1
|
Jarzembowski J. Diagnostic Challenges and Updates in Peripheral Neuroblastic Tumors. Surg Pathol Clin 2025; 18:327-339. [PMID: 40412830 DOI: 10.1016/j.path.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Peripheral neuroblastic tumors consist of a variety of neoplasms ranging from benign to highly malignant, with significant intertumoral and intratumoral heterogeneity. The current gold standard in classification, the International Neuroblastoma Pathology Committee classification, relies on morphologic features and patient age to assign favorable or unfavorable histology for each patient. The International Neuroblastoma Risk Group uses a subset of this pathologic data, along with patient age and several key molecular features, to assign one of several prognostic categories.
Collapse
Affiliation(s)
- Jason Jarzembowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Dharmaiah S, Malgulwar PB, Johnson WE, Chen BA, Sharin V, Whitfield BT, Alvarez C, Tadimeti V, Farooqi AS, Huse JT. G-quadruplex stabilizer CX-5461 effectively combines with radiotherapy to target α-thalassemia/mental retardation X-linked-deficient malignant glioma. Neuro Oncol 2025; 27:932-947. [PMID: 39570009 PMCID: PMC12083236 DOI: 10.1093/neuonc/noae248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Inactivation of α-thalassemia/mental retardation X-linked (ATRX) represents a defining molecular feature in large subsets of malignant glioma. ATRX deficiency gives rise to abnormal G-quadruplex (G4) DNA secondary structures, enhancing replication stress and genomic instability. Building on earlier work, we evaluated the extent to which pharmacological G4 stabilization selectively enhances DNA damage and cell death in ATRX-deficient preclinical glioma models. METHODS Using the G4 stabilizer CX-5461, we treated patient-derived glioma stem cells (GSCs) in vitro and GSC flank and intracranial murine xenografts in vivo to evaluate efficacy as both a single agent and in combination with ionizing radiation (IR), the latter a central element of current treatment standards. RESULTS CX-5461 promoted dose-sensitive lethality in ATRX-deficient GSCs relative to ATRX-intact controls. Mechanistic studies revealed that CX-5461 disrupted histone variant H3.3 deposition, enhanced replication stress and DNA damage, activated p53-independent apoptosis, and induced G2/M arrest to a greater extent in ATRX-deficient GSCs than in ATRX-intact counterparts. These data were corroborated in vivo, where CX-5461/IR treatment profoundly delayed tumor growth and prolonged survival in mice bearing ATRX-deficient flank xenografts. Histopathological analyses revealed decreased proliferation, increased apoptosis, and significant G4 induction, replication stress, and DNA damage in CX-5461-treated tumors, both alone and in combination with IR. Finally, despite suboptimal blood-brain-barrier penetration, systemic CX-5461 treatment induced tangible pharmacodynamic effects in ATRX-deficient intracranial GSC models. CONCLUSIONS In totality, our work substantively demonstrates efficacy and defines mechanisms of action for G4 stabilization as a novel therapeutic strategy targeting ATRX-deficient malignant glioma, laying the groundwork for clinical translation.
Collapse
Affiliation(s)
- Sharvari Dharmaiah
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, Cancer Biology, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, Texas, USA
| | - Prit Benny Malgulwar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William E Johnson
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandon A Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vladislav Sharin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin T Whitfield
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, Cancer Biology, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, Texas, USA
| | - Christian Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vasudev Tadimeti
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahsan S Farooqi
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Simon T, Thole T, Castelli S, Timmermann B, Jazmati D, Schwarz R, Fuchs J, Warmann S, Hubertus J, Schmidt M, Rogasch J, Körber F, Vokuhl C, Schäfer J, Schulte JH, Deubzer H, Rosswog C, Fischer M, Lang P, Langer T, Astrahantseff K, Lode H, Hero B, Eggert A. GPOH Guidelines for Diagnosis and First-line Treatment of Patients with Neuroblastic Tumors, update 2025. KLINISCHE PADIATRIE 2025; 237:117-140. [PMID: 40345224 DOI: 10.1055/a-2556-4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The clinical course of neuroblastoma is more heterogeneous than any other malignant disease. Many low-risk patients experience regression after limited or even no chemotherapy. However, more than half of high-risk patients die from disease despite intensive multimodal treatment. Precise disease characterization for each patient at diagnosis is key for risk-adapted treatment. The guidelines presented here incorporate results from national and international clinical trials to produce recommendations for diagnosing and treating neuroblastoma patients in German hospitals outside of clinical trials.
Collapse
Affiliation(s)
- Thorsten Simon
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Theresa Thole
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Sveva Castelli
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Beate Timmermann
- Westgerman Protontherapycenter Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Danny Jazmati
- Department of Radiation Oncology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | - Jörg Fuchs
- Pediatric Surgery and Urology, University of Tübingen, Tübingen, Germany
| | - Steven Warmann
- Department of Pediatric Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Marien-Hospital Witten, Witten, Germany
| | | | - Julian Rogasch
- Nuclear Medicine, Charité University Hospital Berlin, Berlin, Germany
| | - Friederike Körber
- Institut und Poliklinik für Radiologische Diagnostik, Kinderradiologie, University of Cologne, Cologne, Germany
| | - Christian Vokuhl
- Pediatric Pathology, Institute for Pathology, University of Bonn, Bonn, Germany
| | - Jürgen Schäfer
- Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | | | - Hedwig Deubzer
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Carolina Rosswog
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Peter Lang
- Pediatric Oncology and Hematology, University of Tübingen, Tübingen, Germany
| | - Thorsten Langer
- Childrens' Hospital, University Hospital Schleswig-Holstein Lübeck Campus, Lübeck, Germany
| | - Kathy Astrahantseff
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Holger Lode
- Pediatric Oncology and Hematology, University of Greifswald, Greifswald, Germany
| | - Barbara Hero
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
4
|
Magalhães Gimenez T, Peralta VP, Giorgi RR, Morikawa K, Vince CC, Halley N, Siqueira SA, Bendit I, Cristofani LM, Filho VO, Novak EM. Novel variants of the ATRX gene identified in MYCN non-amplified Neuroblastoma in Brazilian patients. Clinics (Sao Paulo) 2025; 80:100652. [PMID: 40286729 PMCID: PMC12060459 DOI: 10.1016/j.clinsp.2025.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Neuroblastoma is one of the most common extracranial solid tumors in children and it frequently displays high heterogeneity throughout the course of the disease. It has previously been described those changes in the ATRX gene (Alpha Thalassemia/Mental Retardation, X-linked) are the most common recurring events in the indolent clinical subtype (∼30 %) of MYCN amplified neuroblastoma. There is no effective treatment for this type of neuroblastoma, which is associated with overall poor survival. On the other hand, few studies have detected an association between high-risk (stage IV) non-amplified MYCN neuroblastoma patients and mutant ATRX. METHODS In this study, 37 tumor samples from Brazilian patients with stages I to IV MYCN non-amplified neuroblastoma, according to the International Neuroblastoma Staging System (INSS), were analyzed using the panel Oncomine™ Childhood Cancer Research Assay. RESULTS The authors found two older children (NB1 and NB2) with advanced MYCN non-amplified neuroblastoma carried each one of the two following novel nonsense ATRX variants (p.Gln1670* or p.Glu1984*). These variants created a stop codon in the helicase domain of the ATRX gene, leading to ATRX loss-of-function. These mutations were confirmed by Sanger sequencing and the protein loss-of-function was confirmed by immunohistochemistry. The finding of these heterozygous mutations in two patients with MYCN non-amplified neuroblastoma deserves further investigation. Thus, the authors analyzed each of these cases to better understand how these mutations may be related to disease severity and prognosis. CONCLUSION ATRX loss-of-function from p.Gln1670* or p.Glu1984* mutations turn MYCN non-amplified neuroblastoma more aggressive and similar to what is seen in MYCN amplified neuroblastoma. This information may help clinical decision-making and facilitate establishing an accurate prognosis for patients with MYCN non-amplified neuroblastoma.
Collapse
Affiliation(s)
| | - Vanessa Pretes Peralta
- Laboratório de Investigação Médica em Pediatria Clínica -Lim-36.Instituto da Criança. Hospital de Clínicas, Faculdade de Medicina, Universidade de São Paulo (HC/FMUSP), São Paulo, Brazil
| | - Ricardo Rodrigues Giorgi
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (Lim 31). Departamento de Hematologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP). São Paulo, São Paulo, Brazil
| | - Karina Morikawa
- Instituto do Cancer do Estado de Sao Paulo (ICESP/ITACI), São Paulo, Brazil
| | | | - Nathalia Halley
- Hospital Israelita Albert Einstein (HIAE). São Paulo, Brazil
| | - Sheila Aparecida Siqueira
- Divisão de Patologia, Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Israel Bendit
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (Lim 31). Departamento de Hematologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP). São Paulo, São Paulo, Brazil
| | | | - Vicente Odone Filho
- Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Estela Maria Novak
- Fundação Pró-Sangue Hemocentro de São Paulo, Departamento de Genética Molecular e Biotecnologia. São Paulo, Brazil.
| |
Collapse
|
5
|
Legg-E’Silva D, Cave E, Snyman T, Currin S, Kone N, Prigge K. Biogenic amine testing in the South African public health care system. Pract Lab Med 2025; 44:e00457. [PMID: 39968348 PMCID: PMC11833340 DOI: 10.1016/j.plabm.2025.e00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Background Phaeochromocytoma, paraganglioma and neuroblastoma are catecholamine secreting neuroendocrine tumours. Biochemical screening for suspected cases of these tumours involves the measurement of catecholamines and their metabolites in either urine or plasma. The South African National Health Laboratory service (NHLS) measures urine fractionated metanephrines (UMF) and normetanephrines (UNF), urine vanillylmandelic acid (UVMA) and urine homovanillic acid (UHVA). Objectives To analyse the demographic, biochemical and testing patterns of patients' UMF, UNF, UVMA and UHVA in the NHLS. Methods Data from January 2015 to December 2016 for all patients undergoing UMF, UNF, UVMA and UHVA testing was extracted from the NHLS central data warehouse. Neuroendocrine tumours were biochemically diagnosed when results were >2x multiples of the upper reference limits. Multiple testing was defined as ≥2 tests within a 14-day period. Ethnicity was determined through hot-deck imputation. Results Biochemically abnormal test results were identified by UMF/UNF measurements in 98.2 % of cases. In 1.8 % of cases, the addition of UVMA resulted in a previously unidentified biochemical positive. Adult white and coloured populations have significantly less biochemically positive UMF results compared to the African population. Multiple testing resulted in discordant results for 12.8 % of UMF and 13.1 % of UNF testing. Conclusion UVMA testing for phaeochromocytoma and paraganglioma offers little benefit over testing with UMF alone. Requesting consecutive multiple samples is preferred, however, a single 24-h fractionated UMF/UNF is efficient and cost-effective for phaeochromocytoma and paraganglioma screening, with further testing recommended when clinically indicated. African individuals are more likely to have raised catecholamines and requires further investigation.
