1
|
Liu E, Sun Y, Yang L, Jiang H, Sun F, Chen L, Duan J, Yang S. Investigating the regulation of the miR-199a-3p/TGF-β/Smad signaling pathway by BSHXF drug-containing serum combined with ADSCs for delaying intervertebral disc degeneration. Front Pharmacol 2025; 16:1583635. [PMID: 40356987 PMCID: PMC12067415 DOI: 10.3389/fphar.2025.1583635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) significantly contributes to low back pain (LBP), yet effective treatment options are scarce. BSHXF, a classical traditional Chinese medicine formula, demonstrates dual pharmacological actions: tonifying kidneys, strengthening bones, activating blood circulation, and resolving stasis. It has been widely used in IDD management. Given its potential, combining BSHXF with miRNA regulation and stem cell therapy may enhance therapeutic outcomes by targeting molecular and cellular pathways underlying IDD pathogenesis. Aim of the study IDD is recognized as one of the primary causes of low back pain, yet effective therapeutic interventions for this condition remain limited. This study explores the role of BSHXF drug-containing serum combined with adipose-derived stem cells (ADSCs) in slowing IDD progression via the miR-199a-3p/TGF-β/Smad signaling pathway. By comprehensively investigating the synergistic effects of this combination therapy, we aim to propose a novel multi-target strategy that addresses the complex pathogenesis of IDD. Materials and Methods This study employed a combination of in vivo and in vitro models. An IDD model was induced in rat caudal intervertebral discs through needle puncture, while an oxidative stress-induced ADSCs injury model was created in vitro using tert-butyl hydroperoxide (T-BHP). Cell viability was measured with the CCK-8 assay. Cell cycle distribution and mitochondrial reactive oxygen species (ROS) levels were assessed using flow cytometry. Cellular senescence was assessed using SA-β-galactosidase staining. Lactate dehydrogenase (LDH) activity was quantified to evaluate cellular damage. Differentiation into nucleus pulposus-like cells was assessed using immunofluorescence double staining for CD73 and COL2A1. ELISA was used to measure inflammatory cytokines (TNF-α, IL-1β, IL-4, IL-10) in cell supernatants. miR-199a-3p expression was determined using RT-qPCR. Western blotting was employed to quantify COL2A1, SOX9, and ACAN protein levels, reflecting nucleus pulposus-like differentiation and extracellular matrix (ECM) synthesis capacity. Western blotting was employed to assess pathway activity by analyzing the protein expressions of TGF-β1, Smad2, Smad3, and their phosphorylated forms, P-Smad2 and P-Smad3. In vivo experiments assessed histopathological degeneration through hematoxylin-eosin (HE) and Safranin O-Fast Green staining. Immunohistochemistry (IHC) analyzed COL1A1 and COL2A1 expression levels. RT-qPCR quantified miR-199a-3p expression. Western blotting was employed to assess the expression levels of TGF-β1, Smad2, Smad3, P-Smad2, and P-Smad3 for pathway regulation evaluation. Results Our experimental results demonstrated that serum containing BSHXF significantly alleviated T-BHP-induced oxidative stress, improved the cellular microenvironment, promoted ADSCs proliferation, and decelerated cellular senescence. Further mechanistic analysis revealed that BSHXF significantly activated the TGF-β/Smad signaling pathway, driving the differentiation of ADSCs into nucleus pulposus-like cells and restoring normal cell cycle progression. Overexpression of miR-199a-3p inhibited the TGF-β/Smad pathway, leading to ECM degradation and elevated expression of inflammatory factors (TNF-α, IL-1β). In contrast, BSHXF restored TGF-β/Smad pathway activity by downregulating miR-199a-3p expression. In vivo experiments demonstrated that miR-199a-3p overexpression exacerbated IDD, characterized by reduced COL2A1 expression, elevated COL1A1 levels, and increased disc fibrosis. BSHXF intervention markedly attenuated IDD progression by downregulating miR-199a-3p expression, reducing disc fibrosis, and effectively restoring collagen expression. Conclusion BSHXF activated the TGF-β/Smad pathway to promote the differentiation of ADSCs into nucleus pulposus-like cells. It exerted protective effects by alleviating oxidative stress damage, improving the microenvironment, delaying senescence, and enhancing cellular functions. This study is the first to reveal that miR-199a-3p overexpression exacerbates intervertebral disc fibrosis and degeneration. BSHXF restored TGF-β/Smad pathway activity by downregulating miR-199a-3p expression, thereby improving disc structure and function. This integrated approach offers a novel multi-target intervention strategy for IDD, demonstrating significant therapeutic potential.
