1
|
Abu-Siniyeh A, Khataibeh M, Al-Zyoud W, Al Holi M. Zebrafish as a model for human epithelial pathology. Lab Anim Res 2025; 41:6. [PMID: 39901304 PMCID: PMC11789318 DOI: 10.1186/s42826-025-00238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as an influential model for studying human epithelial pathology, particularly because of their genetic similarity to humans and their unique physiological traits. This review explores the structural and functional homology between zebrafish and human epithelial tissues in organs, such as the gastrointestinal system, liver, and kidneys. Zebrafish possess significant cellular and functional homology with mammals, which facilitates the investigation of various diseases, including inflammatory bowel disease, nonalcoholic fatty liver disease, and polycystic kidney disease. The advantages of using zebrafish as a model organism include rapid external development, ease of genetic manipulation, and advanced imaging capabilities, allowing for the real-time observation of disease processes. However, limitations exist, particularly concerning the lack of organs in zebrafish and the potential for incomplete phenocopy of human conditions. Despite these challenges, ongoing research in adult zebrafish promises to enhance our understanding of the disease mechanisms and regenerative processes. By revealing the similarities and differences in epithelial cell function and disease pathways, this review highlights the value of zebrafish as a translational model for advancing our knowledge of human health and developing targeted therapies.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- Department of Medical Laboratory Sciences, School of Science, The University of Jordan, Amman, Jordan.
| | - Moayad Khataibeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, As Salt, Jordan
| | - Walid Al-Zyoud
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan
| | - Majed Al Holi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Sousa B, Domingues I, Nunes B. A fish perspective on SARS-CoV-2: Toxicity of benzalkonium chloride on Danio rerio. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104200. [PMID: 37394081 DOI: 10.1016/j.etap.2023.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
SARS-CoV-2 outbreak led to an increased marketing of disinfectants, creating a potential environmental problem. For instance, pre-pandemic environmental levels of the disinfectant benzalkonium chloride (BAC) ranging from 0.5 to 5 mgL-1 in effluents were expected to further increase threatening aquatic life. Our aim was to characterize potential adverse effects after an acute exposure of zebrafish to different concentrations of BAC. An increase in the overall swimming activity, thigmotaxis behavior, and erratic movements were observed. An increase in CYP1A1 and catalase activities, but inhibitions of CY1A2, GSTs and GPx activities were also noticed. BAC is metabolized by CYP1A1, increasing the production of H2O2, thereby activating the antioxidant enzyme CAT. Data also showed an increase of AChE activity. Our study highlights adverse embryonic, behavioral, and metabolic effects of noteworthy environmental significance, especially considering that the use and release of BAC is most likely to increase in a near future.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Dash SN, Patnaik L. Flight for fish in drug discovery: a review of zebrafish-based screening of molecules. Biol Lett 2023; 19:20220541. [PMID: 37528729 PMCID: PMC10394424 DOI: 10.1098/rsbl.2022.0541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Human disease and biological practices are modelled in zebrafish (Danio rerio) at various phases of drug development as well as toxicity evaluation. The zebrafish is ideal for in vivo pathological research and high-resolution investigation of disease progress. Zebrafish has an advantage over other mammalian models, it is cost-effective, it has external development and embryo transparency, easy to apply genetic manipulations, and open to both forward and reverse genetic techniques. Drug screening in zebrafish is suitable for target identification, illness modelling, high-throughput screening of compounds for inhibition or prevention of disease phenotypes and developing new drugs. Several drugs that have recently entered the clinic or clinical trials have their origins in zebrafish. The sophisticated screening methods used in zebrafish models are expected to play a significant role in advancing drug development programmes. This review highlights the current developments in drug discovery processes, including understanding the action of drugs in the context of disease and screening novel candidates in neurological diseases, cardiovascular diseases, glomerulopathies and cancer. Additionally, it summarizes the current techniques and approaches for the selection of small molecules and current technical limitations on the execution of zebrafish drug screening tests.
Collapse
Affiliation(s)
- Surjya Narayan Dash
- Institute of Biotechnology, Biocenter 2. Viikinkaari, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Lipika Patnaik
- Environmental Science Laboratory, Department of Zoology, COE in Environment and Public Health, Ravenshaw University, Cuttack 751003, Odisha, India
| |
Collapse
|
4
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
5
|
Abstract
AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.
Collapse
|
6
|
The Renal Extracellular Matrix as a Supportive Scaffold for Kidney Tissue Engineering: Progress and Future Considerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:103-118. [PMID: 34582017 DOI: 10.1007/978-3-030-82735-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During the past decades, diverse methods have been used toward renal tissue engineering in order to replace renal function. The goals of all these techniques included the recapitulation of renal filtration, re-absorptive, and secretary functions, and replacement of endocrine/metabolic activities. It is also imperative to develop a reliable, up scalable, and timely manufacturing process. Decellularization of the kidney with intact ECM is crucial for in-vivo compatibility and targeted clinical application. Contemporarily there is an increasing interest and research in the field of regenerative medicine including stem cell therapy and tissue bioengineering in search for new and reproducible sources of kidneys. In this chapter, we sought to determine the most effective method of renal decellularization and recellularization with emphasis on biologic composition and support of stem cell growth. Current barriers and limitations of bioengineered strategies will be also discussed, and strategies to overcome these are suggested.
