this study was to investigate the influence of pigment epithelium-derived factor (PEDF) on periodontal homeostasis in mice and the osteogenic differentiation of human periodontal ligament fibroblasts (PDLFs). MATERIALS AND METHODS Micro-computed tomography and histology were performed to compare the alveolar bone volume, density, and bone-related markers between PEDF-deficient (PEDF-/-) and wild-type (WT) mice. Furthermore, after recombinant human PEDF treatment, the PDLF viability and osteogenic differentiation were examined using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, Von Kossa staining, Alizarin red staining, real-time quantitative polymerase chain reaction (qRT-PCR), and immunoblotting. RESULTS The alveolar bone volume and density of PEDF-/- mice were significantly lower than those of the WT mice. Higher receptor activator for nuclear factor-κB ligand (RANKL) expression and lower osteoprotegerin (OPG) expression levels were observed in the PEDF-/- group. Moreover, PEDF treatment did not affect the PDLF proliferation. PEDF dose-dependently improved mineral deposition. Compared with the control group, 250 ng/mL PEDF promoted OPG mRNA expression in PDLFs on Day 3 but inhibited RANKL, Wnt5a, GSK3b mRNA, and non-phosphorylated β-catenin protein expression. However, 250 ng/mL PEDF had no significant effect on the expression of Wnt3a. On Day 7, after culture with 250 ng/mL PEDF in osteogenic medium, the ALP and RUNX2 protein levels were upregulated. VEGF protein expression was reduced in a dose-dependent manner after PEDF stimulation. The PEDF protein expression increased as the osteogenic induction time increased. CONCLUSION PEDF gene knockout suppresses periodontal homeostasis in mice, and PEDF treatment induces PDLF osteogenic differentiation in vitro.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Tian
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chang Liu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Ning
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Abdelkader H, Mustafa WW, Alqahtani AM, Alsharani S, Al Fatease A, Alany RG. Glycation-induced age-related illnesses, antiglycation and drug delivery strategies. J Pharm Pharmacol 2022; 74:1546-1567. [PMID: 35972442 DOI: 10.1093/jpp/rgac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Ageing is a major cause of multiple age-related diseases. Several mechanisms have been reported to contribute to these abnormalities including glycation, oxidative stress, the polyol pathway and osmotic stress. Glycation, unlike glycosylation, is an irregular biochemical reaction to the formation of active advanced glycation end-products (AGEs), which are considered to be one of the causes of these chronic diseases. This study provides a recent and comprehensive review on the possible causes, mechanisms, types, analytical techniques, diseases and treatments of the toxic glycation end products. KEY FINDINGS Several mechanisms have been found to play a role in generating hyperglycaemia-induced oxidative stress including an increase in the levels of reactive oxygen species (ROS), increase in the levels of AGEs, binding of AGEs and their receptors (RAGE) and the polyol pathway and thus have been investigated as promising novel targets. SUMMARY This review focuses on the key mechanisms attributed to cumulative increases of glycation and pathological RAGE expression as a significant cause of multiple age-related diseases, and reporting on different aspects of antiglycation therapy as a novel approach to managing/treating age-related diseases. Additionally, historical, current and possible future antiglycation approaches will be presented focussing on novel drug delivery methods.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Wesam W Mustafa
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK.,Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alsharani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK.,School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
HUANG C, CHENG H, ZHANG J, ZHANG D. DHA-promoted repair of human corneal epithelial cells in high-glucose environment. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.77221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | - Hong CHENG
- The Third People’s Hospital of Hefei, China
| | - Jing ZHANG
- The Third People’s Hospital of Hefei, China
| | | |
Collapse
|
19
|
Pigment epithelium-derived factor may induce antidepressant phenotypes in mice by the prefrontal cortex. Neurosci Lett 2021; 771:136423. [PMID: 34965441 DOI: 10.1016/j.neulet.2021.136423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional glycoprotein encoded by SERPINF1 and our previous study reported that PEDF may have antidepressant effects. As a key brain region regulating cognition, memory and emotion, the prefrontal cortex (PFC) has been studied extensively in major depressive disorder (MDD), but there are few reports on the relationship between PEDF and the PFC. In this study, enzyme-linked immunosorbent assay showed that the PEDF level was decreased in the plasma of MDD patients compared with that of healthy controls. Western blotting validated that the PEDF expression in the PFC was downregulated in the mouse chronic social defeat stress and rat chronic unpredictable mild stress models of depression. Correspondingly, normal mice overexpressing PEDF in the PFC showed depression-resistant phenotypes. We detected PFC metabolite levels by liquid chromatography-tandem mass spectrometry and found significant upregulation of 5-hydroxyindoleacetic acid, kynurenine, 5-hydroxytryptamine, ornithine and glutamine, and downregulation of 5-hydroxytryptophan, glutamic acid and aspartic acid in PEDF-overexpressing mice compared with control mice, in which no such changes were detected. Combined with the above findings, this provides an insight into a potential mechanism of the antidepressant effects of PEDF via the PFC, which may help to improve understanding of depression pathophysiology.
Collapse
|
20
|
Moghaddam S, Jalali A, O’Neill A, Murphy L, Gorman L, Reilly AM, Heffernan Á, Lynch T, Power R, O’Malley KJ, Taskèn KA, Berge V, Solhaug VA, Klocker H, Murphy TB, Watson RW. Integrating Serum Biomarkers into Prediction Models for Biochemical Recurrence Following Radical Prostatectomy. Cancers (Basel) 2021; 13:4162. [PMID: 34439316 PMCID: PMC8391749 DOI: 10.3390/cancers13164162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
This study undertook to predict biochemical recurrence (BCR) in prostate cancer patients after radical prostatectomy using serum biomarkers and clinical features. Three radical prostatectomy cohorts were used to build and validate a model of clinical variables and serum biomarkers to predict BCR. The Cox proportional hazard model with stepwise selection technique was used to develop the model. Model evaluation was quantified by the AUC, calibration, and decision curve analysis. Cross-validation techniques were used to prevent overfitting in the Irish training cohort, and the Austrian and Norwegian independent cohorts were used as validation cohorts. The integration of serum biomarkers with the clinical variables (AUC = 0.695) improved significantly the predictive ability of BCR compared to the clinical variables (AUC = 0.604) or biomarkers alone (AUC = 0.573). This model was well calibrated and demonstrated a significant improvement in the predictive ability in the Austrian and Norwegian validation cohorts (AUC of 0.724 and 0.606), compared to the clinical model (AUC of 0.665 and 0.511). This study shows that the pre-operative biomarker PEDF can improve the accuracy of the clinical factors to predict BCR. This model can be employed prior to treatment and could improve clinical decision making, impacting on patients' outcomes and quality of life.