Collapse
Affiliation(s)
| | | | - T. Snyman
- Department of Chemical Pathology, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa
| | - S. Currin
- Department of Chemical Pathology, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa
| | - N. Kone
- Department of Chemical Pathology, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa
| | - K.L. Prigge
- Department of Chemical Pathology, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
6
|
Lorenzi F, Jostes S, Gao Q, Hutchinson JC, Tall J, Martins da Costa B, Cooke AJ, Rampling D, Ogunbiyi O, Barker K, Hughes D, Barone G, Barisa M, Bellini A, Hubank M, Schleiermacher G, Anderson J, Bernstein E, Chesler L, George SL. ATRX mutations mediate an immunogenic phenotype and macrophage infiltration in neuroblastoma. Cancer Lett 2025; 613:217495. [PMID: 39892705 PMCID: PMC12057689 DOI: 10.1016/j.canlet.2025.217495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
ATRX is one of the most frequently mutated genes in high-risk neuroblastoma. ATRX mutations are mutually exclusive with MYCN amplification and mark a recognizable patient subgroup, presenting in older children with chemotherapy-resistant, slowly progressive disease. The mechanisms underlying how ATRX mutations drive high-risk and difficult-to-treat neuroblastoma are still largely elusive. To unravel the role of ATRX in neuroblastoma, we generated isogenic neuroblastoma cell line models with ATRX loss-of-function and ATRX in-frame multi-exon deletions, representing different types of alterations found in patients. RNA-sequencing analysis consistently showed significant upregulation of inflammatory response pathways in the ATRX-altered cell lines. In vivo, ATRX alterations are consistently associated with macrophage infiltration across multiple xenograft models. Furthermore, ATRX alterations also result in upregulation of epithelial-to-mesenchymal transition pathways and a reduction in expression of adrenergic core-regulatory circuit genes. Consistent with this, bioinformatic analysis of previously published neuroblastoma patient data sets revealed that ATRX-altered neuroblastomas display an immunogenic phenotype and higher score of macrophages (with no distinction between M1 and M2 macrophage populations) and dendritic cells, but not lymphocytes. Histopathological assessment of diagnostic samples from patients with ATRX mutant disease confirmed these findings with significantly more macrophage infiltration compared to MYCN-amplified tumors. In conclusion, we show that gene expression and cell-state changes as a result of ATRX alterations associate with a characteristic immune cell infiltration in both in vivo models and patient samples. Together, this provides novel insight into mechanisms underlying the distinct clinical phenotype seen in this group of patients.
Collapse
Affiliation(s)
- Federica Lorenzi
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Sina Jostes
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029-5674, USA
| | - Qiong Gao
- Cancer Therapeutics Unit, Computational Biology and Chemogenomics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - J Ciaran Hutchinson
- Histopathology Department, Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Jennifer Tall
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Barbara Martins da Costa
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Anisha J Cooke
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029-5674, USA
| | - Dyanne Rampling
- Histopathology Department, Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Olumide Ogunbiyi
- Histopathology Department, Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Debbie Hughes
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Giuseppe Barone
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Marta Barisa
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Angela Bellini
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), U830 INSERM and SIREDO Integrated Pediatric Oncology Center, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Michael Hubank
- Molecular Pathology Section, The Institute of Cancer Research, Clinical Genomics, The Royal Marsden NHS Foundation, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom
| | - Gudrun Schleiermacher
- SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), U830 INSERM and SIREDO Integrated Pediatric Oncology Center, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 10029-5674, USA
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom; Children and Young People's Unit, The Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, London, United Kingdom
| | - Sally L George
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, London, United Kingdom; Children and Young People's Unit, The Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, London, United Kingdom.
| |
Collapse
|
7
|
Yue C, Zhang Q, Sun F, Pan Q. Global, regional and national burden of neuroblastoma and other peripheral nervous system tumors, 1990 to 2021 and predictions to 2035: visualizing epidemiological characteristics based on GBD 2021. Neoplasia 2025; 60:101122. [PMID: 39855015 PMCID: PMC11795104 DOI: 10.1016/j.neo.2025.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children, accounting for >15 % of cancer-related deaths in children. We analyzed the epidemiological statistical indicators of neuroblastoma and other peripheral nervous system tumors patients from 1990 to 2021 in Global Burden of Disease (GBD) 2021 database, aiming to provide valuable insights for public health interventions and clinical practices. METHODS Based on the GBD 2021 database, this study analyzed the incidence, mortality, prevalence, and Disability-Adjusted Life-Years (DALYs) of neuroblastoma and other peripheral nervous system tumors from 1990 to 2021, stratified by sociodemographic development index (SDI) and geographic regions. Cross-country inequalities analysis was conducted to quantify the SDI-related inequality of disease burden across countries. In addition, the average annual percentage change (AAPC) and Age-Period-Cohort (APC) model were used to evaluate the trend of disease burden, while the global burden of disease to 2035 was predicted by Bayesian Age-Period-Cohort (BAPC) model. FINDINGS This study reported the disease burden of neuroblastoma and other peripheral nervous system tumors in GBD 2021 database for the first time. Globally, the incidence and mortality of neuroblastoma have increased year by year from 1990 to 2021, especially in regions with low SDI, such as South Asia and sub-Saharan Africa, where the burden of disease has increased significantly. Regions with high SDI, such as North America and Western Europe, have seen a reduction in disease burden due to higher levels of medical care and earlier diagnosis. The age distribution shows that children under 5 years of age are mainly affected, especially in low- and middle-income areas. In addition, the incidence is slightly higher in men than in women. The BAPC model predicts that the global incidence, mortality, and DALYs of neuroblastoma will continue to increase until 2035. INTERPRETATION Significant regional and population variation in neuroblastoma and other peripheral nervous system tumors worldwide, with a particularly high disease burden in low SDI areas with limited medical resources. This trend highlights the urgent need for global public health interventions and resource allocation, particularly in low-income countries. Future research should focus on improving early diagnosis, risk stratification and target therapy in order to reduce the global burden of disease and improve patients' prognosis. FUNDING This study was supported by National Natural Science Foundation of China (No. 82293662, No 82172357 and No 81930066), Key project of Shanghai "Science and Technology Innovation Action Plan (22JC1402304) and Research fund of Shanghai Municipal Health Bureau (No. 2019cxjq03).
Collapse
Affiliation(s)
- Chaoyan Yue
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai, 200072, China.
| | - Qiuhui Pan
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, PR China; Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya 572000, PR China.
| |
Collapse
|
8
|
Avinent-Pérez M, Westermann F, Navarro S, López-Carrasco A, Noguera R. Tackling ALT-positive neuroblastoma: is it time to redefine risk classification systems? A systematic review with IPD meta-analysis. Neoplasia 2025; 60:101106. [PMID: 39733691 PMCID: PMC11743311 DOI: 10.1016/j.neo.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The heterogeneous prognosis in neuroblastoma, shaped by telomere maintenance mechanisms (TMMs), notably the alternative lengthening of telomeres (ALT) pathway, necessitates a refined risk classification for high-risk patients. Current systems often lack precision, hindering tailored treatment approaches. This individual participant data (IPD) meta-analysis of survival among ALT-positive patients aims to improve risk classification systems, enhancing therapeutic strategies and patient outcomes. METHODS Following PRISMA-IPD guidelines, we conducted a comprehensive review of neuroblastoma patients retrieved from PubMed, Scopus, and Embase databases until March-2024. Patients were stratified into ALT-positive and TMM-negative subgroups. Overall and event-free survival probabilities were evaluated. RESULTS In our cohort of 293 patients (156 ALT-positive, 137 TMM-negative) obtained from eight different studies, ALT-positive individuals displayed lower survival rates than TMM-negative patients. Non-stage 4 ALT-positive patients had reduced overall and event-free survival probabilities compared to their TMM-negative counterparts, indicating potential misclassification. Stage 4 ALT-positive patients similarly showed poorer survival outcomes than non-stage 4 TMM-negative patients, underscoring the significance of ALT in patient prognosis. CONCLUSIONS Our study highlights poorer outcomes in ALT-positive neuroblastoma patients, emphasizing the need to integrate TMM status into international risk classification guidelines. Standardizing TMM assessment is key for refining treatment strategies, considering the unique biology of ALT-positive patients.
