1
|
Liu H, Tao T, Gan Z, Xie Y, Wang Y, Yang Y, Zhang X, Li X, Qin J. Organoid in droplet: Production of uniform pancreatic cancer organoids from single cells. Mater Today Bio 2025; 32:101765. [PMID: 40270893 PMCID: PMC12017920 DOI: 10.1016/j.mtbio.2025.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer organoids have improved our understanding of recapitulating the histology, genotypes, and drug response of patient tumors for personalized medicine. However, the existing cancer organoids are typically grown in animal-derived matrices (e.g., Matrigel), which suffer from poor reproducibility and low throughput due to uncontrollable origin of seed cells, undefined matrix, and manual manipulation. Here, we report a new strategy to massively generate uniform pancreatic cancer organoids (PCOs) in a droplet system from single cells. This system is composed of all-in-water fluids that allow to mildly encapsulate single tumor cell into isolated droplet, which subsequently proliferate and self-assemble into organoids, resembling the initial state of a tumor in the body. This high-throughput method can produce thousands of organoids in a single batch. The droplets can serve as templates for synthesizing defined microgels with proper stiffness similar to that of native tumors, facilitating functional expressions of PCOs. These organoids exhibit superior uniformity and controllability in terms of size and morphologies compared with organoids cultured in manually dropped Matrigel, due mainly to the controllable number of initiating cells and defined microgels. In addition, the established organoids maintain the key biomarkers of pancreatic tumor (e.g., KRT7, KRT19 and SOX9) and higher expression of genes associated with drug metabolism confirmed by RNA-seq and PCR analysis. Furthermore, they show distinguishing responses to four clinically used drugs in a reproducible manner in automatic pipetting workstation, indicating the feasibility of the proposed method in high-throughput drug testing. The established strategy has integrated the formation, 3D cultures, and analysis of PCOs derived from single cells in a whole system, which may provide a novel platform for advancing organoids research with standardized procedure in translational applications.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tingting Tao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Yizhao Yang
- Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianliang Li
- Department of HBP Surgery, Beijing Chao Yang Hospital, the Capital Medical University, Beijing, 100020, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| |
Collapse
|
2
|
Thompson GB, Lee J, Kamani KM, Flores-Velasco N, Rogers SA, Harley BAC. Granular hydrogels as brittle yield stress fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639638. [PMID: 40060491 PMCID: PMC11888328 DOI: 10.1101/2025.02.22.639638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
While granular hydrogels are increasingly used in biomedical applications, methods to capture their rheological behavior generally consider shear-thinning and self-healing properties or produce ensemble metrics such as the dynamic moduli. Analytical approaches paired with common oscillatory shear tests can describe not only solid-like and fluid-like behavior of granular hydrogels but also transient characteristics inherent in yielding and unyielding processes. Combining oscillatory shear testing with consideration of Brittility (Bt) via the Kamani-Donley-Rogers (KDR) model, we show granular hydrogels behave as brittle yield stress fluids with complex transient rheology. We quantify steady and transient rheology as a function of microgel (composition; diameter) and granular (packing; droplet heterogeneity) assembly properties for mixtures of polyethylene glycol and gelatin microgels. The KDR model with Bt captures granular hydrogel behavior for a wide range of design parameters, reducing the complex transient rheology to a determination of model parameters. We describe the impact of composition on rheological behavior and model parameters in monolithic and mixed granular hydrogels. The model robustly captures self-healing behavior and reveals granular relaxation time depends on strain amplitude. This quantitative framework is an important step toward rational design of granular hydrogels for applications ranging from injection and in situ stabilization to 3D bioprinting.
Collapse
Affiliation(s)
- G B Thompson
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - J Lee
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - K M Kamani
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - N Flores-Velasco
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - S A Rogers
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - B A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
3
|
Thompson GB, Gilchrist AE, Lam VM, Nunes AC, Payan BA, Mora-Boza A, Serrano JF, García AJ, Harley BAC. Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation. J Biomed Mater Res A 2024; 112:2124-2135. [PMID: 38894666 PMCID: PMC11464195 DOI: 10.1002/jbm.a.37765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.
Collapse
Affiliation(s)
- Gunnar B Thompson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Vincent M Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Alison C Nunes
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Brittany A Payan
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ana Mora-Boza
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Julio F Serrano
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
5
|
Daly AC. Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives. Adv Healthc Mater 2024; 13:e2301388. [PMID: 37317658 DOI: 10.1002/adhm.202301388] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Granular hydrogels, which are formed by densely packing microgels, are promising materials for bioprinting due to their extrudability, porosity, and modularity. However, the multidimensional parameter space involved in granular hydrogel design makes material optimization challenging. For example, design inputs such as microgel morphology, packing density, or stiffness can influence multiple rheological properties that govern printability and the behavior of encapsulated cells. This review provides an overview of fabrication methods for granular hydrogels, and then examines how important design inputs can influence material properties associated with printability and cellular responses across multiple scales. Recent applications of granular design principles in bioink engineering are described, including the development of granular support hydrogels for embedded printing. Further, the paper provides an overview of how key physical properties of granular hydrogels can influence cellular responses, highlighting the advantages of granular materials for promoting cell and tissue maturation after the printing process. Finally, potential future directions for advancing the design of granular hydrogels for bioprinting are discussed.
Collapse
Affiliation(s)
- Andrew C Daly
- Biomedical Engineering, University of Galway, Galway, H91 TK33, Ireland
- CÚRAM the Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
6
|
Li H, Iyer KS, Bao L, Zhai J, Li JJ. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301597. [PMID: 37499268 DOI: 10.1002/adhm.202301597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.
Collapse
Affiliation(s)
- Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Keerthi Subramanian Iyer
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Lei Bao
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
7
|
Lin CH, Srioudom JR, Sun W, Xing M, Yan S, Yu L, Yang J. The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration. BIOMATERIALS TRANSLATIONAL 2024; 5:236-256. [PMID: 39734701 PMCID: PMC11681182 DOI: 10.12336/biomatertransl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 12/31/2024]
Abstract
Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection. The development of tissue engineering techniques opens new avenues for enhanced tissue regeneration. Nowadays, the expectations of tissue engineering scaffolds have gone beyond merely providing physical support for cell attachment. Ideal scaffolds should also provide biological cues to actively boost tissue regeneration. As a new type of injectable biomaterial, hydrogel microspheres have been increasingly recognised as promising therapeutic carriers for the local delivery of cells and drugs to enhance tissue regeneration. Compared to traditional tissue engineering scaffolds and bulk hydrogel, hydrogel microspheres possess distinct advantages, including less invasive delivery, larger surface area, higher transparency for visualisation, and greater flexibility for functionalisation. Herein, we review the materials characteristics of hydrogel microspheres and compare their fabrication approaches, including microfluidics, batch emulsion, electrohydrodynamic spraying, lithography, and mechanical fragmentation. Additionally, based on the different requirements for bone, cartilage, nerve, skin, and muscle tissue regeneration, we summarize the applications of hydrogel microspheres as cell and drug delivery carriers for the regeneration of these tissues. Overall, hydrogel microspheres are regarded as effective therapeutic delivery carriers to enhance tissue regeneration in regenerative medicine. However, significant effort is required before hydrogel microspheres become widely accepted as commercial products for clinical use.