Collapse
|
7
|
Miyawaki I. Application of zebrafish to safety evaluation in drug discovery. J Toxicol Pathol 2020; 33:197-210. [PMID: 33239838 PMCID: PMC7677624 DOI: 10.1293/tox.2020-0021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Traditionally, safety evaluation at the early stage of drug discovery research has been done using in silico, in vitro, and in vivo systems in this order because of limitations on the amount of compounds available and the throughput ability of the assay systems. While these in vitro assays are very effective tools for detecting particular tissue-specific toxicity phenotypes, it is difficult to detect toxicity based on complex mechanisms involving multiple organs and tissues. Therefore, the development of novel high throughput in vivo evaluation systems has been expected for a long time. The zebrafish (Danio rerio) is a vertebrate with many attractive characteristics for use in drug discovery, such as a small size, transparency, gene and protein similarity with mammals (80% or more), and ease of genetic modification to establish human disease models. Actually, in recent years, the zebrafish has attracted interest as a novel experimental animal. In this article, the author summarized the features of zebrafish that make it a suitable laboratory animal, and introduced and discussed the applications of zebrafish to preclinical toxicity testing, including evaluations of teratogenicity, hepatotoxicity, and nephrotoxicity based on morphological findings, evaluation of cardiotoxicity using functional endpoints, and assessment of seizure and drug abuse liability.
Collapse
Affiliation(s)
- Izuru Miyawaki
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma
Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
8
|
Ciarimboli G. Fishing for protective compounds. eLife 2020; 9:61547. [PMID: 32880576 PMCID: PMC7470822 DOI: 10.7554/elife.61547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
A new zebrafish study identifies compounds that shield ears and kidneys against an anticancer drug.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimental Nephrology, Med. Clinic D, Muenster University Hospital, Muenster, Germany
| |
Collapse
|
9
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
10
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
11
|
Abstract
The vertebrate kidney is comprised of functional units known as nephrons. Defects in nephron development or activity are a common feature of kidney disease. Current medical treatments are unable to ameliorate the dire consequences of nephron deficit or injury. Although there have been tremendous advancements in our understanding of nephron ontogeny and the response to damage, many significant knowledge gaps still remain. The zebrafish embryo kidney, or pronephros, is an ideal model for many renal development and regeneration studies because it is comprised of nephrons that share conserved features with the nephron units that comprise the mammalian metanephric kidney. In this chapter, we provide an overview about the benefits of using the zebrafish pronephros to study the mechanisms underlying nephrogenesis as well as epithelial repair and regeneration. We subsequently detail methods for the spatiotemporal assessment of gene and protein expression in zebrafish embryos that can be used to extend the understanding of nephron development and disease, and thereby create new opportunities to identify therapeutic strategies for regenerative medicine.
Collapse
|
12
|
Cianciolo Cosentino C, Berto A, Pelletier S, Hari M, Loffing J, Neuhauss SCF, Doye V. Moderate Nucleoporin 133 deficiency leads to glomerular damage in zebrafish. Sci Rep 2019; 9:4750. [PMID: 30894603 PMCID: PMC6426968 DOI: 10.1038/s41598-019-41202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/26/2019] [Indexed: 01/13/2023] Open
Abstract
Although structural nuclear pore proteins (nucleoporins) are seemingly required in every cell type to assemble a functional nuclear transport machinery, mutations or deregulation of a subset of them have been associated with specific human hereditary diseases. In particular, previous genetic studies of patients with nephrotic syndrome identified mutations in Nup107 that impaired the expression or the localization of its direct partner at nuclear pores, Nup133. In the present study, we characterized the zebrafish nup133 orthologous gene and its expression pattern during larval development. Using a morpholino-mediated gene knockdown, we show that partial depletion of Nup133 in zebrafish larvae leads to the formation of kidney cysts, a phenotype that can be rescued by co-injection of wild type mRNA. Analysis of different markers for tubular and glomerular development shows that the overall kidney development is not affected by nup133 knockdown. Likewise, no gross defect in nuclear pore complex assembly was observed in these nup133 morphants. On the other hand, nup133 downregulation results in proteinuria and moderate foot process effacement, mimicking some of the abnormalities typically featured by patients with nephrotic syndrome. These data indicate that nup133 is a new gene required for proper glomerular structure and function in zebrafish.