Collapse
Affiliation(s)
- Enxu Liu
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Yu Sun
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Lei Yang
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Haobo Jiang
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Fei Sun
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
| | - Long Chen
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Jiahao Duan
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Shaofeng Yang
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| |
Collapse
|
2
|
Khairullina ZM, Vasileva VY, Chubinskiy-Nadezhdin VI. Piezo1 Ion Channels Regulate the Formation and Spreading of Human Endometrial Mesenchymal Stem Cell Spheroids. Int J Mol Sci 2025; 26:2474. [PMID: 40141118 PMCID: PMC11942067 DOI: 10.3390/ijms26062474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Mesenchymal stem cells obtained from desquamated endometrium (eMSCs) are considered as reliable and promising objects for stem cell-based therapy. eMSCs aggregated into three-dimensional (3D) spheroids demonstrate greater efficiency compared to monolayer 2D eMSCs. However, molecular processes and specific mechanisms regulating the effectiveness of spheroids remain unknown. Regulation of a number of physiological reactions in MSCs is associated with the functioning of Ca2+-permeable mechanosensitive Piezo1 channels. In our previous study, we showed that selective Piezo1 activation by its selective agonist Yoda1 controls the migratory activity of 2D eMSCs. Here, we aimed to determine the effect of Yoda1 on eMSC spheroid formation and spreading. PIEZO1 mRNA expression was lower in spheroids compared to 2D culture. Spheroids formed with Yoda1 or spread in the presence of Yoda1 demonstrated lower spreading rates compared to control (Yoda1-free) spheroids. The spreading rates of control spheroids depended on the substrate stiffness, whereas spheroids formed with Yoda1 had similar spreading rates regardless of the surface properties. Our results demonstrate several Piezo1-dependent reactions of eMSC spheroids that could be modulated by selective Piezo1 activation.
Collapse
|
3
|
Keshavarz M, Mohammadi M, Shokrolahi F. Progress in injectable hydrogels for hard tissue regeneration in the last decade. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-39. [PMID: 39853308 DOI: 10.1080/09205063.2024.2436292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells. The purpose of this research is to review the capabilities of this class of materials in hard tissue regeneration in the last decade through adaptable physical and chemical properties, the ability to fill defect sites with an irregular shape, and the ability to grow hormones or release drugs, in response to external stimuli.
Collapse
Affiliation(s)
- Mahya Keshavarz
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
4
|
Yue Y, Chen P, Ren C. Piezo1 Modulates Neuronal Autophagy and Apoptosis in Cerebral Ischemia-Reperfusion Injury Through the AMPK-mTOR Signaling Pathway. Neurochem Res 2024; 50:32. [PMID: 39585469 DOI: 10.1007/s11064-024-04291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a complex pathophysiological process involving multiple mechanisms, including apoptosis and autophagy, which can lead to significant neuronal damage. PIEZO1, a stretch-activated ion channel, has recently emerged as a potential regulator of cellular responses to ischemic conditions. However, its role in neuronal cell survival and death during ischemic events is not well elucidated. This study aimed to ascertain the regulatory function of PIEZO1 in neuronal cell apoptosis and autophagy in an in vitro model of hypoxia-reoxygenation and an in vivo model of brain I/R injury. HT22 hippocampal neuronal cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate ischemic conditions, with subsequent reoxygenation. In vitro, PIEZO1 expression was silenced using small interfering RNA (si-RNA) transfection. The effects on cell viability, apoptosis, and autophagy were assessed using CCK-8 assays, PI-Annexin/V staining combined with flow cytometry, and Western blot analysis. Additionally, intracellular