1
|
Zou J, Du C, Liu S, Zhao P, Gao S, Chen B, Wu X, Huang W, Zhu Z, Liao J. Notch1 signaling regulates Sox9 and VEGFA expression and governs BMP2-induced endochondral ossification of mesenchymal stem cells. Genes Dis 2025; 12:101336. [PMID: 40083323 PMCID: PMC11905894 DOI: 10.1016/j.gendis.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 03/16/2025] Open
Abstract
Although bone morphogenetic protein 2 (BMP2) can induce chondrogenic differentiation of mesenchymal stem cells (MSCs), its induction of endochondral ossification limits the application of BMP2-based cartilage regeneration. Here, we clarified the mechanisms of BMP2-induced endochondral ossification of MSCs. In vitro and in vivo chondrogenic, osteogenic, and angiogenic differentiation models of MSCs were constructed. The expression of target genes was identified at both protein and mRNA levels. RNA sequencing, molecular docking, co-immunoprecipitation, and chromatin immunoprecipitation followed by sequencing were applied to investigate the molecular mechanisms. We found that BMP2 up-regulated the expression of Notch receptors and ligands in MSCs. Notch1 signaling activation was related to inhibition of chondrogenic differentiation, promotion of osteogenic and angiogenic differentiation. In vivo ectopic stem cell implantation identified that Notch1 signaling activation blocked BMP2-induced chondrogenesis and facilitated endochondral ossification of MSCs. Mechanistically, we elucidated Notch1 intracellular domain (NICD1)-RBPjk complex binding to SRY-box transcription factor 9 (Sox9) and vascular endothelial growth factor A (VEGFA) promoters to decrease Sox9 expression and increase VEGFA expression. These findings suggest that Notch1 signaling can regulate BMP2-induced endochondral ossification by promoting RBPjk-mediated Sox9 inactivation and VEGFA expression. It is conceivable that targeting Notch1 signaling mediated endochondral ossification would benefit BMP2-based cartilage regeneration.
Collapse
Affiliation(s)
- Jing Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shengqiang Gao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bowen Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangdong Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Health Commission Key Laboratory of Motor System Regenerative and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Li ZP, Li H, Ruan YH, Wang P, Zhu MT, Fu WP, Wang RB, Tang XD, Zhang Q, Li SL, Yin H, Li CJ, Tian YG, Han RN, Wang YB, Zhang CJ. Stem cell therapy for intervertebral disc degeneration: Clinical progress with exosomes and gene vectors. World J Stem Cells 2025; 17:102945. [PMID: 40308883 PMCID: PMC12038459 DOI: 10.4252/wjsc.v17.i4.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis, extracellular matrix imbalance, and annulus fibrosus rupture. These pathological changes result in disc height loss and functional decline, potentially leading to disc herniation. This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies, with a particular focus on emerging technologies such as exosomes and gene vector systems. Through mechanisms such as differentiation, paracrine effects, and immunomodulation, stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis. Despite recent advancements, clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection. By analyzing recent preclinical and clinical findings, this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.
Collapse
Affiliation(s)
- Zhi-Peng Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Han Li
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua 322100, Zhejiang Province, China
| | - Yu-Hua Ruan
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Peng Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Meng-Ting Zhu
- Department of Neurology, Union Medical College Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Wei-Ping Fu
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Bo Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Dong Tang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Sen-Li Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - He Yin
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Cheng-Jin Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Gong Tian
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Ning Han
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yao-Bin Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chang-Jiang Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
3
|
Peters H, Potla P, Rockel JS, Tockovska T, Pastrello C, Jurisica I, Delos Santos K, Vohra S, Fine N, Lively S, Perry K, Looby N, Li SH, Chandran V, Hueniken K, Kaur P, Perruccio AV, Mahomed NN, Rampersaud R, Syed K, Gracey E, Krawetz R, Buechler MB, Gandhi R, Kapoor M. Cell and transcriptomic diversity of infrapatellar fat pad during knee osteoarthritis. Ann Rheum Dis 2025; 84:351-367. [PMID: 39919907 DOI: 10.1136/ard-2024-225928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES In this study, we employ a multiomic approach to identify major cell types and subsets, and their transcriptomic profiles within the infrapatellar fat pad (IFP), and to determine differences in the IFP based on knee osteoarthritis (KOA), sex and obesity status. METHODS Single-nucleus RNA sequencing of 82 924 nuclei from 21 IFPs (n=6 healthy control and n=15 KOA donors), spatial transcriptomics and bioinformatic analyses were used to identify contributions of the IFP to KOA. We mapped cell subclusters from other white adipose tissues using publicly available literature. The diversity of fibroblasts within the IFP was investigated by bioinformatic analyses, comparing by KOA, sex and obesity status. Metabolomics was used to further explore differences in fibroblasts by obesity status. RESULTS We identified multiple subclusters of fibroblasts, macrophages, adipocytes and endothelial cells with unique transcriptomic profiles. Using spatial transcriptomics, we resolved distributions of cell types and their transcriptomic profiles and computationally identified putative cell-cell communication networks. Furthermore, we identified transcriptomic differences in fibroblasts from KOA versus healthy control donor IFPs, female versus male KOA-IFPs and obese versus normal body mass index (BMI) KOA-IFPs. Finally, using metabolomics, we defined differences in metabolite levels in supernatants of naïve, profibrotic stimuli-treated and proinflammatory stimuli-treated fibroblasts from obese compared to normal BMI KOA-IFPs. CONCLUSIONS Overall, by employing a multiomic approach, this study provides the first comprehensive map of the cellular and transcriptomic diversity of human IFP and identifies IFP fibroblasts as key cells contributing to transcriptomic and metabolic differences related to KOA disease, sex or obesity.
Collapse
Affiliation(s)
- Hayley Peters
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pratibha Potla
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Teodora Tockovska
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Bioinformatics and HPC Core, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Keemo Delos Santos
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shabana Vohra
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Noah Fine
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kim Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nikita Looby
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Sheng Han Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Vinod Chandran
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paramvir Kaur
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nizar N Mahomed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Khalid Syed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium; Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Matthew B Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Zhao J, Sormani L, Jacquelin S, Li H, Styke C, Zhou C, Beesley J, Oon L, Kaur S, Sim SL, Wong HY, Dight J, Hashemi G, Shafiee A, Roy E, Patel J, Khosrotehrani K. Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium. Angiogenesis 2024; 27:545-560. [PMID: 38733496 PMCID: PMC11303482 DOI: 10.1007/s10456-024-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.