Collapse
Affiliation(s)
- Chiara Cianciolo Cosentino
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Fondazione RiMED, Palermo, Italy
| | - Alessandro Berto
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.,Ecole Doctorale SDSV, Université Paris Sud, F-91405, Orsay, France
| | - Stéphane Pelletier
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Michelle Hari
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | - Valérie Doye
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.
| |
Collapse
|
13
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
14
|
Boswell M, Boswell W, Lu Y, Savage M, Mazurek Z, Chang J, Muster J, Walter R. The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:77-86. [PMID: 29017858 PMCID: PMC5889750 DOI: 10.1016/j.cbpc.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
Differences in light sources are common in animal facilities and potentially can impact experimental results. Here, the potential impact of lighting differences on skin transcriptomes has been tested in three aquatic animal models commonly utilized in biomedical research, (Xiphophorus maculatus (platyfish), Oryzias latipes (medaka) and Danio rerio (zebrafish). Analysis of replicate comparative RNA-Seq data showed the transcriptional response to commonly utilized 4100K or "cool white" fluorescent light (FL) is much greater in platyfish and medaka than in zebrafish. FL induces genes associated with inflammatory and immune responses in both medaka and zebrafish; however, the platyfish exhibit suppression of genes involved with immune/inflammation, as well as genes associated with cell cycle progression. Furthermore, comparative analyses of gene expression data from platyfish UVB exposures, with medaka and zebrafish after exposure to 4100K FL, show comparable effects on the same stress pathways. We suggest the response to light is conserved, but that long-term adaptation to species specific environmental niches has resulted in a shifting of the wavelengths required to incite similar "genetic" responses in skin. We forward the hypothesis that the "genetic perception" of light may have evolved differently than ocular perception and suggest that light type (i.e., wavelengths emitted) is an important parameter to consider in experimental design.
Collapse
Affiliation(s)
- Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Zachary Mazurek
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Jordan Chang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| | - Jeanot Muster
- Howard Hughes Medical Institute, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
15
|
Abstract
No therapies have been shown to improve outcomes in patients with acute kidney injury (AKI). Given the high morbidity and mortality associated with AKI this represents an important unmet medical need. A common feature of all of the therapeutic development efforts for AKI is that none were driven by target selection or preclinical modeling that was based primarily on human data. This is important when considering a heterogeneous and dynamic condition such as AKI, in which in the absence of more accurate molecular classifications, clinical cohorts are likely to include patients with different types of injury at different stages in the injury and repair continuum. The National Institutes of Health precision medicine initiative offers an opportunity to address this. By creating a molecular tissue atlas of AKI, defining patient subgroups, and identifying critical cells and pathways involved in human AKI, this initiative has the potential to transform our current approach to therapeutic discovery. In this review, we discuss the opportunities and challenges that this initiative presents, with a specific focus on AKI, what additional efforts will be needed to apply these discoveries to therapeutic development, and how we believe this effort might lead to the development of new therapeutics for subsets of patients with AKI.
Collapse
Affiliation(s)
- Mark de Caestecker
- Nephrology Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Raymond Harris
- Nephrology Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Gehrig J, Pandey G, Westhoff JH. Zebrafish as a Model for Drug Screening in Genetic Kidney Diseases. Front Pediatr 2018; 6:183. [PMID: 30003073 PMCID: PMC6031734 DOI: 10.3389/fped.2018.00183] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic disorders account for a wide range of renal diseases emerging during childhood and adolescence. Due to the utilization of modern biochemical and biomedical techniques, the number of identified disease-associated genes is increasing rapidly. Modeling of congenital human disease in animals is key to our understanding of the biological mechanism underlying pathological processes and thus developing novel potential treatment options. The zebrafish (Danio rerio) has been established as a versatile small vertebrate organism that is widely used for studying human inherited diseases. Genetic accessibility in combination with elegant experimental methods in zebrafish permit modeling of human genetic diseases and dissecting the perturbation of underlying cellular networks and physiological processes. Beyond its utility for genetic analysis and pathophysiological and mechanistic studies, zebrafish embryos, and larvae are amenable for phenotypic screening approaches employing high-content and high-throughput experiments using automated microscopy. This includes large-scale chemical screening experiments using genetic models for searching for disease-modulating compounds. Phenotype-based approaches of drug discovery have been successfully performed in diverse zebrafish-based screening applications with various phenotypic readouts. As a result, these can lead to the identification of candidate substances that are further examined in preclinical and clinical trials. In this review, we discuss zebrafish models for inherited kidney disease as well as requirements and considerations for the technical realization of drug screening experiments in zebrafish.
Collapse
Affiliation(s)
- Jochen Gehrig
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany
| | - Gunjan Pandey
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Hukriede N, Vogt A, de Caestecker M. Drug Discovery to Halt the Progression of Acute Kidney Injury to Chronic Kidney Disease: A Case for Phenotypic Drug Discovery in Acute Kidney Injury. Nephron Clin Pract 2017; 137:268-272. [PMID: 28614822 DOI: 10.1159/000476079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
The cellular responses that occur following acute kidney injury (AKI) are complex and dynamic, involving multiple cells types and molecular pathways. For this reason, early selection of defined molecular targets for therapeutic intervention is unlikely to be effective in complex in vivo models of AKI, let alone Phase 3 clinical trials in patients with even more complex AKI pathobiology. Phenotypic screening using zebrafish provides an attractive alternative that does not require prior knowledge of molecular targets and may identify compounds that modify multiple targets that might be missed in more traditional target-based screens. In this review, we discuss results of an academic drug discovery campaign that used zebrafish as a primary screening tool to discover compounds with favorable absorption, metabolism, and toxicity that enhance repair when given late after injury in multiple models of AKI. We discuss how this screening campaign is being integrated into a more comprehensive, phenotypic, and target-based screen for lead compound optimization.