Collapse
Affiliation(s)
- Shirin Moghaddam
- School of Mathematical Sciences, University College Cork, T12XF62 Cork, Ireland
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Amirhossein Jalali
- School of Mathematical Sciences, University College Cork, T12XF62 Cork, Ireland
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Amanda O’Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Lisa Murphy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Laura Gorman
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Anne-Marie Reilly
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Áine Heffernan
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| | - Thomas Lynch
- Department of Urology, Trinity College, St James Hospital, D08 W9RT Dublin 8, Ireland;
| | - Richard Power
- Department of Urology, Royal College of Surgeons in Ireland, Beaumont Hospital, D09V2N0 Dublin 9, Ireland;
| | - Kieran J. O’Malley
- Department of Urology, University College Dublin, Mater Misericordiae University Hospital, D07YH5R Dublin 7, Ireland;
| | - Kristin A. Taskèn
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (K.A.T.); (V.B.)
- Department of Tumor Biology, Oslo University Hospital, 0379 Oslo, Norway
| | - Viktor Berge
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (K.A.T.); (V.B.)
- Department of Urology, Oslo University Hospital, 0379 Oslo, Norway;
| | - Vivi-Ann Solhaug
- Department of Urology, Oslo University Hospital, 0379 Oslo, Norway;
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - T. Brendan Murphy
- UCD School of Mathematics and Statistics, University College Dublin, D04V1W8 Dublin 4, Ireland;
| | - R. William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, UCD, D04V1W8 Dublin 4, Ireland; (A.O.); (L.M.); (L.G.); (A.-M.R.); (Á.H.); (R.W.W.)
| |
Collapse
|
21
|
Kaluz S, Zhang Q, Kuranaga Y, Yang H, Osuka S, Bhattacharya D, Devi NS, Mun J, Wang W, Zhang R, Goodman MM, Grossniklaus HE, Van Meir EG. Targeting HIF-activated collagen prolyl 4-hydroxylase expression disrupts collagen deposition and blocks primary and metastatic uveal melanoma growth. Oncogene 2021; 40:5182-5191. [PMID: 34218269 PMCID: PMC8887959 DOI: 10.1038/s41388-021-01919-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy in adults, and patients that develop metastases (~50%) survive <1 year, highlighting the urgent need for new therapies. TCGA has recently revealed that a hypoxia gene signature is associated with poor UM patient prognosis. Here we show that expression of hypoxia-regulated collagen prolyl-4-hydroxylase genes P4HA1 and P4HA2 is significantly upregulated in UM patients with metastatic disease and correlates with poor prognosis, suggesting these enzymes might be key tumor drivers. We targeted hypoxia-induced expression of P4HA1/2 in UM with KCN1, a hypoxia inducible factor-1 (HIF-1) pathway inhibitor and found potent inhibition of primary and metastatic disease and extension of animal survival, without overt side effects. At the molecular level, KCN1 antagonized hypoxia-induced expression of P4HA1 and P4HA2, which regulate collagen maturation and deposition in the extracellular matrix. The treatment decreased prolyl hydroxylation, induced proteolytic cleavage and rendered a disordered structure to collagen VI, the main collagen produced by UM, and reduced UM cell invasion. Together, these data demonstrate that extracellular collagen matrix formation can be targeted in UM by inhibiting hypoxia-induced P4HA1 and P4HA2 expression, warranting further development of this strategy in patients with uveal melanoma.
Collapse
Affiliation(s)
- Stefan Kaluz
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Qing Zhang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuki Kuranaga
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Satoru Osuka
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Narra S Devi
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
- Drug Discovery Institute, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
- Drug Discovery Institute, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Mark M Goodman
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Hans E Grossniklaus
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
- Department of Pathology, Emory University, Atlanta, GA, USA.
| | - Erwin G Van Meir
- Department of Neurosurgery, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Crowley G, Kim J, Kwon S, Lam R, Prezant DJ, Liu M, Nolan A. PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation. PLoS Comput Biol 2021; 17:e1009144. [PMID: 34288906 PMCID: PMC8328304 DOI: 10.1371/journal.pcbi.1009144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/02/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional data pruning, and validated identified biomarkers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI (FEV1, %Pred< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their biomarkers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics, then feature selection performed on metabolites, cytokines, chemokines, and clinical data. Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping parent-cohort via binary logistic regression with 5-fold cross validation. Random forests of metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemokines (n = 106) identified that the top 5% of biomarkers important to class separation included pigment epithelium-derived factor (PEDF), macrophage derived chemokine (MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regulated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipoprotein-AII (Apo-AII), cell membrane metabolites (sphingolipids, phospholipids), and branched-chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure, and pre-9/11 FEV1, %Pred) binary logistic regression had AUCROC [0.90(0.84–0.96)]. Decreased PEDF and MIP-4, and increased Apo-AII were associated with increased odds of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker—PEDF, an antiangiogenic agent—is a novel, predictive biomarker of particulate-matter-related lung disease. Other biomarkers—GRO, MCP-1, MDC, MIP-4—reveal immune cell involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification warrant further investigation into these potential pharmacotherapy targets. Disease related to air pollution causes millions of deaths annually. Large swathes of the general population, as well as certain occupations such as 1st responders and military personnel, are exposed to particulate matter (PM)—a major component of air pollution. Our longitudinal cohort of FDNY firefighters exposed to the World Trade Center dust cloud on 9/11 is a unique research opportunity to characterize the impact of a single, intense PM exposure by looking at pre- and post-exposure phenotype; however, PM-related lung disease and PM’s systemic effects are complex and call for a systems biological approach coupled with novel computational modelling techniques to fully understand pathogenesis. In the present study, we integrate clinical and environmental biomarkers with the serum metabolome, cytokines, and chemokines to develop a model for early disease detection and identification of potential signaling cascades of PM-related chronic lung disease.
Collapse
Affiliation(s)
- George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - James Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bagdadi N, Sawaied A, AbuMadighem A, Lunenfeld E, Huleihel M. The Expression Levels and Cellular Localization of Pigment Epithelium Derived Factor (PEDF) in Mouse Testis: Its Possible Involvement in the Differentiation of Spermatogonial Cells. Int J Mol Sci 2021; 22:1147. [PMID: 33498962 PMCID: PMC7865766 DOI: 10.3390/ijms22031147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.
Collapse
Affiliation(s)
- Noy Bagdadi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Alaa Sawaied
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- Department of OB/GYN, Soroka Medical Center, Beer Sheva 8410501, Israel
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| |
Collapse
|
24
|
Azar C, Valentine MC, Trausch‐Azar J, Rois L, Mahjoub M, Nelson DM, Schwartz AL. RNA-Seq identifies genes whose proteins are upregulated during syncytia development in murine C2C12 myoblasts and human BeWo trophoblasts. Physiol Rep 2021; 9:e14671. [PMID: 33403800 PMCID: PMC7786548 DOI: 10.14814/phy2.14671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The fusion of villous cytotrophoblasts into the multinucleated syncytiotrophoblast is critical for the essential functions of the mammalian placenta. Using RNA-Seq gene expression, quantitative protein expression, and siRNA knockdown we identified genes and their cognate proteins which are similarly upregulated in two cellular models of mammalian syncytia development (human BeWo cytotrophoblast to syncytiotrophoblast and murine C2C12 myoblast to myotube). These include DYSF, PDE4DIP, SPIRE2, NDRG1, PLEC, GPR146, HSPB8, DHCR7, and HDAC5. These findings provide avenues for further understanding of the mechanisms underlying mammalian placental syncytiotrophoblast development.