Collapse
Affiliation(s)
- Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse R. Srioudom
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Wei Sun
- Leicester International Institute, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang Province, China
- Research Centre for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Mora-Boza A, Ahmedin Z, García AJ. Controlled release of therapeutic antibody using hydrolytically degradable microgels. J Biomed Mater Res A 2024; 112:1265-1275. [PMID: 37927169 PMCID: PMC11069594 DOI: 10.1002/jbm.a.37637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Monoclonal antibodies have gained significant interest as potential therapeutics for treating various diseases. However, these therapies are not always effective due to poor treatment compliance associated with multiple administrations and drug resistance. Thus, there is a growing interest in developing advanced monoclonal antibody delivery systems that can customize pharmacokinetics to enhance therapeutic outcomes. This work aimed to engineer hydrolytic 4-arm PEG maleimide (PEG-4MAL) microgels for the controlled delivery of therapeutic antibodies, specifically anti-angiogenic bevacizumab, to overcome the limitations of current monoclonal antibody therapies. Through a PEGylation reaction with a thiol-terminated PEG linker, the antibody was covalently conjugated to the macromer backbone before microgel synthesis. The PEGylation reaction was simple, effective, and did not affect antibody bioactivity. Antibody release kinetics was tuned by changing the concentration of the hydrolytic linker (0-2 mM) and/or PEG-4MAL:protein molar ratio (1000:1, 2000:1, and 5000:1) in the macromer precursor solution during microgel fabrication. The bioactivity of the released antibody was assessed on human umbilical endothelial vascular cells (HUVEC), demonstrating that extracts from hydrolytic microgels reduced cell proliferation over time. Collectively, this study demonstrates the development of highly tunable delivery platform based on degradable PEG-4MAL microgels that can be adapted for therapeutic antibody-controlled release.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zakir Ahmedin
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Tian L, Jackson K, He L, Khan S, Thirugnanasampanthar M, Gomez M, Bayat F, Didar TF, Hosseinidoust Z. High-throughput fabrication of antimicrobial phage microgels and example applications in food decontamination. Nat Protoc 2024; 19:1591-1622. [PMID: 38413781 DOI: 10.1038/s41596-024-00964-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 02/29/2024]
Abstract
Engineered by nature, biological entities are exceptional building blocks for biomaterials. These entities can impart enhanced functionalities on the final material that are otherwise unattainable. However, preserving the bioactive functionalities of these building blocks during the material fabrication process remains a challenge. We describe a high-throughput protocol for the bottom-up self-assembly of highly concentrated phages into microgels while preserving and amplifying their inherent antimicrobial activity and biofunctionality. Each microgel is comprised of half a million cross-linked phages as the sole structural component, self-organized in aligned bundles. We discuss common pitfalls in the preparation procedure and describe optimization processes to ensure the preservation of the biofunctionality of the phage building blocks. This protocol enables the production of an antimicrobial spray containing the manufactured phage microgels, loaded with potent virulent phages that effectively reduced high loads of multidrug-resistant Escherichia coli O157:H7 on red meat and fresh produce. Compared with other microgel preparation methods, our protocol is particularly well suited to biological materials because it is free of organic solvents and heat. Bench-scale preparation of base materials, namely microporous films (the template for casting microgels) and pure concentrated phage suspension, requires 3.5 h and 5 d, respectively. A single production run, that yields over 1,750,000 microgels, ranges from 2 h to 2 d depending on the rate of cross-linking chemistry. We expect that this platform will address bottlenecks associated with shelf-stability, preservation and delivery of phage for antimicrobial applications, expanding the use of phage for prevention and control of bacterial infections and contaminants.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Leon He
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Racca NM, Dontu A, Riley K, Yolcu ES, Shirwan H, Coronel MM. Bending the Rules: Amplifying PD-L1 Immunoregulatory Function Through Flexible Polyethylene Glycol Synthetic Linkers. Tissue Eng Part A 2024; 30:299-313. [PMID: 38318841 DOI: 10.1089/ten.tea.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.
Collapse
Affiliation(s)
- Nicole M Racca
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Dontu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kayle Riley
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Associate Director, Immunomodulation and Regenerative Medicine Program, Ellis Fischel Cancer Center, Columbia, Missouri, USA
| | - María M Coronel
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Sun Y, Liu M, Tang X, Zhou Y, Zhang J, Yang B. Culture-Delivery Live Probiotics Dressing for Accelerated Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53283-53296. [PMID: 37948751 DOI: 10.1021/acsami.3c12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Probiotic therapy in infected wound healing is hindered by its low viability and colonization efficiency during treatments. Developing dressings that maintain metabolic activity and prevent the potential leakage of probiotics is imperative. Herein, a culture-delivery live probiotics hydrogel dressing is designed and synthesized, formed by gelatin modified with norbornene (GelNB) and sulfhydryl (GelSH), distributing Lactobacillus reuteri (L. reuteri)-laden alginate microspheres (AlgMPs). GelNB-GelSH hydrogel (GelNBSH) incorporating AlgMPs embedding L. reuteri (GelNBSH-L) possesses bioprintability and efficient polymerization that can maintain the activity of L. reuteri in situ, promote its proliferation, and limit its leakage. Thereby, GelNBSH-L achieved a sustainable antimicrobial effect against both S. aureus and E. coli (>90%). Above all, the results show that GelNBSH-L could ensure propitious viability and efficient antibacterial properties of probiotics, effectively inhibit the further development of bacterial infectious wounds and shorten the repair cycle, aiding in ameliorating future clinical probiotic biotherapy.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Nguyen TPT, Li F, Hung B, Truong VX, Thissen H, Forsythe JS, Frith JE. Cell Microencapsulation within Gelatin-PEG Microgels Using a Simple Pipet Tip-Based Device. ACS Biomater Sci Eng 2023; 9:6024-6033. [PMID: 37788301 DOI: 10.1021/acsbiomaterials.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Microgels are microscale particles of hydrogel that can be laden with cells and used to create macroporous tissue constructs. Their ability to support cell-ECM and cell-cell interactions, along with the high levels of nutrient and metabolite exchange facilitated by their high surface area-to-volume ratio, means that they are attracting increasing attention for a variety of tissue regeneration applications. Here, we present methods for fabricating and modifying the structure of microfluidic devices using commonly available laboratory consumables including pipet tips and PTFE and silicon tubing to produce microgels. Different microfluidic devices realized the controlled generation of a wide size range (130-800 μm) of microgels for cell encapsulation. Subsequently, we describe the process of encapsulating mesenchymal stromal cells in microgels formed by photo-cross-linking of gelatin-norbornene and PEG dithiol. The introduced pipet-based chip offers simplicity, tunability, and versatility, making it easily assembled in most laboratories to effectively produce cell-laden microgels for various applications in tissue engineering.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fanyi Li
