文献综述 Open Access
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2017-05-08; 25(13): 1166-1172
在线出版日期: 2017-05-08. doi: 10.11569/wcjd.v25.i13.1166
野生型胃肠间质瘤分子机制研究进展
姚思敏, 罗庆锋
姚思敏, 罗庆锋, 北京医院消化内科 北京市 100730
姚思敏, 在读硕士, 主要从事胃肠间质瘤分子机制的研究.
作者贡献分布: 本文由姚思敏编写完成; 罗庆锋审校.
通讯作者: 罗庆锋, 副教授, 100730, 北京市东城区东单大华路1号, 北京医院消化内科. luoqf2000@126.com
收稿日期: 2017-02-21
修回日期: 2017-03-17
接受日期: 2017-04-05
在线出版日期: 2017-05-08

胃肠道间质瘤(gastrointestinal stromal tumor, GIST)是消化系最常见的间叶源性肿瘤, 80%-95%GIST存在KITPDGFRA基因突变, 未突变者称为野生型GIST(WT-GIST). 目前证实, 突变型GIST对酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)分子靶向治疗有效. 但WT-GIST通常对TKI类药物不敏感, 其分子理论基础、发生机制需明确阐述.

关键词: 野生型胃肠间质瘤; 分子机制; 基因突变

核心提要: 胃肠间质瘤(gastrointestinal stromal tumor, GIST)的主要发生机制是KITPDGFRA基因突变, 针对上述基因突变的治疗已较成熟, 但对野生型GIST(WT-GIST), 缺乏发病机制的研究和探索, 药物治疗多年来无重大突破, 迫切需要引起重视.


引文著录: 姚思敏, 罗庆锋. 野生型胃肠间质瘤分子机制研究进展. 世界华人消化杂志 2017; 25(13): 1166-1172
Progress in understanding of molecular mechanisms of wild-type gastrointestinal stromal tumors
Si-Min Yao, Qing-Feng Luo
Si-Min Yao, Qing-Feng Luo, Department of Gastroenterology, Beijing Hospital, Beijing 100730, China
Correspondence to: Qing-Feng Luo, Associate Professor, Department of Gastroenterology, Beijing Hospital, 1 Dongdan Dahua Road, Dongcheng District, Beijing 100730, China. luoqf2000@126.com
Received: February 21, 2017
Revised: March 17, 2017
Accepted: April 5, 2017
Published online: May 8, 2017

Gastrointestinal stromal tumors (GIST) are the most frequent mesenchymal tumors of the gastrointestinal tract, 80%-95% of which have KIT and PDGFRA gene mutations. GISTs without gene mutations, including KIT and PDGFRA gene mutations, are called wild-type GISTs (WT-GISTs). The development of a molecular drug targeting tyrosine kinase inhibitor (TKI) has changed the therapeutic of GISTs with gene mutations; however, WT-GISTs are not sensitive to TKI. The molecular basis and mechanism of these characteristics should be elucidated.

Key Words: Wild type gastrointestinal stromal tumor; Molecular mechanism; Genetic mutation


0 引言

目前研究证实, 胃肠间质瘤(gastrointestinal stromal tumors, GIST)的主要发生机制是酪氨酸激酶受体KIT(v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)和血小板源性生长因子受体α多肽PDGFRA(platelet derived growth factor receptor alpha)基因突变, 约80%-95%胃肠间质瘤存在KITPDGFRA基因突变, 未检测到KITPDGFRA基因突变的GIST称为野生型GIST(wild-type GIST, WT-GIST). 以甲磺酸伊马替尼为代表的酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKI)分子靶向药物的研制, 改变了GIST的治疗模式, 但WT-GIST对TKI类药物不敏感, 甚至耐药. 与突变型GIST相比, WT-GIST的发病年龄更年轻, 肿瘤相对更小, 梭形细胞型多见, CD117、DOG-1阳性表达率更低. 上述特点的分子理论基础、发生机制尚未阐明, 对WT-GIST治疗及预后所知甚少, 这些问题需在全面认识WT-GIST后才能解决. 对WT-GIST的进一步分析, 预示GIST未来将进行重新分型. 为此, 本文对WT-GIST分子机制研究进展进行综述.