Collapse
Affiliation(s)
- Marta Avinent-Pérez
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Amparo López-Carrasco
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
9
|
Wang T, Liu L, Fang J, Jin H, Natarajan S, Sheppard H, Lu M, Turner G, Confer T, Johnson M, Steinberg J, Ha L, Yadak N, Jain R, Picketts DJ, Ma X, Murphy A, Davidoff AM, Glazer ES, Easton J, Chen X, Wang R, Yang J. Conditional Activation of c-MYC in Distinct Catecholaminergic Cells Drives Development of Neuroblastoma or Somatostatinoma. Cancer Res 2025; 85:424-441. [PMID: 39531507 PMCID: PMC11786959 DOI: 10.1158/0008-5472.can-24-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
c-MYC is an important driver of high-risk neuroblastoma. A lack of c-MYC-driven genetically engineered mouse models (GEMM) has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and to develop effective therapies. In this study, we showed that conditional c-MYC induction via Cre recombinase driven by a tyrosine hydroxylase promoter led to a preponderance of PDX1+ somatostatinoma, a type of pancreatic neuroendocrine tumor. However, c-MYC activation via an improved Cre recombinase driven by a dopamine β-hydroxylase promoter resulted in neuroblastoma development. The c-MYC murine neuroblastoma tumors recapitulated the pathologic and genetic features of human neuroblastoma and responded to anti-GD2 immunotherapy and difluoromethylornithine, an FDA-approved inhibitor targeting the MYC transcriptional target ODC1. Thus, c-MYC overexpression results in different but related tumor types depending on the targeted cell. The GEMMs represent valuable tools for testing immunotherapies and targeted therapies for these diseases. Significance: The development of c-MYC-driven genetically engineered neuroblastoma and somatostatinoma mouse models provides useful tools for understanding the tumor cell origin and investigating treatment strategies.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer Research, Hematology, Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State University, Columbus, Ohio
| | - Lingling Liu
- Center for Childhood Cancer Research, Hematology, Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State University, Columbus, Ohio
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Meifen Lu
- Comparative Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Gregory Turner
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Thomas Confer
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa Johnson
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Larry Ha
- Department of Surgery and Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Richa Jain
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Andrew Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Surgery and Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Evan S. Glazer
- Department of Surgery and Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology, Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State University, Columbus, Ohio
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
10
|
Liu W, Yang Y. Comment on "Adults and Adolescents With Neuroblastoma: An Analysis of the National Cancer Database". J Surg Oncol 2025. [PMID: 39865574 DOI: 10.1002/jso.28099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Affiliation(s)
- Wei Liu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yuwei Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
11
|
Chidiac C, McDermott KM, Ramdat C, Price MD, Greer JB, Ladle BH, Rhee DS. Adults and Adolescents With Neuroblastoma: An Analysis of the National Cancer Database. J Surg Oncol 2025. [PMID: 39780459 DOI: 10.1002/jso.28076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND OBJECTIVES Neuroblastoma, the most common extracranial solid tumor in children, is rare in adults. This study compares patient characteristics, disease patterns, and treatments among adults, adolescents, and children with neuroblastoma. METHODS We queried the National Cancer Database (2004-2019) for neuroblastoma cases. Patient and tumor characteristics, treatments, and 5-year overall survival (5-OS) were compared between adults (≥ 18 years), adolescents (10-17 years), and children (0-9 years). Kaplan-Meier curves and Cox regression assessed survival differences. RESULTS Among 6350 neuroblastoma patients, 256 (4.0%) were adults, 222 (3.5%) were adolescents, and 5872 (92.5%) were children. Tumors were largest in adolescents (9.7 cm), followed by adults (8.0 cm) and children (6.7 cm) (p < 0.001). Adults were less likely to have tumors in the adrenal glands (34.0% vs. children: 54.7%, adolescents: 43.2%, p < 0.001) and had lower rates of metastasis (10.9% vs. 19.3% and 19.4%, p < 0.001). Compared to children, adults received less chemotherapy, immunotherapy, and bone marrow transplants (p < 0.001). 5-OS was worse in adults (65.8%), followed by adolescents (70.4%) and children (78.2%) (p < 0.001). After adjustment, adults (aHR: 2.27; 95% CI, 1.71-3.01) and adolescents (aHR: 2.02; 95% CI, 1.54-2.64) had higher hazards of death compared to children. CONCLUSIONS Adults and adolescents with neuroblastoma have distinct clinical features and lower survival than children, underscoring the need for tailored treatment approaches for older patients. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Charbel Chidiac
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine M McDermott
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlyn Ramdat
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew D Price
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan B Greer
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian H Ladle
- Department of Oncology, Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel S Rhee
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Gonzales-Céspedes G, Navarro S. High-risk neuroblastoma: ATRX and TERT as prognostic markers and therapeutic targets. Review and update on the topic. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100790. [PMID: 39793153 DOI: 10.1016/j.patol.2024.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 01/13/2025]
Abstract
High-risk neuroblastoma continues to show a very high mortality, with a 5-year survival rate of 50%. While MYCN amplification is the main genetic alteration associated with high-risk tumours, other molecular mechanisms, such as alterations in ATRX and TERT, remain poorly understood. ATRX and TERT biomarkers, which are associated with a more aggressive neuroblastoma pattern, should be considered for accurate prognostic stratification. We highlight the promising results of the clinical trial involving the combination of adavosertib and irinotecan, which encourages further clinical trials with adavosertib targeting NB with ATRX mutations. Preclinical results with BET inhibitors (OTX015 and AZD5153) and with 6-thio-2'-deoxyguanosine, targeting NB with TERT mutations, are promising. Both represent future therapeutic targets, emphasizing the need to prioritize research using these models.
Collapse
Affiliation(s)
- Grecia Gonzales-Céspedes
- Departamento de Patología, Universidad de Valencia, Hospital Clínico Universitario de Valencia, CIBERONC (ISCIII Madrid), INCLIVA, Valencia, Spain
| | - Samuel Navarro
- Departamento de Patología, Universidad de Valencia, Hospital Clínico Universitario de Valencia, CIBERONC (ISCIII Madrid), INCLIVA, Valencia, Spain.
| |
Collapse
|
13
|
Zhang T, Yin H, Guo J, Chang J, Li M, He J, Zhou C. HOTTIP rs1859168 C > A polymorphism reduces neuroblastoma susceptibility in Chinese children. Eur J Pediatr 2024; 184:104. [PMID: 39718648 DOI: 10.1007/s00431-024-05942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Neuroblastoma, " a malignancy originating from neural crest cells, is most commonly diagnosed in children and adolescents. Polymorphisms within the long noncoding RNA (lncRNA) HOXA distal transcript antisense RNA (HOTTIP) are believed to have the capacity to alter an individual's susceptibility to various cancers. This study aimed to investigate the link between HOTTIP gene polymorphisms and neuroblastoma susceptibility. We identified the genotypes of two prevalent polymorphisms (rs3807598 and rs1859168) within the HOTTIP via the TaqMan assay in a cohort comprising 402 individuals diagnosed with neuroblastoma and 473 healthy controls. Logistic regression was used to evaluate the associations between the HOTTIP polymorphisms and the likelihood of neuroblastoma susceptibility. Additionally, the genotype-tissue expression (GTEx) database was used to investigate how these HOTTIP gene variations influence gene expression across different tissues. Our findings demonstrated a significant association between the rs1859168 C > A polymorphism and reduced neuroblastoma susceptibility (CA vs. CC: adjusted odds ratio (OR) = 0.55, 95% confidence interval (CI) = 0.40-0.74, P = 0.0001; CA/AA vs. CC: adjusted OR = 0.69, 95% CI = 0.53-0.91, P = 0.010). The additional stratified analysis revealed that the presence of rs1859168 CA/AA or two protective genotypes was associated with a lower susceptibility in specific subgroups, such as older children and girls. Expression quantitative trait locus (eQTL) analysis revealed that the rs1859168 CC genotype was related to high expression of the HOTTIP gene. CONCLUSION We found that HOTTIP gene polymorphisms were associated with a reduced likelihood of neuroblastoma in Chinese children. Further studies with large cohorts and diverse ethnicities are warranted to verify our results. WHAT IS KNOWN • Genetic variations can influence neuroblastoma susceptibility. HOTTIP gene polymorphisms may alter an individual's susceptibility to various cancers. WHAT IS NEW • HOTTIP gene polymorphisms were associated with a reduced risk of neuroblastoma in Chinese children.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Huimin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiejie Guo
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jiaming Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Mengjia Li
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jing He
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, Zhejiang, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
14
|
Sainero-Alcolado L, Sjöberg Bexelius T, Santopolo G, Yuan Y, Liaño-Pons J, Arsenian-Henriksson M. Defining neuroblastoma: From origin to precision medicine. Neuro Oncol 2024; 26:2174-2192. [PMID: 39101440 PMCID: PMC11630532 DOI: 10.1093/neuonc/noae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 08/06/2024] Open
Abstract
Neuroblastoma (NB), a heterogenous pediatric tumor of the sympathetic nervous system, is the most common and deadly extracranial solid malignancy diagnosed in infants. Numerous efforts have been invested in understanding its origin and in development of novel curative targeted therapies. Here, we summarize the recent advances in the identification of the cell of origin and the genetic alterations occurring during development that contribute to NB. We discuss current treatment regimens, present and future directions for the identification of novel therapeutic metabolic targets, differentiation agents, as well as personalized combinatory therapies as potential approaches for improving the survival and quality of life of children with NB.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Tomas Sjöberg Bexelius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm SE-17177, Sweden
- Paediatric Oncology Unit, Astrid Lindgren’s Children Hospital, Solna SE-17164, Sweden
| | - Giuseppe Santopolo
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| | - Marie Arsenian-Henriksson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund SE-22381, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm SE-17165, Sweden
| |
Collapse
|
15
|
Plaza-Florido A, Gálvez BG, López JA, Santos-Lozano A, Zazo S, Rincón-Castanedo C, Martín-Ruiz A, Lumbreras J, Terron-Camero LC, López-Soto A, Andrés-León E, González-Murillo Á, Rojo F, Ramírez M, Lucia A, Fiuza-Luces C. Exercise and tumor proteome: insights from a neuroblastoma model. Physiol Genomics 2024; 56:833-844. [PMID: 39311839 PMCID: PMC11573273 DOI: 10.1152/physiolgenomics.00064.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
The impact of exercise on pediatric tumor biology is essentially unknown. We explored the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). Tumor samples of 14 male mice (aged 6-8 wk) that were randomly allocated into an exercise (5-wk combined aerobic and resistance training) or nonexercise control group (6 and 8 mice/group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, than controls [false discovery rate (FDR) < 0.05]. These proteins were enriched in metabolic pathways, amino acid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling (FDR < 0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR < 0.01). Categories with lower abundance were involved in energy production, whereas those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying the potential effects of exercise in HR-NB.NEW & NOTEWORTHY We used liquid chromatography with tandem mass spectrometry to explore the impact of a 5-wk exercise intervention on the tumor proteome profile in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma. Exercise altered the abundance of hundreds of proteins and pathways, particularly those involved in energy metabolism and tumor suppression. These molecular changes could mediate, at least partly, the potential antitumorigenic effects of exercise.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, United States
| | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Santos-Lozano
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- i+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Sandra Zazo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | | | - Asunción Martín-Ruiz
- Department of Cellular Biology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Lumbreras
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Laura C Terron-Camero
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | - Manuel Ramírez
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
16
|
Hamilton AK, Radaoui AB, Tsang M, Martinez D, Conkrite KL, Patel K, Sidoli S, Delaidelli A, Modi A, Rokita JL, Lane MV, Hartnett N, Lopez RD, Zhang B, Zhong C, Ennis B, Miller DP, Brown MA, Rathi KS, Raman P, Pogoriler J, Bhatti T, Pawel B, Glisovic-Aplenc T, Teicher B, Erickson SW, Earley EJ, Bosse KR, Sorensen PH, Krytska K, Mosse YP, Havenith KE, Zammarchi F, van Berkel PH, Smith MA, Garcia BA, Maris JM, Diskin SJ. A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma. Cancer Cell 2024; 42:1970-1982.e7. [PMID: 39454577 PMCID: PMC11560519 DOI: 10.1016/j.ccell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/14/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlates with a super-enhancer. Immunofluorescence, flow cytometry, and immunohistochemistry show robust cell surface expression of DLK1. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells results in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Since high DLK1 expression is found in several adult and pediatric cancers, our study demonstrates the utility of a proteogenomic approach and credentials DLK1 as an immunotherapeutic target.