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Brendan Hung
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - John S Forsythe
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Mora-Boza A, Ghebrezadik SG, Leisen JE, García AJ. Rapid and Facile Light-Based Approach to Fabricate Protease-Degradable Poly(ethylene glycol)-norbornene Microgels for Cell Encapsulation. Adv Healthc Mater 2023; 12:e2300942. [PMID: 37235850 PMCID: PMC10592588 DOI: 10.1002/adhm.202300942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Thiol-norbornene photoclickable poly (ethylene glycol) (PEG)-based (PEG-NB) hydrogels are attractive biomaterials for cell encapsulation, drug delivery, and regenerative medicine applications. Although many crosslinking strategies and chemistries have been developed for PEG-NB bulk hydrogels, fabrication approaches of PEG-NB microgels have not been extensively explored. Here, a fabrication strategy for 4-arm amide-linked PEG-NB (PEG-4aNB) microgels using flow-focusing microfluidics for human mesenchymal stem/stromal cell (hMSCs) encapsulation is presented. PEG-4aNB photochemistry allows high-throughput, ultrafast generation, and cost-effective synthesis of monodispersed microgels (diameter 340 ± 18, 380 ± 24, and 420 ± 15 µm, for 6, 8, and 10 wt% of PEG-4aNB, respectively) using an in situ crosslinking methodology in a microfluidic device. PEG-4aNB microgels show in vitro degradability due to the incorporation of a protease-degradable peptide during photocrosslinking and encapsulated cells show excellent viability and metabolic activity for at least 13 days of culture. Furthermore, the secretory profile (i.e., MMP-13, ICAM-1, PD-L1, CXCL9, CCL3/MIP-1, IL-6, IL-12, IL-17E, TNF-α, CCL2/MCP-1) of encapsulated hMSCs shows increased expression in response to IFN-γ stimulation. Collectively, this work shows a versatile and facile approach for the fabrication of protease-degradable PEG-4aNB microgels for cell encapsulation.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- CÚRAM, University of Galway, Galway, H91 W2TY, Ireland
| | - Saron G Ghebrezadik
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Agnes Scott College, Decatur, GA, 30030, USA
| | - Johannes E Leisen
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
15
|
Franca CM, Athirasala A, Subbiah R, Tahayeri A, Selvakumar P, Mansoorifar A, Horsophonphong S, Sercia A, Nih L, Bertassoni LE. High-Throughput Bioprinting of Geometrically-Controlled Pre-Vascularized Injectable Microgels for Accelerated Tissue Regeneration. Adv Healthc Mater 2023; 12:e2202840. [PMID: 37219011 PMCID: PMC10526736 DOI: 10.1002/adhm.202202840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/01/2023] [Indexed: 05/24/2023]
Abstract
Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts.
Collapse
Affiliation(s)
- Cristiane M Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Ramesh Subbiah
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Prakash Selvakumar
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Amin Mansoorifar
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Sivaporn Horsophonphong
- Department of Pediatric Dentistry, School of Dentistry, Mahidol University, Bangkok, 73170, Thailand
| | - Ashley Sercia
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Lina Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA, 90095, USA
| | - Luiz E Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Portland, OR, 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
| |
Collapse
|
16
|
Li H, Shang Y, Feng Q, Liu Y, Chen J, Dong H. A novel bioartificial pancreas fabricated via islets microencapsulation in anti-adhesive core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Bioact Mater 2023; 27:362-376. [PMID: 37180642 PMCID: PMC10172916 DOI: 10.1016/j.bioactmat.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Islets transplantation is a promising treatment for type 1 diabetes mellitus. However, severe host immune rejection and poor oxygen/nutrients supply due to the lack of surrounding capillary network often lead to transplantation failure. Herein, a novel bioartificial pancreas is constructed via islets microencapsulation in core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Specifically, a hydrogel scaffold containing methacrylated gelatin (GelMA), methacrylated heparin (HepMA) and vascular endothelial growth factor (VEGF) is fabricated, which can delivery VEGF in a sustained style and thus induce subcutaneous angiogenesis. In addition, islets-laden core-shell microgels using methacrylated hyaluronic acid (HAMA) as microgel core and poly(ethylene glycol) diacrylate (PEGDA)/carboxybetaine methacrylate (CBMA) as shell layer are prepared, which provide a favorable microenvironment for islets and simultaneously the inhibition of host immune rejection via anti-adhesion of proteins and immunocytes. As a result of the synergistic effect between anti-adhesive core-shell microgels and prevascularized hydrogel scaffold, the bioartificial pancreas can reverse the blood glucose levels of diabetic mice from hyperglycemia to normoglycemia for at least 90 days. We believe this bioartificial pancreas and relevant fabrication method provide a new strategy to treat type 1 diabetes, and also has broad potential applications in other cell therapies.
Collapse
Affiliation(s)
- Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yulian Shang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Goldshmid R, Simaan-Yameen H, Ifergan L, Loebel C, Burdick JA, Seliktar D. Modulus-dependent effects on neurogenic, myogenic, and chondrogenic differentiation of human mesenchymal stem cells in three-dimensional hydrogel cultures. J Biomed Mater Res A 2023; 111:1441-1458. [PMID: 37066837 DOI: 10.1002/jbm.a.37545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/18/2023]
Abstract
Human mesenchymal stromal cells (hMSCs) are of significant interest as a renewable source of therapeutically useful cells. In tissue engineering, hMSCs are implanted within a scaffold to provide enhanced capacity for tissue repair. The present study evaluates how mechanical properties of that scaffold can alter the phenotype and genotype of the cells, with the aim of augmenting hMSC differentiation along the myogenic, neurogenic or chondrogenic linages. The hMSCs were grown three-dimensionally (3D) in a hydrogel comprised of poly(ethylene glycol) (PEG)-conjugated to fibrinogen. The hydrogel's shear storage modulus (G'), which was controlled by increasing the amount of PEG-diacrylate cross-linker in the matrix, was varied in the range of 100-2000 Pascal (Pa). The differentiation into each lineage was initiated by a defined culture medium, and the hMSCs grown in the different modulus hydrogels were characterized using gene and protein expression. Materials having lower storage moduli (G' = 100 Pa) exhibited more hMSCs differentiating to neurogenic lineages. Myogenesis was favored in materials having intermediate modulus values (G' = 500 Pa), whereas chondrogenesis was favored in materials with a higher modulus (G' = 1000 Pa). Enhancing the differentiation pathway of hMSCs in 3D hydrogel scaffolds using simple modifications to mechanical properties represents an important achievement toward the effective application of these cells in tissue engineering.
