1
|
Ma XD, Xu ZL, He Y, Cheng YF, Han TT, Zhang YY, Wang JZ, Mo XD, Wang FR, Zhao X, Wang Y, Zhang XH, Huang XJ, Xu LP. G-CSF-Primed Peripheral Blood Stem Cell Haploidentical Transplantation Could Achieve Satisfactory Clinical Outcomes for Severe Aplastic Anemia Patients. Transplant Cell Ther 2025:S2666-6367(25)01140-6. [PMID: 40258519 DOI: 10.1016/j.jtct.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) continues to be a cornerstone in the treatment of severe aplastic anemia (SAA). The advancement of haploidentical hematopoietic stem cell transplantation (haplo-HSCT) has broadened therapeutic possibilities, particularly for patients lacking fully HLA-matched donors. However, it still remains unclear which type of graft source is better for SAA patients underwent haplo-HSCT. OBJECTIVES This study aimed to assess the clinical outcomes of haplo-HSCT using granulocyte colony-stimulating factor (G-CSF)-primed peripheral blood (G-PB) as the graft source, comparing them to a control group receiving G-CSF-primed bone marrow (BM) plus G-PB (BM + PB). STUDY DESIGN This was a single-center, retrospective, case-pair cohort study. Between January 2020 and December 2023, a total of 278 consecutive SAA patients received haplo-HSCT in Peking University People's hospital. In total, 22 patients receiving haplo-HSCT using PB were included in this study. To minimize the impact of potential confounders in this study, we used the propensity score matching (PSM) method to match patients who underwent haplo-HSCT with G-PB plus G-BM in the same time with a 3:1 ratio using nearest neighbor matching. In the end, 88 patients were included in this study. 22 patients received PB stem cells as graft, while 66 patients received G-CSF-primed BM plus PB as graft. RESULTS The PB group demonstrated greater neutrophil (100% vs. 93.9%, p=0.04) and platelet engraftment (95.5% vs. 89.0%, p=0.03) incidence compared to the BM + PB group. There were no significant differences in the cumulative incidences of grade II-IV (13.6% vs. 25.8%, p = 0.28) or grade III-IV acute graft-versus-host disease (aGVHD) (4.5% vs. 4.6%, p = 0.99) between the PB group and BM+PB group. The PB group (36.7%) exhibited a trend toward a higher incidence of chronic GVHD compared to BM+PB group (24.1%); however, the difference between the two groups was not statistically significant. Moreover, the immune reconstitution of CD3+T cells, CD4+T cells, CD8+T cells and CD19+B cells were also comparable between two groups. At three years post haplo-HSCT, the probabilities of overall survival (OS), failure-free survival (FFS) and GVHD-free/failure-free survival (GFFS) were 86.1% versus 87.9% (p = 0.90), 86.1% versus 83.3% (p = 0.73) and 76.5% versus 75.2% (p = 0.70) for PB and BM + PB group, respectively. In univariate analysis, graft source did not influence the clinical outcomes after HSCT. CONCLUSIONS This study illustrated the safety and efficacy of haplo-HSCT with PB as single graft source as the treatment for SAA, providing a basis for further potential optimization of the current protocol. In the future, this conclusion should be further tested by prospective randomized trails.
Collapse
Affiliation(s)
- Xiao-Di Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xi-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xin Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China; Department of Hematology and Institute of Hematology, Stem Cell Transplantation & Cellular Therapy Division, Clinic Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| |
Collapse
|
2
|
Park SH. Potential of ginsenoside Rg1 to treat aplastic anemia via mitogen activated protein kinase pathway in cyclophosphamide-induced myelosuppression mouse model. World J Stem Cells 2024; 16:900-905. [DOI: 10.4252/wjsc.v16.i11.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Aplastic anemia (AA) is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells, leading to fatigue, increased susceptibility to infection, and uncontrolled bleeding. In this editorial, we review and comment on an article by Wang et al published in 2024. This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA, focusing on its protective effects and uncovering the underlying mechanisms. Cyclophosphamide (CTX) administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells, thereby establishing an AA model. Compared with the AA group, ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors. Mechanistically, treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway. Thus, this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression, primarily through its influence on the mitogen activated protein kinase signaling pathway. We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article.