Collapse
MESH Headings
- Neuroblastoma/drug therapy
- Neuroblastoma/immunology
- Neuroblastoma/mortality
- Neuroblastoma/pathology
- Immunotherapy/methods
- Proteogenomics
- Calcium-Binding Proteins/analysis
- Calcium-Binding Proteins/antagonists & inhibitors
- Calcium-Binding Proteins/immunology
- Calcium-Binding Proteins/metabolism
- Membrane Proteins/analysis
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Mice, SCID
- Humans
- Female
- Animals
- Mice
- Kaplan-Meier Estimate
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- RNA-Seq
- Child
- Molecular Targeted Therapy/methods
Collapse
Affiliation(s)
- Amber K Hamilton
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexander B Radaoui
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Tsang
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Karina L Conkrite
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Khushbu Patel
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Apexa Modi
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maria V Lane
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas Hartnett
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Raphael D Lopez
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chuwei Zhong
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian Ennis
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S Rathi
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tricia Bhatti
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Glisovic-Aplenc
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Eric J Earley
- RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - Kristopher R Bosse
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kateryna Krytska
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yael P Mosse
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Maris
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sharon J Diskin
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Burkert M, Blanc E, Thiessen N, Weber C, Toedling J, Monti R, Dombrowe VM, Stella de Biase M, Kaufmann TL, Haase K, Waszak SM, Eggert A, Beule D, Schulte JH, Ohler U, Schwarz RF. Copy-number dosage regulates telomere maintenance and disease-associated pathways in neuroblastoma. iScience 2024; 27:110918. [PMID: 39635126 PMCID: PMC11615189 DOI: 10.1016/j.isci.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
Telomere maintenance in neuroblastoma is linked to poor outcome and caused by either telomerase reverse transcriptase (TERT) activation or through alternative lengthening of telomeres (ALT). In contrast to TERT activation, commonly caused by genomic rearrangements or MYCN amplification, ALT is less well understood. Alterations at the ATRX locus are key drivers of ALT but only present in ∼50% of ALT tumors. To identify potential new pathways to telomere maintenance, we investigate allele-specific gene dosage effects from whole genomes and transcriptomes in 115 primary neuroblastomas. We show that copy-number dosage deregulates telomere maintenance, genomic stability, and neuronal pathways and identify upregulation of variants of histone H3 and H2A as a potential alternative pathway to ALT. We investigate the interplay between TERT activation, overexpression and copy-number dosage and reveal loss of imprinting at the RTL1 gene associated with poor clinical outcome. These results highlight the importance of gene dosage in key oncogenic mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Martin Burkert
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Nina Thiessen
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Joern Toedling
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Remo Monti
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria M. Dombrowe
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Stella de Biase
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tom L. Kaufmann
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Ohler
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
19
|
Han M, Niu H, Duan F, Wang Z, Zhang Z, Ren H. Research status and development trends of omics in neuroblastoma a bibliometric and visualization analysis. Front Oncol 2024; 14:1383805. [PMID: 39450262 PMCID: PMC11499224 DOI: 10.3389/fonc.2024.1383805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background Neuroblastoma (NB), a prevalent extracranial solid tumor in children, stems from the neural crest. Omics technologies are extensively employed in NB, and We analyzed published articles on NB omics to understand the research trends and hot topics in NB omics. Method We collected all articles related to NB omics published from 2005 to 2023 from the Web of Science Core Collection database. Subsequently, we conducted analyses using VOSviewer, CiteSpace, Bibliometrix, and the Bibliometric online analysis platform (https://bibliometric.com/ ). Results We included a total of 514 articles in our analysis. The increasing number of publications in this field since 2020 indicates growing attention to NB omics, gradually entering a mature development stage. These articles span 50 countries and 1,000 institutions, involving 3,669 authors and 292 journals. The United States has the highest publication output and collaboration with other countries, with Germany being the most frequent collaborator. Capital Medical University and the German Cancer Research Center are the institutions with the highest publication count. The Journal of Proteome Research and the Journal of Biological Chemistry are the most prolific journal and most co-cited journal, respectively. Wang, W, and Maris, JM are the scholars with the highest publication count and co-citations in this field. "Neuroblastoma" and "Expression" are the most frequent keywords, while "classification," "Metabolism," "Cancer," and "Diagnosis" are recent key terms. The article titled "Neuroblastoma" by John M. Maris is the most cited reference in this analysis. Conclusion The continuous growth in NB omics research underscores its increasing significance in the scientific community. Omics technologies have facilitated the identification of potential biomarkers, advancements in personalized medicine, and the development of novel therapeutic strategies. Despite these advancements, the field faces significant challenges, including tumor heterogeneity, data standardization issues, and the translation of research findings into clinical practice.
Collapse
Affiliation(s)
| | - Huizhong Niu
- First Department of General Surgery, Hebei Children’s Hospital,
Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
20
|
Froney MM, Cook CR, Cadiz AM, Flinter KA, Ledeboer ST, Chan B, Burris LE, Hardy BP, Pearce KH, Wardell AC, Golitz BT, Jarstfer MB, Pattenden SG. A First-in-Class High-Throughput Screen to Discover Modulators of the Alternative Lengthening of Telomeres (ALT) Pathway. ACS Pharmacol Transl Sci 2024; 7:2799-2819. [PMID: 39296266 PMCID: PMC11406699 DOI: 10.1021/acsptsci.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.
Collapse
Affiliation(s)
- Merrill M Froney
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian R Cook
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alyssa M Cadiz
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katherine A Flinter
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sara T Ledeboer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bianca Chan
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E Burris
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian P Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexis C Wardell
- UNC Lineberger Comprehensive Cancer Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian T Golitz
- UNC Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael B Jarstfer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G Pattenden
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey ALW, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection. Clin Cancer Res 2024; 30:4100-4114. [PMID: 39047169 PMCID: PMC11393547 DOI: 10.1158/1078-0432.ccr-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The purpose of the study was to design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy-number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted resequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted resequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ∼95% of variants at allele fraction (AF) 0.5%, whereas the detection rate is ∼80% at AF 0.2%. The panel detected low-frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ∼0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
Affiliation(s)
- Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vidya Balagopal
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna L W Huskey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhikai Liang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maria Namwanje
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Saradhi Mallampati
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
22
|
Nokchan N, Suthapot P, Choochuen P, Khongcharoen N, Hongeng S, Anurathapan U, Surachat K, Sangkhathat S, Thai Pediatric Cancer Atlas Tpca Consortium. Whole-Exome Sequencing Reveals Novel Candidate Driver Mutations and Potential Druggable Mutations in Patients with High-Risk Neuroblastoma. J Pers Med 2024; 14:950. [PMID: 39338204 PMCID: PMC11433071 DOI: 10.3390/jpm14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroblastoma is the most prevalent solid tumor in early childhood, with a 5-year overall survival rate of 40-60% in high-risk cases. Therefore, the identification of novel biomarkers for the diagnosis, prognosis, and therapy of neuroblastoma is crucial for improving the clinical outcomes of these patients. In this study, we conducted the whole-exome sequencing of 48 freshly frozen tumor samples obtained from the Biobank. Somatic variants were identified and selected using a bioinformatics analysis pipeline. The mutational signatures were determined using the Mutalisk online tool. Cancer driver genes and druggable mutations were predicted using the Cancer Genome Interpreter. The most common mutational signature was single base substitution 5. MUC4, MUC16, and FLG were identified as the most frequently mutated genes. Using the Cancer Genome Interpreter, we identified five recurrent cancer driver mutations spanning MUC16, MUC4, ALK, and CTNND1, with the latter being novel and containing a missense mutation, R439C. We also identified 11 putative actionable mutations including NF1 Q1798*, Q2616*, and S636X, ALK F1174L and R1275Q, SETD2 P10L and Q1829E, BRCA1 R612S, NOTCH1 D1670V, ATR S1372L, and FGFR1 N577K. Our findings provide a comprehensive overview of the novel information relevant to the underlying molecular pathogenesis and therapeutic targets of neuroblastoma.
Collapse
Affiliation(s)
- Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Praewa Suthapot
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natthapon Khongcharoen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
23
|
Chang YH, Yu CH, Lu MY, Jou ST, Lin CY, Lin KH, Chang HH, Ni YL, Chou SW, Ko KY, Lin DT, Hsu WM, Chen HY, Yang YL. Higher tumor mutational burden is associated with inferior outcomes among pediatric patients with neuroblastoma. Pediatr Blood Cancer 2024; 71:e31176. [PMID: 38967585 DOI: 10.1002/pbc.31176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. Our aim was to identify prognostic genetic markers for patients with neuroblastoma, who were treated with the Taiwan Pediatric Oncology Group (TPOG) neuroblastoma N2002 protocol, to improve risk stratification and inform treatment. METHODS Our analysis was based on 53 primary neuroblastoma specimens, diagnosed pre-chemotherapy, and 11 paired tumor relapse specimens. Deep sequencing of 113 target genes was performed using a custom panel. Multiplex ligation-dependent probe amplification was performed to identify clinical outcomes related to copy-number variations. RESULTS We identified 128 variations associated with survival, with the number of variations being higher in the relapse than that in the diagnostic specimen (p = .03). The risk of event and mortality was higher among patients with a tumor mutational burden ≥10 than that in patients with a lower burden (p < .0001). Multivariate analysis identified tumor mutational burden, MYCN amplification, and chromosome 3p deletion as significant prognostic factors, independent of age at diagnosis, sex, and tumor stage. The 5-year event-free survival and overall survival rate was lower among patients with high tumor burden than in patients with low tumor burden. Furthermore, there was no survival of patients with an ALK F1147L variation at 5 years after diagnosis. CONCLUSIONS Genome sequencing to determine the tumor mutational burden and ALK variations can improve the risk classification of neuroblastoma and inform treatment.
Collapse
Affiliation(s)
- Ya-Hsuan Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Chih-Hsiang Yu
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
- Departments of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Ni
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine and Medical Service, National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
24
|
Ognibene M, Parodi S, Amoroso L, Zara F, Pezzolo A. Overexpression of H2AFX gene in neuroblastoma is associated with worse prognosis. Pediatr Blood Cancer 2024; 71:e31146. [PMID: 38938078 DOI: 10.1002/pbc.31146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid tumour in childhood, and rises in the sympathetic nervous system. Here, we addressed the in silico analysis of the association between the expression of H2AFX gene involved in DNA damage response, and the survival of a cohort of 786 NB patients. METHODS In silico gene expression was retrieved from the publicly available dataset summarised by Cangelosi et al., including 13,696 gene expression profiles of 786 NB tumours at onset of disease. The prognostic value of H2AFX (H2A histone family member X) gene expression for event-free survival (EFS) and overall survival (OS) was evaluated by Kaplan-Meier and Cox regression analysis. The main results were validated on another openly accessible in silico database (NRC-283) containing 13,489 gene expressions in 283 NB patients. The expression of H2AFX protein was then tested by immunofluorescence on 48 primary NB samples of different tumour stages. H2AFX activity as an oncogene has been further validated in vitro by silencing the molecule in two NB cell lines, characterised by MYCN amplified or not, and performing cell growth and migration assays. RESULTS A strong inverse association between H2AFX expression and patients' survival was observed and confirmed by immunofluorescence results on primary NB tissue sections. Cox regression analysis also disclosed H2AFX as an independent predictor of EFS and OS. The gene-silencing experiments strongly suggested an oncogenic role for H2AFX on NB cells, regardless of MYCN amplification. CONCLUSIONS H2AFX is a prognostic marker for unfavourable NB and could be considered a target for therapeutic interventions.