Ca2+ levels in HT22 cells were measured using a Ca2+ probe. The involvement of the AMPK-mTOR pathway was investigated using rapamycin. For in vivo validation, middle cerebral artery occlusion/reperfusion (MCAO/R) in rats was employed. To determine the neuroprotective role of PIEZO1 silencing, sh-PIEZO1 adeno-associated virus was stereotaxically injected into the cerebral ventricle, and neurological and histological outcomes were assessed using neurological scoring, TTC staining, H&E staining, Nissl staining, and immunofluorescence. In HT22 cells, OGD/R injury notably upregulated PIEZO1 expression and intracellular Ca2+ levels. Silencing PIEZO1 significantly diminished OGD/R-induced Ca2+ influx, apoptosis, and autophagy, as indicated by lower levels of pro-apoptotic and autophagy-related proteins and improved cell viability. Additionally, PIEZO1 modulated the AMPK-mTOR signaling pathway, an effect that was counteracted by rapamycin treatment, implying its regulatory role. In vivo, PIEZO1 silencing ameliorated brain I/R injury in MCAO/R rats, demonstrated by improved neurological function scores and reduced neuronal apoptosis and autophagy. However, these neuroprotective effects were reversed through rapamycin treatment. Our findings indicate that PIEZO1 is upregulated following ischemic injury and facilitates Ca2+ influx, apoptosis, and autophagy via the AMPK-mTOR pathway. Silencing PIEZO1 confers neuroprotection against I/R injury both in vitro and in vivo, highlighting its potential as a therapeutic target for stroke management.
Collapse
Affiliation(s)
- Yingjie Yue
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying, 257091, Shandong Province, China
| | - Pingping Chen
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying, 257091, Shandong Province, China
| | - Chongwen Ren
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying, 257091, Shandong Province, China.
| |
Collapse
|
5
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
6
|
Xiang P, Luo ZP, Che YJ. Insights into the mechanical microenvironment within the cartilaginous endplate: An emerging role in maintaining disc homeostasis and normal function. Heliyon 2024; 10:e31162. [PMID: 38803964 PMCID: PMC11128916 DOI: 10.1016/j.heliyon.2024.e31162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Biomechanical factors are strongly linked with the emergence and development of intervertebral disc degeneration (IVDD). The intervertebral disc (IVD), as a unique enclosed biomechanical structure, exhibits distinct mechanical properties within its substructures. Damage to the mechanical performance of any substructure can disrupt the overall mechanical function of the IVD. Endplate degeneration serves as a significant precursor to IVDD. The endplate (EP) structure, especially the cartilaginous endplate (CEP), serves as a conduit for nutrient and metabolite transport in the IVD. It is inevitably influenced by its nutritional environment, mechanical loading, cytokines and extracellular components. Currently, reports on strategies targeting the CEP for the prevention and treatment of IVDD are scarce. This is due to two primary reasons: first, limited knowledge of the biomechanical microenvironment surrounding the degenerated CEP cells; and second, innovative biological treatment strategies, such as implanting active cells (disc or mesenchymal stem cells) or modulating natural cell activity through the addition of therapeutic factors or genes to treat IVDD often overlook a critical aspect-the restoration of the nutrient supply function and mechanical microenvironment of the endplate. Therefore, restoring the healthy structure of the CEP and maintaining a stable mechanical microenvironment within the EP are crucial for the prevention of IVDD and the repair of degenerated IVDs. We present a comprehensive literature review on the mechanical microenvironment characteristics of cartilage endplates and their associated mechanical signaling pathways. Our aim is to provide valuable insights into the development and implementation of strategies to prevent IVDD by delaying or reversing CEP degeneration.