Collapse
Affiliation(s)
- Jilai Zhao
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Laura Sormani
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Sebastien Jacquelin
- Mater Research, Translational Research Institute, Macrophage Biology Laboratory, Brisbane, QLD, 4102, Australia
| | - Haiming Li
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Cassandra Styke
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Chenhao Zhou
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Jonathan Beesley
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Linus Oon
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Simranpreet Kaur
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
- Mater Research, Translational Research Institute, Macrophage Biology Laboratory, Brisbane, QLD, 4102, Australia
| | - Seen-Ling Sim
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Ho Yi Wong
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - James Dight
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Ghazaleh Hashemi
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Abbas Shafiee
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Edwige Roy
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Jatin Patel
- Centre for Ageing Research Program, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
6
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
7
|
Ramzan F, Khalid S, Ekram S, Salim A, Frazier T, Begum S, Mohiuddin OA, Khan I. 3D bio scaffold support osteogenic differentiation of mesenchymal stem cells. Cell Biol Int 2024; 48:594-609. [PMID: 38321826 DOI: 10.1002/cbin.12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.
Collapse
Affiliation(s)
- Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Sumreen Begum
- Stem Cell Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Omair A Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Koparir A, Lekszas C, Keseroglu K, Rose T, Rappl L, Rad A, Maroofian R, Narendran N, Hasanzadeh A, Karimiani EG, Boschann F, Kornak U, Klopocki E, Özbudak EM, Vona B, Haaf T, Liedtke D. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Hum Genomics 2024; 18:23. [PMID: 38448978 PMCID: PMC10916241 DOI: 10.1186/s40246-024-00593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND/OBJECTIVES Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.
Collapse
Affiliation(s)
- Asuman Koparir
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Caroline Lekszas
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thalia Rose
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Lena Rappl
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Aboulfazl Rad
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nakul Narendran
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atefeh Hasanzadeh
- Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran
| | | | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Niu J, Liu Y, Wang J, Wang H, Zhao Y, Zhang M. Thrombospondin-2 acts as a critical regulator of cartilage regeneration: A review. Medicine (Baltimore) 2023; 102:e33651. [PMID: 37115081 PMCID: PMC10145989 DOI: 10.1097/md.0000000000033651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The degeneration of articular cartilage tissue is the most common cause of articular cartilage diseases such as osteoarthritis. There are limitations in chondrocyte self-renewal and conventional treatments. During cartilage regeneration and repair, growth factors are typically used to induce cartilage differentiation in stem cells. The role of thrombospondin-2 in cartilage formation has received much attention in recent years. This paper reviews the role of thrombospondin-2 in cartilage regeneration and the important role it plays in protecting cartilage from damage caused by inflammation or trauma and in the regenerative repair of cartilage by binding to different receptors and activating different intracellular signaling pathways. These studies provide new ideas for cartilage repair in clinical settings.
Collapse
Affiliation(s)
- Jing Niu
- The College of Life Sciences and Medicine, Northwest University, Xi’an, P. R. China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Yanli Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Junjun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Hui Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
- Department of Anesthesiology and Perioperative Medicine, Xi’an People’s Hospital (Xi’an Fourth Hospital), Northwest University, Xi’an, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| |
Collapse
|
11
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
12
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
13
|
Ahi EP, Richter F, Sefc KM. Gene expression patterns associated with caudal fin shape in the cichlid Lamprologus tigripictilis. HYDROBIOLOGIA 2022; 850:2257-2273. [PMID: 37325486 PMCID: PMC10261199 DOI: 10.1007/s10750-022-05068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Variation in fin shape is one of the most prominent features of morphological diversity among fish. Regulation of fin growth has mainly been studied in zebrafish, and it is not clear whether the molecular mechanisms underlying shape variation are equally diverse or rather conserved across species. In the present study, expression levels of 37 candidate genes were tested for association with fin shape in the cichlid fish Lamprologus tigripictilis. The tested genes included members of a fin shape-associated gene regulatory network identified in a previous study and novel candidates selected within this study. Using both intact and regenerating fin tissue, we tested for expression differences between the elongated and the short regions of the spade-shaped caudal fin and identified 20 genes and transcription factors (including angptl5, cd63, csrp1a, cx43, esco2, gbf1, and rbpj), whose expression patterns were consistent with a role in fin growth. Collated with available gene expression data of two other cichlid species, our study not only highlights several genes that were correlated with fin growth in all three species (e.g., angptl5, cd63, cx43, and mmp9), but also reveals species-specific gene expression and correlation patterns, which indicate considerable divergence in the regulatory mechanisms of fin growth across cichlids. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-022-05068-4.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Florian Richter
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
14
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
15
|
Jiang H, Bian W, Sui Y, Li H, Zhao H, Wang W, Li X. FBXO42 facilitates Notch signaling activation and global chromatin relaxation by promoting K63-linked polyubiquitination of RBPJ. SCIENCE ADVANCES 2022; 8:eabq4831. [PMID: 36129980 PMCID: PMC9491713 DOI: 10.1126/sciadv.abq4831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
Dysregulation of the Notch-RBPJ (recombination signal-binding protein of immunoglobulin kappa J region) signaling pathway has been found associated with various human diseases including cancers; however, precisely how this key signaling pathway is fine-tuned via its interactors and modifications is still largely unknown. In this study, using a proteomic approach, we identified F-box only protein 42 (FBXO42) as a previously unidentified RBPJ interactor. FBXO42 promotes RBPJ polyubiquitination on lysine-175 via lysine-63 linkage, which enhances the association of RBPJ with chromatin remodeling complexes and induces a global chromatin relaxation. Genetically depleting FBXO42 or pharmacologically targeting its E3 ligase activity attenuates the Notch signaling-related leukemia development in vivo. Together, our findings not only revealed FBXO42 as a critical regulator of the Notch pathway by modulating RBPJ-dependent global chromatin landscape changes but also provided insights into the therapeutic intervention of the Notch pathway for leukemia treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Weixiang Bian
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Yue Sui
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Huanle Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Han Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xu Li
- Fudan University, Shanghai 310018, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
16
|
The Involvement of Neutrophils in the Pathophysiology and Treatment of Osteoarthritis. Biomedicines 2022; 10:biomedicines10071604. [PMID: 35884909 PMCID: PMC9313259 DOI: 10.3390/biomedicines10071604] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disability that significantly impairs quality of life. OA is one of the most prevalent joint pathologies in the world, characterized by joint pain and stiffness due to the degeneration of articular cartilage and the remodeling of subchondral bone. OA pathogenesis is unique in that it involves simultaneous reparative and degradative mechanisms. Low-grade inflammation as opposed to high-grade allows for this coexistence. Previously, macrophages and T cells have been identified as playing major roles in the inflammation and destruction of OA joints, but recent studies have demonstrated that neutrophils also contribute to the pathogenesis. Neutrophils are the first immune cells to enter the synovium after joint injury, and neutrophilic activity is indispensably a requisite for the progression of OA. Neutrophils act through multiple mechanisms including tissue degeneration via neutrophil elastase (NE), osteophyte development, and the release of inflammatory cytokines and chemokines. As the actions of neutrophils in OA are discovered, the potential for novel therapeutic targets as well as diagnostic methods are revealed. The use of chondrogenic progenitor cells (CPCs), microRNAs, and exosomes are among the newest therapeutic advances in OA treatment, and this review reveals how they can be used to mitigate destructive neutrophil activity.