Collapse
Affiliation(s)
- Revital Goldshmid
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Haneen Simaan-Yameen
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liaura Ifergan
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Claudia Loebel
- Materials Science & Engineering Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Dror Seliktar
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Treviño EA, Shah J, Pearson JJ, Platt MO, Xia Y, Temenoff JS. Microfluidic Platform for Microparticle Fabrication and Release of a Cathepsin Inhibitor. Tissue Eng Part C Methods 2023; 29:361-370. [PMID: 37409411 PMCID: PMC10442676 DOI: 10.1089/ten.tec.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Cathepsins are a family of cysteine proteases responsible for a variety of homeostatic functions throughout the body, including extracellular matrix remodeling, and have been implicated in a variety of degenerative diseases. However, clinical trials using systemic administration of cathepsin inhibitors have been abandoned due to side effects, so local delivery of cathepsin inhibitors may be advantageous. In these experiments, a novel microfluidic device platform was developed that can synthesize uniform, hydrolytically degradable microparticles from a combination of poly(ethylene glycol) diacrylate (PEGDA) and dithiothreitol (DTT). Of the formulations examined, the 10-polymer weight percentage 10 mM DTT formulation degraded after 77 days in vitro. A modified assay using the DQ Gelatin Fluorogenic Substrate was used to demonstrate sustained release and bioactivity of a cathepsin inhibitor (E-64) released from hydrogel microparticles over 2 weeks in vitro (up to ∼13 μg/mL released with up to ∼40% original level of inhibition remaining at day 14). Altogether, the technologies developed in this study will allow a small-molecule, broad cathepsin inhibitor E-64 to be released in a sustained manner for localized inhibition of cathepsins for a wide variety of diseases.
Collapse
Affiliation(s)
- Elda A. Treviño
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia, USA
| | - Jimmy Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia, USA
| | - Joseph J. Pearson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia, USA
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Younan Xia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, Su J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater 2023; 25:29-41. [PMID: 37056252 PMCID: PMC10087111 DOI: 10.1016/j.bioactmat.2023.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The necessity of disease models for bone/cartilage related disorders is well-recognized, but the barrier between ex-vivo cell culture, animal models and the real human body has been pending for decades. The organoid-on-a-chip technique showed opportunity to revolutionize basic research and drug screening for diseases like osteoporosis and arthritis. The bone/cartilage organoid on-chip (BCoC) system is a novel platform of multi-tissue which faithfully emulate the essential elements, biologic functions and pathophysiological response under real circumstances. In this review, we propose the concept of BCoC platform, summarize the basic modules and current efforts to orchestrate them on a single microfluidic system. Current disease models, unsolved problems and future challenging are also discussed, the aim should be a deeper understanding of diseases, and ultimate realization of generic ex-vivo tools for further therapeutic strategies of pathological conditions.
Collapse
|
20
|
Fang Y, Guo Y, Wu B, Liu Z, Ye M, Xu Y, Ji M, Chen L, Lu B, Nie K, Wang Z, Luo J, Zhang T, Sun W, Xiong Z. Expanding Embedded 3D Bioprinting Capability for Engineering Complex Organs with Freeform Vascular Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205082. [PMID: 36796025 DOI: 10.1002/adma.202205082] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Creating functional tissues and organs in vitro on demand is a major goal in biofabrication, but the ability to replicate the external geometry of specific organs and their internal structures such as blood vessels simultaneously remains one of the greatest impediments. Here, this limitation is addressed by developing a generalizable bioprinting strategy of sequential printing in a reversible ink template (SPIRIT). It is demonstrated that this microgel-based biphasic (MB) bioink can be used as both an excellent bioink and a suspension medium that supports embedded 3D printing due to its shear-thinning and self-healing behavior. When encapsulating human-induced pluripotent stem cells, the MB bioink is 3D printed to generate cardiac tissues and organoids by extensive stem cell proliferation and cardiac differentiation. By incorporating MB bioink, the SPIRIT strategy enables the effective printing of a ventricle model with a perfusable vascular network, which is not possible to fabricate using extant 3D printing strategies. This SPIRIT technique offers an unparalleled bioprinting capability to replicate the complex organ geometry and internal structure in a faster manner, which will accelerate the biofabrication and therapeutic applications of tissue and organ constructs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Bingyan Wu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zibo Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Min Ye
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yuanyuan Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Mengke Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Li Chen
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Bingchuan Lu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Kaiji Nie
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Jianbin Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Han F, Tu Z, Zhu Z, Liu D, Meng Q, Yu Q, Wang Y, Chen J, Liu T, Han F, Li B. Targeting Endogenous Reactive Oxygen Species Removal and Regulating Regenerative Microenvironment at Annulus Fibrosus Defects Promote Tissue Repair. ACS NANO 2023; 17:7645-7661. [PMID: 37022700 DOI: 10.1021/acsnano.3c00093] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The excessive reactive oxygen species (ROS) level, inflammation, and weak tissue regeneration ability after annulus fibrosus (AF) injury constitute an unfavorable microenvironment for AF repair. AF integrity is crucial for preventing disc herniation after discectomy; however, there is no effective way to repair the AF. Herein, a composite hydrogel integrating properties of antioxidant, anti-inflammation, and recruitment of AF cells is developed through adding mesoporous silica nanoparticles modified by ceria and transforming growth factor β3 (TGF-β3) to the hydrogels. The nanoparticle loaded gelatin methacrylate/hyaluronic acid methacrylate composite hydrogels eliminate ROS and induce anti-inflammatory M2 type macrophage polarization. The released TGF-β3 not only plays a role in recruiting AF cells but is also responsible for promoting extracellular matrix secretion. The composite hydrogels can be solidified in situ in the defect area to effectively repair AF in rats. The strategies targeting endogenous ROS removal and improving the regenerative microenvironment by the nanoparticle-loaded composite hydrogels have potential applications in AF repair and intervertebral disc herniation prevention.