Collapse
Affiliation(s)
- Marzia Ognibene
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Parodi
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Loredana Amoroso
- UOC Oncologia Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
25
|
Magnier O, Schiff I, Cristante J, Chabre O, Veloso M, Bosson JL, Defachelles AS, Cordero C, Do Cao C, Thebaud E, Drui D, Berlanga P, Dumont B, Chastagner P, Tandonnet J, Gambart M, Jannier S, Pluchart C, Andry L, Laithier V, Klein S, Carausu L, Akbaraly T, Probert J, Habert-Dantigny R, Plantaz D. Adolescent- and adult-onset neuroblastic tumor: A retrospective multicenter observational study of patients diagnosed in France between 2000 and 2020. Pediatr Blood Cancer 2024; 71:e31074. [PMID: 38778452 DOI: 10.1002/pbc.31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Adult- and adolescent-onset neuroblastomas are rare, with no established therapy. In addition, rare pheochromocytomas may harbor neuroblastic components. This study was designed to collect epidemiological, diagnostic and therapeutic data in order to better define the characteristics of malignant peripheral neuroblastic tumors (MPNT) and composite pheochromocytomas (CP) with MPNT. PROCEDURE Fifty-nine adults and adolescents (aged over 15 years) diagnosed with a peripheral or composite neuroblastic tumor, who were treated in one of 17 institutions between 2000 and 2020, were retrospectively studied. RESULTS Eighteen patients with neuroblastoma (NB) or ganglioneuroblastoma (GNB) had locoregional disease, and 28 patients had metastatic stage 4 NB. Among the 13 patients with CP, 12 had locoregional disease. Fifty-eight percent of the population were adolescents and young adults under 24 years of age. The probability of 5-year event-free survival (EFS) was 40% (confidence interval: 27%-53%). CONCLUSIONS Outcomes were better for patients with localized tumor than for patients with metastases. For patients with localized tumor, in terms of survival, surgical treatment was the best therapeutic option. Multimodal treatment with chemotherapy, surgery, radiotherapy, and immunotherapy-based maintenance allowed long-term survival for some patients. Adolescent- and adult-onset neuroblastoma appeared to have specific characteristics associated with poorer outcomes compared to pediatric neuroblastoma. Nevertheless, complete disease control improved survival. The presence of a neuroblastic component in pheochromocytoma should be considered when making therapeutic management decisions. The development of specific tools/resources (Tumor Referral Board, Registry, biology, and trials with new agents or strategies) may help to improve outcomes for patients.
Collapse
Affiliation(s)
- Orlane Magnier
- Cancer and Blood Diseases Department, Medical Oncology, Grenoble Alpes University Hospital, Grenoble, France
| | - Isabelle Schiff
- Pediatric Oncology and Hematology Department, Grenoble Alpes University, Grenoble, France
| | - Justine Cristante
- Endocrinology Department, Grenoble Alpes University, Grenoble, France
| | - Olivier Chabre
- Endocrinology Department, Grenoble Alpes University, Grenoble, France
| | - Melanie Veloso
- Public Health and Biostatistics, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Luc Bosson
- Public Health and Biostatistics, Grenoble Alpes University Hospital, Grenoble, France
| | | | - Camille Cordero
- Pediatric Oncology Department, Curie Institute, Paris, France
| | - Christine Do Cao
- Department of Endocrinology, Diabetology, and Metabolism, Lille University Hospital, Lille, France
| | - Estelle Thebaud
- Pediatric Oncology Department, Nantes University Hospital, Nantes, France
| | - Delphine Drui
- Endocrinology Department, Nantes University Hospital, Nantes, France
| | - Pablo Berlanga
- Pediatric and AYA Oncology Department, Gustave Roussy Institute, Paris, France
| | | | - Philippe Chastagner
- Pediatric Oncology and Hematology Department, Nancy University Hospital, Nancy, France
| | - Julie Tandonnet
- Pediatric Oncology Department, Bordeaux University Hospital, Bordeaux, France
| | - Marion Gambart
- Pediatric Oncology and Hematology Department, Toulouse University Hospital, Toulouse, France
| | - Sarah Jannier
- Pediatric Oncology Department, Strasbourg University Hospital, Strasbourg, France
| | - Claire Pluchart
- Pediatric Oncology and Hematology Department, Reims University Hospital, Reims, France
| | - Leslie Andry
- Pediatric Oncology Department, Amiens University Hospital, Amiens, France
| | - Véronique Laithier
- Pediatric Oncology Department, Besançon University Hospital, Besançon, France
| | - Sébastien Klein
- Pediatric Oncology Department, Besançon University Hospital, Besançon, France
| | - Liana Carausu
- Pediatric Oncology and Hematology Department, Brest University Hospital, Brest, France
| | - Tasmine Akbaraly
- Pediatric Oncology Department, Montpellier University Hospital, Montpellier, France
| | - Jamie Probert
- Pediatric Oncology and Hematology Department, Rennes University Hospital, Rennes, France
| | - Raphaelle Habert-Dantigny
- Cancer and Blood Diseases Department, Medical Oncology, Palliative Care Unit, Grenoble Alpes University, Grenoble, France
| | - Dominique Plantaz
- Pediatric Oncology and Hematology Department, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
26
|
Graham MK, Xu B, Davis C, Meeker AK, Heaphy CM, Yegnasubramanian S, Dyer MA, Zeineldin M. The TERT Promoter is Polycomb-Repressed in Neuroblastoma Cells with Long Telomeres. CANCER RESEARCH COMMUNICATIONS 2024; 4:1533-1547. [PMID: 38837897 PMCID: PMC11188873 DOI: 10.1158/2767-9764.crc-22-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/04/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Acquiring a telomere maintenance mechanism is a hallmark of high-risk neuroblastoma and commonly occurs by expressing telomerase (TERT). Telomerase-negative neuroblastoma has long telomeres and utilizes the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Conversely, no discernable telomere maintenance mechanism is detected in a fraction of neuroblastoma with long telomeres. Here, we show, unlike most cancers, DNA of the TERT promoter is broadly hypomethylated in neuroblastoma. In telomerase-positive neuroblastoma cells, the hypomethylated DNA promoter is approximately 1.5 kb. The TERT locus shows active chromatin marks with low enrichment for the repressive mark, H3K27me3. MYCN, a commonly amplified oncogene in neuroblstoma, binds to the promoter and induces TERT expression. Strikingly, in neuroblastoma with long telomeres, the hypomethylated region spans the entire TERT locus, including multiple nearby genes with enrichment for the repressive H3K27me3 chromatin mark. Furthermore, subtelomeric regions showed enrichment of repressive chromatin marks in neuroblastomas with long telomeres relative to those with short telomeres. These repressive marks were even more evident at the genic loci, suggesting a telomere position effect (TPE). Inhibiting H3K27 methylation by three different EZH2 inhibitors induced the expression of TERT in cell lines with long telomeres and H3K27me3 marks in the promoter region. EZH2 inhibition facilitated MYCN binding to the TERT promoter in neuroblastoma cells with long telomeres. Taken together, these data suggest that epigenetic regulation of TERT expression differs in neuroblastoma depending on the telomere maintenance status, and H3K27 methylation is important in repressing TERT expression in neuroblastoma with long telomeres. SIGNIFICANCE The epigenetic landscape of the TERT locus is unique in neuroblastoma. The DNA at the TERT locus, unlike other cancer cells and similar to normal cells, are hypomethylated in telomerase-positive neuroblastoma cells. The TERT locus is repressed by polycomb repressive complex-2 complex in neuroblastoma cells that have long telomeres and do not express TERT. Long telomeres in neuroblastoma cells are also associated with repressive chromatin states at the chromosomal termini, suggesting TPE.
Collapse
Affiliation(s)
- Mindy K. Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K. Meeker
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Maged Zeineldin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
28
|
Forbes M, Kempa R, Mastrobuoni G, Rayman L, Pietzke M, Bayram S, Arlt B, Spruessel A, Deubzer HE, Kempa S. L-Glyceraldehyde Inhibits Neuroblastoma Cell Growth via a Multi-Modal Mechanism on Metabolism and Signaling. Cancers (Basel) 2024; 16:1664. [PMID: 38730615 PMCID: PMC11083149 DOI: 10.3390/cancers16091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Glyceraldehyde (GA) is a three-carbon monosaccharide that can be present in cells as a by-product of fructose metabolism. Bruno Mendel and Otto Warburg showed that the application of GA to cancer cells inhibits glycolysis and their growth. However, the molecular mechanism by which this occurred was not clarified. We describe a novel multi-modal mechanism by which the L-isomer of GA (L-GA) inhibits neuroblastoma cell growth. L-GA induces significant changes in the metabolic profile, promotes oxidative stress and hinders nucleotide biosynthesis. GC-MS and 13C-labeling was employed to measure the flow of carbon through glycolytic intermediates under L-GA treatment. It was found that L-GA is a potent inhibitor of glycolysis due to its proposed targeting of NAD(H)-dependent reactions. This results in growth inhibition, apoptosis and a redox crisis in neuroblastoma cells. It was confirmed that the redox mechanisms were modulated via L-GA by proteomic analysis. Analysis of nucleotide pools in L-GA-treated cells depicted a previously unreported observation, in which nucleotide biosynthesis is significantly inhibited. The inhibitory action of L-GA was partially relieved with the co-application of the antioxidant N-acetyl-cysteine. We present novel evidence for a simple sugar that inhibits cancer cell proliferation via dysregulating its fragile homeostatic environment.