Collapse
Affiliation(s)
- Christopher Azar
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Mark C. Valentine
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Julie Trausch‐Azar
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lisa Rois
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Moe Mahjoub
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - D. Michael Nelson
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Alan L. Schwartz
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
25
|
Chen JWE, Lumibao J, Leary S, Sarkaria JN, Steelman AJ, Gaskins HR, Harley BAC. Crosstalk between microglia and patient-derived glioblastoma cells inhibit invasion in a three-dimensional gelatin hydrogel model. J Neuroinflammation 2020; 17:346. [PMID: 33208156 PMCID: PMC7677841 DOI: 10.1186/s12974-020-02026-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy. METHODS This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions. RESULTS Microglia displayed an activated phenotype as a result of GBM crosstalk. Three-dimensional migration patterns of patient-derived glioblastoma cells showed invasion was significantly decreased in response to microglia paracrine signaling. Potential molecular mechanisms underlying with this phenotype were identified from bioinformatic analysis of secretome and RNAseq data. CONCLUSION The data demonstrate a tissue engineered hydrogel platform can be used to investigate crosstalk between immune cells of the tumor microenvironment related to GBM progression. Such multi-dimensional models may provide valuable insight to inform therapeutic innovations to improve GBM treatment.
Collapse
Affiliation(s)
- Jee-Wei Emily Chen
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jan Lumibao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Current Address: Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sarah Leary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - H Rex Gaskins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Kodeboyina SK, Lee TJ, Churchwell L, Ulrich L, Bollinger K, Bogorad D, Estes A, Zhi W, Sharma S, Sharma A. The Constitutive Proteome of Human Aqueous Humor and Race Specific Alterations. Proteomes 2020; 8:proteomes8040034. [PMID: 33217969 PMCID: PMC7709111 DOI: 10.3390/proteomes8040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Aqueous humor (AH) is the fluid in the anterior and posterior chambers of the eye that contains proteins regulating ocular homeostasis. Analysis of aqueous humor proteome is challenging, mainly due to low sample volume and protein concentration. In this study, by utilizing state of the art technology, we performed Liquid-Chromatography Mass spectrometry (LC-MS/MS) analysis of 88 aqueous humor samples from subjects undergoing cataract surgery. A total of 2263 unique proteins were identified, which were sub-divided into four categories that were based on their detection in the number of samples: High (n = 152), Medium (n = 91), Low (n = 128), and Rare (n = 1892). A total of 243 proteins detected in at least 50% of the samples were considered as the constitutive proteome of human aqueous humor. The biological processes and pathways enriched in the AH proteins mainly include vesicle mediated transport, acute phase response signaling, LXR/RXR activation, complement system, and secretion. The enriched molecular functions are endopeptidase activity, and various binding functions, such as protein binding, lipid binding, and ion binding. Additionally, this study provides a novel insight into race specific differences in the AH proteome. A total of six proteins were upregulated, and five proteins were downregulated in African American subjects as compared to Caucasians.
Collapse
Affiliation(s)
- Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Lara Churchwell
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Lane Ulrich
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Kathryn Bollinger
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - David Bogorad
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Amy Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
27
|
C1q/TNF-Related Protein-3 (CTRP-3) and Pigment Epithelium-Derived Factor (PEDF) Concentrations in Patients with Gestational Diabetes Mellitus: A Case-Control Study. J Clin Med 2020; 9:jcm9082587. [PMID: 32785102 PMCID: PMC7465884 DOI: 10.3390/jcm9082587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnant women, defined as any degree of glucose intolerance with onset or first detected during pregnancy. Explanation of its pathogenesis is extremely important due to the possibility of preventing serious maternal and fetal complications. The aim of the study was to evaluate the concentrations of two molecules: C1q/tumor necrosis factor-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) which may possibly participate in GDM development. To our knowledge, this is the first study in pregnant women with GDM evaluating CTRP-3 level. Methods: Serum CTRP-3 and PEDF concentration and clinical characteristics were detected in 172 pregnant women. These women were divided into two groups: normal glucose tolerance group (NGT, n = 54) and gestational diabetes mellitus group (GDM, n = 118). This second group was further divided into two subgroups depending on the treatment used: GDM 1—diet only (n = 75) and GDM 2—insulin treatment (n = 43). Results: Our study did not reveal any statistically significant difference between the concentration of PEDF in the control and GDM group. In our study there was a significantly higher concentration of CTRP-3 evaluated in the peripheral blood serum in patients with gestational diabetes (GDM) compared to those in the control group (8.84 vs. 4.79 ng/mL). Significantly higher values of CTRP-3 were observed in both the diet-treated subgroup and the group with insulin therapy when compared to control group (8.40 and 10.96, respectively vs. 4.79 ng/mL). Conclusion: PEDF concentration does not change in GDM, whereas an increased level of CTRP-3 may point to the key role of this adipokine in the development of GDM.
Collapse
|
28
|
Dixit S, Polato F, Samardzija M, Abu-Asab M, Grimm C, Crawford SE, Becerra SP. PEDF deficiency increases the susceptibility of rd10 mice to retinal degeneration. Exp Eye Res 2020; 198:108121. [PMID: 32721425 DOI: 10.1016/j.exer.2020.108121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022]
Abstract
The SERPINF1 gene encodes pigment epithelium-derived factor (PEDF), a member of the serpin superfamily with neurotrophic and antiangiogenic properties in the retina. We hypothesized that absence of PEDF would lead to increased stress-associated retinal degeneration in Serpinf1 null mice. Accordingly, using a Serpinf1 null mouse model, we investigated the impact of PEDF absence on retinal morphology, and susceptibility to induced and inherited retinal degeneration. We studied the pattern of Serpinf1 expression in the mouse retina layers. PEDF protein was detected by western blotting. Transmission electron microscopy was performed on mouse retina. Serpinf1 null mice and wild type littermates were injected with NaIO3 (30 mg/kg body weight) intraperitonially. At post-injection day 1, 3, 4, 6 and 8 mice were euthanized, and eyes were enucleated. Serpinf1 null and rd10 double mutant mice were generated and their eyes enucleated at different time points from post-natal day 15 to post-natal day 28. Enucleated eyes were processed for hematoxylin and eosin staining and histopathological evaluations. We found that Serpinf1 was expressed in the retinal pigment epithelium, in the inner nuclear layer and in the ganglion cell layer, but undetectable in the outer nuclear layer of wild type mice. Plasma PEDF protein levels were undetectable in Serpinf1 null animals. RPE atrophy and retinal thinning were observed in NaIO3-treated wild type mice that progressed with time post-injection. NaIO3-treated Serpinf1 null mice showed comparatively better retinal morphology than wild type mice at day 4 post-injection. However, the absence of PEDF in Serpinf1 null x rd10 mice increased the susceptibility to retinal degeneration relative to that of rd10 mice. We concluded that histopathological evaluation of retinas lacking PEDF showed that removal of the Serpinf1 gene may activate PEDF-independent compensatory mechanisms to protect the retina against oxidative stress, while it increases the susceptibility to degenerate the retina in inherited retinal degeneration models.