Collapse
Affiliation(s)
- Pan Xiang
- Department of Orthopaedics, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, 215000, PR China
| | - Zong-Ping Luo
- Department of Orthopaedics, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, 215000, PR China
| | - Yan-Jun Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, PR China
| |
Collapse
|
7
|
Wang X, Yu L, Duan J, Chang M, Hao M, Xiang Z, Qiu C, Sun J, Di D, Xia H, Li D, Yuan S, Tian Y, Qiu J, Liu H, Liu X, Sang Y, Wang L. Anti-Stress and Anti-ROS Effects of MnOx-Functionalized Thermosensitive Nanohydrogel Protect BMSCs for Intervertebral Disc Degeneration Repair. Adv Healthc Mater 2024:e2400343. [PMID: 38738846 DOI: 10.1002/adhm.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Stem cell transplantation is proven to be a promising strategy for intervertebral disc degeneration (IDD) repair. However, replicative senescence of bone marrow-derived mesenchymal stem cells (BMSCs), shear damage during direct injection, mechanical stress, and the reactive oxygen species (ROS)-rich microenvironment in degenerative intervertebral discs (IVDs) cause significant cellular damage and limit the therapeutic efficacy. Here, an injectable manganese oxide (MnOx)-functionalized thermosensitive nanohydrogel is proposed for BMSC transplantation for IDD therapy. The MnOx-functionalized thermosensitive nanohydrogel not only successfully protects BMSCs from shear force and mechanical stress before and after injection, but also repairs the harsh high-ROS environment in degenerative IVDs, thus effectively increasing the viability of BMSCs and resident nucleus pulposus cells (NPCs). The MnOx-functionalized thermosensitive nanohydrogel provides mechanical protection for stem cells and helps to remove endogenous ROS, providing a promising stem cell delivery platform for the treatment of IDD.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
- University of Health and Rehabilitation Sciences, Qingdao City, 266071, P. R. China
| | - Liyang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Mingzheng Chang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ziqian Xiang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
- University of Health and Rehabilitation Sciences, Qingdao City, 266071, P. R. China
| | - Cheng Qiu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Junyuan Sun
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Derun Di
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Dezheng Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Suomao Yuan
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Yonghao Tian
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
- University of Health and Rehabilitation Sciences, Qingdao City, 266071, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Lianlei Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Song H, Guo C, Wu Y, Liu Y, Kong Q, Wang Y. Therapeutic factors and biomaterial-based delivery tools for degenerative intervertebral disc repair. Front Cell Dev Biol 2024; 12:1286222. [PMID: 38374895 PMCID: PMC10875104 DOI: 10.3389/fcell.2024.1286222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is the main cause of low back pain (LBP), which significantly impacts global wellbeing and contributes to global productivity declines. Conventional treatment approaches, encompassing conservative and surgical interventions, merely serve to postpone the advancement of IDD without offering a fundamental reversal. Consequently, there is an urgent demand for an effective approach to prevent the progression of IDD. Recent investigations focusing on the treatment of IDD utilizing diverse bioactive substances integrated within various biomaterials have exhibited promising outcomes. Various bioactive substances, encompassing conventional small molecule drugs, small molecule nucleic acids, and cell therapies, exhibit distinct capacities for repairing IDD. Additionally, various biological material delivery systems, such as nano micelles, microspheres, and hydrogels, possess diverse biological and release characteristics. Consequently, these diverse materials and drugs hold promise for advancing the treatment of IDD. This article aims to provide a concise overview of the IDD process and investigate the research advancements in biomaterials and bioactive substances for IDD treatment, delving into their mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhang QX, Cui M. How to enhance the ability of mesenchymal stem cells to alleviate intervertebral disc degeneration. World J Stem Cells 2023; 15:989-998. [PMID: 38058958 PMCID: PMC10696189 DOI: 10.4252/wjsc.v15.i11.989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Intervertebral disc (ID) degeneration (IDD) is one of the main causes of chronic low back pain, and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID. The environment in which the ID is located is harsh, with almost no vascular distribution within the disc, and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate. The stability of its internal environment also plays an important role in preventing IDD. The main feature of disc degeneration is a decrease in the number of cells. Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner. The main purpose is to promote their regeneration. The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix. The treatment of disc degeneration with stem cells has achieved good efficacy, and the current challenge is how to improve this efficacy. Here, we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles, enhancement of therapeutic effects when stem cells are mixed with related substances, and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions. We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges.