Collapse
Affiliation(s)
- Martin Forbes
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Richard Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Guido Mastrobuoni
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Liam Rayman
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Matthias Pietzke
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Mass Spectrometry Facility, MaxPlanck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Safak Bayram
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Birte Arlt
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Annika Spruessel
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Invalidenstr. 80, 10115 Berlin, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC), Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| |
Collapse
|
29
|
Lin L, Wang B, Zhang X, Deng C, Zhou C, Zhu J, Wu H, He J. Functional TET2 gene polymorphisms increase the risk of neuroblastoma in Chinese children. IUBMB Life 2024; 76:200-211. [PMID: 38014648 DOI: 10.1002/iub.2791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The 5-methylcytosine (m5C) is the key chemical modification in RNAs. As one of the demethylases in m5C, TET2 has been shown as a tumor suppressor. However, the impact of TET2 gene polymorphisms on neuroblastoma has not been elucidated. 402 neuroblastoma patients and 473 controls were genotyped for TET2 gene polymorphisms using the TaqMan method. The impact of TET2 gene polymorphisms on neuroblastoma susceptibility was determined using multivariate logistic regression analysis. We also adopted genotype-tissue expression database to explore the impact of TET2 gene polymorphisms on the expression of host and nearby genes. We used the R2 platform and Sangerbox tool to analyze the relationship between gene expression and neuroblastoma risk and prognosis through non-parametric testing and Kaplan-Meier analysis, respectively. We found the TET2 gene polymorphisms (rs10007915 G > C and rs7670522 A > C) and the combined 2-5 risk genotypes can significantly increase neuroblastoma risk. Stratification analysis showed that these significant associations were more prominent in certain subgroups. TET2 rs10007915 G > C and rs7670522 A > C are significantly associated with reduced expression of TET2 mRNA. Moreover, lower expression of TET2 gene is associated with high risk, MYCN amplification, and poor prognosis of neuroblastoma. The rs10007915 G > C and rs7670522 A > C are significantly related to the increased expression of inorganic pyrophosphatase 2 mRNA, and higher expression of PPA2 gene is associated with high risk, MYCN amplification, and poor prognosis of neuroblastomas. In summary, TET2 rs10007915 G > C and rs7670522 A > C significantly confer neuroblastoma susceptibility, and further research is needed to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Bo Wang
- Department of Clinical Laboratory, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Wang T, Liu L, Fang J, Jin H, Natarajan S, Sheppard H, Lu M, Turner G, Confer T, Johnson M, Steinberg J, Ha L, Yadak N, Jain R, Picketts DJ, Ma X, Murphy A, Davidoff AM, Glazer ES, Easton J, Chen X, Wang R, Yang J. Conditional c-MYC activation in catecholaminergic cells drives distinct neuroendocrine tumors: neuroblastoma vs somatostatinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584622. [PMID: 38559042 PMCID: PMC10980015 DOI: 10.1101/2024.03.12.584622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The MYC proto-oncogenes (c-MYC, MYCN , MYCL ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are MYCN -amplified. Genetically engineered mouse models (GEMMs) based on the MYCN transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas. In this study, we report two transgenic murine neuroendocrine models driven by conditional c-MYC induction in tyrosine hydroxylase (Th) and dopamine β-hydroxylase (Dbh)-expressing cells. c-MYC induction in Th-expressing cells leads to a preponderance of Pdx1 + somatostatinomas, a type of pancreatic neuroendocrine tumor (PNET), resembling human somatostatinoma with highly expressed gene signatures of δ cells and potassium channels. In contrast, c-MYC induction in Dbh-expressing cells leads to onset of neuroblastomas, showing a better transforming capacity than MYCN in a comparable C57BL/6 genetic background. The c-MYC murine neuroblastoma tumors recapitulate the pathologic and genetic features of human neuroblastoma, express GD2, and respond to anti-GD2 immunotherapy. This model also responds to DFMO, an FDA-approved inhibitor targeting ODC1, which is a known MYC transcriptional target. Thus, establishing c-MYC-overexpressing GEMMs resulted in different but related tumor types depending on the targeted cell and provide useful tools for testing immunotherapies and targeted therapies for these diseases.
Collapse
|
31
|
Glembocki AI, Somers GR. Prognostic and predictive biomarkers in paediatric solid tumours. Pathology 2024; 56:283-296. [PMID: 38216399 DOI: 10.1016/j.pathol.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Characterisation of histological, immunohistochemical and molecular prognostic and predictive biomarkers has contributed significantly to precision medicine and better outcomes in the management of paediatric solid tumours. Prognostic biomarkers allow predictions to be made regarding a tumour's aggressiveness and clinical course, whereas predictive biomarkers help determine responses to a specific treatment. This review summarises prognostic biomarkers currently used in the more common paediatric solid tumours, with a brief commentary on the most relevant less common predictive biomarkers. MYCN amplification is the most important genetic alteration in neuroblastoma prognosis, and the histological classification devised by Shimada in 1999 is still used in routine diagnosis. Moreover, a new subgrouping of unfavourable histology neuroblastoma enables immunohistochemical characterisation of tumours with markedly different genetic features and prognosis. The predominant histology and commonly observed cytogenetic abnormalities are recognised outcome predictors in Wilms tumour. Evaluation for anaplasia, which is tightly associated with TP53 gene mutations and poor outcomes, is central in both the International Society of Paediatric Oncology and the Children's Oncology Group approaches to disease classification. Characterisation of distinct genotype-phenotype subclasses and critical mutations has expanded overall understanding of hepatoblastoma outcomes. The C1 subclass hepatoblastoma and CTNNB1 mutations are associated with good prognosis. In contrast, the C2 subclass, NFE2L2 mutations, TERT promoter mutations and high expression of oncofetal proteins and stem cell markers are associated with poor outcomes. Risk stratification in sarcomas is highly variable depending on the entity. The prognosis of rhabdomyosarcoma, for example, primarily depends on histological and molecular characteristics. Advances in our understanding of clinically significant biomarkers will translate into more precise diagnoses, improved risk stratification and more effective and less toxic treatment in this challenging group of patients.
Collapse
Affiliation(s)
- Aida I Glembocki
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Gino R Somers
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Feng L, Yao X, Lu X, Wang C, Wang W, Yang J. Differentiation of early relapse and late relapse in intermediate- and high-risk neuroblastoma with an 18F-FDG PET/CT-based radiomics nomogram. Abdom Radiol (NY) 2024; 49:888-899. [PMID: 38315193 DOI: 10.1007/s00261-023-04181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVES To develop and validate an 18F-FDG PET/CT-based radiomics nomogram for differentiating early relapse and late relapse of intermediate- and high-risk neuroblastoma (NB). METHODS A total of eighty-five patients with relapsed NB who underwent 18F-FDG PET/CT were retrospectively evaluated. All selected patients were randomly assigned to the training set and the validation set in a 7:3 ratio. Tumors were segmented using the 3D slicer, followed by radiomics features extraction. Features selection was performed using random forest, and the radiomics score was constructed by logistic regression analysis. Clinical risk factors were identified, and the clinical model was constructed using logistic regression analysis. A radiomics nomogram was constructed by combining the radiomics score and clinical risk factors, and its performance was evaluated by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS Finally, the 12 most important radiomics features were used for modeling, with an area under the curve (AUC) of 0.835 and 0.824 in the training and validation sets, respectively. Age at diagnosis and International Neuroblastoma Pathology Classification were determined as clinical risk factors to construct the clinical model. In addition, the nomogram achieved an AUC of 0.902 and 0.889 for identifying early relapse in the training and validation sets, respectively, which is higher than the clinical model (AUC of 0.712 and 0.588, respectively). The predicted early relapse and actual early relapse in the calibration curves were in good agreement. The DCA showed that the radiomics nomogram was clinically useful. CONCLUSION Our 18F-FDG PET/CT-based radiomics nomogram can well predict early relapse and late relapse of intermediate- and high-risk NB, which contributes to follow-up and management in clinical practice.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xilan Yao
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Chao Wang
- SinoUnion Healthcare Inc., Beijing, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China.
| |
Collapse
|
33
|
Hogarty MD, Ziegler DS, Franson A, Chi YY, Tsao-Wei D, Liu K, Vemu R, Gerner EW, Bruckheimer E, Shamirian A, Hasenauer B, Balis FM, Groshen S, Norris MD, Haber M, Park JR, Matthay KK, Marachelian A. Phase 1 study of high-dose DFMO, celecoxib, cyclophosphamide and topotecan for patients with relapsed neuroblastoma: a New Approaches to Neuroblastoma Therapy trial. Br J Cancer 2024; 130:788-797. [PMID: 38200233 PMCID: PMC10912730 DOI: 10.1038/s41416-023-02525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].
Collapse
Affiliation(s)
- Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Andrea Franson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yueh-Yun Chi
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Denice Tsao-Wei
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rohan Vemu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Anasheh Shamirian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Beth Hasenauer
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank M Balis
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Groshen
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Julie R Park
- St. Jude Children's Research Hospital, University of Tennessee, Memphis, TN, USA
| | - Katherine K Matthay
- UCSF Benioff Children's Hospital, UCSF School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Araz Marachelian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
34
|
Capasso M, Brignole C, Lasorsa VA, Bensa V, Cantalupo S, Sebastiani E, Quattrone A, Ciampi E, Avitabile M, Sementa AR, Mazzocco K, Cafferata B, Gaggero G, Vellone VG, Cilli M, Calarco E, Giusto E, Perri P, Aveic S, Fruci D, Tondo A, Luksch R, Mura R, Rabusin M, De Leonardis F, Cellini M, Coccia P, Iolascon A, Corrias MV, Conte M, Garaventa A, Amoroso L, Ponzoni M, Pastorino F. From the identification of actionable molecular targets to the generation of faithful neuroblastoma patient-derived preclinical models. J Transl Med 2024; 22:151. [PMID: 38351008 PMCID: PMC10863144 DOI: 10.1186/s12967-024-04954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.
Collapse
Affiliation(s)
- Mario Capasso
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | | | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Sueva Cantalupo
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | | | | | - Eleonora Ciampi
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Marianna Avitabile
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Angela R Sementa
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Katia Mazzocco
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Barbara Cafferata
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Gabriele Gaggero
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Valerio G Vellone
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Policlinico San Martino, 16100, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Sanja Aveic
- Pediatric Research Institute Città Della Speranza, 35127, Padua, Italy
| | - Doriana Fruci
- Department of Emato-Oncology, Bambino Gesù Children's Hospital, 00146, -Rome, Italy
| | - Annalisa Tondo
- Department of Emato-Oncology, Anna Meyer Children's Hospital, 50139, Florence, Italy
| | - Roberto Luksch
- Emato-Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133, Milan, Italy
| | - Rossella Mura
- Emato-Oncology Unit, Azienda Ospedaliera Brotzu, 09047, Cagliari, Italy
| | - Marco Rabusin
- Pediatric Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | | | - Monica Cellini
- Emato-Oncology Unit, University-Hospital Polyclinic of Modena, 41124, Modena, Italy
| | - Paola Coccia
- University-Hospital of Marche, Presidio Ospedaliero "G. Salesi", 60126, Ancona, Italy
| | - Achille Iolascon
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Maria V Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Massimo Conte
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Alberto Garaventa
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Loredana Amoroso
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
35
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey AL, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A pan-cancer gene panel for childhood malignancies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.27.23299068. [PMID: 38076942 PMCID: PMC10705664 DOI: 10.1101/2023.11.27.23299068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background Large scale genomics projects have identified driver alterations for most childhood cancers that provide reliable biomarkers for clinical diagnosis and disease monitoring using targeted sequencing. However, there is lack of a comprehensive panel that matches the list of known driver genes. Here we fill this gap by developing SJPedPanel for childhood cancers. Results SJPedPanel covers 5,275 coding exons of 357 driver genes, 297 introns frequently involved in rearrangements that generate fusion oncoproteins, commonly amplified/deleted regions (e.g., MYCN for neuroblastoma, CDKN2A and PAX5 for B-/T-ALL, and SMARCB1 for AT/RT), and 7,590 polymorphism sites for interrogating tumors with aneuploidy, such as hyperdiploid and hypodiploid B-ALL or 17q gain neuroblastoma. We used driver alterations reported from an established real-time clinical genomics cohort (n=253) to validate this gene panel. Among the 485 pathogenic variants reported, our panel covered 417 variants (86%). For 90 rearrangements responsible for oncogenic fusions, our panel covered 74 events (82%). We re-sequenced 113 previously characterized clinical specimens at an average depth of 2,500X using SJPedPanel and recovered 354 (91%) of the 389 reported pathogenic variants. We then investigated the power of this panel in detecting mutations from specimens with low tumor purity (as low as 0.1%) using cell line-based dilution experiments and discovered that this gene panel enabled us to detect ∼80% variants with allele fraction of 0.2%, while the detection rate decreases to ∼50% when the allele fraction is 0.1%. We finally demonstrate its utility in disease monitoring on clinical specimens collected from AML patients in morphologic remission. Conclusions SJPedPanel enables the detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions for childhood cancers by targeted sequencing of ∼0.15% of human genome. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
|
36
|
Weiner AK, Radaoui AB, Tsang M, Martinez D, Sidoli S, Conkrite KL, Delaidelli A, Modi A, Rokita JL, Patel K, Lane MV, Zhang B, Zhong C, Ennis B, Miller DP, Brown MA, Rathi KS, Raman P, Pogoriler J, Bhatti T, Pawel B, Glisovic-Aplenc T, Teicher B, Erickson SW, Earley EJ, Bosse KR, Sorensen PH, Krytska K, Mosse YP, Havenith KE, Zammarchi F, van Berkel PH, Smith MA, Garcia BA, Maris JM, Diskin SJ. A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570390. [PMID: 38106022 PMCID: PMC10723418 DOI: 10.1101/2023.12.06.570390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.