Collapse
Affiliation(s)
- Neil Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
18
|
A nonsense mutation inCEP55defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy. Clin Genet 2017; 92:510-516. [DOI: 10.1111/cge.13012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/03/2017] [Indexed: 01/05/2023]
|
19
|
Kersten S, Arjona FJ. Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives. Am J Physiol Renal Physiol 2017; 312:F172-F189. [DOI: 10.1152/ajprenal.00425.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish ( Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins.
Collapse
Affiliation(s)
- Simone Kersten
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
20
|
Chambers BE, Wingert RA. Renal progenitors: Roles in kidney disease and regeneration. World J Stem Cells 2016; 8:367-375. [PMID: 27928463 PMCID: PMC5120241 DOI: 10.4252/wjsc.v8.i11.367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/17/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
Kidney disease is a devastating condition that affects millions of people worldwide, and its prevalence is predicted to significantly increase. The kidney is a complex organ encompassing many diverse cell types organized in a elaborate tissue architecture, making regeneration a challenging feat. In recent years, there has been a surge in the field of stem cell research to develop regenerative therapies for various organ systems. Here, we review some recent progressions in characterizing the role of renal progenitors in development, regeneration, and kidney disease in mammals. We also discuss how the zebrafish provides a unique experimental animal model that can provide a greater molecular and genetic understanding of renal progenitors, which may contribute to the development of potential regenerative therapies for human renal afflictions.
Collapse
|
21
|
Powell R, Bubenshchikova E, Fukuyo Y, Hsu C, Lakiza O, Nomura H, Renfrew E, Garrity D, Obara T. Wtip is required for proepicardial organ specification and cardiac left/right asymmetry in zebrafish. Mol Med Rep 2016; 14:2665-78. [PMID: 27484451 PMCID: PMC4991684 DOI: 10.3892/mmr.2016.5550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/02/2016] [Indexed: 01/20/2023] Open
Abstract
Wilm's tumor 1 interacting protein (Wtip) was identified as an interacting partner of Wilm's tumor protein (WT1) in a yeast two-hybrid screen. WT1 is expressed in the proepicardial organ (PE) of the heart, and mouse and zebrafish wt1 knockout models appear to lack the PE. Wtip's role in the heart remains unexplored. In the present study, we demonstrate that wtip expression is identical in wt1a-, tcf21-, and tbx18-positive PE cells, and that Wtip protein localizes to the basal body of PE cells. We present the first genetic evidence that Wtip signaling in conjunction with WT1 is essential for PE specification in the zebrafish heart. By overexpressing wtip mRNA, we observed ectopic expression of PE markers in the cardiac and pharyngeal arch regions. Furthermore, wtip knockdown embryos showed perturbed cardiac looping and lacked the atrioventricular (AV) boundary. However, the chamber-specific markers amhc and vmhc were unaffected. Interestingly, knockdown of wtip disrupts early left-right (LR) asymmetry. Our studies uncover new roles for Wtip regulating PE cell specification and early LR asymmetry, and suggest that the PE may exert non-autonomous effects on heart looping and AV morphogenesis. The presence of cilia in the PE, and localization of Wtip in the basal body of ciliated cells, raises the possibility of cilia-mediated PE signaling in the embryonic heart.
Collapse
Affiliation(s)
- Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Yayoi Fukuyo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Chaonan Hsu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Olga Lakiza
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Hiroki Nomura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin Renfrew
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah Garrity
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
22
|
Poureetezadi SJ, Wingert RA. Little fish, big catch: zebrafish as a model for kidney disease. Kidney Int 2016; 89:1204-10. [PMID: 27165832 DOI: 10.1016/j.kint.2016.01.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
The zebrafish, Danio rerio, is a relevant vertebrate model for biomedical research and translational studies because of its broad genetic conservation with humans. In recent years, scientists have formulated a growing list of zebrafish kidney disease paradigms, the study of which has contributed a multitude of insights into the basic biology of human conditions and even identified potential therapeutic agents. Conversely, there are also distinctive aspects of zebrafish biology lacking in higher vertebrates, such as the capacity to heal without lasting scar formation after tissue damage and the ability to generate nephrons throughout their lifespan, which makes the zebrafish uniquely suited to study regeneration in the context of the kidney. Here, we review several informative zebrafish models of kidney disease and discuss their future applications in nephrology.