Collapse
|
17
|
Yang X, Tian S, Fan L, Niu R, Yan M, Chen S, Zheng M, Zhang S. Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell Int 2022; 22:169. [PMID: 35488254 PMCID: PMC9052535 DOI: 10.1186/s12935-022-02598-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Chondrogenesis is the formation of chondrocytes and cartilage tissues and starts with mesenchymal stem cell (MSC) recruitment and migration, condensation of progenitors, chondrocyte differentiation, and maturation. The chondrogenic differentiation of MSCs depends on co-regulation of many exogenous and endogenous factors including specific microenvironmental signals, non-coding RNAs, physical factors existed in culture condition, etc. Cancer stem cells (CSCs) exhibit self-renewal capacity, pluripotency and cellular plasticity, which have the potential to differentiate into post-mitotic and benign cells. Accumulating evidence has shown that CSCs can be induced to differentiate into various benign cells including adipocytes, fibrocytes, osteoblast, and so on. Retinoic acid has been widely used in the treatment of acute promyelocytic leukemia. Previous study confirmed that polyploid giant cancer cells, a type of cancer stem-like cells, could differentiate into adipocytes, osteocytes, and chondrocytes. In this review, we will summarize signaling pathways and cytokines in chondrogenic differentiation of MSCs. Understanding the molecular mechanism of chondrogenic differentiation of CSCs and cancer cells may provide new strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Linlin Fan
- Department of Pathology, Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Rui Niu
- Department of Pathology, Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Man Yan
- Department of Pathology, Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
18
|
Moqbel SAA, Zeng R, Ma D, Xu L, Lin C, He Y, Ma C, Xu K, Ran J, Jiang L, Wu L. The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway. Stem Cell Res Ther 2022; 13:127. [PMID: 35337368 PMCID: PMC8951683 DOI: 10.1186/s13287-022-02758-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Osteoarthritis (OA) is a debilitating disease that inflicts intractable pain, a major problem that humanity faces, especially in aging populations. Stem cells have been used in the treatment of many chronic diseases, including OA. Cartilage progenitor/stem cells (CPSCs) are a type of stem cells with the ability to self- renew and differentiate. They hold a promising future for the understanding of the progression of OA and for its treatment. Previous studies have reported the relationship between mitochondrial dynamics and mesenchymal stem cell (MSC) proliferation, differentiation and aging. Mitochondrial dynamic and morphology change during stem cell differentiation. Methods This study was performed to access the relationship between mitochondrial dynamics and chondrogenic differentiation of CPSCs. Mitochondrial fusion and fission levels were measured during the chondrogenic differentiation process of CPSCs. After that, we used mitochondrial fusion promoter to induce fusion in CPSCs and then the chondrogenic markers were measured. Transmission electron microscopy (TEM) and confocal microscopy were used to capture the mass and fusion status of mitochondria. Lentiviruses were used to detect the role of mitofusin 2 (Mfn2) in CPSC chondrogenic differentiation. In vivo, Mfn2 was over-expressed in sheets of rat CPSCs, which were then injected intra-articularly into the knees of rats. Results Mitochondrial fusion markers were upregulated during the chondrogenic induction process of CPSCs. The mass of mitochondria was higher in differentiated CPSC, and the fusion status was obvious relative to un-differentiated CPSC. Chondrogenesis of CPSCs was upregulated with the induction by mitochondrial fusion promoter. Mfn2 over-expression significantly increased chondrocyte-specific gene expression and reversed OA through NOTCH2 signal pathway. Conclusions Our study demonstrated that the mitochondrial fusion promotes chondrogenesis differentiation of CPSCs. Mfn2 accelerates the chondrogenesis differentiation of CPSCs through Notch2. In vivo, Mfn2-OE in sheets of rCPSCs ameliorated OA in the rat model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02758-7.
Collapse
Affiliation(s)
- Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rong Zeng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Langhai Xu
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310000, Zhejiang Province, People's Republic of China. .,Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
19
|
Xu C, Dinh VV, Kruse K, Jeong HW, Watson EC, Adams S, Berkenfeld F, Stehling M, Rasouli SJ, Fan R, Chen R, Bedzhov I, Chen Q, Kato K, Pitulescu ME, Adams RH. Induction of osteogenesis by bone-targeted Notch activation. eLife 2022; 11:60183. [PMID: 35119364 PMCID: PMC8880996 DOI: 10.7554/elife.60183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Declining bone mass is associated with aging and osteoporosis, a disease characterized by progressive weakening of the skeleton and increased fracture incidence. Growth and lifelong homeostasis of bone rely on interactions between different cell types including vascular cells and mesenchymal stromal cells (MSCs). As these interactions involve Notch signaling, we have explored whether treatment with secreted Notch ligand proteins can enhance osteogenesis in adult mice. We show that a bone-targeting, high affinity version of the ligand Delta-like 4, termed Dll4(E12), induces bone formation in male mice without causing adverse effects in other organs, which are known to rely on intact Notch signaling. Due to lower bone surface and thereby reduced retention of Dll4(E12), the same approach failed to promote osteogenesis in female and ovariectomized mice but strongly enhanced trabecular bone formation in combination with parathyroid hormone. Single cell analysis of stromal cells indicates that Dll4(E12) primarily acts on MSCs and has comparably minor effects on osteoblasts, endothelial cells, or chondrocytes. We propose that activation of Notch signaling by bone-targeted fusion proteins might be therapeutically useful and can avoid detrimental effects in Notch-dependent processes in other organs.
Collapse
Affiliation(s)
- Cong Xu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Van Vuong Dinh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Emma C Watson
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Frank Berkenfeld
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Seyed Javad Rasouli
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Qi Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mara Elena Pitulescu
- Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
20
|
Chen H, Tan XN, Hu S, Liu RQ, Peng LH, Li YM, Wu P. Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front Cell Dev Biol 2021; 9:664168. [PMID: 34124045 PMCID: PMC8194090 DOI: 10.3389/fcell.2021.664168] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.