Collapse
Affiliation(s)
- Shivani Dixit
- Section of Protein Structure and Function, LRCMB-NEI-NIH, Bethesda, MD, USA
| | - Federica Polato
- Section of Protein Structure and Function, LRCMB-NEI-NIH, Bethesda, MD, USA
| | - Marijana Samardzija
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | | - Christian Grimm
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Susan E Crawford
- Department of Surgery, NorthShore University Health System Research Institute, Evanston, IL, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, LRCMB-NEI-NIH, Bethesda, MD, USA.
| |
Collapse
|
29
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
30
|
Therapeutic Strategies for Corneal Wound Angiogenesis. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Nardi F, Fitchev P, Brooks KM, Franco OE, Cheng K, Hayward SW, Welte MA, Crawford SE. Lipid droplet velocity is a microenvironmental sensor of aggressive tumors regulated by V-ATPase and PEDF. J Transl Med 2019; 99:1822-1834. [PMID: 31409893 PMCID: PMC7289525 DOI: 10.1038/s41374-019-0296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) utilize microtubules (MTs) to participate in intracellular trafficking of cargo proteins. Cancer cells accumulate LDs and acidify their tumor microenvironment (TME) by increasing the proton pump V-ATPase. However, it is not known whether these two metabolic changes are mechanistically related or influence LD movement. We postulated that LD density and velocity are progressively increased with tumor aggressiveness and are dependent on V-ATPase and the lipolysis regulator pigment epithelium-derived factor (PEDF). LD density was assessed in human prostate cancer (PCa) specimens across Gleason scores (GS) 6-8. LD distribution and velocity were analyzed in low and highly aggressive tumors using live-cell imaging and in cells exposed to low pH and/or treated with V-ATPase inhibitors. The MT network was disrupted and analyzed by α-tubulin staining. LD density positively correlated with advancing GS in human tumors. Acidification promoted peripheral localization and clustering of LDs. Highly aggressive prostate, breast, and pancreatic cell lines had significantly higher maximum LD velocity (LDVmax) than less aggressive and benign cells. LDVmax was MT-dependent and suppressed by blocking V-ATPase directly or indirectly with PEDF. Upon lowering pH, LDs moved to the cell periphery and carried metalloproteinases. These results suggest that acidification of the TME can alter intracellular LD movement and augment velocity in cancer. Restoration of PEDF or blockade of V-ATPase can normalize LD distribution and decrease velocity. This study identifies V-ATPase and PEDF as new modulators of LD trafficking in the cancer microenvironment.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kyrsten M. Brooks
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Omar E. Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kevin Cheng
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Simon W. Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Michael A. Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627
| | - Susan E. Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201,Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| |
Collapse
|
32
|
Stevens AR, Ahmed U, Vigneswara V, Ahmed Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2019; 56:7490-7507. [PMID: 31049830 PMCID: PMC6815285 DOI: 10.1007/s12035-019-1614-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Although neurons in the adult mammalian CNS are inherently incapable of regeneration after injury, we previously showed that exogenous delivery of pigment epithelium-derived factor (PEDF), a 50-kDa neurotrophic factor (NTF), promoted adult retinal ganglion cell neuroprotection and axon regeneration. Here, we show that PEDF and other elements of the PEDF pathway are highly upregulated in dorsal root ganglion neurons (DRGN) from regenerating dorsal column (DC) injury paradigms when compared with non-regenerating DC injury models. Exogenous PEDF was neuroprotective to adult DRGN and disinhibited neurite outgrowth, whilst overexpression of PEDF after DC injury in vivo promoted significant DC axon regeneration with enhanced electrophysiological, sensory, and locomotor function. Our findings reveal that PEDF is a novel NTF for adult DRGN and may represent a therapeutically useful factor to promote functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Umar Ahmed
- King Edward VI Camp Hill School for Boys, Vicarage Road, Kings Heath, Birmingham, B14 7QJ, UK
| | - Vasanthy Vigneswara
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
33
|
Li C, Huang Z, Zhu L, Yu X, Gao T, Feng J, Hong H, Yin H, Zhou T, Qi W, Yang Z, Liu C, Yang X, Gao G. The contrary intracellular and extracellular functions of PEDF in HCC development. Cell Death Dis 2019; 10:742. [PMID: 31582735 PMCID: PMC6776659 DOI: 10.1038/s41419-019-1976-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
Pigment epithelium-derived factor (PEDF), a classic angiogenic inhibitor, has been reported to function as a tumor suppression protein and to downregulate in many types of solid tumors. However, the expression level of PEDF and its role in hepatocellular carcinoma (HCC) are contradictory. The present study investigates the expression and different activities of secreted and intracellular PEDF during HCC development, as well as the underlying mechanism of PEDF on HCC lipid disorders. We found that PEDF had no association with patients' prognosis, although PEDF was highly expressed and inhibited angiogenesis in HCC tumor tissues. The animal experiments indicated that full-length PEDF exhibited equalizing effects on tumor growth activation and tumor angiogenesis inhibition in the late stage of HCC progression. Importantly, the pro-tumor activity was mediated by the intracellular PEDF, which causes accumulation of free fatty acids (FFAs) in vivo and in vitro. Based on the correlation analysis of PEDF and lipid metabolic indexes in human HCC tissues, we demonstrated that the intracellular PEDF led to the accumulation of FFA and eventually promoted HCC cell growth by inhibiting the activation of AMPK via ubiquitin-proteasome-mediated degradation, which causes increased de novo fatty acid synthesis and decreased FFA oxidation. Our findings revealed why elevated PEDF did not improve the patients' prognosis as the offsetting intracellular and extracellular activities. This study will lead to a comprehensive understanding of the diverse role of PEDF in HCC and provide a new selective strategy by supplement of extracellular PEDF and downregulation of intracellular PEDF for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Cen Li
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Zhijian Huang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liuqing Zhu
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xianhuan Yu
- Second Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxiao Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Feng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Honghai Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haofan Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Second Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Engineering and Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Chen CC, Lee TY, Leu YL, Wang SH. Pigment epithelium-derived factor inhibits adipogenesis in 3T3-L1 adipocytes and protects against high-fat diet-induced obesity and metabolic disorders in mice. Transl Res 2019; 210:26-42. [PMID: 31121128 DOI: 10.1016/j.trsl.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/23/2019] [Accepted: 04/12/2019] [Indexed: 01/10/2023]
Abstract
Obesity is a major cause of metabolic syndrome and type II diabetes, and it presents with metabolic disorders, such as hyperglycemia, hyperlipidemia, and insulin resistance. Pigment epithelium-derived factor (PEDF), a protein isolated from retinal pigment epithelial cells, has multiple functions, including neuronal protection, antineoplastic effects, and anti-inflammatory activity. The aim of this study is to investigate the antiobesity effects of PEDF. The antiobesity effects of PEDF on fat accumulation, inflammation, energy expenditure, insulin resistance, and obesity-related physiological parameters and protein levels were assessed in high-fat diet (HFD)-induced obese mice in vivo and in 3T3-L1 adipocytes, palmitate (PA)-treated HepG2 cells, and C2C12 myotubes in vitro. In an in vivo assay, PEDF effectively decreased body weight gain, white adipose tissue mass, and inflammation and improved insulin resistance, dyslipidemia, and hyperglycemia in HFD-induced mice. In liver tissue, PEDF decreased lipid accumulation and fibrosis. In an in vitro assay, PEDF diminished the differentiation of 3T3-L1 preadipocytes. We also determined that PEDF promoted lipolysis and prolonged cell cycle progression, through the mTOR-S6K pathway and downstream transcription factors, such as peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α (CEBP-α), and CEBP-β. In addition, PEDF decreased reactive oxygen species production in PA-induced HepG2 cells and improved glucose uptake ability in PA-induced HepG2 cells and C2C12 myotubes. In the present study, PEDF protected against HFD-induced obesity and metabolic disorders in mice, inhibited adipogenesis, and improved insulin resistance. These results provide a new potential treatment for obesity in the future.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Yau Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Besio R, Chow CW, Tonelli F, Marini JC, Forlino A. Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J 2019; 286:3033-3056. [PMID: 31220415 PMCID: PMC7384889 DOI: 10.1111/febs.14963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