Collapse
Affiliation(s)
- Shahram Jevin Poureetezadi
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
23
|
Drummond BE, Wingert RA. Insights into kidney stem cell development and regeneration using zebrafish. World J Stem Cells 2016; 8:22-31. [PMID: 26981168 PMCID: PMC4766248 DOI: 10.4252/wjsc.v8.i2.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/28/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Kidney disease is an escalating global health problem, for which the formulation of therapeutic approaches using stem cells has received increasing research attention. The complexity of kidney anatomy and function, which includes the diversity of renal cell types, poses formidable challenges in the identification of methods to generate replacement structures. Recent work using the zebrafish has revealed their high capacity to regenerate the integral working units of the kidney, known as nephrons, following acute injury. Here, we discuss these findings and explore the ways that zebrafish can be further utilized to gain a deeper molecular appreciation of renal stem cell biology, which may uncover important clues for regenerative medicine.
Collapse
|
24
|
Skrypnyk NI, Sanker S, Skvarca LB, Novitskaya T, Woods C, Chiba T, Patel K, Goldberg ND, McDermott L, Vinson PN, Calcutt MW, Huryn DM, Vernetti LA, Vogt A, Hukriede NA, de Caestecker MP. Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury. Am J Physiol Renal Physiol 2015; 310:F705-F716. [PMID: 26661656 DOI: 10.1152/ajprenal.00503.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
No therapies have been shown to accelerate recovery or prevent fibrosis after acute kidney injury (AKI). In part, this is because most therapeutic candidates have to be given at the time of injury and the diagnosis of AKI is usually made too late for drugs to be efficacious. Strategies to enhance post-AKI repair represent an attractive approach to address this. Using a phenotypic screen in zebrafish, we identified 4-(phenylthio)butanoic acid (PTBA), which promotes proliferation of embryonic kidney progenitor cells (EKPCs), and the PTBA methyl ester UPHD25, which also increases postinjury repair in ischemia-reperfusion and aristolochic acid-induced AKI in mice. In these studies, a new panel of PTBA analogs was evaluated. Initial screening was performed in zebrafish EKPC assays followed by survival assays in a gentamicin-induced AKI larvae zebrafish model. Using this approach, we identified UPHD186, which in contrast to UPHD25, accelerates recovery and reduces fibrosis when administered several days after ischemia-reperfusion AKI and reduces fibrosis after unilateral ureteric obstruction in mice. UPHD25 and 186 are efficiently metabolized to the active analog PTBA in liver and kidney microsome assays, indicating both compounds may act as PTBA prodrugs in vivo. UPHD186 persists longer in the circulation than UPHD25, suggesting that sustained levels of UPHD186 may increase efficacy by acting as a reservoir for renal metabolism to PTBA. These findings validate use of zebrafish EKPC and AKI assays as a drug discovery strategy for molecules that reduce fibrosis in multiple AKI models and can be administered days after initiation of injury.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Subramaniam Sanker
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tatiana Novitskaya
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Clara Woods
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Takuto Chiba
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Kevin Patel
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Natasha D Goldberg
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee McDermott
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paige N Vinson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - M Wade Calcutt
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Donna M Huryn
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence A Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andreas Vogt
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Neil A Hukriede
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee; .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
25
|
Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol 2015; 145:105-17. [PMID: 26496922 PMCID: PMC4710661 DOI: 10.1007/s00418-015-1376-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 02/02/2023]
Abstract
The present study has demonstrated the galaninergic innervation of the endocrine pancreas including sources of the galaninergic nerve fibers, and the influence of galanin receptor agonists on blood glucose level in the zebrafish. For the first time, a very abundant galaninergic innervation of the endocrine pancreas during development is shown, from the second day post-fertilization to adulthood. The fibers originated from ganglia consisting of galanin-IR, non-adrenergic (non-sensory) neurons located rostrally to the pancreatic tissue. The ganglia were found on the dorsal side of the initial part of the anterior intestinal segment, close to the intestinal branch of the vagus nerve. The galanin-IR neurons did not show immunoreactivity for applied antibodies against tyrosine hydroxylase, choline acetyltransferase, and vesicular acetylcholine transporter. Intraperitoneal injections of galanin analog NAX 5055 resulted in a statistically significant increase in the blood glucose level. Injections of another galanin receptor agonist, galnon, also caused a rise in blood glucose level; however, it was not statistically significant. The present findings suggest that, like in mammals, in the zebrafish galanin is involved in the regulation of blood glucose level. However, further studies are needed to elucidate the exact mechanism of the galanin action.
Collapse
|
26
|
Vargas RA, Sarmiento K, Vásquez IC. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies. Zebrafish 2015. [DOI: 10.1089/zeb.2015.1102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rafael Antonio Vargas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karen Sarmiento
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Isabel Cristina Vásquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
27
|
Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells Int 2015; 2015:547636. [PMID: 26089919 PMCID: PMC4451991 DOI: 10.1155/2015/547636] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration.