Collapse
Affiliation(s)
- See-Hyoung Park
- Biological and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| |
Collapse
|
3
|
Zhang Y, Wang J, Wang B, Gao Y, Lin S, Zhou Y, Wu L. Integrating network pharmacology and experimental validation to explore the mitophagy-associated pharmacological mechanism of modified Shisiwei Jianzhong decoction against aplastic anemia. Biomed Chromatogr 2024; 38:e5963. [PMID: 39030833 DOI: 10.1002/bmc.5963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/22/2024]
Abstract
The aim of this work was to investigate the therapeutic effect of modified Shisiwei Jianzhong Decoction (SJD) on aplastic anemia (AA) and its potential pharmacological mechanism from the perspective of mitophagy. A comprehensive approach combining network pharmacology, mendelian randomization, molecular docking and animal experiments was applied to evaluate the properties of SJD against AA. By integrating multiple databases, it was determined that SJD exerted its therapeutic effect on AA by targeting three key targets [mammalian target of rapamycin (MTOR), poly(ADP-ribose) polymerase 1 (PARP1) and Sirtuin 1 (SIRT1)] through four core compounds (quercetin, resveratrol, genistein and curcumin). Mendelian randomization analysis identified MTOR as a risk factor for AA occurrence while PARP1 was a protective factor. Results of animal experiments showed that SJD improved peripheral blood counts and promoted the proliferation of hematopoietic stem cells. Mechanistically, SJD, especially at high dose, played a therapeutic role in AA by activating mitophagy-related proteins PTEN induced kinase 1 (PINK1)/Parkin and inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase (AKT)/MTOR pathway. This study revealed for the first time the core chemical composition of SJD and its pharmacological effects against AA, which can restore hematopoietic function by activating mitophagy. The results provide inspiration for the clinical application of traditional Chinese medicine in AA treatment.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Jun Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Bo Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yanting Gao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Shengyun Lin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Liqiang Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Łobacz M, Mertowska P, Mertowski S, Kozińska A, Kwaśniewski W, Kos M, Grywalska E, Rahnama-Hezavah M. The Bloody Crossroads: Interactions between Periodontitis and Hematologic Diseases. Int J Mol Sci 2024; 25:6115. [PMID: 38892299 PMCID: PMC11173219 DOI: 10.3390/ijms25116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Periodontitis is a common oral condition that can have a significant impact on the overall health of the body. In recent years, attention has been paid to potential relationships between periodontitis and various hematological disorders. This publication aims to present information available in the literature on this relationship, focusing on examples of red blood cell disorders (such as aplastic anemia and sickle cell anemia) and white blood cell disorders (such as cyclic neutropenia, maladaptive trained immunity, clonal hematopoiesis, leukemia, and multiple myeloma). Understanding these associations can help physicians and dentists better diagnose, monitor, and treat patients associated with both groups of conditions, highlighting the need for interdisciplinary care for patients with oral disorders and hematologic diseases.
Collapse
Affiliation(s)
- Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ł.); (M.R.-H.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Aleksandra Kozińska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland;
| | - Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ł.); (M.R.-H.)
| |
Collapse
|
5
|
Guo X, Weng W, Wang Y, Pan J, Li S, Chen Y, Song H, Zhang J, Xu W, Xu X, Tang Y. Reduced regulatory effects of bone marrow-derived mesenchymal stem cells on activated T lymphocytes and Th1/Th2 cytokine secretion in children with aplastic anemia. Clin Exp Med 2023; 23:4633-4646. [PMID: 37930604 DOI: 10.1007/s10238-023-01238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Acquired aplastic anemia (AA) is a recognized immune-mediated disorder and abnormally activated T lymphocyte-mediated bone marrow destruction is considered to be its main pathogenesis. Whether abnormal activation of T lymphocytes would also damage bone marrow-derived MSCs remains to be further studied. The aim of this study was to analyze the extent of T lymphocyte activation and the levels of Th1/Th2 cytokines of AA patients, and to explore the immunomodulatory effects of BM-MSCs on IL-2-stimulated T lymphocyte activation and cytokine production in vitro by means of transwell co-culture assay and flow cytometry measurement. The intermediate (CD25+) activated T cells were dominant in peripheral blood, while the early (CD69+) and late (HLA-DR+) activated T cells were predominant in bone marrow. Severe AA patients have an obviously higher proportion of CD3+CD8+CD69+ T cells than NSAA cases. The levels of IL-2 and IL-6 in AA patients were slightly elevated and INF-γ was mildly decreased in comparison with normal individuals. BM-MSCs derived from AA could not effectively inhibit the IL-2-induced activation of T cells with higher proportions of CD25+CD3+CD4+, CD69+CD3+CD4+ and CD25+CD3+CD8+ T cells after co-culture, and they showed a decreased ability to balance the Th1/Th2 cytokine production. Moreover, they had less robust osteogenic differentiation and more prone to adipogenic differentiation. We concluded that abnormally excessive T cell activation accompanied by abnormal cytokine secretion may impair the function of BM-MSCs in children with aplastic anemia.