The limited accessibility of bone and its mineralized nature have restricted deep investigation of its biology. Recent breakthroughs in identification of mutant proteins affecting bone tissue homeostasis in rare skeletal diseases have revealed novel pathways involved in skeletal development and maintenance. The characterization of new dominant, recessive and X-linked forms of the rare brittle bone disease osteogenesis imperfecta (OI) and other OI-related bone fragility disorders was a key player in this advance. The development of in vitro models for these diseases along with the generation and characterization of murine and zebrafish models contributed to dissecting previously unknown pathways. Here, we describe the most recent advances in the understanding of processes involved in abnormal bone mineralization, collagen processing and osteoblast function, as illustrated by the characterization of new causative genes for OI and OI-related fragility syndromes. The coordinated role of the integral membrane protein BRIL and of the secreted protein PEDF in modulating bone mineralization as well as the function and cross-talk of the collagen-specific chaperones HSP47 and FKBP65 in collagen processing and secretion are discussed. We address the significance of WNT ligand, the importance of maintaining endoplasmic reticulum membrane potential and of regulating intramembrane proteolysis in osteoblast homeostasis. Moreover, we also examine the relevance of the cytoskeletal protein plastin-3 and of the nucleotidyltransferase FAM46A. Thanks to these advances, new targets for the development of novel therapies for currently incurable rare bone diseases have been and, likely, will be identified, supporting the important role of basic science for translational approaches.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chi-Wing Chow
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Ahmed HM, Kamel NM. The relation between serum levels of epidermal growth factor and necrotizing enterocolitis in preterm neonates. KOREAN JOURNAL OF PEDIATRICS 2019; 62:307-311. [PMID: 30999731 PMCID: PMC6702115 DOI: 10.3345/kjp.2018.07108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/14/2019] [Indexed: 11/27/2022]
Abstract
Purpose Necrotizing enterocolitis (NEC) is one of the most serious complications of prematurity. Many risk factors can contribute to the development of NEC. The epidermal growth factor (EGF) plays a major role in intestinal barrier function, increases intestinal enzyme activity, and improves nutrient transport. The aim of this study was to assess the role of epidermal growth factor in the development of NEC in preterm neonates. Methods In this study, 130 preterm neonates were included and divided into 3 groups, as follows: group 1, 40 preterm neonates with NEC; group 2, 50 preterm neonates with sepsis; and group 3, 40 healthy preterm neonates as controls. The NEC group was then subdivided into medical and surgical NEC subgroups. The serum EGF level was measured using enzyme-linked immunosorbent assay. Results Serum EGF levels (pg/dL) were significantly lower in the NEC group (median [interquartile range, IQR], 9.6 [2–14]) than in the sepsis (10.1 [8–14]) and control groups (11.2 [8–14], P<0.001), with no significant difference between the sepsis and control groups, and were positively correlated with gestational age (r=0.7, P<0.001). A binary logistic regression test revealed that low EGF levels and gestational ages could significantly predict the development of NEC. The receiver-operating characteristic curve for EGF showed an optimal cutoff value of 8 pg/mL, with 73.3% sensitivity, 98% specificity, and an area under the curve of 0.92. Conclusion The patients with NEC in this study had significantly lower serum EGF levels (P<0.001), which indicated that EGF could be a reliable marker of NEC in preterm neonates.
Collapse
Affiliation(s)
- Heba Mostafa Ahmed
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Nsreen Mostafa Kamel
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
37
|
Qiao H, Zhang Y, Lin W, Wang YF, Furdui CM, Jiang Q, Li X, Long T, Wang Y, Qin DN. Decreased expression of pigment epithelium-derived factor within the penile tissues contributes to erectile dysfunction in diabetic rats. Clin Sci (Lond) 2018; 132:2175-2188. [PMID: 30232174 DOI: 10.1042/cs20180192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023]
Abstract
Increased production of reactive oxygen species (ROS) and inflammation are major contributors to the development and progression of diabetes-associated erectile dysfunction (DMED). As an endogenous antioxidant and anti-inflammatory factor, the potential implication of pigment epithelium-derived factor (PEDF) in DMED has not been revealed. To assess the potential antioxidant and anti-inflammatory functions of PEDF in DMED, we first demonstrated that PEDF was significantly decreased at the levels of the mRNA and protein in the penis of diabetic rats compared with normal controls. To test the hypothesis that decreased the penile levels of PEDF are associated with oxidative stress and inflammation in DMED, an adenovirus expressing PEDF (Ad-PEDF) or the same titer of control virus (Ad-GFP) was intracavernously administered at 2 weeks after diabetic onset. After 6 weeks of treatment, we found that administration of Ad-PEDF could significantly increase erectile response to cavernosal nerve stimulation in the diabetic rats by restoring the endothelial NO synthase (eNOS), P-eNOS, and neuronal NO synthase (nNOS) protein levels to the standard levels represented in normal rats and by suppressing the levels of tumor necrosis factor-α (TNF-α) and oxidative stress. In conclusion, the present data indicated that the antioxidant and anti-inflammatory potential of PEDF plays important role in restoring erectile function by the inhibition of oxidative stress and TNF-α production.
Collapse
Affiliation(s)
- Hongjie Qiao
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, U.S.A
| | - Wenwen Lin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Qiuling Jiang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xiao Li
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ting Long
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yunguang Wang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
38
|
Gur S, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Advances in stem cell therapy for erectile dysfunction. Expert Opin Biol Ther 2018; 18:1137-1150. [PMID: 30301368 DOI: 10.1080/14712598.2018.1534955] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Stem cell (SC) application is a promising area of research in regenerative medicine, with the potential to treat, prevent, and cure disease. In recent years, the number of studies focusing on SCs for the treatment of erectile dysfunction (ED) and other sexual dysfunctions has increased significantly. AREAS COVERED This review includes critical ED targets and preclinical studies, including the use of SCs and animal models in diabetes, aging, cavernous nerve injury, and Peyronie's disease. A literature search was performed on PubMed for English articles. EXPERT OPINION Combination treatment offers better results than monotherapy to improve pathological changes in diabetic ED. Regenerative medicine is a promising approach for the maintenance of sexual health and erectile function later in life. Cavernous nerve regeneration and vascular recovery employing SC treatment may be focused on radical prostatectomy-induced ED. Notwithstanding, there are a number of hurdles to overcome before SC-based therapies for ED are considered in clinical settings. Paracrine action, not cellular differentiation, appears to be the principal mechanism of action underlying SC treatment of ED. Intracavernosal injection of a single SC type should be the choice protocol for future clinical trials.