Collapse
|
28
|
McCampbell KK, Springer KN, Wingert RA. Analysis of nephron composition and function in the adult zebrafish kidney. J Vis Exp 2014:e51644. [PMID: 25145398 PMCID: PMC4459603 DOI: 10.3791/51644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Collapse
|
29
|
Harris MP, Henke K, Hawkins MB, Witten PE. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2014; 30:616-629. [PMID: 25221374 PMCID: PMC4159207 DOI: 10.1111/jai.12533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fishes are wonderfully diverse. This variety is a result of the ability of ray-finned fishes to adapt to a wide range of environments, and has made them more specious than the rest of vertebrates combined. With such diversity it is easy to dismiss comparisons between distantly related fishes in efforts to understand the biology of a particular fish species. However, shared ancestry and the conservation of developmental mechanisms, morphological features and physiology provide the ability to use comparative analyses between different organisms to understand mechanisms of development and physiology. The use of species that are amenable to experimental investigation provides tools to approach questions that would not be feasible in other 'non-model' organisms. For example, the use of small teleost fishes such as zebrafish and medaka has been powerful for analysis of gene function and mechanisms of disease in humans, including skeletal diseases. However, use of these fish to aid in understanding variation and disease in other fishes has been largely unexplored. This is especially evident in aquaculture research. Here we highlight the utility of these small laboratory fishes to study genetic and developmental factors that underlie skeletal malformations that occur under farming conditions. We highlight several areas in which model species can serve as a resource for identifying the causes of variation in economically important fish species as well as to assess strategies to alleviate the expression of the variant phenotypes in farmed fish. We focus on genetic causes of skeletal deformities in the zebrafish and medaka that closely resemble phenotypes observed both in farmed as well as natural populations of fishes.
Collapse
Affiliation(s)
- M P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, USA ; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, USA
| | - K Henke
- Department of Genetics, Harvard Medical School, Boston, MA, USA ; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, USA
| | - M B Hawkins
- Department of Genetics, Harvard Medical School, Boston, MA, USA ; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, USA ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - P E Witten
- Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
31
|
Sharma P, Sharma S, Patial V, Singh D, Padwad YS. Zebrafish (Danio rerio): A potential model for nephroprotective drug screening. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cqn.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) affect 1/500 live births. CAKUT lead to end stage renal failure in children, and are associated with high morbidity rates. Understanding the mechanisms of kidney development, and that of other associated urogenital tissues, is crucial to the prevention and treatment of CAKUT. The kidney arises from self-renewing mesenchymal renal stem cells that produce nephrons, which are the principal functional units of the organ. To date, the genetic and cellular mechanisms that control nephrogenesis have remained poorly understood. In recent years, developmental studies using amphibians and zebrafish have revealed that their simple embryonic kidney, known as the pronephros, is a useful paradigm for comparative studies of nephron ontogeny. Here, we discuss the new found roles for Iroquois transcription factors in pronephric nephron patterning, and explore the relevance of these findings for kidney development in humans.
Collapse
Affiliation(s)
| | - Rebecca A. Wingert
- Corresponding author: Rebecca A. Wingert, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA, Tel: 574-631-0907; Fax: 574-631-7413;
| |
Collapse
|
33
|
Opitz R, Antonica F, Costagliola S. New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox. Eur Thyroid J 2013; 2:229-42. [PMID: 24783054 PMCID: PMC3923603 DOI: 10.1159/000357079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/07/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid dysgenesis (TD) resulting from defects during embryonic thyroid development represents a major cause of congenital hypothyroidism. The pathogenetic mechanisms of TD in human newborns, however, are still poorly understood and disease-causing genetic variants have been identified in only a small percentage of TD cases. This limited understanding of the pathogenesis of TD is partly due to a lack of knowledge on how intrinsic factors and extrinsic signalling cues orchestrate the differentiation of thyroid follicular cells and the morphogenesis of thyroid tissue. Recently, embryonic stem cells and zebrafish embryos emerged as novel model systems that allow for innovative experimental approaches in order to decipher cellular and molecular mechanisms of thyroid development and to unravel pathogenic mechanisms of TD. Zebrafish embryos offer several salient properties for studies on thyroid organogenesis including rapid and external development, optical transparency, ease of breeding, relative short generation time and amenability for genome editing. In this review, we will highlight recent advances in the zebrafish toolkit to visualize cellular dynamics of organ development and discuss specific prospects of the zebrafish model for studies on vertebrate thyroid development and human congenital thyroid diseases.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Francesco Antonica
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Poureetezadi SJ, Wingert RA. Congenital and Acute Kidney Disease: Translational Research Insights from Zebrafish Chemical Genetics. ACTA ACUST UNITED AC 2013; 1:112. [PMID: 24653992 DOI: 10.4172/2327-5146.1000112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Today, acute kidney injury (AKI) and congenital anomalies of the kidney and urinary tract (CAKUT) represent major issues in healthcare. Both AKI and CAKUT can lead to end stage renal disease (ESRD) that requires life-long medical care with renal replacement therapy. Renal replacement by dialysis is intensive, and kidney transplantation is restricted by organ availability. These limitations, along with the growing epidemic of patients affected by kidney disease, highlight the significant need to identify alternative ways to treat renal injury and birth defects. Drug discovery is one promising avenue of current research. Here, we discuss zebrafish chemical genetics and its latent potency as a method to rapidly identify small molecule therapeutics to accelerate recovery after AKI. Specifically, we review two groundbreaking studies that have recently provided a template to screen for compounds that expand the renal progenitor field in development that were capable of treating AKI in both the zebrafish and the mouse. These new findings demonstrate that drug discovery using zebrafish can be used for relevant translational research to identify clinical interventions for renal conditions in humans.