Collapse
Affiliation(s)
- Xiaoping Guo
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Wenwen Weng
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Yuwen Wang
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Jin Pan
- Department of Non-communicable Disease Prevention, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou City, 310051, Zhejiang Province, People's Republic of China
| | - Sisi Li
- School of Medicine, Zhejiang University City College, #51 Huzhou Street, Hangzhou, 310015, People's Republic of China
| | - Yuanyuan Chen
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Hua Song
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Jingying Zhang
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Weiqun Xu
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Xiaojun Xu
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China.
| | - Yongmin Tang
- Department/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
6
|
Guan J, Zhao Y, Wang T, Fu R. Traditional Chinese medicine for treating aplastic anemia. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11863. [PMID: 38022904 PMCID: PMC10679336 DOI: 10.3389/jpps.2023.11863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Aplastic anemia (AA) is a bone marrow failure disease caused by T cell hyperfunction. Although the overall response rate has been improved by immunosuppressive therapy (IST) plus Eltrombopag, 30% of patients have either no response or relapse. We therefore attempted to find other ways to improve the outcomes of AA patients. Traditional Chinese medicine has the advantages of low cost, reasonable effects, and few side effects. More and more clinical studies have confirmed that traditional Chinese medicine has a beneficial role in treating AA patients. This article reviews the potential mechanism of traditional Chinese medicine or its active ingredients in the treatment of AA. These include improving the bone marrow microenvironment, regulating immunity, and affecting the fate of hematopoietic stem cells. This provides useful information for further treatment of AA with integration of traditional Chinese and Western medicine and the development of new treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Chen H, Xie X, Ma J, Fu L, Zhao X, Xing T, Gao C, Wu R, Chen Z. Elevated TCR-αβ + double-negative T cells in pediatric patients with acquired aplastic anemia. Clin Chim Acta 2023; 548:117492. [PMID: 37479012 DOI: 10.1016/j.cca.2023.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/19/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS The pathophysiology of acquired aplastic anemia (aAA) is most associated with T cell mediated immune dysfunction, but the role of CD4- CD8- double negative T cells (DNTs) in pediatric patients with aAA is unclear. In this study, we aimed to investigate the proportion of TCR-αβ+ DNTs in pediatric patients with aAA and correlation with the response to immunosuppressive therapy (IST). MATERIALS AND METHODS Assessment of DNTs from peripheral blood was done by sensitive multi-color flow cytometry. The potential clinical value of TCR-αβ+ DNTs was then assessed by the receiver operating characteristic (ROC) curves. RESULTS The retrospective study evaluated 164 pediatric patients with aAA and 105 healthy donors (HD). Our data showed higher proportion of TCR-αβ+ DNTs in total lymphocytes [1.04% (0.79%-1.40%) vs 0.69% (0.47%-0.87%), p < 0.001] and CD3+ T cells [1.52% (1.10%-1.96%) vs 1.10% (0.70%-1.40%), p < 0.001] in aAA compared to HD. Patients with SAA/VSAA achieving complete response (CR) after IST had a higher proportion of TCR-αβ+ DNTs at initial diagnosis, than those not achieving CR for total (1.21%±0.39 vs 0.78%±0.38, p < 0.05) and CD3+ T cells (1.74%±0.53 vs 1.15%±0.59, p < 0.05). The ROC analysis showed areas under the curves (AUCs) for TCR-αβ+ DNT proportion in lymphocytes and CD3+ T cells were 0.756 (cutoff value 1.33, p < 0.05) and 0.758 (cutoff value 1.38, p < 0.05), respectively. And the complete response rate was higher in TCR-αβ+ DNT proportion high group than in TCR-αβ+ DNT proportion low group at baseline (p < 0.001). CONCLUSION Our observations suggest that elevated TCR-αβ+ DNTs seems to play a role in the pathogenesis of aAA, and it was involve in immune response to IST.