Collapse
Affiliation(s)
- Feng Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhengdong Tu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhuang Zhu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qingchen Meng
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qifan Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jianquan Chen
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Tao Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310000, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
22
|
Song T, Zhang H, Luo Z, Shang L, Zhao Y. Primary Human Pancreatic Cancer Cells Cultivation in Microfluidic Hydrogel Microcapsules for Drug Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206004. [PMID: 36808707 PMCID: PMC10131826 DOI: 10.1002/advs.202206004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chemotherapy is an essential postoperative treatment for pancreatic cancer, while due to the lack of effective drug evaluation platforms, the therapeutic outcomes are hampered by tumor heterogeneity among individuals. Here, a novel microfluidic encapsulated and integrated primary pancreatic cancer cells platform is proposed for biomimetic tumor 3D cultivation and clinical drug evaluation. These primary cells are encapsulated into hydrogel microcapsules of carboxymethyl cellulose cores and alginate shells based on a microfluidic electrospray technique. Benefiting from the good monodispersity, stability, and precise dimensional controllability of the technology, the encapsulated cells can proliferate rapidly and spontaneously form 3D tumor spheroids with highly uniform size and good cell viability. By integrating these encapsulated tumor spheroids into a microfluidic chip with concentration gradient channels and culture chambers, dynamic and high-throughput drug evaluation of different chemotherapy regimens could be realized. It is demonstrated that different patient-derived tumor spheroids show different drug sensitivity on-chip, which is significantly consistent with the clinical follow-up study after the operation. The results demonstrate that the microfluidic encapsulated and integrated tumor spheroids platform has great application potential in clinical drug evaluation.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
| | - Hui Zhang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Zhiqiang Luo
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
23
|
Zuo X, Jiang X, Zhang Y, Huang Y, Wang N, Zhu P, Kang YJ. A clinical feasible stem cell encapsulation ensures an improved wound healing. Biomed Mater 2023; 18. [PMID: 36701809 DOI: 10.1088/1748-605x/acb67a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/26/2023] [Indexed: 01/28/2023]
Abstract
Cell encapsulation has proven to be promising in stem cell therapy. However, there are issues needed to be addressed, including unsatisfied yield, unmet clinically friendly formulation, and unacceptable viability of stem cells after cryopreservation and thawing. We developed a novel biosynsphere technology to encapsulate stem cells in clinically-ready biomaterials with controlled microsphere size. We demonstrated that biosynspheres ensure the bioviability and functionality of adipose-derived stromal cells (ADSCs) encapsulated, as delineated by a series of testing procedures. We further demonstrated that biosynspheres protect ADSCs from the hardness of clinically handling such as cryopreservation, thawing, high-speed centrifugation and syringe/nozzle injection. In a swine full skin defect model, we showed that biosynspheres were integrated to the destined tissues and promoted the repair of injured tissues with an accelerating healing process, less scar tissue formation and normalized deposition of collagen type I and type III, the ratio similar to that found in normal skin. These findings underscore the potential of biosynsphere as an improved biofabrication technology for tissue regeneration in clinical setting.
Collapse
Affiliation(s)
- Xiao Zuo
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, People's Republic of China.,Sichuan 3D Bio-Printing Institute, Chengdu, Sichuan 611731, People's Republic of China.,Revotek Co., Ltd, Chengdu, Sichuan 611731, People's Republic of China
| | - Xia Jiang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, People's Republic of China
| | - Yaya Zhang
- Sichuan 3D Bio-Printing Institute, Chengdu, Sichuan 611731, People's Republic of China.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America
| | - Yushi Huang
- Revotek Co., Ltd, Chengdu, Sichuan 611731, People's Republic of China
| | - Ning Wang
- Revotek Co., Ltd, Chengdu, Sichuan 611731, People's Republic of China
| | - Ping Zhu
- Revotek Co., Ltd, Chengdu, Sichuan 611731, People's Republic of China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, People's Republic of China.,Sichuan 3D Bio-Printing Institute, Chengdu, Sichuan 611731, People's Republic of China.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America
| |
Collapse
|
24
|
Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023; 11:1076179. [PMID: 36777246 PMCID: PMC9908582 DOI: 10.3389/fbioe.2023.1076179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering (TE) aims at restoring tissue defects by applying the three-dimensional (3D) biomimetic pre-formed scaffolds to restore, maintain, and enhance tissue growth. Broadly speaking, this approach has created a potential impact in anticipating organ-building, which could reduce the need for organ replacement therapy. However, the implantation of such cell-laden biomimetic constructs based on substantial open surgeries often results in severe inflammatory reactions at the incision site, leading to the generation of a harsh adverse environment where cell survival is low. To overcome such limitations, micro-sized injectable modularized units based on various biofabrication approaches as ideal delivery vehicles for cells and various growth factors have garnered compelling interest owing to their minimally-invasive nature, ease of packing cells, and improved cell retention efficacy. Several advancements have been made in fabricating various 3D biomimetic microscale carriers for cell delivery applications. In this review, we explicitly discuss the progress of the microscale cell carriers that potentially pushed the borders of TE, highlighting their design, ability to deliver cells and substantial tissue growth in situ and in vivo from different viewpoints of materials chemistry and biology. Finally, we summarize the perspectives highlighting current challenges and expanding opportunities of these innovative carriers.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Changji Hu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Hongying Xia
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| |
Collapse
|
25
|
Engineering Strategies of Islet Product for Endocrine Regeneration. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
26
|
Bono N, Saroglia G, Marcuzzo S, Giagnorio E, Lauria G, Rosini E, De Nardo L, Athanassiou A, Candiani G, Perotto G. Silk fibroin microgels as a platform for cell microencapsulation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:3. [PMID: 36586059 PMCID: PMC9805413 DOI: 10.1007/s10856-022-06706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.
Collapse
Affiliation(s)
- Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy.
| | - Giulio Saroglia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133, Milan, Italy
| | - Elena Rosini
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | | | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
27
|
Tian L, He L, Jackson K, Saif A, Khan S, Wan Z, Didar TF, Hosseinidoust Z. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials targeting multidrug-resistant bacteria. Nat Commun 2022; 13:7158. [PMID: 36470891 PMCID: PMC9723106 DOI: 10.1038/s41467-022-34803-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Nanofilamentous bacteriophages (bacterial viruses) are biofunctional, self-propagating, and monodisperse natural building blocks for virus-built materials. Minifying phage-built materials to microscale offers the promise of expanding the range function for these biomaterials to sprays and colloidal bioassays/biosensors. Here, we crosslink half a million self-organized phages as the sole structural component to construct each soft microgel. Through an in-house developed, biologics-friendly, high-throughput template method, over 35,000 phage-built microgels are produced from every square centimetre of a peelable microporous film template, constituting a 13-billion phage community. The phage-exclusive microgels exhibit a self-organized, highly-aligned nanofibrous texture and tunable auto-fluorescence. Further preservation of antimicrobial activity was achieved by making hybrid protein-phage microgels. When loaded with potent virulent phages, these microgels effectively reduce heavy loads of multidrug-resistant Escherichia coli O157:H7 on food products, leading to up to 6 logs reduction in 9 hours and rendering food contaminant free.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Leon He
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Ahmed Saif
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Zeqi Wan
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
28
|
Biohybrid materials: Structure design and biomedical applications. Mater Today Bio 2022; 16:100352. [PMID: 35856044 PMCID: PMC9287810 DOI: 10.1016/j.mtbio.2022.100352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Biohybrid materials are proceeded by integrating living cells and non-living materials to endow materials with biomimetic properties and functionalities by supporting cell proliferation and even enhancing cell functions. Due to the outstanding biocompatibility and programmability, biohybrid materials provide some promising strategies to overcome current problems in the biomedical field. Here, we review the concept and unique features of biohybrid materials by comparing them with conventional materials. We emphasize the structure design of biohybrid materials and discuss the structure-function relationships. We also enumerate the application aspects of biohybrid materials in biomedical frontiers. We believe this review will bring various opportunities to promote the communication between cell biology, material sciences, and medical engineering.
Collapse
|
29
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
30
|
Medina JD, Barber GF, Coronel MM, Hunckler MD, Linderman SW, Quizon MJ, Ulker V, Yolcu ES, Shirwan H, García AJ. A hydrogel platform for co-delivery of immunomodulatory proteins for pancreatic islet allografts. J Biomed Mater Res A 2022; 110:1728-1737. [PMID: 35841329 DOI: 10.1002/jbm.a.37429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing β-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.