Collapse
Affiliation(s)
- Hui Chen
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Xiao-Ning Tan
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Shi Hu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China.,Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ren-Qin Liu
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Li-Hong Peng
- School of Computer, Hunan University of Technology, Zhuzhou, China
| | - Yong-Min Li
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Ping Wu
- Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine, Changsha, China.,The Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
21
|
Zhao J, Patel J, Kaur S, Sim SL, Wong HY, Styke C, Hogan I, Kahler S, Hamilton H, Wadlow R, Dight J, Hashemi G, Sormani L, Roy E, Yoder MC, Francois M, Khosrotehrani K. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat Commun 2021; 12:2564. [PMID: 33963183 PMCID: PMC8105340 DOI: 10.1038/s41467-021-22717-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Endothelial to mesenchymal transition (EndMT) is a leading cause of fibrosis and disease, however its mechanism has yet to be elucidated. The endothelium possesses a profound regenerative capacity to adapt and reorganize that is attributed to a population of vessel-resident endovascular progenitors (EVP) governing an endothelial hierarchy. Here, using fate analysis, we show that two transcription factors SOX9 and RBPJ specifically affect the murine EVP numbers and regulate lineage specification. Conditional knock-out of Sox9 from the vasculature (Sox9fl/fl/Cdh5-CreERRosaYFP) depletes EVP while enhancing Rbpj expression and canonical Notch signalling. Additionally, skin wound analysis from Sox9 conditional knock-out mice demonstrates a significant reduction in pathological EndMT resulting in reduced scar area. The converse is observed with Rbpj conditionally knocked-out from the murine vasculature (Rbpjfl/fl/Cdh5-CreER RosaYFP) or inhibition of Notch signaling in human endothelial colony forming cells, resulting in enhanced Sox9 and EndMT related gene (Snail, Slug, Twist1, Twist2, TGF-β) expression. Similarly, increased endothelial hedgehog signaling (Ptch1fl/fl/Cdh5-CreER RosaYFP), that upregulates the expression of Sox9 in cells undergoing pathological EndMT, also results in excess fibrosis. Endothelial cells transitioning to a mesenchymal fate express increased Sox9, reduced Rbpj and enhanced EndMT. Importantly, using topical administration of siRNA against Sox9 on skin wounds can substantially reduce scar area by blocking pathological EndMT. Overall, here we report distinct fates of EVPs according to the relative expression of Rbpj or Notch signalling and Sox9, highlighting their potential plasticity and opening exciting avenues for more effective therapies in fibrotic diseases. How endothelial to mesenchymal transition is regulated in endovascular progenitors is unclear. Here, the authors show that blocking Sox9 expression in murine endovascular progenitors regulates this transition on skin wounding, affecting the size of scarring, with changes in Rbpj having the opposite effect.
Collapse
Affiliation(s)
- Jilai Zhao
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jatin Patel
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Centre for Ageing Research Program, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Simranpreet Kaur
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Seen-Ling Sim
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ho Yi Wong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Isabella Hogan
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Sam Kahler
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hamish Hamilton
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Racheal Wadlow
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - James Dight
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ghazaleh Hashemi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Laura Sormani
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Edwige Roy
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine and Engineering, Indianapolis, IN, USA
| | - Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, Camperdown, NSW, Australia.,The School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
22
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
23
|
Hashimoto D, Kajimoto M, Ueda Y, Hyuga T, Fujimoto K, Inoue S, Suzuki K, Kataoka T, Kimura K, Yamada G. 3D reconstruction and histopathological analyses on murine corporal body. Reprod Med Biol 2021; 20:199-207. [PMID: 33850453 PMCID: PMC8022099 DOI: 10.1002/rmb2.12369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Erectile dysfunction (ED) is one of the increasing diseases with aging society. The basis of ED derived from local penile abnormality is poorly understood because of the complex three-dimensional (3D) distribution of sinusoids in corpus cavernosum (CC). Understanding the 3D histological structure of penis is thus necessary. Analyses on the status of regulatory signals for such abnormality are also performed. METHODS To analyze the 3D structure of sinusoid, 3D reconstruction from serial sections of murine CC were performed. Histological analyses between young (2 months old) and aged (14 months old) CC were performed. As for chondrogenic signaling status of aged CC, SOX9 and RBPJK staining was examined. RESULTS Sinusoids prominently developed in the outer regions of CC adjacent to tunica albuginea. Aged CC samples contained ectopic chondrocytes in such regions. Associating with the appearance of chondrocytes, the expression of SOX9, chondrogenic regulator, was upregulated. The expression of RBPJK, one of the Notch signal regulators, was downregulated in the aged CC. CONCLUSIONS Prominent sinusoids distribute in the outer region of CC which may possess important roles for erection. A possibility of ectopic chondrogenesis induced by alteration of SOX9/Notch signaling with aging is indicated.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Mizuki Kajimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Yuko Ueda
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Taiju Hyuga
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Saaya Inoue
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Tomoya Kataoka
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| | - Kazunori Kimura
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Gen Yamada
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
24
|
Zhang M, Yuan SZ, Sun H, Sun L, Zhou D, Yan J. miR-199b-5p promoted chondrogenic differentiation of C3H10T1/2 cells by regulating JAG1. J Tissue Eng Regen Med 2020; 14:1618-1629. [PMID: 32870569 DOI: 10.1002/term.3122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising candidate for use in cell-based therapy for cartilage repair. To promote understanding of the molecular control of chondrogenesis differentiation in MSCs, we compared the changes in microRNAs during in vitro chondrogenesis process of human bone-marrow mesenchymal stem cells (hBMSCs). MiR-199b-5p was up-regulated significantly during this process. The aim of the study was to investigate the effects of miR-199b-5p on chondrogenic differentiation of C3H10T1/2 MSC cells and explore the underlying mechanisms. MiR-199b-5p mimics or inhibitor were transfected into C3H10T1/2 cells, respectively, and then, the effects of miR-199b-5p on chondrogenic differentiation of C3H10T1/2 cells were detected. The results indicated that miR-199b-5p overexpression inhibited the growth of C3H10T1/2 cells but promoted transforming growth factor-β3 (TGF-β3)-induced C3H10T1/2 cells of chondrogenic differentiation, as supported by enhancing the gene and protein expression of chondrocyte specific markers of SOX9, aggrecan, and collagen type II (Col2a1). In contrast, inhibiting miR-199b-5p notably promoted the proliferation of C3H10T1/2 cells but decreased chondrogenic differentiation. Furthermore, mechanism studies revealed that JAG1 was a direct target of miR-199b-5p by dual luciferase reporter assays. While silencing of JAG1 by isRNA resulted an increase of chondrogenic differentiation. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. In conclusion, the present study revealed for the first time that miR-199b-5p was the positive regulators to modulate chondrogenic differentiation of C3H10T1/2 cells by targeting JAG1. These findings may provide a novel insight on miRNA-mediated MSC therapy for cartilage related disorders.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu Zheng Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Sun
- Musculosketetal Tissue Bank, Beijing Jishuitan Hospital, Beijing, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jihong Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Notch Signaling in Skeletal Development, Homeostasis and Pathogenesis. Biomolecules 2020; 10:biom10020332. [PMID: 32092942 PMCID: PMC7072615 DOI: 10.3390/biom10020332] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal development is a complex process which requires the tight regulation of gene activation and suppression in response to local signaling pathways. Among these pathways, Notch signaling is implicated in governing cell fate determination, proliferation, differentiation and apoptosis of skeletal cells-osteoblasts, osteoclasts, osteocytes and chondrocytes. Moreover, human genetic mutations in Notch components emphasize the critical roles of Notch signaling in skeletal development and homeostasis. In this review, we focus on the physiological roles of Notch signaling in skeletogenesis, postnatal bone and cartilage homeostasis and fracture repair. We also discuss the pathological gain- and loss-of-function of Notch signaling in bone and cartilage, resulting in osteosarcoma and age-related degenerative diseases, such as osteoporosis and osteoarthritis. Understanding the physiological and pathological function of Notch signaling in skeletal tissues using animal models and human genetics will provide new insights into disease pathogenesis and offer novel approaches for the treatment of bone/cartilage diseases.