Collapse
Affiliation(s)
- Hui Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xingjuan Xie
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jie Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Lingling Fu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiaoxi Zhao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Tianyu Xing
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Runhui Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| | - Zhenping Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
8
|
Zhang J, Liu T, Duan Y, Chang Y, Chang L, Liu C, Chen X, Cheng X, Li T, Yang W, Chen X, Guo Y, Chen Y, Zou Y, Zhang L, Zhu X, Zhang Y. Single-cell analysis highlights a population of Th17-polarized CD4+ naïve T cells showing IL6/JAK3/STAT3 activation in pediatric severe aplastic anemia. J Autoimmun 2023; 136:103026. [PMID: 37001436 DOI: 10.1016/j.jaut.2023.103026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/08/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023]
Abstract
Acquired aplastic anemia (AA) is recognized as an immune-mediated disorder resulting from active destruction of hematopoietic cells in bone marrow (BM) by effector T lymphocytes. Bulk genomic landscape analysis and transcriptomic profiling have contributed to a better understanding of the recurrent cytogenetic abnormalities and immunologic cues associated with the onset of hematopoietic destruction. However, the functional mechanistic determinants underlying the complexity of heterogeneous T lymphocyte populations as well as their correlation with clinical outcomes remain to be elucidated. To uncover dysfunctional mechanisms acting within the heterogeneous marrow-infiltrating immune environment and examine their pathogenic interplay with the hematopoietic stem/progenitor pool, we exploited single-cell mass cytometry for BM mononuclear cells of severe AA (SAA) patients pre- and post-immunosuppressive therapy, in contrast to those of healthy donors. Alignment of BM cellular composition with hematopoietic developmental trajectories revealed potential functional roles for non-canonically activated CD4+ naïve T cells in newly-diagnosed pediatric cases of SAA. Furthermore, single-cell transcriptomic profiling highlighted a population of Th17-polarized CD4+CAMK4+ naïve T cells showing activation of the IL-6/JAK3/STAT3 pathway, while gene signature dissection indicated a predisposition to proinflammatory pathogenesis. Retrospective validation from our SAA cohort of 231 patients revealed high plasma levels of IL-6 as an independent risk factor of delayed hematopoietic response to antithymocyte globulin-based immunosuppressive therapy. Thus, IL-6 warrants further investigation as a putative therapeutic target in SAA.
Collapse
|
9
|
Zhang L, Mao J, Lian Y, Liang Q, Li W, Zhao J, Pan H, Gao Z, Fang L, Yuan W, Chu Y, Shi J. Mass cytometry analysis identifies T cell immune signature of aplastic anemia and predicts the response to cyclosporine. Ann Hematol 2023; 102:529-539. [PMID: 36680600 PMCID: PMC9862246 DOI: 10.1007/s00277-023-05097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Aplastic anemia (AA) is an auto-activated T cell-mediated bone marrow failure. Cyclosporine is often used to treat non-severe AA, which demonstrates a more heterogeneous condition than severe AA. The response rate to cyclosporine is only around 50% in non-severe AA. To better predict response to cyclosporine and pinpoint who is the appropriate candidate for cyclosporine, we performed phenotypic and functional T cell immune signature at single cell level by mass cytometry from 30 patients with non-severe AA. Unexpectedly, non-significant differences of T cell subsets were observed between AA and healthy control or cyclosporine-responder and non-responders. Interestingly, when screening the expression of co-inhibitory molecules, T cell trafficking mediators, and cytokines, we found an increase of cytotoxic T lymphocyte antigen 4 (CTLA-4) on T cells in response to cyclosporine and a lower level of CTLA-4 on CD8+ T cells was correlated to hematologic response. Moreover, a decreased expression of sphingosine-1-phosphate receptor 1 (S1P1) on naive T cells and a lower level of interleukin-9 (IL-9) on T helpers also predicted a better response to cyclosporine, respectively. Therefore, the T cell immune signature, especially in CTAL-4, S1P1, and IL-9, has a predictive value for response to cyclosporine. Collectively, our study implies that immune signature analysis of T cell by mass cytometry is a useful tool to make a strategic decision on cyclosporine treatment of AA.