Collapse
Affiliation(s)
- Qing-Xiang Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
- Department of Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430048, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
10
|
Luo Z, Wei Z, Zhang G, Chen H, Li L, Kang X. Achilles' Heel-The Significance of Maintaining Microenvironmental Homeostasis in the Nucleus Pulposus for Intervertebral Discs. Int J Mol Sci 2023; 24:16592. [PMID: 38068915 PMCID: PMC10706299 DOI: 10.3390/ijms242316592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration.
Collapse
Affiliation(s)
- Zhangbin Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Ziyan Wei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Haiwei Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
11
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
12
|
Huang Z, Huang Y, Ning X, Li H, Li Q, Wu J. The functional effects of Piezo channels in mesenchymal stem cells. Stem Cell Res Ther 2023; 14:222. [PMID: 37633928 PMCID: PMC10464418 DOI: 10.1186/s13287-023-03452-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used in cell therapy, tissue engineering, and regenerative medicine because of their self-renewal, pluripotency, and immunomodulatory properties. The microenvironment in which MSCs are located significantly affects their physiological functions. The microenvironment directly or indirectly affects cell behavior through biophysical, biochemical, or other means. Among them, the mechanical signals provided to MSCs by the microenvironment have a particularly pronounced effect on their physiological functions and can affect osteogenic differentiation, chondrogenic differentiation, and senescence in MSCs. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important in transducing mechanical signals, and these channels are widely distributed in sites such as skin, bladder, kidney, lung, sensory neurons, and dorsal root ganglia. Although there have been numerous studies on Piezo channels in MSCs in recent years, the function of Piezo channels in MSCs is still not well understood, and there has been no summary of their relationship to illustrate which physiological functions of MSCs are affected by Piezo channels and the possible underlying mechanisms. Therefore, based on the members, structures, and functions of Piezo ion channels and the fundamental information of MSCs, this paper focused on summarizing the advances in Piezo channels in MSCs from various tissue sources to provide new ideas for future research and practical applications of Piezo channels and MSCs.
Collapse
Affiliation(s)
- Zhilong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yingying Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiner Ning
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Haodi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qiqi Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
Zhou X, Shen N, Tao Y, Wang J, Xia K, Ying L, Zhang Y, Huang X, Hua J, Liang C, Chen Q, Li F. Nucleus pulposus cell-derived efficient microcarrier for intervertebral disc tissue engineering. Biofabrication 2023; 15. [PMID: 36689761 DOI: 10.1088/1758-5090/acb572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Adipose-derived stem cells (ADSCs) show great potential for the treatment of intervertebral disc (IVD) degeneration. An ideal carrier is necessary to transplant ADSCs into degenerated IVDs without influencing cell function. Nucleus pulposus cells (NPCs) can synthesize and deposit chondroitin sulfate and type II collagen which are NP-specific extracellular matrix (ECM) and can also regulate the NP-specific differentiation of stem cells. Bioscaffolds fabricated based on the ECM synthesis functions of NPCs have possible roles in cell transplantation and differentiation induction, but it has not been studied. In this study, we first aggregated NPCs into pellets, and then, NPC-derived efficient microcarriers (NPCMs) were fabricated by pellet cultivation under specific conditions and optimized decellularization. Thirdly, we evaluated the microstructure, biochemical composition, biostability and cytotoxicity of the NPCMs. Finally, we investigated the NP-specific differentiation of ADSCs induced by the NPCMsin vitroand NP regeneration induced by the ADSC-loaded NPCMs in a rabbit model. The results indicated that the injectable NPCMs retained maximal ECM and minimal cell nucleic acid after optimized decellularization and had good biostability and no cytotoxicity. The NPCMs also promoted the NP-specific differentiation of ADSCsin vitro. In addition, the results of MRI, x-ray, and the structure and ECM content of NP showed that the ADSCs-loaded NPCMs can partly restored the degenerated NPin vivo. Our injectable NPCMs regenerated the degenerated NP and provide a simplified and efficient strategy for treating IVD degeneration.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Ning Shen
- Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liwei Ying
- Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics, Taizhou Hospital, Wenzhou Medical University, 150 Ximen Road, Linhai 317000, Zhejiang, People's Republic of China
| | - Yuang Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| |
Collapse
|