Collapse
Affiliation(s)
- Juan D Medina
- Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham F Barber
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Maria M Coronel
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen W Linderman
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Michelle J Quizon
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahap Ulker
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Andrés J García
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Wang J, Wang C, Wang Q, Zhang Z, Wang H, Wang S, Chi Z, Shang L, Wang W, Shu Y. Microfluidic Preparation of Gelatin Methacryloyl Microgels as Local Drug Delivery Vehicles for Hearing Loss Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46212-46223. [PMID: 36206492 DOI: 10.1021/acsami.2c11647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Local drug delivery has become an effective method for disease therapy in fine organs including ears, eyes, and noses. However, the multiple anatomical and physiological barriers, unique clearance pathways, and sensitive perceptions characterizing these organs have led to suboptimal drug delivery efficiency. Here, we developed dexamethasone sodium phosphate-encapsulated gelatin methacryloyl (Dexsp@GelMA) microgel particles, with finely tunable size through well-designed microfluidics, as otic drug delivery vehicles for hearing loss therapy. The release kinetics, encapsulation efficiency, drug loading efficiency, and cytotoxicity of the GelMA microgels with different degrees of methacryloyl substitution were comprehensively studied to optimize the microgel formulation. Compared to bulk hydrogels, Dexsp@GelMA microgels of certain sizes hardly cause air-conducted hearing loss in vivo. Besides, strong adhesion of the microgels on the round window membrane was demonstrated. Moreover, the Dexsp@GelMA microgels, via intratympanic administration, could ameliorate acoustic noise-induced hearing loss and attenuate hair cell loss and synaptic ribbons damage more effectively than Dexsp alone. Our results strongly support the adhesive and intricate microfluidic-derived GelMA microgels as ideal intratympanic delivery vehicles for inner ear disease therapies, which provides new inspiration for microfluidics in drug delivery to the fine organs.
Collapse
Affiliation(s)
- Jiali Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, P. R. China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, P. R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
| | - Chong Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai200032, P. R. China
| | - Qiao Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai200032, P. R. China
| | - Zhuohao Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai200032, P. R. China
| | - Hui Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, P. R. China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, P. R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
| | - Shengyi Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, P. R. China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, P. R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
| | - Zhangcai Chi
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, P. R. China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, P. R. China
| | - Luoran Shang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai200032, P. R. China
| | - Wuqing Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, P. R. China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, P. R. China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, P. R. China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, P. R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, P. R. China
| |
Collapse
|
32
|
Wu L, Guo Z, Liu W. Surface behaviors of droplet manipulation in microfluidics devices. Adv Colloid Interface Sci 2022; 308:102770. [PMID: 36113310 DOI: 10.1016/j.cis.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/01/2022]
Abstract
In recent years, the rapid development of microfluidic technology has caused a revolutionary impact in the fields of chemistry, medicine, and life sciences. Also, droplet control is one of the most important technologies in the field of microfluidics. In order to achieve different degrees of droplet transport, the dynamic balance of the competing processes of droplet driving force and fluid resistance should be controlled to achieve good selectivity of droplet transport. Here, we focus on the principles of droplet transport in microfluidic devices, including the driving forces for droplet transport in fluids and the effects of transport properties on droplet transport. After that, the effects of external fields on the directional transport of droplets and the advantages and disadvantages of each external field in droplet transport are discussed in detail. Finally, the applications and challenges of droplet microfluidics in chemical, biomedical, and mechanical systems are comprehensively introduced.
Collapse
Affiliation(s)
- Linshan Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
33
|
Coronel MM, Martin KE, Hunckler MD, Kalelkar P, Shah RM, García AJ. Hydrolytically Degradable Microgels with Tunable Mechanical Properties Modulate the Host Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106896. [PMID: 35274457 PMCID: PMC10288386 DOI: 10.1002/smll.202106896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hydrogel microparticles (microgels) are an attractive approach for therapeutic delivery because of their modularity, injectability, and enhanced integration with the host tissue. Multiple microgel fabrication strategies and chemistries have been implemented, yet manipulation of microgel degradability and its effect on in vivo tissue responses remains underexplored. Here, the authors report a facile method to synthesize microgels crosslinked with ester-containing junctions to afford tunable degradation kinetics. Monodisperse microgels of maleimide-functionalized poly(ethylene-glycol) are generated using droplet microfluidics crosslinked with thiol-terminated, ester-containing molecules. Tunable mechanics are achievable based on the ratio of degradable to nondegradable crosslinkers in the continuous phase. Degradation in an aqueous medium leads to microgel deformation based on swelling and a decrease in elastic modulus. Furthermore, degradation byproducts are cytocompatible and do not cause monocytic cell activation under noninflammatory conditions. These injectable microgels possess time-dependent degradation on the order of weeks in vivo. Lastly, the evaluation of tissue responses in a subcutaneous dorsal pocket shows a dynamic type-1 like immune response to the synthetic microgels, driven by interferon gamma (IFN-γ ) expression, which can be moderated by tuning the degradation properties. Collectively, this study demonstrates the development of a hydrolytic microgel platform that can be adapted to desired host tissue immune responses.
Collapse
Affiliation(s)
- María M Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pranav Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rahul M Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
34
|
Talebjedi B, Abouei Mehrizi A, Talebjedi B, Mohseni SS, Tasnim N, Hoorfar M. Machine Learning-Aided Microdroplets Breakup Characteristic Prediction in Flow-Focusing Microdevices by Incorporating Variations of Cross-Flow Tilt Angles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10465-10477. [PMID: 35973231 DOI: 10.1021/acs.langmuir.2c01255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling droplet breakup characteristics such as size, frequency, regime, and droplet quality within flow-focusing microfluidic devices is critical for different biomedical applications of droplet microfluidics such as drug delivery, biosensing, and nanomaterial preparation. The development of a prediction platform capable of forecasting droplet breakup characteristics can significantly improve the iterative design and fabrication processes required for achieving desired performance. The present study aims to develop a multipurpose platform capable of predicting the working conditions of user-specific droplet size and frequency and reporting the quality of the generated droplets, regime, and hydrodynamical breakup characteristics in flow-focusing microdevices with different cross-junction tilt angles. Four different neural network-based prediction platforms were compared to accurately estimate capsule size, generation rate, uniformity, and circle metric. The trained capsule size and frequency networks were optimized using the heuristic optimization approach for establishing the Pareto optimal solution plot. To investigate the transition of the droplet generation regime (i.e., squeezing, dripping, and jetting), two different classification models (LDA and MLP) were developed and compared in terms of their prediction accuracy. The MLP model outperformed the LDA model with a cross-validation measure evaluated as 97.85%, demonstrating that the droplet quality and regime prediction models can provide an engineering judgment for the decision maker to choose between the suggested solutions on the Pareto front. The study followed a comprehensive hydrodynamical analysis of the junction angle effect on the dispersed thread formation, pressure, and velocity domains in the orifice.