Collapse
Affiliation(s)
- Lele Zhang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jin Mao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yu Lian
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Qian Liang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Weiwang Li
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingyu Zhao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Hong Pan
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhen Gao
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Liwei Fang
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Jun Shi
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
10
|
Yu W, Wang Q, Ge M, Shi X. Cluster analysis of lymphocyte subset from peripheral blood in newly diagnosed idiopathic aplastic anaemia patients. Ann Med 2022; 54:2431-2439. [PMID: 36066098 PMCID: PMC9481148 DOI: 10.1080/07853890.2022.2118367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION Idiopathic aplastic anaemia (IAA) is a heterogeneous autoimmune disease characterised by pancytopenia and bone marrow failure. The objective of the study was to investigate the clusters of lymphocyte subset in newly diagnosed IAA patients and explore their correlation with clinical characteristics. METHODS A total of 124 newly diagnosed IAA patients were enrolled. Lymphocyte subset was detected by flow cytometry. Cluster analysis was conducted to identify subgroups of patients based on lymphocyte subset. RESULTS Cluster analysis classified patients into four distinctive subgroups: Cluster 1 (CD4+ T cells dominant), Cluster 2 (CD8+ T cells dominant), Cluster 3 (NK cells dominant) and Cluster 4 (B cells dominant). Patients in Clusters 1 and 4 suffered more severe disease status than ones in Clusters 2 and 3 (p = .013). And with it, patients in Cluster 2 had the highest white blood cell count, haemoglobin level, reticulocyte count and reticulocyte percentage, while patients in Cluster 3 had the lowest lymphocyte percentage and the highest neutrophil count (all p < .05). Unexpectedly, patients in Cluster 3 tended to have superior curative effect than ones in other clusters, an ordinal logistic regression analysis further confirmed the independent correlation between Cluster 3 and good response to treatment. Lymphocyte subset clustering may serve as a biomarker for assessing disease severity and treatment efficacy in newly diagnosed IAA patients.Key MessagesNewly diagnosed IAA patients could be classified into 4 distinctive subgroups with similar immune patterns by using cluster analysis of lymphocyte subset.Clusters of lymphocyte subset were closely correlated with disease severity and treatment response of IAA.Lymphocyte subset clustering may serve as a promising tool for assessing disease severity and treatment efficacy in newly diagnosed IAA patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of International Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Wang
- Department of International Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xue Shi
- Department of International Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Effects of Sodium Chlorophyllin Copper on APO-1 Expression in Bone Marrow Mesenchymal Stem Cells of Rats with Aplastic Anaemia. J Immunol Res 2022; 2022:6792866. [PMID: 35434141 PMCID: PMC9007642 DOI: 10.1155/2022/6792866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Aplastic anaemia (AA) is a highly prevalent blood disorder in the East and Southeast Asian countries, and a proportion of the patients is poorly treated with immunosuppressive agents. This study is aimed at exploring the effects of sodium copper chlorophyllin (SCC) on rats with AA and at providing the theoretical basis for the treatment of AA using traditional Chinese medicine. Methods. A rat model of AA was induced by combining 5-fluorouracil with busulfan, and different groups were treated with 25 mg/kg cyclosporin A (CsA) and low-, medium-, and high-dose SCC (25-, 50-, and 100-mg/kg; L-, M-, and H-SCC, respectively). A comparative analysis of peripheral blood counts, T-cell subsets, cytokine levels, bone marrow pathology, and APO-1 expression in mesenchymal stem cells in each group was conducted. Results. SCC can increase the platelet count and haemoglobin concentration in the peripheral blood of AA rats, whereas bone marrow biopsies revealed that the number of nucleated cells and megakaryocytes of SCC-treated rats increased compared with the model group. This was particularly evident in the H-SCC group. As regards the correction of immune function, unlike CsA, which reduced the absolute CD8+ T-cell count, SCC corrected the imbalanced CD4/CD8 ratio by increasing the absolute CD4+ T-cell count, whereas SCC increased the number of regulatory T-cells and reduced the level of interferon-γ in AA rats. When comparing the expression of APO-1 in the MSCs, results of the reverse-transcriptase polymerase chain reaction and Western blot analysis showed that SCC can increase the expression of APO-1 both at the mRNA and protein levels. Conclusion. We found that SCC can improve haematopoietic function and regress immune disorders in AA rats, which enhanced the expression of APO-1 in bone marrow MSCs. This may be one of the mechanisms of SCC in treating AA.
Collapse
|