Collapse
|
37
|
Arnedo-Pac C, Muiños F, Gonzalez-Perez A, Lopez-Bigas N. Hotspot propensity across mutational processes. Mol Syst Biol 2024; 20:6-27. [PMID: 38177930 PMCID: PMC10883281 DOI: 10.1038/s44320-023-00001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.
Collapse
Affiliation(s)
- Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
38
|
Kushner BH, LaQuaglia MP, Cardenas FI, Basu EM, Gerstle JT, Kramer K, Roberts SS, Wolden SL, Cheung NKV, Modak S. Stage 4N neuroblastoma before and during the era of anti-G D2 immunotherapy. Int J Cancer 2023; 153:2019-2031. [PMID: 37602920 PMCID: PMC11925214 DOI: 10.1002/ijc.34693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Patients with stage 4N neuroblastoma (distant metastases limited to lymph nodes) stand out as virtually the only survivors of high-risk neuroblastoma (HR-NB) before myeloablative therapy (MAT) and immunotherapy with anti-GD2 monoclonal antibodies (mAbs) became standard. Because no report presents more recent results with 4N, we analyzed our large 4N experience. All 51 pediatric 4N patients (<18 years old) diagnosed 1985 to 2021 were reviewed. HR-NB included MYCN-nonamplified 4N diagnosed at age ≥18 months and MYCN-amplified 4N. Among 34 MYCN-nonamplified high-risk patients, 20 are relapse-free 1.5+ to 37.5+ (median 12.5+) years post-diagnosis, including 13 without prior MAT and 5 treated with little (1 cycle; n = 2) or no mAb (n = 3), while 14 patients (7 post-MAT, 8 post-mAbs) relapsed (all soft tissue). Of 15 MYCN-amplified 4N patients, 7 are relapse-free 2.1+ to 26.4+ (median 11.6+) years from the start of chemotherapy (all received mAbs; 3 underwent MAT) and 4 are in second remission 4.2+ to 21.8+ years postrelapse (all soft tissue). Statistical analyses showed no significant association of survival with either MAT or mAbs for MYCN-nonamplified HR-NB; small numbers prevented these analyses for MYCN-amplified patients. The two patients with intermediate-risk 4N (14-months-old) are relapse-free 7+ years postresection of primary tumors; distant disease spontaneously regressed. The natural history of 4N is marked by NB confined to soft tissue without early relapse in bones or bone marrow, where mAbs have proven efficacy. These findings plus curability without MAT, as seen elsewhere and at our center, support consideration of treatment reduction for MYCN-nonamplified 4N.
Collapse
Affiliation(s)
- Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael P LaQuaglia
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Justin T Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
39
|
Djos A, Thombare K, Vaid R, Gaarder J, Umapathy G, Reinsbach SE, Georgantzi K, Stenman J, Carén H, Ek T, Mondal T, Kogner P, Martinsson T, Fransson S. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15:5732. [PMID: 38136279 PMCID: PMC10741428 DOI: 10.3390/cancers15245732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.
Collapse
Affiliation(s)
- Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne E. Reinsbach
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Jakob Stenman
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Torben Ek
- Children’s Cancer Center, Sahlgrenska University Hospital, 41650 Gothenburg, Sweden;
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden; (K.G.); (J.S.); (P.K.)
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (A.D.); (K.T.); (R.V.); (J.G.); (G.U.); (T.M.); (T.M.)
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
40
|
Zhang T, Zhou C, Guo J, Chang J, Wu H, He J. RTEL1 gene polymorphisms and neuroblastoma risk in Chinese children. BMC Cancer 2023; 23:1145. [PMID: 38001404 PMCID: PMC10675872 DOI: 10.1186/s12885-023-11642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroblastoma, a neuroendocrine tumor originating from the sympathetic ganglia, is one of the most common malignancies in childhood. RTEL1 is critical in many fundamental cellular processes, such as DNA replication, DNA damage repair, genomic integrity, and telomere stability. Single nucleotide polymorphisms (SNPs) in the RTEL1 gene have been reported to confer susceptibility to multiple cancers, but their contributing roles in neuroblastoma remain unclear. METHODS We conducted a study on 402 neuroblastoma cases and 473 controls to assess the association between four RTEL1 SNPs (rs3761124 T>C, rs3848672 T>C, rs3208008 A>C and rs2297441 G>A) and neuroblastoma susceptibility. RESULTS Our results show that rs3848672 T>C is significantly associated with an increased risk of neuroblastoma [CC vs. TT/TC: adjusted odds ratio (OR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.038]. The stratified analysis further indicated that boy carriers of the rs3848672 CC genotype had a higher risk of neuroblastoma, and all carriers had an increased risk of developing neuroblastoma of mediastinum origin. Moreover, the rs2297441 AA genotype increased neuroblastoma risk in girls and predisposed children to neuroblastoma arising from retroperitoneal. CONCLUSION Our study indicated that the rs3848672 CC and rs2297441 AA genotypes of the RTEL1 gene are significantly associated with an increased risk of neuroblastoma in Chinese children in a gender- and site-specific manner.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Jiejie Guo
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jiamin Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China.
| | - Jing He
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
41
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
42
|
Shi X, Chen Z, Shou C, Bai H, Yang W, Zhang Q, Liu X, Yu J. The prognostic role of gastrointestinal bleeding in patients with a primary gastrointestinal stromal tumor: a long-term follow-up study. J Gastrointest Oncol 2023; 14:2028-2038. [PMID: 37969844 PMCID: PMC10643578 DOI: 10.21037/jgo-22-1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
Background Gastrointestinal (GI) bleeding is one of the common symptoms of GI stromal tumor (GIST). Although several studies have highlighted its prognostic role, conclusions have been inconsistent. This study aimed to investigate the prognosis of GIST patients with GI bleeding. Methods Primary GIST patients who underwent complete resection and did not receive adjuvant imatinib therapy from January 2003 to December 2008 were reviewed. The Kaplan-Meier method was used to estimate recurrence-free survival (RFS), and multivariate analysis was performed using the Cox proportional hazard model. Propensity score matching (PSM) was conducted to reduce confounders. A systematic review of the published articles in the PubMed, Embase, Cochrane Collaboration, and Medline databases was also conducted, and the inclusion criteria were determined using PICOS (patients, intervention, comparison, outcomes, and study design) principles. Results In total, 84 patients presenting with GI bleeding and 90 patients without GI bleeding were enrolled in this study. The median time of follow-up was 140 months (range, 10-196 months), and 38 patients developed tumor recurrence/metastasis. For all patients, the multivariate analysis indicated that tumor location [hazard ratio (HR) =3.48, 95% confidence interval (CI): 1.78-6.82, P<0.001], tumor size (HR =1.91, 95% CI: 1.05-3.47, P=0.035), mitotic index (MI; HR =5.69, 95% CI: 2.77-11.67, P<0.001), and age (HR =2.68, 95% CI: 1.49-4.82, P=0.001) were the independent prognostic factors for poor RFS. However, GI bleeding was not associated with RFS (HR =1.21, 95% CI: 0.68-2.14, P=0.518). After PSM, 45 patients from each group were included, and it was found that GI bleeding was still not the independent prognostic factor (HR =1.23, 95% CI: 0.51-2.97, P=0.642). Moreover, the pooled results of our study and six previously reported studies showed that GI bleeding was not the independent prognostic factor (HR =1.45, 95% CI: 0.73-2.86, P=0.287). Conclusions In this study, tumor location, tumor size, MI, and age were independent prognostic factors in primary GIST patients who underwent radical resection. However, GI bleeding was not associated with worse RFS.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhui Shou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, China
| | - Weili Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiren Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Kim C, Davis LE, Albert CM, Samuels B, Roberts JL, Wagner MJ. Osteosarcoma in Pediatric and Adult Populations: Are Adults Just Big Kids? Cancers (Basel) 2023; 15:5044. [PMID: 37894411 PMCID: PMC10604996 DOI: 10.3390/cancers15205044] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant bone tumors are commonly classified as pediatric or adolescent malignancies, and clinical trials for these diseases have generally focused on these populations. Of primary bone cancers, osteosarcoma is among the most common. Osteosarcoma has a bimodal age distribution, with the first peak occurring in patients from 10 to 14 years old, and the second peak occurring in patients older than 65, with about 25% of cases occurring in adults between 20 and 59 years old. Notably, adult osteosarcoma patients have worse outcomes than their pediatric counterparts. It remains unclear whether age itself is a poor prognostic factor, or if inherent differences in tumor biology exist between age groups. Despite these unknowns, current treatment strategies for adults are largely extrapolated from pediatric studies since the majority of clinical trials for osteosarcoma treatments are based on younger patient populations. In light of the different prognoses observed in pediatric and adult osteosarcoma, we summarize the current understanding of the molecular etiology of osteosarcoma and how it may differ between age groups, hypothesizing why adult patients have worse outcomes compared to children.