Collapse
Affiliation(s)
- Bahram Talebjedi
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Ali Abouei Mehrizi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Behnam Talebjedi
- Department of Mechanical Engineering, School of Engineering, Aalto University, Espoo 02150, Finland
| | - Seyed Sepehr Mohseni
- Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
35
|
Wei Z, Wang S, Hirvonen J, Santos HA, Li W. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Adv Healthc Mater 2022; 11:e2200846. [PMID: 35678152 PMCID: PMC11468590 DOI: 10.1002/adhm.202200846] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/24/2023]
Abstract
Micrometer-sized hydrogels are cross-linked three-dimensional network matrices with high-water contents and dimensions ranging from several to hundreds of micrometers. Due to their excellent biocompatibility and capability to mimic physiological microenvironments in vivo, micrometer-sized hydrogels have attracted much attention in the biomedical engineering field. Their biological properties and applications are primarily influenced by their chemical compositions and geometries. However, inhomogeneous morphologies and uncontrollable geometries limit traditional micrometer-sized hydrogels obtained by bulk mixing. In contrast, microfluidic technology holds great potential for the fabrication of micrometer-sized hydrogels since their geometries, sizes, structures, compositions, and physicochemical properties can be precisely manipulated on demand based on the excellent control over fluids. Therefore, micrometer-sized hydrogels fabricated by microfluidic technology have been applied in the biomedical field, including drug encapsulation, cell encapsulation, and tissue engineering. This review introduces micrometer-sized hydrogels with various geometries synthesized by different microfluidic devices, highlighting their advantages in various biomedical applications over those from traditional approaches. Overall, emerging microfluidic technologies enrich the geometries and morphologies of hydrogels and accelerate translation for industrial production and clinical applications.
Collapse
Affiliation(s)
- Zhenyang Wei
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Jouni Hirvonen
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
- Department of Biomedical EngineeringW.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center Groningen/University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Wei Li
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
36
|
Marikar SN, El-Osta A, Johnston A, Such G, Al-Hasani K. Microencapsulation-based cell therapies. Cell Mol Life Sci 2022; 79:351. [PMID: 35674842 PMCID: PMC9177480 DOI: 10.1007/s00018-022-04369-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Mapping a new therapeutic route can be fraught with challenges, but recent developments in the preparation and properties of small particles combined with significant improvements to tried and tested techniques offer refined cell targeting with tremendous translational potential. Regenerating new cells through the use of compounds that regulate epigenetic pathways represents an attractive approach that is gaining increased attention for the treatment of several diseases including Type 1 Diabetes and cardiomyopathy. However, cells that have been regenerated using epigenetic agents will still encounter immunological barriers as well as limitations associated with their longevity and potency during transplantation. Strategies aimed at protecting these epigenetically regenerated cells from the host immune response include microencapsulation. Microencapsulation can provide new solutions for the treatment of many diseases. In particular, it offers an advantageous method of administering therapeutic materials and molecules that cannot be substituted by pharmacological substances. Promising clinical findings have shown the potential beneficial use of microencapsulation for islet transplantation as well as for cardiac, hepatic, and neuronal repair. For the treatment of diseases such as type I diabetes that requires insulin release regulated by the patient's metabolic needs, microencapsulation may be the most effective therapeutic strategy. However, new materials need to be developed, so that transplanted encapsulated cells are able to survive for longer periods in the host. In this article, we discuss microencapsulation strategies and chart recent progress in nanomedicine that offers new potential for this area in the future.
Collapse
Affiliation(s)
- Safiya Naina Marikar
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Angus Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Georgina Such
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
37
|
Hamami R, Simaan-Yameen H, Gargioli C, Seliktar D. Comparison of Four Different Preparation Methods for Making Injectable Microgels for Tissue Engineering and Cell Therapy. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00261-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Kim DW, Jeong HS, Kim E, Lee H, Choi CH, Lee SJ. Oral delivery of stem-cell-loaded hydrogel microcapsules restores gut inflammation and microbiota. J Control Release 2022; 347:508-520. [PMID: 35597403 DOI: 10.1016/j.jconrel.2022.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are an attractive candidate for the treatment of inflammatory bowel disease (IBD), but their poor delivery rate to an inflamed colon is a major factor hampering the clinical potential of stem cell therapies. Moreover, there remains a formidable hurdle to overcome with regard to survival and homing in to injured sites. Here, we develop a strategy utilizing monodisperse hydrogel microcapsules with a thin intermediate oil layer prepared by a triple-emulsion drop-based microfluidic approach as an in-situ oral delivering carrier. The oral delivery of stem-cell-loaded hydrogel microcapsules (SC-HM) enhances MSC survival and retention in the hostile stomach environment due to the intermediate oil layer and low value of the overall stiffness, facilitating programmable cell release during gastrointestinal peristalsis. SC-HM is shown to induce tissue repair, reduce the colonic macrophage infiltration responsible for the secretion of the pro-inflammatory factors, and significantly mitigate the severity of IBD in a mouse model, where MSCs released by SC-HM successfully accumulate at the colonic crypt. Moreover, a metagenomics analysis reveals that SC-HM ameliorates the dysbiosis of specific bacterial genera, including Bacteroides acidifaciens, Lactobacillus (L.) gasseri, Lactobacillus reuteri, and L. intestinalis, implying optimization of the microorganism's composition and abundance. These findings demonstrate that SC-HM is a potential IBD treatment candidate.
Collapse
Affiliation(s)
- Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Hye-Seon Jeong
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Eunseo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, South Korea.
| |
Collapse
|
39
|
LeValley PJ, Parsons AL, Sutherland BP, Kiick KL, Oakey JS, Kloxin AM. Microgels Formed by Spontaneous Click Chemistries Utilizing Microfluidic Flow Focusing for Cargo Release in Response to Endogenous or Exogenous Stimuli. Pharmaceutics 2022; 14:1062. [PMID: 35631649 PMCID: PMC9145542 DOI: 10.3390/pharmaceutics14051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Protein therapeutics have become increasingly popular for the treatment of a variety of diseases owing to their specificity to targets of interest. However, challenges associated with them have limited their use for a range of ailments, including the limited options available for local controlled delivery. To address this challenge, degradable hydrogel microparticles, or microgels, loaded with model biocargoes were created with tunable release profiles or triggered burst release using chemistries responsive to endogenous or exogeneous stimuli, respectively. Specifically, microfluidic flow-focusing was utilized to form homogenous microgels with different spontaneous click chemistries that afforded degradation either in response to redox environments for sustained cargo release or light for on-demand cargo release. The resulting microgels were an appropriate size to remain localized within tissues upon injection and were easily passed through a needle relevant for injection, providing means for localized delivery. Release of a model biopolymer was observed over the course of several weeks for redox-responsive formulations or triggered for immediate release from the light-responsive formulation. Overall, we demonstrate the ability of microgels to be formulated with different materials chemistries to achieve various therapeutic release modalities, providing new tools for creation of more complex protein release profiles to improve therapeutic regimens.