Collapse
Affiliation(s)
- Serap Gur
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA.,b Department of Pharmacology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Asim B Abdel-Mageed
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Suresh C Sikka
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Wayne J G Hellstrom
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
39
|
Ma S, Wang S, Li M, Zhang Y, Zhu P. The effects of pigment epithelium-derived factor on atherosclerosis: putative mechanisms of the process. Lipids Health Dis 2018; 17:240. [PMID: 30326915 PMCID: PMC6192115 DOI: 10.1186/s12944-018-0889-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Atherosclerosis is believed to be the major cause of CVD, characterized by atherosclerotic lesion formation and plaque disruption. Although remarkable advances in understanding the mechanisms of atherosclerosis have been made, the application of these theories is still limited in the prevention and treatment of atherosclerosis. Therefore, novel and effective strategies to treat high-risk patients with atherosclerosis require further development. Pigment epithelium-derived factor (PEDF), a glycoprotein with anti-inflammatory, anti-oxidant, anti-angiogenic, anti-thrombotic and anti-tumorigenic properties, is of considerable interest in the prevention of atherosclerosis. Accumulating research has suggested that PEDF exerts beneficial effects on atherosclerotic lesions and CVD patients. Our group, along with colleagues, has demonstrated that PEDF may be associated with acute coronary syndrome (ACS), and that the polymorphisms of rs8075977 of PEDF are correlated with coronary artery disease (CAD). Moreover, we have explored the anti-atherosclerosis mechanisms of PEDF, showing that oxidized-low density lipoprotein (ox-LDL) reduced PEDF concentrations through the upregulation of reactive oxygen species (ROS), and that D-4F can protect endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF. Additionally, PEDF might alleviate endothelial injury by inhibiting the Wnt/β-catenin pathway. These data suggest that PEDF may be a novel therapeutic target for the treatment of atherosclerosis. In this review, we will summarize the role of PEDF in the development of atherosclerosis, focusing on endothelial dysfunction, inflammation, oxidative stress, angiogenesis and cell proliferation. We will also discuss its promising therapeutic implications for atherosclerosis.
Collapse
Affiliation(s)
- Shouyuan Ma
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuxia Wang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, 100853, China
| | - Man Li
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
40
|
Wong CY, Martinez J, Al-Salami H, Dass CR. Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem 2018; 410:6991-7006. [PMID: 30206665 DOI: 10.1007/s00216-018-1319-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Therapeutic proteins are administered subcutaneously because of their instability in the gastrointestinal tract. Current research suggests that polymeric-based nanoparticles, microparticles and liposomes are ideal nanocarriers to encapsulate proteins for disease management. In order to develop a successful drug delivery system, it is crucial to determine drug release profile and stability. However, the non-active excipients in polymeric formulations can influence the quantification of proteins in analytical techniques. This study investigated the effect of nine common polymers on quantification of bovine serum albumin (BSA) using RP-HPLC method. The technique offers advantages such as short analytical time, high accuracy and selectivity. In the meantime, the technique can be employed to separate proteins including BSA, insulin and pigment epithelium-derived factor (PEDF). Furthermore, the RP-HPLC method was applied to quantify the drug release pattern of a novel BSA-loaded nanoparticulate formulation in simulated gastric and intestinal fluids. The nanoparticles were formulated by natural polymer (chitosan) and oligonucleotide (Dz13Scr) using complex coacervation. The prepared particles were found to have small size (337.87 nm), low polydispersity index (0.338) and be positively charged (10.23 mV). The in vitro drug release patterns were characterised using the validated RP-HPLC method over 12 h. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia. .,Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
41
|
Nardi F, Fitchev P, Franco OE, Ivanisevic J, Scheibler A, Hayward SW, Brendler CB, Welte MA, Crawford SE. PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer-associated fibroblasts. J Cell Sci 2018; 131:jcs.213579. [PMID: 29792311 DOI: 10.1242/jcs.213579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Prostate tumors make metabolic adaptations to ensure adequate energy and amplify cell cycle regulators, such as centrosomes, to sustain their proliferative capacity. It is not known whether cancer-associated fibroblasts (CAFs) undergo metabolic re-programming. We postulated that CAFs augment lipid storage and amplify centrosomal or non-centrosomal microtubule-organizing centers (MTOCs) through a pigment epithelium-derived factor (PEDF)-dependent lipid-MTOC signaling axis. Primary human normal prostate fibroblasts (NFs) and CAFs were evaluated for lipid content, triacylglycerol-regulating proteins, MTOC number and distribution. CAFs were found to store more neutral lipids than NFs. Adipose triglyceride lipase (ATGL) and PEDF were strongly expressed in NFs, whereas CAFs had minimal to undetectable levels of PEDF or ATGL protein. At baseline, CAFs demonstrated MTOC amplification when compared to 1-2 perinuclear MTOCs consistently observed in NFs. Treatment with PEDF or blockade of lipogenesis suppressed lipid content and MTOC number. In summary, our data support that CAFs have acquired a tumor-like phenotype by re-programming lipid metabolism and amplifying MTOCs. Normalization of MTOCs by restoring PEDF or by blocking lipogenesis highlights a previously unrecognized plasticity in centrosomes, which is regulated through a new lipid-MTOC axis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Omar E Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Jelena Ivanisevic
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Adrian Scheibler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Simon W Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Charles B Brendler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| |
Collapse
|
42
|
Baxter-Holland M, Dass CR. Pigment epithelium-derived factor: a key mediator in bone homeostasis and potential for bone regenerative therapy. J Pharm Pharmacol 2018; 70:1127-1138. [DOI: 10.1111/jphp.12942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Abstract
Objectives
Pigment epithelium-derived factor (PEDF), a multifunctional endogenous glycoprotein, has a very wide range of biological actions, notably in bone homeostasis. The question has been raised regarding the place of PEDF in the treatment of bone disorders and osteosarcoma, and its potential for tumour growth suppression.
Methods
The PubMed database was used to compile this review.
Key findings
Pigment epithelium-derived factor's actions in osteoid tissues include promoting mesenchymal stem cell commitment to osteoblasts, increasing matrix mineralisation, and promoting osteoblast proliferation. It shows potential to improve therapeutic outcomes in treatment of multiple cancer types and regrowth of bone after trauma or resection in animal studies. PEDF may possibly have a reduced adverse effect profile compared with current osteo-regenerative treatments; however, there is currently very limited evidence regarding the safety or efficacy in human models.