1 WT-GIST定义

WT-GIST为一类异质性肿瘤, 形态学符合GIST, 免疫组织化学表达或不表达CD117、CD34、DOG-1, 基因检测未发现KITPDGFRA突变[1]. 美国国家综合癌症网络胃肠间质瘤诊疗指南中推荐对KIT基因外显子11、外显子9、外显子13、外显子17及PDGFRA基因外显子18、外显子12进行检测[2], 而现有研究证实KIT/PDGFRA共44个外显子, 故实际中有38个外显子未被常规检测[3]. Huss等[4]报道了部分WT-GIST患者复查中发现KIT基因外显子8的突变. Dufresne等[5]在WT-GIST中也证实KIT基因外显子10的突变. 我国一项研究, 也在WT-GIST中检测到KIT突变和PDGFRA突变[6]. 但普遍认为上述6种基因突变发生率高, 将44个基因全部纳入检测的实用性需要更多报道、发现后再次评定.

2 WT-GIST分子机制

WT-GIST可能的发病机制有: 琥珀酸脱氢酶B(succinate dehydrogensase B, SDHB)基因缺失、原癌基因蛋白质BRAF(rapidly accelerated fibrosarcoma B)突变、Ⅰ型神经纤维瘤病(neurofibromatosis type Ⅰ, NF1), 转录调控因子家族(ETS transcription factor 1, ETV1)等.

2.1 SDH缺陷型GIST

SDH基因缺失的GIST称为SDH缺陷型GIST, 约50%的WT-GIST存在SDHB基因缺失, 见于90%儿童和10%成人野生型GIST[7], 尤以女性多见, 如为SDHB缺陷导致SDHB基因启动子过度甲基化, 表现为Carney三联征, 即多发胃间质瘤、副神经节瘤、肺软骨瘤三主征[8], 而Carney Stratakis综合征, 一种具有多发胃间质瘤、副神经节瘤倾向的遗传性疾病中SDH各亚型突变均有报道[9]. 该型WT-GIST大多以多灶性病变分布于胃内(尤其胃窦部), 值得注意的是, SDH缺陷型GIST不依据肿瘤大小及核分裂相进行良恶性判断, 多伴淋巴结转移, 但为惰性临床过程[10].

SDH基因编码的蛋白质以SDH复合物的形式存在于正常机体细胞线粒体内, 参与电子传递链, 完成琥珀酸像延胡索酸的转换[11]. 该复合物由4种亚单位(SDHA、SDHB、SDHC及SDHD)以及装配因子、铁硫蛋白和辅酶Q构成. 当机体细胞发生变异, SDH表达缺失, SDH复合物失活, 促进肿瘤细胞形成. 目前SDH基因缺失导致肿瘤形成的具体机制尚未完全明确. 认为可能与琥珀酸聚集导致缺氧诱导因子(hypoxia inducible factor 1α, HIF1-α)稳定性增强[12-14], 激活血管内皮生长因子(vascular endothelial growth factor, VEGF)相关. 也有研究认为: 基于SDH缺陷型GIST较突变型GIST细胞DNA甲基化水平升高[15]、microRNA异常甲基化, 故与甲基化相关. 最新研究发现: SDHB缺陷型GIST中检测到胰岛素类似物生长因子1受体(insulin-like growth factor receptor 1, IGF-1R)RNA或蛋白的高表达, 因此, IGF-1R活化可能是SDHB缺陷型野生GIST的发病机制[16-18], linsitinib作为IGF-1R高选择性的小分子抑制剂[19], 正处于临床研究中, 期待成为SDHB缺失的野生型GIST个体化治疗选择.

胰岛素样生长因子(insulin-like growth factor, IGF)系统参与细胞周期调控及多种病理过程, 尤其是对恶性肿瘤发生起关键调节作用[20]. IGF系统包括受体IGF-1R(IGF-1 receptor)、IGF-2R, 配体IGF-l、IGF-2以及相关结合蛋白IGF-BP(IGF-binding proteins). IGF-l、IGF-2表达及其强度被认为与肿瘤的预后明显相关[21,22]. IGF受体与配体结合, 参与细胞酪氨酸残基磷酸化, 转导信号, 触发抗凋亡和促增生通路[23].