Collapse
|
26
|
Zanotti S, Yu J, Bridgewater D, Wolf JM, Canalis E. Mice harboring a Hajdu Cheney Syndrome mutation are sensitized to osteoarthritis. Bone 2018; 114:198-205. [PMID: 29940267 PMCID: PMC6083868 DOI: 10.1016/j.bone.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 11/27/2022]
Abstract
Osteoarthritis is a joint disease characterized by cartilage degradation, altered gene expression and inflammation. NOTCH1 and NOTCH2 receptors and the JAGGED1 ligand regulate chondrocyte biology; however, the contribution of Notch signaling to osteoarthritis is controversial. Hajdu Cheney Syndrome (HCS) is a rare genetic disorder affecting the skeleton and associated with NOTCH2 mutations that lead to NOTCH2 gain-of-function. A murine model of the disease (Notch2tm1.1Ecan) was used to test whether the HCS mutation increases the susceptibility to osteoarthritis. The knee of three-month-old Notch2tm1.1Ecan male mice and control sex-matched littermates was destabilized by resection of the medial meniscotibial ligament, and changes in the joint analyzed two months thereafter. Expression of Notch target genes was increased in the femoral heads of Notch2tm1.1Ecan mice, documenting Notch signal activation. Periarticular bone and cartilage structures were unaffected in Notch2tm1.1Ecan mutants subjected to sham surgery, indicating that NOTCH2 gain-of-function had no discernible impact on joint structure under basal conditions. However, destabilization of the medial meniscus increased osteophyte volume and thickened subchondral bone in Notch2tm1.1Ecan mice compared to wild type littermates. Moreover, destabilized Notch2tm1.1Ecan mutants exhibited histological signs of moderate to severe cartilage degeneration, demonstrating joint sensitization to the development of osteoarthritis. Chondrocyte cultures from Notch2tm1.1Ecan mutants expressed increased Il6 mRNA levels following exposure to JAGGED1, possibly explaining the susceptibility of Notch2tm1.1Ecan mice to osteoarthritis. In conclusion, Notch2tm1.1Ecan mutants are sensitized to the development of osteoarthritis in destabilized joints and NOTCH2 activation may play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- S Zanotti
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; Department of Medicine, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - J Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - D Bridgewater
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - J M Wolf
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - E Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; Department of Medicine, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
27
|
Löfgren M, Svala E, Lindahl A, Skiöldebrand E, Ekman S. Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage. Res Vet Sci 2018; 118:466-476. [PMID: 29747133 DOI: 10.1016/j.rvsc.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is an inflammatory and degenerative joint disease commonly affecting horses. To identify genes of relevance for cartilage pathology in osteoarthritis we studied the time-course effects of interleukin (IL)-1β on equine articular cartilage. Articular cartilage explants from the distal third metacarpal bone were collected postmortem from three horses without evidence of joint disease. The explants were stimulated with IL-1β for 27 days and global gene expression was measured by microarray. Gene expression was compared to that of unstimulated explants at days 3, 9, 15, 21 and 27. Release of inflammatory proteins was measured using Proximity Extension Assay. Stimulation with IL-1β led to time-dependent changes in gene expression related to inflammation, the extracellular matrix (ECM), and phenotypic alterations. Gene expression and protein release of cytokines, chemokines, and matrix-degrading enzymes increased in the stimulated explants. Collagen type II was downregulated from day 15, whereas other ECM molecules were downregulated earlier. In contrast molecules involved in ECM signaling (perlecan, chondroitin sulfate proteoglycan 4, and syndecan 4) were upregulated. At the late time points, genes related to a chondrogenic phenotype were downregulated, and genes related to a hypertrophic phenotype were upregulated, suggesting a transition towards hypertrophy later in the culturing period. The data suggest that this in vitro model mimics time course events of in vivo inflammation in OA and it may be valuable as an in vitro tool to test treatments and to study disease mechanisms.
Collapse
Affiliation(s)
- Maria Löfgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Emilia Svala
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, SE-413 45 Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, SE-413 45 Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, SE-413 45 Gothenburg, Sweden
| | - Stina Ekman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
28
|
Jules J, Chen W, Feng X, Li YP. C/EBPα transcription factor is regulated by the RANK cytoplasmic 535IVVY 538 motif and stimulates osteoclastogenesis more strongly than c-Fos. J Biol Chem 2018; 293:1480-1492. [PMID: 29122885 PMCID: PMC5787821 DOI: 10.1074/jbc.m116.736009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2017] [Indexed: 01/18/2023] Open
Abstract
Binding of receptor activator of NF-κB ligand (RANKL) to its receptor RANK on osteoclast (OC) precursors up-regulates c-Fos and CCAAT/enhancer-binding protein-α (C/EBPα), two critical OC transcription factors. However, the effects of c-Fos and C/EBPα on osteoclastogenesis have not been compared. Herein, we demonstrate that overexpression of c-Fos or C/EBPα in OC precursors up-regulates OC genes and initiates osteoclastogenesis independently of RANKL. However, although C/EBPα up-regulated c-Fos, c-Fos failed to up-regulate C/EBPα in OC precursors. Consistently, C/EBPα overexpression more strongly promoted OC differentiation than did c-Fos overexpression. RANK has a cytoplasmic 535IVVY538 (IVVY) motif that is essential for osteoclastogenesis, and we found that mutation of the IVVY motif blocked OC differentiation by partly inhibiting expression of C/EBPα but not expression of c-Fos. We therefore hypothesized that C/EBPα overexpression might rescue osteoclastogenesis in cells expressing the mutated IVVY motif. However, overexpression of C/EBPα or c-Fos failed to stimulate osteoclastogenesis in the mutant cells. Notably, the IVVY motif mutation abrogated OC gene expression compared with a vector control, suggesting that the IVVY motif might counteract OC inhibitors during osteoclastogenesis. Consistently, the IVVY motif mutant triggered up-regulation of recombinant recognition sequence-binding protein at the Jκ site (RBP-J) protein, a potent OC inhibitor. Mechanistically, C/EBPα or c-Fos overexpression in the mutant cells failed to control the up-regulated RBP-J expression, leading to suppression of OC genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or c-Fos overexpression with C/EBPα exhibiting a stronger osteoclastogenic effect. Collectively, our findings indicate that C/EBPα is a stronger inducer of OC differentiation than c-Fos, partly via C/EBPα regulation by the RANK 535IVVY538 motif.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
29
|
Li IMH, Liu K, Neal A, Clegg PD, De Val S, Bou-Gharios G. Differential tissue specific, temporal and spatial expression patterns of the Aggrecan gene is modulated by independent enhancer elements. Sci Rep 2018; 8:950. [PMID: 29343853 PMCID: PMC5772622 DOI: 10.1038/s41598-018-19186-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
The transcriptional mechanism through which chondrocytes control the spatial and temporal composition of the cartilage tissue has remained largely elusive. The central aim of this study was to identify whether transcriptional enhancers played a role in the organisation of the chondrocytes in cartilaginous tissue. We focused on the Aggrecan gene (Acan) as it is essential for the normal structure and function of cartilage and it is expressed developmentally in different stages of chondrocyte maturation. Using transgenic reporter studies in mice we identified four elements, two of which showed individual chondrocyte developmental stage specificity. In particular, one enhancer (-80) distinguishes itself from the others by being predominantly active in adult cartilage. Furthermore, the -62 element uniquely drove reporter activity in early chondrocytes. The remaining chondrocyte specific enhancers, +28 and -30, showed no preference to chondrocyte type. The transcription factor SOX9 interacted with all the enhancers in vitro and mutation of SOX9 binding sites in one of the enhancers (-30) resulted in a loss of its chondrocyte specificity and ectopic enhancer reporter activity. Thus, the Acan enhancers orchestrate the precise spatiotemporal expression of this gene in cartilage types at different stages of development and adulthood.