Collapse
Affiliation(s)
- Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
| | - Amanda L. Parsons
- Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA;
| | - Bryan P. Sutherland
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
| | - Kristi L. Kiick
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - John S. Oakey
- Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA;
| | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
40
|
Lei J, Coronel MM, Yolcu ES, Deng H, Grimany-Nuno O, Hunckler MD, Ulker V, Yang Z, Lee KM, Zhang A, Luo H, Peters CW, Zou Z, Chen T, Wang Z, McCoy CS, Rosales IA, Markmann JF, Shirwan H, García AJ. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. SCIENCE ADVANCES 2022; 8:eabm9881. [PMID: 35559682 PMCID: PMC9106299 DOI: 10.1126/sciadv.abm9881] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 05/23/2023]
Abstract
Islet transplantation to treat insulin-dependent diabetes is greatly limited by the need for maintenance immunosuppression. We report a strategy through which cotransplantation of allogeneic islets and streptavidin (SA)-FasL-presenting microgels to the omentum under transient rapamycin monotherapy resulted in robust glycemic control, sustained C-peptide levels, and graft survival in diabetic nonhuman primates for >6 months. Surgical extraction of the graft resulted in prompt hyperglycemia. In contrast, animals receiving microgels without SA-FasL under the same rapamycin regimen rejected islet grafts acutely. Graft survival was associated with increased number of FoxP3+ cells in the graft site with no significant changes in T cell systemic frequencies or responses to donor and third-party antigens, indicating localized tolerance. Recipients of SA-FasL microgels exhibited normal liver and kidney metabolic function, demonstrating safety. This localized immunomodulatory strategy succeeded with unmodified islets and does not require long-term immunosuppression, showing translational potential in β cell replacement for treating type 1 diabetes.
Collapse
Affiliation(s)
- Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - María M. Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S. Yolcu
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Hongping Deng
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Orlando Grimany-Nuno
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Michael D. Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vahap Ulker
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Zhihong Yang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang M. Lee
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Zhang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Luo
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Cole W. Peters
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongliang Zou
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Chen
- Cellular Therapy Department, Xiang’an Hospital, Xiamen University Medical School, Xiamen, China
| | - Zhenjuan Wang
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colleen S. McCoy
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA, USA
| | - Ivy A. Rosales
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F. Markmann
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haval Shirwan
- Departments of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
41
|
Kim E, Lee H. Mechanical characterization of soft microparticles prepared by droplet microfluidics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eunseo Kim
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
| | - Hyomin Lee
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
| |
Collapse
|
42
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
43
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Nazari H, Heirani-Tabasi A, Ghorbani S, Eyni H, Razavi Bazaz S, Khayati M, Gheidari F, Moradpour K, Kehtari M, Ahmadi Tafti SM, Ahmadi Tafti SH, Ebrahimi Warkiani M. Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends. BIOSENSORS 2021; 12:20. [PMID: 35049648 PMCID: PMC8773546 DOI: 10.3390/bios12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran; (A.H.-T.); (S.H.A.T.)
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14535, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark;
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45371, Iran;
| | - Fatemeh Gheidari
- Department of Biotechnology, University of Tehran, Tehran 14535, Iran;
| | - Keyvan Moradpour
- Department of Chemical Engineering, Sharif University of Technology, Tehran 14535, Iran;
| | - Mousa Kehtari
- Department of Biology, Faculty of Science, University of Tehran, Tehran 14535, Iran;
| | - Seyed Mohsen Ahmadi Tafti
- Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran 14535, Iran;
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran; (A.H.-T.); (S.H.A.T.)
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (H.N.); (S.R.B.)
- Institute of Molecular Medicine, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
45
|
Dubay R, Urban JN, Darling EM. Single-Cell Microgels for Diagnostics and Therapeutics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009946. [PMID: 36329867 PMCID: PMC9629779 DOI: 10.1002/adfm.202009946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 05/14/2023]
Abstract
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.
Collapse
Affiliation(s)
- Ryan Dubay
- Center for Biomedical Engineering, Brown University, 175 Meeting St., Providence, RI 02912, USA
- Draper, 555 Technology Sq., Cambridge, MA 02139, USA
| | - Joseph N Urban
- Center for Biomedical Engineering, Brown University, 175 Meeting St., Providence, RI 02912, USA
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, School of Engineering, Department of Orthopaedics, Brown University, 175 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
46
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
47
|
White AM, Zhang Y, Shamul JG, Xu J, Kwizera EA, Jiang B, He X. Deep Learning-Enabled Label-Free On-Chip Detection and Selective Extraction of Cell Aggregate-Laden Hydrogel Microcapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100491. [PMID: 33899299 PMCID: PMC8203426 DOI: 10.1002/smll.202100491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Indexed: 05/05/2023]
Abstract
Microfluidic encapsulation of cells/tissues in hydrogel microcapsules has attracted tremendous attention in the burgeoning field of cell-based medicine. However, when encapsulating rare cells and tissues (e.g., pancreatic islets and ovarian follicles), the majority of the resultant hydrogel microcapsules are empty and should be excluded from the sample. Furthermore, the cell-laden hydrogel microcapsules are usually suspended in an oil phase after microfluidic generation, while the microencapsulated cells require an aqueous phase for further culture/transplantation and long-term suspension in oil may compromise the cells/tissues. Thus, real-time on-chip selective extraction of cell-laden hydrogel microcapsules from oil into aqueous phase is crucial to the further use of the microencapsulated cells/tissues. Contemporary extraction methods either require labeling of cells for their identification along with an expensive detection system or have a low extraction purity (<≈30%). Here, a deep learning-enabled approach for label-free detection and selective extraction of cell-laden microcapsules with high efficiency of detection (≈100%) and extraction (≈97%), high purity of extraction (≈90%), and high cell viability (>95%) is reported. The utilization of deep learning to dynamically analyze images in real time for label-free detection and on-chip selective extraction of cell-laden hydrogel microcapsules is unique and may be valuable to advance the emerging cell-based medicine.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yuntian Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Elyahb A Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
48
|
Babu S, Albertino F, Omidinia Anarkoli A, De Laporte L. Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy. Adv Healthc Mater 2021; 10:e2002221. [PMID: 33951341 PMCID: PMC11469279 DOI: 10.1002/adhm.202002221] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks.
Collapse
Affiliation(s)
- Susan Babu
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
| | - Filippo Albertino
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | | | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 2Aachen52074Germany
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Max Planck School‐Matter to Life (MtL)Jahnstrasse 29Heidelberg69120Germany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)Center for Biohybrid Medical Systems (CMBS)University Hospital RWTH AachenForckenbeckstrasse 55Aachen52074Germany
| |
Collapse
|
49
|
Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Arambula‐Maldonado R, Geraili A, Xing M, Mequanint K. Tissue engineering and regenerative therapeutics: The nexus of chemical engineering and translational medicine. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Armin Geraili
- Department of Chemical and Biochemical Engineering University of Western Ontario London Ontario Canada
| | - Malcolm Xing
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario London Ontario Canada
- Department of Chemical and Biochemical Engineering University of Western Ontario London Ontario Canada
| |
Collapse
|