Collapse
Affiliation(s)
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
35
|
Arts HH, Knoers NVAM. Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol 2013; 28:863-74. [PMID: 22829176 PMCID: PMC3631122 DOI: 10.1007/s00467-012-2259-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023]
Abstract
Ciliopathies are a group of clinically and genetically overlapping disorders whose etiologies lie in defective cilia. These are antenna-like organelles on the apical surface of numerous cell types in a variety of tissues and organs, the kidney included. Cilia play essential roles during development and tissue homeostasis, and their dysfunction in the kidney has been associated with renal cyst formation and renal failure. Recently, the term "renal ciliopathies" was coined for those human genetic disorders that are characterized by nephronophthisis, cystic kidneys or renal cystic dysplasia. This review focuses on renal ciliopathies from a human genetics perspective. We survey the newest insights with respect to gene identification and genotype-phenotype correlations, and we reflect on candidate ciliopathies. The opportunities and challenges of next-generation sequencing (NGS) for genetic renal research and clinical DNA diagnostics are also reviewed, and we discuss the contribution of NGS to the development of personalized therapy for patients with renal ciliopathies.
Collapse
Affiliation(s)
- Heleen H. Arts
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, and Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Nine V. A. M. Knoers
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
36
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
37
|
Mo D, Ihrke G, Costa SA, Brilli L, Labilloy A, Halfter W, Cianciolo Cosentino C, Hukriede NA, Weisz OA. Apical targeting and endocytosis of the sialomucin endolyn are essential for establishment of zebrafish pronephric kidney function. J Cell Sci 2012; 125:5546-54. [PMID: 22976307 DOI: 10.1242/jcs.111468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kidney function requires the appropriate distribution of membrane proteins between the apical and basolateral surfaces along the kidney tubule. Further, the absolute amount of a protein at the cell surface versus intracellular compartments must be attuned to specific physiological needs. Endolyn (CD164) is a transmembrane protein that is expressed at the brush border and in apical endosomes of the proximal convoluted tubule and in lysosomes of more distal segments of the kidney. Endolyn has been shown to regulate CXCR4 signaling in hematopoietic precursor cells and myoblasts; however, little is known about endolyn function in the adult or developing kidney. Here we identify endolyn as a gene important for zebrafish pronephric kidney function. Zebrafish endolyn lacks the N-terminal mucin-like domain of the mammalian protein, but is otherwise highly conserved. Using in situ hybridization we show that endolyn is expressed early during development in zebrafish brain, eye, gut and pronephric kidney. Embryos injected with a translation-inhibiting morpholino oligonucleotide targeted against endolyn developed pericardial edema, hydrocephaly and body curvature. The pronephric kidney appeared normal morphologically, but clearance of fluorescent dextran injected into the common cardinal vein was delayed, consistent with a defect in the regulation of water balance in morphant embryos. Heterologous expression of rat endolyn rescued the morphant phenotypes. Interestingly, rescue experiments using mutant rat endolyn constructs revealed that both apical sorting and endocytic/lysosomal targeting motifs are required for normal pronephric kidney function. This suggests that both polarized targeting and postendocytic trafficking of endolyn are essential for the protein's proper function in mammalian kidney.
Collapse
Affiliation(s)
- Di Mo
- Renal Electrolyte Division, University of Pittsburgh School of Medicine Pittsburgh, PA 15261 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rbaibi Y, Cui S, Mo D, Carattino M, Rohatgi R, Satlin LM, Szalinski CM, Swanhart LM, Fölsch H, Hukriede NA, Weisz OA. OCRL1 modulates cilia length in renal epithelial cells. Traffic 2012; 13:1295-305. [PMID: 22680056 DOI: 10.1111/j.1600-0854.2012.01387.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/18/2023]
Abstract
Lowe syndrome is an X-linked disorder characterized by cataracts at birth, mental retardation and progressive renal malfunction that results from loss of function of the OCRL1 (oculocerebrorenal syndrome of Lowe) protein. OCRL1 is a lipid phosphatase that converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The renal pathogenesis of Lowe syndrome patients has been suggested to result from alterations in membrane trafficking, but this cannot fully explain the disease progression. We found that knockdown of OCRL1 in zebrafish caused developmental defects consistent with disruption of ciliary function, including body axis curvature, pericardial edema, hydrocephaly and impaired renal clearance. In addition, cilia in the proximal tubule of the zebrafish pronephric kidney were longer in ocrl morphant embryos. We also found that knockdown of OCRL1 in polarized renal epithelial cells caused elongation of the primary cilium and disrupted formation of cysts in three-dimensional cultures. Calcium release in response to ATP was blunted in OCRL1 knockdown cells, suggesting changes in signaling that could lead to altered cell function. Our results suggest a new role for OCRL1 in renal epithelial cell function that could contribute to the pathogenesis of Lowe syndrome.