Collapse
Affiliation(s)
- Ian M H Li
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Ke Liu
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Alice Neal
- Ludwig Cancer Research Ltd, University of Oxford, Oxford, UK
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Sarah De Val
- Ludwig Cancer Research Ltd, University of Oxford, Oxford, UK
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK.
| |
Collapse
|
30
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
31
|
Han X, Ranganathan P, Tzimas C, Weaver KL, Jin K, Astudillo L, Zhou W, Zhu X, Li B, Robbins DJ, Capobianco AJ. Notch Represses Transcription by PRC2 Recruitment to the Ternary Complex. Mol Cancer Res 2017; 15:1173-1183. [PMID: 28584023 DOI: 10.1158/1541-7786.mcr-17-0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022]
Abstract
It is well established that Notch functions as a transcriptional activator through the formation of a ternary complex that comprises Notch, Maml, and CSL. This ternary complex then serves to recruit additional transcriptional cofactors that link to higher order transcriptional complexes. The mechanistic details of these events remain unclear. This report reveals that the Notch ternary complex can direct the formation of a repressor complex to terminate gene expression of select target genes. Herein, it is demonstrated that p19Arf and Klf4 are transcriptionally repressed in a Notch-dependent manner. Furthermore, results indicate that Notch recruits Polycomb Repressor Complex 2 (PRC2) and Lysine Demethylase 1 (KDM1A/LSD1) to these promoters, which leads to changes in the epigenetic landscape and repression of transcription. The demethylase activity of LSD1 is a prerequisite for Notch-mediated transcriptional repression. In addition, a stable Notch transcriptional repressor complex was identified containing LSD1, PRC2, and the Notch ternary complex. These findings demonstrate a novel function of Notch and provide further insight into the mechanisms of Notch-mediated tumorigenesis.Implications: This study provides rationale for the targeting of epigenetic enzymes to inhibit Notch activity or use in combinatorial therapy to provide a more profound therapeutic response. Mol Cancer Res; 15(9); 1173-83. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoqing Han
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prathibha Ranganathan
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,Centre for Human Genetics, Electronic City, Bengaluru, Karnataka, India
| | - Christos Tzimas
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kelly L Weaver
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ke Jin
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luisana Astudillo
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Wen Zhou
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
32
|
Garcia GR, Goodale BC, Wiley MW, La Du JK, Hendrix DA, Tanguay RL. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression. Mol Pharmacol 2017; 91:609-619. [PMID: 28385905 PMCID: PMC5438132 DOI: 10.1124/mol.117.108233] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Britton C Goodale
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Michelle W Wiley
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - David A Hendrix
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| |
Collapse
|
33
|
Abstract
SOX9 is a pivotal transcription factor in developing and adult cartilage. Its gene is expressed from the multipotent skeletal progenitor stage and is active throughout chondrocyte differentiation. While it is repressed in hypertrophic chondrocytes in cartilage growth plates, it remains expressed throughout life in permanent chondrocytes of healthy articular cartilage. SOX9 is required for chondrogenesis: it secures chondrocyte lineage commitment, promotes cell survival, and transcriptionally activates the genes for many cartilage-specific structural components and regulatory factors. Since heterozygous mutations within and around SOX9 were shown to cause the severe skeletal malformation syndrome called campomelic dysplasia, researchers around the world have worked assiduously to decipher the many facets of SOX9 actions and regulation in chondrogenesis. The more we learn, the more we realize the complexity of the molecular networks in which SOX9 fulfills its functions and is regulated at the levels of its gene, RNA, and protein, and the more we measure the many gaps remaining in knowledge. At the same time, new technologies keep giving us more means to push further the frontiers of knowledge. Research efforts must be pursued to fill these gaps and to better understand and treat many types of cartilage diseases in which SOX9 has or could have a critical role. These diseases include chondrodysplasias and cartilage degeneration diseases, namely osteoarthritis, a prevalent and still incurable joint disease. We here review the current state of knowledge of SOX9 actions and regulation in the chondrocyte lineage, and propose new directions for future fundamental and translational research projects.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Mona Dvir-Ginzberg
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
34
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Guo Z, Qi Q, Li W. MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch signalling pathway. J Cell Mol Med 2016; 21:1159-1170. [PMID: 27957826 PMCID: PMC5431140 DOI: 10.1111/jcmm.13047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a pathology almost only reported in East Asian countries. The leading cause of OLF is thoracic spinal canal stenosis and myelopathy. In this study, the role of miR-199b-5p and jagged 1 (JAG1) in primary ligamentum flavum cell osteogenesis was examined. MiR-199b-5p was found to be down-regulated during osteogenic differentiation in ligamentum flavum cells, while miR-199b-5p overexpression inhibited osteogenic differentiation. In addition, JAG1 was found to be up-regulated during osteogenic differentiation in ligamentum flavum cells, while JAG1 knockdown via RNA interference caused an inhibition of Notch signalling and osteogenic differentiation. Moreover, target prediction analysis and dual luciferase reporter assays supported the notion that JAG1 was a direct target of miR-199b-5p, with miR-199b-5p found to down-regulate both JAG1 and Notch. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. These findings imply that miR-199b-5p performs an inhibitory role in osteogenic differentiation in ligamentum flavum cells by potentially targeting JAG1 and influencing the Notch signalling pathway.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhaoqing Guo
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
35
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
36
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Hou X, Ning S. Notch signaling pathways in human thoracic ossification of the ligamentum flavum. J Orthop Res 2016; 34:1481-91. [PMID: 27208800 DOI: 10.1002/jor.23303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/19/2016] [Indexed: 02/04/2023]
Abstract
This study investigated the pathological process of Notch signaling in the osteogenesis of ligamentum flavum tissues and cells, and the associated regulatory mechanisms. Notch receptors, ligands, and target genes were identified by quantitative polymerase chain reaction (qPCR) in ligamentum flavum cells and immunohistochemistry in ligamentum flavum sections from ossification of the ligamentum flavum (OLF) patients and controls. The temporospatial expression patterns of JAG1/Notch2/HES1 in human ligamentum flavum cells during osteogenic differentiation were determined by qPCR. Lentiviral vectors for Notch2 overexpression and knockdown were constructed and transfected into ligamentum flavum cells before osteogenic differentiation to examine the function of Notch signaling pathways in the osteogenic differentiation of ligamentum flavum cells. Alkaline phosphatase, Runx2, Osterix, osteocalcin, and osteopontin mRNA levels, alkaline phosphatase activity, and Alizarin Red staining were used as indicators of osteogenic differentiation. JAG1/Notch2/HES1 mRNA levels were up-regulated in ligamentum flavum cells from OLF patients, which increased during osteogenic differentiation. Immunohistochemical analysis suggested positive Notch2 expression at the ossification front. Down-regulation of Notch2 expression decelerated osteogenic differentiation of ligamentum flavum cells, and Notch2 overexpression promoted osteogenic differentiation of ligamentum flavum cells. Expression of Runx2 and Osterix increased in a manner similar to that of Notch2 during osteogenic differentiation of ligamentum flavum cells, and Notch2 knockdown and overexpression influenced their expression levels. Notch signaling plays an important role in OLF, and Notch may affect the osteogenic differentiation of ligamentum flavum cells via interactions with Runx2 and Osterix.© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1481-1491, 2016.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaofei Hou
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Shanglong Ning
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
37
|
Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 2016; 62:3-15. [PMID: 27418125 DOI: 10.1016/j.semcdb.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.