Wei等[24]发表的一篇个案, 报道了1例SDH缺陷型GIST女性患者伊马替尼治疗期间, 复发2次的特殊病史. 该病例于第2次手术中行二代全基因测序, 发现病损细胞几乎全部检测到抑癌基因TP53(tumor protein P53)杂合突变. 提示二代测序在靶向治疗前的重要评价作用, 可以避免长期无效药物治疗. 同时提示SDH缺陷型GIST可能存在其他基因突变或者基因转变. 不同于大部分SDH缺陷型GIST惰性表现, 伴异基因突变后, 肿瘤生物学行为更具侵袭性. 但TP53基因乃至其他基因突变在SDH缺陷型GIST中的作用, 尚需要大量数据分析.

2.2 BRAF基因突变

BRAF属于丝氨酸/苏氨酸蛋白激酶RAF家族成员, 通过MAPK(mitogen activated protein kinase)信号通路调节细胞周期及细胞增殖[25,26]. BRAF基因最常见的活化突变位于第15号外显子, DNA链上胸腺嘧啶取代腺嘌呤(T-A), 使氨基酸残基第600位上缬氨酸转化为谷氨酸(V600E), 常见于甲状腺乳头状癌和黑色素瘤. BRAF在KIT下游突变, 活化V600E, 从而使细胞在缺乏KIT指导下持续增殖, 故存在BRAF突变的GIST对酪氨酸激酶抑制剂不敏感, 亦或原发耐药[27]. BRAF突变型GIST更易发生于女性, 多见于小肠, 常为梭形细胞型, 肿瘤显示出高度恶性倾向, 但在体积小(≤5 mm)或无核分裂活性的GIST也可发生BRAF突变. 目前认为KIT/PDGFRA与BRAF表达呈负相关. 一项大宗数据研究[28]显示, 127例野生型GIST中有7例存在BRAF V600E突变, 所有BRAF突变GIST均为野生型. Hostein等[29]分析了321例GIST患者, 其中70例为野生型GIST, 同样有7例野生型GIST检测到BRAF V600E突变, KIT/PDGFRA突变患者中未发现BRAF突变. KIT、PDGFRA和BRAF均阴性的GIST称为"三阴性GIST", 足以见得BRAF在GIST基因研究中的重要地位. 但Miranda等[30]报道了1例伊马替尼耐药患者同时表达KIT和BRAF, 通过体外实验发现BRAF可影响KIT阳性伊马替尼敏感病例对该药的反应, 这也说明BRAF突变可能为酪氨酸酶抑制剂原发耐药机制, 同时也推测, BRAF抑制剂或可作为GIST患者新的治疗药物. 近期, 首例BRAF突变并转移的GIST患者接受BRAF抑制剂dabrafenib治疗的一期试验, 该患者既往曾接受MEK抑制剂治疗, 使用dabrafenib达疾病稳定(缓解17%)8 mo后出现进展, 再次行全基因检测发现PIK3CACDKN2突变, 考虑BRAF抑制剂治疗中可能诱发新的基因突变, 导致二次耐药[31]. 美国食品药品管理局批准了3项靶向BRAF V600E药物(vemurafenib、dabrafenib、trametinib)在野生型BRAF突变的GIST患者进行临床研究, 后续结果值得期待.