Collapse
Affiliation(s)
- Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Zebrafish have been widely used as a model system for studying developmental processes, but in the last decade, they have also emerged as a valuable system for modeling human disease. The development and function of zebrafish organs are strikingly similar to those of humans, and the ease of creating mutant or transgenic fish has facilitated the generation of disease models. Here, we highlight the use of zebrafish for defining disease pathways and for discovering new therapies.
Collapse
Affiliation(s)
- Cristina Santoriello
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
40
|
Centrosomes in the zebrafish (Danio rerio): a review including the related basal body. Cilia 2012; 1:9. [PMID: 23351173 PMCID: PMC3555702 DOI: 10.1186/2046-2530-1-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022] Open
Abstract
Ever since Edouard Van Beneden and Theodor Boveri first formally described the centrosome in the late 1800s, it has captivated cell biologists. The name clearly indicated its central importance to cell functioning, even to these early investigators. We now know of its role as a major microtubule-organizing center (MTOC) and of its dynamic roles in cell division, vesicle trafficking and for its relative, the basal body, ciliogenesis. While centrosomes are found in most animal cells, notably it is absent in most oocytes and higher plant cells. Nevertheless, it appears that critical components of the centrosome act as MTOCs in these cells as well. The zebrafish has emerged as an exciting and promising new model organism, primarily due to the pioneering efforts of George Streisinger to use zebrafish in genetic studies and due to Christiane Nusslein-Volhard, Wolfgang Driever and their teams of collaborators, who applied forward genetics to elicit a large number of mutant lines. The transparency and rapid external development of the embryo allow for experiments not easily done in other vertebrates. The ease of producing transgenic lines, often with the use of fluorescent reporters, and gene knockdowns with antisense morpholinos further contributes to the appeal of the model as an experimental system. The added advantage of high-throughput screening of small-molecule libraries, as well as the ease of mass rearing together with low cost, makes the zebrafish a true frontrunner as a model vertebrate organism. The zebrafish has a body plan shared by all vertebrates, including humans. This conservation of body plan provides added significance to the existing lines of zebrafish as human disease models and adds an impetus to the ongoing efforts to develop new models. In this review, the current state of knowledge about the centrosome in the zebrafish model is explored. Also, studies on the related basal body in zebrafish and their relationship to ciliogenesis are reviewed.
Collapse
|
41
|
Persson PB. Assessing cardio-renal function in zebrafish larvae. J Physiol 2012; 590:2545. [DOI: 10.1113/jphysiol.2012.229757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
42
|
Bubenshchikova E, Ichimura K, Fukuyo Y, Powell R, Hsu C, Morrical SO, Sedor JR, Sakai T, Obara T. Wtip and Vangl2 are required for mitotic spindle orientation and cloaca morphogenesis. Biol Open 2012; 1:588-96. [PMID: 23213452 PMCID: PMC3509438 DOI: 10.1242/bio.20121016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in cilia and basal bodies function are linked to ciliopathies, which result in kidney cyst formation. Recently, cell division defects have been observed in cystic kidneys, but the underlying mechanisms of such defects remain unclear. Wtip is an LIM domain protein of the Ajuba/Zyxin family, but its role in ciliogenesis during embryonic development has not been previously described. We report Wtip is enriched in the basal body and knockdown of wtip leads to pronephric cyst formation, cloaca malformation, hydrocephalus, body curvature, and pericardial edema. We additionally show that wtip knockdown embryos display segment-specific defects in the pronephros: mitotic spindle orientation defects are observed only in the anterior and middle pronephros; cloaca malformation is accompanied by a reduced number of ciliated cells; and ciliated cells lack the striated rootlet that originates from basal bodies, which results in a lack of cilia motility. Our data suggest that loss of Wtip function phenocopies Vangl2 loss of function, a core planar cell polarity (PCP) protein located in the basal body protein. Furthermore, we demonstrate that wtip and vangl2 interact genetically. Taken together, our results indicate that in zebrafish, Wtip is required for mitotic spindle orientation in the anterior and middle of the pronephros, cloaca morphogenesis, and PCP, which may underlie the molecular etiology of ciliopathies.
Collapse
Affiliation(s)
- Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Science Center , Oklahoma City, OK 73104 , USA ; Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine , Cleveland, OH 44109 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
|