Collapse
Affiliation(s)
- William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Zhou
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
38
|
Kodama H, Miyata Y, Kuwajima M, Izuchi R, Kobayashi A, Gyoja F, Onuma TA, Kumano G, Nishida H. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians. Dev Biol 2016; 416:162-172. [PMID: 27265866 DOI: 10.1016/j.ydbio.2016.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure.
Collapse
Affiliation(s)
- Hitoshi Kodama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshimasa Miyata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mami Kuwajima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Izuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ayumi Kobayashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
39
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
40
|
Cras-Méneur C, Conlon M, Zhang Y, Pasca Di Magliano M, Bernal-Mizrachi E. Early pancreatic islet fate and maturation is controlled through RBP-Jκ. Sci Rep 2016; 6:26874. [PMID: 27240887 PMCID: PMC4886527 DOI: 10.1038/srep26874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 01/29/2023] Open
Abstract
Notch signaling is known to control early pancreatic differentiation through Ngn3 repression. In later stages, downstream of Notch, the Presenilins are still required to maintain the endocrine fate allocation. Amongst their multiple targets, it remains unclear which one actually controls the maintenance of the fate of the early islets. Conditional deletions of the Notch effector RBP-Jκ with lineage tracing in Presenilin-deficient endocrine progenitors, demonstrated that this factor is central to the control of the fate through a non-canonical Notch mechanism. RBP-Jκ mice exhibit normal islet morphogenesis and function, however, a fraction of the progenitors fails to differentiate and develop into disorganized masses resembling acinar to ductal metaplasia and chronic pancreatitis. A subsequent deletion of RBP-Jκ in forming β-cells led to the transdifferentiation into the other endocrine cells types, indicating that this factor still mediates the maintenance of the fate within the endocrine lineage itself. These results highlight the dual importance of Notch signaling for the endocrine lineage. Even after Ngn3 expression, Notch activity is required to maintain both fate and maturation of the Ngn3 progenitors. In a subset of the cells, these alterations of Notch signaling halt their differentiation and leads to acinar to ductal metaplasia.
Collapse
Affiliation(s)
- Corentin Cras-Méneur
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division Brehm Tower, 1000 Wall St, Ann Arbor, MI 48105-1912, USA
| | - Megan Conlon
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division Brehm Tower, 1000 Wall St, Ann Arbor, MI 48105-1912, USA
| | - Yaqing Zhang
- University of Michigan in Ann Arbor, Department of Surgery, General Surgery Division 4304 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor MI 48109-5936, USA
| | - Marina Pasca Di Magliano
- University of Michigan in Ann Arbor, Department of Surgery, General Surgery Division 4304 Cancer Center, 1500 E. Medical Center Drive, Ann Arbor MI 48109-5936, USA
| | - Ernesto Bernal-Mizrachi
- University of Miami Miller School of Medicine, Department of General Internal Medicine, Division of Endocrinology, Diabetes and Metabolism 1400 NW 10th Ave, Miami, FL 33136-1031, USA
| |
Collapse
|
41
|
Rutkowski TP, Kohn A, Sharma D, Ren Y, Mirando AJ, Hilton MJ. HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development. J Cell Sci 2016; 129:2145-55. [PMID: 27160681 DOI: 10.1242/jcs.181271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022] Open
Abstract
RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders.
Collapse
Affiliation(s)
- Timothy P Rutkowski
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anat Kohn
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deepika Sharma
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yinshi Ren
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anthony J Mirando
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew J Hilton
- Department of Orthopaedics and Rehabilitation, The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
42
|
Turkoz M, Townsend RR, Kopan R. The Notch Intracellular Domain Has an RBPj-Independent Role during Mouse Hair Follicular Development. J Invest Dermatol 2016; 136:1106-1115. [PMID: 26940862 DOI: 10.1016/j.jid.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 01/02/2023]
Abstract
Ligand-dependent activation, γ-secretase-processed cleavage, and recombining binding protein Jk (RBPj)-mediated downstream transcriptional activities of Notch receptors constitute the "canonical" Notch signaling pathway, which is essential for skin organogenesis. However, in Msx2-Cre mice, keratinocyte-specific deletion of the Rbpj gene in utero produced a significantly milder phenotype than either global Notch or γ-secretase loss. Herein, we investigated the underlying mechanisms for this apparent noncanonical signal using mouse genetics. We found no evidence that ligand back-signaling contributed to skin organogenesis. The perdurance of RBPj protein did not establish an epigenetic memory of a canonical signal in the youngest epidermal stem cells, and Notch targets were not derepressed. We provide evidence that γ-secretase-dependent but RBPj-independent Notch intracellular domain activity operating in the first hair follicles is responsible for a delay in follicular destruction, which results in lower serum thymic stromal lymphopoietin levels, milder B-cell lymphoproliferative disease, and improved survival in Msx2-Cre(+/tg);Rbpj(f/f) mice. Minimal amounts of the Notch intracellular domain were sufficient for rescue, which was not mediated by transcription, suggesting that the Notch intracellular domain is acting through a novel mechanism.
Collapse
Affiliation(s)
- Mustafa Turkoz
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Raphael Kopan
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
43
|
Canalis E, Bridgewater D, Schilling L, Zanotti S. Canonical Notch activation in osteocytes causes osteopetrosis. Am J Physiol Endocrinol Metab 2016; 310:E171-82. [PMID: 26578715 PMCID: PMC4719030 DOI: 10.1152/ajpendo.00395.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/12/2015] [Indexed: 01/01/2023]
Abstract
Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - David Bridgewater
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and
| | - Lauren Schilling
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and
| | - Stefano Zanotti
- Department of Orthopedic Surgery and the University of Connecticut Musculoskeletal Institute, Farmington, Connecticut; and Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
44
|
Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9. Bone Res 2015; 3:15021. [PMID: 26558140 PMCID: PMC4640428 DOI: 10.1038/boneres.2015.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/08/2022] Open
Abstract
RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjk(f/f) ), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjk(f/f);Sox9(f/+) ), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors.