Collapse
Affiliation(s)
- Caleb Kim
- Division of Hematology and Oncology, University of Washington, Spokane, WA 99202, USA;
| | - Lara E. Davis
- Division of Hematology/Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M. Albert
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | - Jesse L. Roberts
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michael J. Wagner
- Division of Hematology and Oncology, University of Washington, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
44
|
Rodriguez-Fos E, Planas-Fèlix M, Burkert M, Puiggròs M, Toedling J, Thiessen N, Blanc E, Szymansky A, Hertwig F, Ishaque N, Beule D, Torrents D, Eggert A, Koche RP, Schwarz RF, Haase K, Schulte JH, Henssen AG. Mutational topography reflects clinical neuroblastoma heterogeneity. CELL GENOMICS 2023; 3:100402. [PMID: 37868040 PMCID: PMC10589636 DOI: 10.1016/j.xgen.2023.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Neuroblastoma is a pediatric solid tumor characterized by strong clinical heterogeneity. Although clinical risk-defining genomic alterations exist in neuroblastomas, the mutational processes involved in their generation remain largely unclear. By examining the topography and mutational signatures derived from all variant classes, we identified co-occurring mutational footprints, which we termed mutational scenarios. We demonstrate that clinical neuroblastoma heterogeneity is associated with differences in the mutational processes driving these scenarios, linking risk-defining pathognomonic variants to distinct molecular processes. Whereas high-risk MYCN-amplified neuroblastomas were characterized by signs of replication slippage and stress, homologous recombination-associated signatures defined high-risk non-MYCN-amplified patients. Non-high-risk neuroblastomas were marked by footprints of chromosome mis-segregation and TOP1 mutational activity. Furthermore, analysis of subclonal mutations uncovered differential activity of these processes through neuroblastoma evolution. Thus, clinical heterogeneity of neuroblastoma patients can be linked to differences in the mutational processes that are active in their tumors.
Collapse
Affiliation(s)
- Elias Rodriguez-Fos
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mercè Planas-Fèlix
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Burkert
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Montserrat Puiggròs
- Barcelona Supercomputing Center, Joint Barcelona Supercomputing Center – Center for Genomic Regulation – Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona, Spain
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina Thiessen
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Eric Blanc
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - David Torrents
- Barcelona Supercomputing Center, Joint Barcelona Supercomputing Center – Center for Genomic Regulation – Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Angelika Eggert
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Kerstin Haase
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Kerkar AN, Chinnam D, Verma A, Peters NJ, Kakkar N, Trehan A, Singh M, Gupta K. MYCN amplification, TERT rearrangements and ATRX mutations in neuroblastoma: clinicopathological correlates- an Indian perspective. Virchows Arch 2023; 483:477-486. [PMID: 37460674 DOI: 10.1007/s00428-023-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumour in childhood with a diverse clinical presentation and course. The early age of onset, high frequency of metastatic disease at diagnosis and tendency for spontaneous regression in infancy sets it apart from other childhood tumors. This heterogeneity is largely attributed to underlying genetic aberrations which are distinct in low-risk and high-risk NB. To this end, we sought to analyse our NB cases for the molecular alterations and find its correlation with clinical behaviour. METHODS NB cases (n = 50) diagnosed over last 7 years were retrospectively analysed for MYCN amplification (fluorescent-in-situ hybridization), TERT rearrangements (qRT-PCR), ATRX mutations (immunohistochemistry). These findings were correlated with demographic profiles, histologic features and clinical outcome. RESULTS Age ranged from 1 month to 30 years (mean 2.8 years) with male preponderance. Poorly differentiated subtype constituted the majority (64%), followed by differentiating (28%) and undifferentiated subtype (8%) which were equally distributed across all age groups. MYCN amplification, TERT-mRNA upregulation and ATRX mutations was observed in 30%, 42% and 24%, respectively. Cases with TERT-mRNA upregulation were distributed equally across all histological subtypes while those with ATRX mutations and MYCN amplification were frequent in poorly differentiated NB. ATRX mutation was mutually exclusive of TERT-mRNA upregulation and MYCN amplification. Kaplan-Meier analysis revealed significantly shorter overall and progression-free survival for tumors harboring MYCN amplification and TERT-mRNA upregulation, while that for ATRX mutant tumors was not significant. CONCLUSIONS Our results provide data indicating poor clinical outcome in NB carrying MYCN amplification and TERT-mRNA upregulation.
Collapse
Affiliation(s)
- Aadya N Kerkar
- Department of Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Aanchal Verma
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nitin J Peters
- Department of Pediatric Surgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nandita Kakkar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Minu Singh
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
46
|
Grubliauskaite M, van der Perk MEM, Bos AME, Meijer AJM, Gudleviciene Z, van den Heuvel-Eibrink MM, Rascon J. Minimal Infiltrative Disease Identification in Cryopreserved Ovarian Tissue of Girls with Cancer for Future Use: A Systematic Review. Cancers (Basel) 2023; 15:4199. [PMID: 37686475 PMCID: PMC10486797 DOI: 10.3390/cancers15174199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ovarian tissue cryopreservation and transplantation are the only available fertility techniques for prepubertal girls with cancer. Though autotransplantation carries a risk of reintroducing malignant cells, it can be avoided by identifying minimal infiltrative disease (MID) within ovarian tissue. METHODS A broad search for peer-reviewed articles in the PubMed database was conducted in accordance with PRISMA guidelines up to March 2023. Search terms included 'minimal residual disease', 'cryopreservation', 'ovarian', 'cancer' and synonyms. RESULTS Out of 542 identified records, 17 were included. Ovarian tissues of at least 115 girls were evaluated and categorized as: hematological malignancies (n = 56; 48.7%), solid tumors (n = 42; 36.5%) and tumors of the central nervous system (n = 17; 14.8%). In ovarian tissue of 25 patients (21.7%), MID was detected using RT-qPCR, FISH or multicolor flow cytometry: 16 of them (64%) being ALL (IgH rearrangements with/without TRG, BCL-ABL1, EA2-PBX1, TEL-AML1 fusion transcripts), 3 (12%) Ewing sarcoma (EWS-FLI1 fusion transcript, EWSR1 rearrangements), 3 (12%) CML (BCR-ABL1 fusion transcript, FLT3) and 3 (12%) AML (leukemia-associated immunophenotypes, BCR-ABL1 fusion transcript) patients. CONCLUSION While the majority of malignancies were found to have a low risk of containing malignant cells in ovarian tissue, further studies are needed to ensure safe implementation of future fertility restoration in clinical practice.
Collapse
Affiliation(s)
- Monika Grubliauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Department of Biobank, National Cancer Institute, Santariskiu Str. 1, LT-08406 Vilnius, Lithuania
| | | | - Annelies M. E. Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Reproductive Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Zivile Gudleviciene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Child Health, UMCU-Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
47
|
Cole KA, Ijaz H, Surrey LF, Santi M, Liu X, Minard CG, Maris JM, Voss S, Reid JM, Fox E, Weigel BJ. Pediatric phase 2 trial of a WEE1 inhibitor, adavosertib (AZD1775), and irinotecan for relapsed neuroblastoma, medulloblastoma, and rhabdomyosarcoma. Cancer 2023; 129:2245-2255. [PMID: 37081608 PMCID: PMC10628947 DOI: 10.1002/cncr.34786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 04/22/2023]
Abstract
BACKGROUND Inhibition of the WEE1 kinase by adavosertib (AZD1775) potentiates replicative stress from genomic instability or chemotherapy. This study reports the pediatric solid tumor phase 2 results of the ADVL1312 trial combining irinotecan and adavosertib. METHODS Pediatric patients with recurrent neuroblastoma (part B), medulloblastoma/central nervous system embryonal tumors (part C), or rhabdomyosarcoma (part D) were treated with irinotecan and adavosertib orally for 5 days every 21 days. The combination was considered effective if there were at least three of 20 responses in parts B and D or six of 19 responses in part C. Tumor tissue was analyzed for alternative lengthening of telomeres and ATRX. Patient's prior tumor genomic analyses were provided. RESULTS The 20 patients with neuroblastoma (part B) had a median of three prior regimens and 95% had a history of prior irinotecan. There were three objective responses (9, 11, and 18 cycles) meeting the protocol defined efficacy end point. Two of the three patients with objective responses had tumors with alternative lengthening of telomeres. One patient with pineoblastoma had a partial response (11 cycles), but parts C and D did not meet the protocol defined efficacy end point. The combination was well tolerated and there were no dose limiting toxicities at cycle 1 or beyond in any parts of ADVL1312 at the recommended phase 2 dose. CONCLUSION This is first phase 2 clinical trial of adavosertib in pediatrics and the first with irinotecan. The combination may be of sufficient activity to consider further study of adavosertib in neuroblastoma.
Collapse
Affiliation(s)
- Kristina A. Cole
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heba Ijaz
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lea F. Surrey
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariarita Santi
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowei Liu
- Children’s Oncology Group, Monravia, California, USA
| | | | - John M. Maris
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephan Voss
- Dana‐Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Elizabeth Fox
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
48
|
Gundem G, Levine MF, Roberts SS, Cheung IY, Medina-Martínez JS, Feng Y, Arango-Ossa JE, Chadoutaud L, Rita M, Asimomitis G, Zhou J, You D, Bouvier N, Spitzer B, Solit DB, Dela Cruz F, LaQuaglia MP, Kushner BH, Modak S, Shukla N, Iacobuzio-Donahue CA, Kung AL, Cheung NKV, Papaemmanuil E. Clonal evolution during metastatic spread in high-risk neuroblastoma. Nat Genet 2023; 55:1022-1033. [PMID: 37169874 PMCID: PMC11481711 DOI: 10.1038/s41588-023-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.
Collapse
Affiliation(s)
- Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Max F Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Y Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan S Medina-Martínez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Feng
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango-Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loic Chadoutaud
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Rita
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Georgios Asimomitis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joe Zhou
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, New York, NY, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael P LaQuaglia
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
49
|
Pang Y, Chen X, Ji T, Cheng M, Wang R, Zhang C, Liu M, Zhang J, Zhong C. The Chromatin Remodeler ATRX: Role and Mechanism in Biology and Cancer. Cancers (Basel) 2023; 15:cancers15082228. [PMID: 37190157 DOI: 10.3390/cancers15082228] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The alpha-thalassemia mental retardation X-linked (ATRX) syndrome protein is a chromatin remodeling protein that primarily promotes the deposit of H3.3 histone variants in the telomere area. ATRX mutations not only cause ATRX syndrome but also influence development and promote cancer. The primary molecular characteristics of ATRX, including its molecular structures and normal and malignant biological roles, are reviewed in this article. We discuss the role of ATRX in its interactions with the histone variant H3.3, chromatin remodeling, DNA damage response, replication stress, and cancers, particularly gliomas, neuroblastomas, and pancreatic neuroendocrine tumors. ATRX is implicated in several important cellular processes and serves a crucial function in regulating gene expression and genomic integrity throughout embryogenesis. However, the nature of its involvement in the growth and development of cancer remains unknown. As mechanistic and molecular investigations on ATRX disclose its essential functions in cancer, customized therapies targeting ATRX will become accessible.
Collapse
Affiliation(s)
- Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
- Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
50
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|