2.3 NF1相关性GIST

Ⅰ型神经纤维瘤病(neurofibromatosis type Ⅰ, NFl)相关性GIST: 神经纤维瘤病为一种常见的常染色体显性遗传病[32], 致病基因为17号染色体上NF1抑癌基因, 其编码的NF1蛋白是RAS激酶的负向调节因子, 该蛋白丢失激活了RAS及其下游激酶, 包括MEK-MAPK通路, 加之后续GIST特异性转录网络主调节基因ETV1的过度表达, 可能为NF1-GIST的发生机制[33]. 与正常人群相比, NFl患者GIST发病率更高, 发病年龄更年轻, 好发于小肠(包括十二指肠). NFl患者常发展成多个原发性肿瘤, 有时与小肠Cajal细胞增生相关. 部分NFl相关性GIST表达S-100蛋白, 组织学上以单纯梭形细胞形态多见, 肿瘤细胞免疫组织化学CDll7呈强阳性表达. 大部分NFl相关性GIST体积小, 核分裂活性低, 预后较好. Gasparotto等[34]研究纳入22例入组前无NF1疾病诊断及临床表现的KIT/PDGFRA/BRAF/ SDH阴性GIST患者, 上述患者称为"四阴性GIST", 发现大部分患者病变位于小肠, 女性患者偏多, 60%(13/22)"四阴性"GIST存在NF1基因突变, 包括错义突变、无义突变、诱导蛋白截断、剪接位点附近的突变、缺失. 日本一项多中心研究纳入了1528例GIST患者, 根据NIH诊断标准确诊了18例NF1, 研究同样发现NF1患者并存GIST时, 具有多发于小肠、低核分裂相、梭形细胞多见等特点, 与单纯GIST对比, 发病年龄、性别、肿瘤大小、复发倾向均未发现明显差异, 与多项报道相同, 该研究同样发现NF1-GIST中绝大部分为野生型, 并对伊马替尼耐药[35]. 瑞典癌症中心流行病学统计显示, NFI患者GIST终身患病率为7%[36], 可见, 对NF1患者需重视伴发GIST的风险.

2.4 ETV1基因突变

ETS(E26 transformation specific or E-twenty-six)家族是最大的信号依赖转录调控因子家族之一[37,38], ETVl为ETS家族成员, 在乳腺癌、黑色素瘤、前列腺癌中表达, ETVl基因可与其他基因融合产生嵌合体蛋白导致细胞恶变. Chi等[39]发现ETVl在GIST细胞中存在异常表达, 显著高于其他肿瘤组织. 动物模型中ETVl亦呈强表达, 敲除ETVl后, GIST起源细胞ICC出现缺失[40], 故可认为ETV1参与GIST形成, 但ETV1在WT-GIST中表达是否具有特异性, 目前尚无足够证据证实. ETV6-NTRK3融合基因最早在婴儿纤维肉瘤中描述, 是12号染色体ETV6外显子与15号染色体NTRK3外显子发生的融合[41]. 回顾文献, 仅有1例ETV6-NTRK3融合基因GIST, 该病例为1例44岁男性直肠GIST, 细胞学形态为上皮细胞形, 具有较高核分裂相, 表达CD117、DOG1, 基因缺乏KIT、PDGFRA、BRAF突变, 无SDHB缺陷, 为"四阴性GIST", 手术后无病生存期>44 mo[42]. 该文献提出: ETV6-NTRK3融合基因可能通过促进IGF1R下游级联活化、替代细胞核内IRS1通路, 实现GIST一部分发展. ETV1及其基因融合在控制WT-GIST发生、发展过程尚需要更多数据支持, 目前没有该基因的靶向药物治疗研究.

2.5 KRAS基因突变

KRAS(kirsten rat sarcoma viral oncogene homolog)是Kirsten大鼠肉瘤病毒细胞同源癌基因[43], 与HRAS、NRAS同属RAS家族成员, KRAS编码胞内蛋白, 参与细胞增殖、分裂的信号传递, 控制GTP酶活化, KRAS突变后干扰了正常GTP酶功能. 改变了RAS-RAF-MAPK信号传导通路, 从而导致细胞过度增殖, 进一步形成肿瘤[44]. KRAS突变常见于结肠癌、胰腺癌、肺腺癌[45]. 仅有一些个案报道证实KRAS在GIST中存在突变, KRAS突变在GIST发生中的作用机制仍不清楚, 现有资料并未显示KRAS突变在野生型GIST中表达率高于突变型GIST. 一项514例GIST的大样本队列研究, 包含117例WT-GIST, 通过标准PCR核酸扩增、Sanger直接检测PCR蛋白产物方法, 均未发现KRAS基因12、13号密码子在WT-GIST中的突变[46], 推测KRAS在WT-GIST中表达阳性率极低, 也预示该基因突变可能并未参与WT-GIST发生.