Summary
Pigment epithelium-derived factor is very active within the body, particularly in osseous tissue, and its physiological actions give it potential for treatment of both bone disorders and multiple tumour types. Further research is needed to ascertain the adverse effects and safety profile of PEDF as a therapeutic agent.
Collapse
Affiliation(s)
- Mia Baxter-Holland
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
43
|
Fiorino S, Di Saverio S, Leandri P, Tura A, Birtolo C, Silingardi M, de Biase D, Avisar E. The role of matricellular proteins and tissue stiffness in breast cancer: a systematic review. Future Oncol 2018; 14:1601-1627. [PMID: 29939077 DOI: 10.2217/fon-2017-0510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Malignancies consist not only of cancerous and nonmalignant cells, but also of additional elements, as extracellular matrix. The aim of this review is to summarize meta-analyses, describing breast tissue stiffness and risk of breast carcinoma (BC) assessing the potential relationship between matricellular proteins (MPs) and survival. A systematic computer-based search of published articles, according to PRISMA statement, was conducted through Ovid interface. Mammographic density and tissue stiffness are associated with the risk of BC development, suggesting that MPs may influence BC prognosis. No definitive conclusions are available and additional researches are required to definitively clarify the role of each MP, mammographic density and stiffness in BC development and the mechanisms involved in the onset of this malignancy.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine 'C' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Salomone Di Saverio
- Cambridge Colorectal Unit, Box 201, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Paolo Leandri
- Internal Medicine 'C' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Chiara Birtolo
- Geriatric Unit, Azienda USL-Maggiore Hospital, Largo Nigrisoli 3, Bologna, Italy
| | - Mauro Silingardi
- Internal Medicine 'A' Unit, Maggiore Hospital, Local Health Unit of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy & Biotechnology, Molecular Pathology Unit, University of Bologna, Bologna, Italy
| | - Eli Avisar
- Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
44
|
Lorés-Motta L, de Jong EK, den Hollander AI. Exploring the Use of Molecular Biomarkers for Precision Medicine in Age-Related Macular Degeneration. Mol Diagn Ther 2018; 22:315-343. [PMID: 29700787 PMCID: PMC5954014 DOI: 10.1007/s40291-018-0332-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to improve patient care by adjusting medication to each patient's individual needs. Age-related macular degeneration (AMD) is a heterogeneous eye disease in which several pathways are involved, and the risk factors driving the disease differ per patient. As a consequence, precision medicine holds promise for improved management of this disease, which is nowadays a main cause of vision loss in the elderly. In this review, we provide an overview of the studies that have evaluated the use of molecular biomarkers to predict response to treatment in AMD. We predominantly focus on genetic biomarkers, but also include studies that examined circulating or eye fluid biomarkers in treatment response. This involves studies on treatment response to dietary supplements, response to anti-vascular endothelial growth factor, and response to complement inhibitors. In addition, we highlight promising new therapies that have been or are currently being tested in clinical trials and discuss the molecular studies that can help identify the most suitable patients for these upcoming therapeutic approaches.
Collapse
Affiliation(s)
- Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands.
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Zhu L, Xie J, Liu Z, Huang Z, Huang M, Yin H, Qi W, Yang Z, Zhou T, Gao G, Zhang J, Yang X. Pigment epithelium-derived factor/vascular endothelial growth factor ratio plays a crucial role in the spontaneous regression of infant hemangioma and in the therapeutic effect of propranolol. Cancer Sci 2018; 109:1981-1994. [PMID: 29664206 PMCID: PMC5989849 DOI: 10.1111/cas.13611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Infantile hemangioma (IH) is a benign tumor that is formed by aberrant angiogenesis and that undergoes spontaneous regression over time. Propranolol, the first-line therapy for IH, inhibits angiogenesis by downregulating activation of the vascular endothelial growth factor (VEGF) pathway, which is hyperactivated in IH. However, this treatment is reportedly ineffective for 10% of tumors, and 19% of patients relapse after propranolol treatment. Both pro-angiogenic and anti-angiogenic factors regulate angiogenesis, and pigment epithelium-derived factor (PEDF) is the most effective endogenous anti-angiogenic factor. PEDF/VEGF ratio controls many angiogenic processes, but its role in IH and the relationship between this ratio and propranolol remain unknown. Results of the present study showed that the PEDF/VEGF ratio increased during the involuting phase of IH compared with the proliferating phase. Similarly, in hemangioma-derived endothelial cells (HemEC), which were isolated with magnetic beads, increasing the PEDF/VEGF ratio inhibited proliferation, migration, and tube formation and promoted apoptosis. Mechanistically, the VEGF receptors (VEGFR1 and VEGFR2) and PEDF receptor (laminin receptor, LR) were highly expressed in both IH tissues and HemEC, and PEDF inhibited HemEC function by binding to LR. Interestingly, we found that propranolol increased the PEDF/VEGF ratio but did so by lowering VEGF expression rather than by upregulating PEDF as expected. Furthermore, the combination of PEDF and propranolol had a more suppressive effect on HemEC. Consequently, our results suggested that the PEDF/VEGF ratio played a pivotal role in the spontaneous regression of IH and that the combination of PEDF and propranolol might be a promising treatment strategy for propranolol-resistant IH.
Collapse
Affiliation(s)
- Liuqing Zhu
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenyin Liu
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhijian Huang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mao Huang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haofan Yin
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China.,China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jing Zhang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China.,Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
46
|
Jin Z, Burrage LC, Jiang MM, Lee YC, Bertin T, Chen Y, Tran A, Gibbs RA, Jhangiani S, Sutton VR, Rauch F, Lee B, Jain M. Whole-Exome Sequencing Identifies an Intronic Cryptic Splice Site in SERPINF1 Causing Osteogenesis Imperfecta Type VI. JBMR Plus 2018; 2:235-239. [PMID: 30283904 PMCID: PMC6124173 DOI: 10.1002/jbm4.10044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
The heritable disorder osteogenesis imperfecta (OI) is characterized by bone fragility and low bone mass. OI type VI is an autosomal recessive form of the disorder with moderate to severe bone fragility. OI type VI is caused by mutations in the serpin peptidase inhibitor, clade F, member 1 (SERPINF1), the gene coding for pigment epithelium‐derived factor (PEDF). Here, we report a patient with OI type VI caused by a novel homozygous intronic variant in SERPINF1 identified by whole‐exome sequencing (WES). The mutation was not identified using a low bone mass gene panel based on next‐generation sequencing. This variant creates a novel consensus splice donor site (AGGC to AGGT) in intron 4. Analysis of cDNA generated from fibroblasts revealed retention of a 32‐bp intronic fragment between exons 4 and 5 in the cDNA, a result of alternative splicing from the novel splice‐donor site. As a result, the aberrant insertion of this intronic fragment generated a frameshift pathogenic variant and induced nonsense‐mediated decay. Furthermore, gene expression by quantitative PCR showed SERPINF1 expression was dramatically reduced in patient fibroblasts, and PEDF level was also significantly reduced in the patient's plasma. In conclusion, we report a novel homozygous variant that generates an alternative splice‐donor in intron 4 of SERPINF1 which gives rise to severe bone fragility. The work also demonstrates clinical utility of WES analysis, and consideration of noncoding variants, in the diagnostic setting of rare bone diseases. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zixue Jin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA.,Texas Children's Hospital Houston TX USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Yi-Chien Lee
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Terry Bertin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Alyssa Tran
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine Houston TX USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine Houston TX USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Frank Rauch
- Shriners Hospital for Children and McGill University Montreal Canada
| | - Brendan Lee
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| | - Mahim Jain
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA.,Kennedy Krieger Institute Baltimore MD USA
| |
Collapse
|
47
|
RNA-Seq identifies genes whose proteins are transformative in the differentiation of cytotrophoblast to syncytiotrophoblast, in human primary villous and BeWo trophoblasts. Sci Rep 2018; 8:5142. [PMID: 29572450 PMCID: PMC5865118 DOI: 10.1038/s41598-018-23379-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
The fusion of villous cytotrophoblasts into the multinucleated syncytiotrophoblast is critical for the essential functions of the mammalian placenta. Using RNA-Seq gene expression and quantitative protein expression, we identified genes and their cognate proteins which are coordinately up- or down-regulated in two cellular models of cytotrophoblast to syncytiotrophoblast development, human primary villous and human BeWo cytotrophoblasts. These include hCGβ, TREML2, PAM, CRIP2, INHA, FLRG, SERPINF1, C17orf96, KRT17 and SAA1. These findings provide avenues for further understanding the mechanisms underlying mammalian placental synctiotrophoblast development.