Collapse
|
45
|
Liu Z, Chen J, Mirando AJ, Wang C, Zuscik MJ, O'Keefe RJ, Hilton MJ. A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis. Sci Signal 2015. [PMID: 26198357 DOI: 10.1126/scisignal.aaa3792] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss of NOTCH signaling in postnatal murine joints results in osteoarthritis, indicating a requirement for NOTCH during maintenance of joint cartilage. However, NOTCH signaling components are substantially increased in abundance in posttraumatic osteoarthritis in humans and mice, suggesting either a reparative or a pathological role for NOTCH activation in osteoarthritis. We investigated a potential dual role for NOTCH in joint maintenance and osteoarthritis by generating two mouse models overexpressing the NOTCH1 intracellular domain (NICD) within postnatal joint cartilage. The first mouse model exhibited sustained NOTCH activation to resemble pathological NOTCH signaling, whereas the second model had transient NOTCH activation, which more closely reflected physiological NOTCH signaling. Sustained NOTCH signaling in joint cartilage led to an early and progressive osteoarthritic-like pathology, whereas transient NOTCH activation enhanced the synthesis of cartilage matrix and promoted joint maintenance under normal physiological conditions. Through RNA-sequencing, immunohistochemical, and biochemical approaches, we identified several targets that could be responsible for NOTCH-mediated cartilage degradation, fibrosis, and osteoarthritis progression. These targets included components of the interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase signaling pathways, which may also contribute to the posttraumatic development of osteoarthritis. Together, these data suggest a dual role for the NOTCH pathway in joint cartilage, and they identify downstream effectors of NOTCH signaling as potential targets for disease-modifying osteoarthritis drugs.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jianquan Chen
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anthony J Mirando
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cuicui Wang
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Michael J Zuscik
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Regis J O'Keefe
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Hilton
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Briot A, Jaroszewicz A, Warren CM, Lu J, Touma M, Rudat C, Hofmann JJ, Airik R, Weinmaster G, Lyons K, Wang Y, Kispert A, Pellegrini M, Iruela-Arispe ML. Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells. Dev Cell 2015; 31:707-21. [PMID: 25535917 DOI: 10.1016/j.devcel.2014.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 01/15/2023]
Abstract
Acquisition and maintenance of vascular smooth muscle fate are essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMCs) can result in structural alterations associated with aneurysms and vascular wall calcification. Here we report that maturation of sclerotome-derived vSMCs depends on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time, Notch/Jag1-mediated repression of sclerotome transcription factors Pax1, Scx, and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMCs antagonizes sclerotome and cartilage transcription factors and promotes upregulation of contractile genes. In the absence of the Notch ligand Jag1, vSMCs acquire a chondrocytic transcriptional repertoire that can lead to ossification. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming, and promote vascular wall integrity.
Collapse
Affiliation(s)
- Anaïs Briot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Artur Jaroszewicz
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carmen M Warren
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jing Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Division of Anesthesiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carsten Rudat
- Institut fur Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer J Hofmann
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rannar Airik
- Institut fur Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Gerry Weinmaster
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Lyons
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Division of Anesthesiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Kispert
- Institut fur Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Canalis E, Zanotti S. Hajdu-Cheney syndrome: a review. Orphanet J Rare Dis 2014; 9:200. [PMID: 25491639 PMCID: PMC4269900 DOI: 10.1186/s13023-014-0200-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/21/2014] [Indexed: 01/23/2023] Open
Abstract
Hajdu Cheney Syndrome (HCS), Orpha 955, is a rare disease characterized by acroosteolysis, severe osteoporosis, short stature, specific craniofacial features, wormian bones, neurological symptoms, cardiovascular defects and polycystic kidneys. HCS is rare and is inherited as autosomal dominant although many sporadic cases have been reported. HCS is associated with mutations in exon 34 of NOTCH2 upstream the PEST domain that lead to the creation of a truncated and stable NOTCH2 protein with enhanced NOTCH2 signaling activity. Although the number of cases with NOTCH2 mutations reported are limited, it would seem that the diagnosis of HCS can be established by sequence analysis of exon 34 of NOTCH2. Notch receptors are single-pass transmembrane proteins that determine cell fate, and play a critical role in skeletal development and homeostasis. Dysregulation of Notch signaling is associated with skeletal developmental disorders. There is limited information about the mechanisms of the bone loss and acroosteolysis in HCS making decisions regarding therapeutic intervention difficult. Bone antiresorptive and anabolic agents have been tried to treat the osteoporosis, but their benefit has not been established. In conclusion, Notch regulates skeletal development and bone remodeling, and gain-of-function mutations of NOTCH2 are associated with HCS.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
48
|
Cast AE, Walter TJ, Huppert SS. Vascular patterning sets the stage for macro and micro hepatic architecture. Dev Dyn 2014; 244:497-506. [PMID: 25370311 DOI: 10.1002/dvdy.24222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 01/20/2023] Open
Abstract
Background The liver is a complex organ with a variety of tissue components that require a precise architecture for optimal function of metabolic and detoxification processes. As a result of the delicate orchestration required between the various hepatic tissues, it is not surprising that impairment of hepatic function can be caused by a variety of factors leading to chronic liver disease. Results Despite the growing rate of chronic liver disease, there are currently few effective treatment options besides orthotopic liver transplantation. Better therapeutic options reside in the potential for genetic and cellular therapies that promote progenitor cell activation aiding de novo epithelial and vascular regeneration, cell replacement, or population of bioartificial hepatic devices. In order to explore this area of new therapeutic potential, it is crucial to understand the factors that promote hepatic function through regulating cell identities and tissue architecture. Conclusions In this commentary, we review the signals regulating liver cell fates during development and regeneration and highlight the importance of patterning the hepatic vascular systems to set the groundwork for the macro and micro hepatic architecture of the epithelium.
Collapse
Affiliation(s)
- Ashley E Cast
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | |
Collapse
|
49
|
Hinton RJ. Genes that regulate morphogenesis and growth of the temporomandibular joint: A review. Dev Dyn 2014; 243:864-74. [DOI: 10.1002/dvdy.24130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/17/2023] Open
Affiliation(s)
- Robert J. Hinton
- Department of Biomedical Sciences; Texas A&M Baylor College of Dentistry; Dallas Texas
| |
Collapse
|
50
|
Zaher W, Harkness L, Jafari A, Kassem M. An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 2014; 88:1069-82. [PMID: 24691703 DOI: 10.1007/s00204-014-1232-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.
Collapse
Affiliation(s)
- Walid Zaher
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| | | | | | | |
Collapse
|