2.6 其他机制

一项国内研究发现, WT-GIST二代测序最常见的5个基因突变依次为抑癌基因TP53ROS1融合基因、NF1ATRX(α-thalassemia/mental retardation syndrome X linked gene)和KIT, 但没有证实上述突变是否与GIST的发生相关[6], 仍需要研究证实上述基因与GIST的相关性. Hechtman等[47]分析了无SDHB缺陷的8例WT-GIST存在ARID1A(AT-rich interactive domain 1A gene)、TP53KRAS等基因突变. ARID1缺失突变可增加AKT磷酸化及PI3K/AKT通路的活化, 从而使肿瘤细胞增殖, 针对该基因的靶向药物未来可能开启WT-GIST治疗新篇章. TP53突变提示无进展生存期缩短, 预后差. 降钙素受体样受体基因(calcitonin receptor like receptor gene, CALCRL)是一种G蛋白耦联受体, 在血管瘤和胶质瘤中强表达[48,49]. 现有研究发现CALCRL作为肾上腺素及降钙素基因相关肽受体(calcitonin receptor like receptor, CRLR)在WT-GIST中过度表达[50]. 另外, 22型胶原α1(collagen type ⅩⅩⅡ alpha 1, COL22A1)属于胶原蛋白家族成员, 作为细胞黏附配体分布于组织接合部位, 从而黏附皮肤上皮细胞和成纤维细胞, 该配体也在野生型GIST中过度表达[51]. 上述两种蛋白受体的发现, 或可作为诊断WT-GIST的标记, 但报道仅包含几例患者, 大量数据仍缺乏.

3 结论

WT-GIST可能的发病机制包括SDHB基因缺失、原癌基因BRAF突变、NF1疾病相关、ETV1基因突变等, 目前研究对上述4种机制有比较详细的阐述. 另有众多报道分析了WT-GIST发生、发展的可能分子机制, 但目前没有统一观点, 诸多问题需要更多经验和探索.

评论
背景资料

胃肠间质瘤(gastrointestinal stromal tumor, GIST)是一类起源胃肠道间叶组织的肿瘤, 主要发生于消化系统, 多数存在KIT或PDGFRA基因突变, 无KIT和PDGFRA基因突变的GIST称为野生型GIST(WT-GIST).

研发前沿

目前, WT-GIST亟待解决的问题: (1)缺乏重要相关基因探索方向、有效药物研究; (2)众多相关基因如何有效应用于临床.

相关报道

本文引用文献包含了胃肠间质瘤领域较为经典的几篇文献, 同时涵盖了近年来有关WT-GIST分子机制的最新研究, 包括动物试验、药物试验等.

创新盘点

本文详细总结了目前对WT-GIST较为认同的观点及新近发现的分子机制研究进展, 具有较高参考意义.

应用要点

通过对WT-GIST分子机制的明确阐述, 能够灵活有效指导临床和对科研工作中对相关基因的探索.

同行评议者

迟雁, 副教授, 北京大学第一医院消化内科; 沈卫东, 副主任医师, 东南大学医学院附属江阴医院消化内科

同行评价

本文对于临床进一步认识野生型GIST具有参考价值, 并为今后的治疗提供一定线索.