Collapse
|
48
|
Casas BS, Vitória G, do Costa MN, Madeiro da Costa R, Trindade P, Maciel R, Navarrete N, Rehen SK, Palma V. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry 2018; 8:48. [PMID: 29467462 PMCID: PMC5821759 DOI: 10.1038/s41398-018-0095-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.
Collapse
Affiliation(s)
- Bárbara S Casas
- Laboratory of Stem Cells and Development, Universidad de Chile, Santiago, Chile
| | - Gabriela Vitória
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Marcelo N do Costa
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pablo Trindade
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Renata Maciel
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Nelson Navarrete
- Universidad de Chile Clinical Hospital, Región Metropolitana, Chile
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Verónica Palma
- Laboratory of Stem Cells and Development, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
49
|
Yang Q, Chen X, Zheng T, Han D, Zhang H, Shi Y, Bian J, Sun X, Xia K, Liang X, Liu G, Zhang Y, Deng C. Transplantation of Human Urine-Derived Stem Cells Transfected with Pigment Epithelium-Derived Factor to Protect Erectile Function in a Rat Model of Cavernous Nerve Injury. Cell Transplant 2018; 25:1987-2001. [PMID: 27075964 DOI: 10.3727/096368916x691448] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate whether intracavernous injection of urine-derived stem cells (USCs) or USCs genetically modified with pigment epithelium-derived factor (PEDF) could protect the erectile function and cavernous structure in a bilateral cavernous nerve injury-induced erectile dysfunction (CNIED) rat model. USCs were cultured from the urine of six healthy male donors. Seventy-five rats were randomly divided into five groups ( n = 15 per group): sham, bilateral cavernous nerve (CN) crush injury (BCNI), USC, USCGFP+, and USCGFP/PEDF+ groups. The sham group received only laparotomy without CN crush injury and intracavernous injection with phosphate-buffered saline (PBS). All of the other groups were subjected to BCNI and intracavernous injection with PBS, USCs, USCsGFP+, or USCsGFP/PEDF+, respectively. The total intracavernous pressure (ICP) and the ratio of ICP to mean arterial pressure (ICP/MAP) were recorded. The penile dorsal nerves, the endothelium, and the smooth muscle were assessed within the penile tissue. The USC and USCGFP/PEDF+ groups displayed more significantly enhanced ICP and ICP/MAP ratio ( p < 0.05) 28 days after cell transplantation. Immunohistochemistry (IHC) and Western blot analysis demonstrated that the protection of erectile function and the cavernous structure by USCsGFP/PEDF+ was associated with an increased number of nNOS-positive fibers within the penile dorsal nerves, improved expression of endothelial markers (CD31 and eNOS) and a smooth muscle marker (smoothelin), an enhanced smooth muscle to collagen ratio, decreased expression of transforming growth factor-β1 (TGF-β1), and decreased cell apoptosis in the cavernous tissue. The paracrine effect of USCs and USCsGFP/PEDF+ prevented the destruction of erectile function and the cavernous structure in the CNIED rat model by nerve protection, thereby improving endothelial cell function, increasing the smooth muscle content, and decreasing fibrosis and cell apoptosis in the cavernous tissue.
Collapse
Affiliation(s)
- Qiyun Yang
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xin Chen
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Tao Zheng
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Dayu Han
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Heng Zhang
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanan Shi
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jun Bian
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China
| | - Xiangzhou Sun
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Kai Xia
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Guihua Liu
- Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Chunhua Deng
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
50
|
Ding DC, Wen YT, Tsai RK. Pigment epithelium-derived factor from ARPE19 promotes proliferation and inhibits apoptosis of human umbilical mesenchymal stem cells in serum-free medium. Exp Mol Med 2017; 49:e411. [PMID: 29244789 PMCID: PMC5750476 DOI: 10.1038/emm.2017.219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Clinical expansion of mesenchymal stem cells (MSCs) is hampered by the lack of knowledge regarding how to prevent MSC apoptosis and promote their proliferation in serum-free medium. Our in vitro studies demonstrated that human umbilical cord MSCs (HUCMSCs) underwent apoptosis in the serum-free medium. When HUCMSCs were co-cultured with retinal pigment epithelial cells (ARPE19), however, HUCMSCs exhibited normal growth and morphology in serum-free medium. Their colony formation was promoted by the conditioned medium (CM) of ARPE19 cells on Matrigel. Proteomics analysis showed that pigment epithelium-derived factor (PEDF) was one of the most abundant extracellular proteins in the ARPE19 CM, whereas enzyme-linked immunosorbent assay confirmed that large amounts of PEDF was secreted from ARPE19 cells. Adding anti-PEDF-blocking antibodies to the co-culture of HUCMSCs with ARPE19 cells increased apoptosis of HUCMSCs. Conversely, treatment with PEDF significantly reduced apoptosis and increased proliferation of HUCMSCs in serum-free medium. PEDF was further demonstrated to exert this anti-apoptotic effect by inhibiting P53 expression to suppress caspase activation. In vivo studies demonstrated that co-injection of HUCMSCs with ARPE19 cells in immunocompromised NOD-SCID mice also increased survival and decreased apoptosis of HUCMSCs. PEDF also showed no negative effect on the mesoderm differentiation capability of HUCMSCs. In conclusion, this study is the first to demonstrate that PEDF promotes HUCMSC proliferation and protects them from apoptosis by reducing p53 expression in the serum-free medium. This study provides crucial information for clinical-scale expansion of HUCMSCs.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Institute of Eye Research, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|