手稿来源: 自由投稿

学科分类: 胃肠病学和肝病学

手稿来源地: 北京市

同行评议报告分类

A级 (优秀): 0

B级 (非常好): B, B

C级 (良好): 0

D级 (一般): 0

E级 (差): 0

编辑:闫晋利 电编:李瑞芳

1.  李 健. 胃肠间质瘤分子机制及药物研究进展. 中华胃肠外科杂志. 2016;19:1316-1320.  [PubMed]  [DOI]
2.  Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, Pisters PW, Raut CP, Riedel RF, Schuetze S. NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Canc Netw. 2010;8 Suppl 2:S1-S41; quiz S42-S44.  [PubMed]  [DOI]
3.  Wardelmann E, Schildhaus HU, Merkelbach-Bruse S, Büttner R. [Therapeutic targets in gastrointestinal stromal tumors]. Verh Dtsch Ges Pathol. 2006;90:73-79.  [PubMed]  [DOI]
4.  Huss S, Künstlinger H, Wardelmann E, Kleine MA, Binot E, Merkelbach-Bruse S, Rüdiger T, Mittler J, Hartmann W, Büttner R. A subset of gastrointestinal stromal tumors previously regarded as wild-type tumors carries somatic activating mutations in KIT exon 8 (p.D419del). Mod Pathol. 2013;26:1004-1012.  [PubMed]  [DOI]
5.  Dufresne A, Alberti L, Brahmi M, Kabani S, Philippon H, Pérol D, Blay JY. Impact of KIT exon 10 M541L allelic variant on the response to imatinib in aggressive fibromatosis: analysis of the desminib series by competitive allele specific Taqman PCR technology. BMC Cancer. 2014;14:632.  [PubMed]  [DOI]
6.  Gao J, Li J, Li Y, Li Z, Gong J, Wu J, Liu N, Dong B, Qi C, Li J. Intratumoral KIT mutational heterogeneity and recurrent KIT/ PDGFRA mutations in KIT/PDGFRA wild-type gastrointestinal stromal tumors. Oncotarget. 2016;7:30241-30249.  [PubMed]  [DOI]
7.  时 姗姗, 饶 秋, 周 晓军. 野生型胃肠道间质瘤的研究进展. 中华病理学杂志. 2015;44:69-72.  [PubMed]  [DOI]
8.  Belinsky MG, Rink L, von Mehren M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front Oncol. 2013;3:117.  [PubMed]  [DOI]
9.  Wang YM, Gu ML, Ji F. Succinate dehydrogenase-deficient gastrointestinal stromal tumors. World J Gastroenterol. 2015;21:2303-2314.  [PubMed]  [DOI]
10.  Celestino R, Lima J, Faustino A, Vinagre J, Máximo V, Gouveia A, Soares P, Lopes JM. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors. Eur J Hum Genet. 2013;21:503-510.  [PubMed]  [DOI]
11.  Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer. 2005;5:857-866.  [PubMed]  [DOI]
12.  Burnichon N, Brière JJ, Libé R, Vescovo L, Rivière J, Tissier F, Jouanno E, Jeunemaitre X, Bénit P, Tzagoloff A. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19:3011-3020.  [PubMed]  [DOI]
13.  Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677-684.  [PubMed]  [DOI]
14.  Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231-2239.  [PubMed]  [DOI]
15.  Kelly L, Bryan K, Kim SY, Janeway KA, Killian JK, Schildhaus HU, Miettinen M, Helman L, Meltzer PS, van de Rijn M. Post-transcriptional dysregulation by miRNAs is implicated in the pathogenesis of gastrointestinal stromal tumor [GIST]. PLoS One. 2013;8:e64102.  [PubMed]  [DOI]
16.  Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol. 2011;35:1712-1721.  [PubMed]  [DOI]
17.  Chou A, Chen J, Clarkson A, Samra JS, Clifton-Bligh RJ, Hugh TJ, Gill AJ. Succinate dehydrogenase-deficient GISTs are characterized by IGF1R overexpression. Mod Pathol. 2012;25:1307-1313.  [PubMed]  [DOI]
18.  Tarn C, Rink L, Merkel E, Flieder D, Pathak H, Koumbi D, Testa JR, Eisenberg B, von Mehren M, Godwin AK. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA. 2008;105:8387-8392.  [PubMed]  [DOI]
19.  Songdej N, von Mehren M. GIST treatment options after tyrosine kinase inhibitors. Curr Treat Options Oncol. 2014;15:493-506.  [PubMed]  [DOI]
20.  Beadling C, Patterson J, Justusson E, Nelson D, Pantaleo MA, Hornick JL, Chacón M, Corless CL, Heinrich MC. Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA. Cancer Med. 2013;2:21-31.  [PubMed]  [DOI]
21.  Turney BW, Turner GD, Brewster SF, Macaulay VM. Serial analysis of resected prostate cancer suggests up-regulation of type 1 IGF receptor with disease progression. BJU Int. 2011;107:1488-1499.  [PubMed]  [DOI]
22.  Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 2008;14:6364-6370.  [PubMed]  [DOI]
23.  Lasota J, Wang Z, Kim SY, Helman L, Miettinen M. Expression of the receptor for type i insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: an immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol. 2013;37:114-119.  [PubMed]  [DOI]
24.  Wei CH, Pettersson J, Campan M, Chopra S, Naritoku W, Martin SE, Ward PM. Gain of TP53 Mutation in Imatinib-treated SDH-Deficient Gastrointestinal Stromal Tumor and Clinical Utilization of Targeted Next-generation Sequencing Panel for Therapeutic Decision Support. Appl Immunohistochem Mol Morphol. 2016; Dec 23. [Epub ahead of print].  [PubMed]  [DOI]
25.  Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855-867.  [PubMed]  [DOI]
26.  Martinho O, Gouveia A, Viana-Pereira M, Silva P, Pimenta A, Reis RM, Lopes JM. Low frequency of MAP kinase pathway alterations in KIT and PDGFRA wild-type GISTs. Histopathology. 2009;55:53-62.  [PubMed]  [DOI]
27.  Agaimy A, Terracciano LM, Dirnhofer S, Tornillo L, Foerster A, Hartmann A, Bihl MP. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol. 2009;62:613-616.  [PubMed]  [DOI]
28.  Huss S, Pasternack H, Ihle MA, Merkelbach-Bruse S, Heitkötter B, Hartmann W, Trautmann M, Gevensleben H, Büttner R, Schildhaus HU. Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wildtype GISTs are rare events. Hum Pathol. 2017; Jan 31. [Epub ahead of print].  [PubMed]  [DOI]
29.  Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF, Bringuier PP, Scoazec JY, Coindre JM. BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol. 2010;133:141-148.  [PubMed]  [DOI]
30.  Miranda C, Nucifora M, Molinari F, Conca E, Anania MC, Bordoni A, Saletti P, Mazzucchelli L, Pilotti S, Pierotti MA. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:1769-1776.  [PubMed]  [DOI]
31.  Falchook GS, Trent JC, Heinrich MC, Beadling C, Patterson J, Bastida CC, Blackman SC, Kurzrock R. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget. 2013;4:310-315.  [PubMed]  [DOI]
32.  Bajor J. [Gastrointestinal stromal tumors in neurofibromatosis type 1]. Orv Hetil. 2009;150:149-153.  [PubMed]  [DOI]
33.  Nannini M, Astolfi A, Urbini M, Indio V, Santini D, Heinrich MC, Corless CL, Ceccarelli C, Saponara M, Mandrioli A. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer. 2014;14:685.  [PubMed]  [DOI]
34.  Gasparotto D, Rossi S, Polano M, Tamborini E, Lorenzetto E, Sbaraglia M, Mondello A, Massani M, Lamon S, Bracci R. Quadruple-Negative GIST Is a Sentinel for Unrecognized Neurofibromatosis Type 1 Syndrome. Clin Cancer Res. 2017;23:273-282.  [PubMed]  [DOI]
35.  Nishida T, Tsujimoto M, Takahashi T, Hirota S, Blay JY, Wataya-Kaneda M. Gastrointestinal stromal tumors in Japanese patients with neurofibromatosis type I. J Gastroenterol. 2016;51:571-578.  [PubMed]  [DOI]
36.  Brems H, Beert E, de Ravel T, Legius E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol. 2009;10:508-515.  [PubMed]  [DOI]
37.  Jedlicka P, Gutierrez-Hartmann A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol Histopathol. 2008;23:1417-1424.  [PubMed]  [DOI]
38.  Kubota D, Yoshida A, Tsuda H, Suehara Y, Okubo T, Saito T, Orita H, Sato K, Taguchi T, Yao T. Gene expression network analysis of ETV1 reveals KCTD10 as a novel prognostic biomarker in gastrointestinal stromal tumor. PLoS One. 2013;8:e73896.  [PubMed]  [DOI]
39.  Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, Fletcher JA, Dewell S, Maki RG, Zheng D. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature. 2010;467:849-853.  [PubMed]  [DOI]
40.  Duensing S, Duensing A. Targeted therapies of gastrointestinal stromal tumors (GIST)--the next frontiers. Biochem Pharmacol. 2010;80:575-583.  [PubMed]  [DOI]
41.  Ran L, Sirota I, Cao Z, Murphy D, Chen Y, Shukla S, Xie Y, Kaufmann MC, Gao D, Zhu S. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov. 2015;5:304-315.  [PubMed]  [DOI]
42.  Brenca M, Rossi S, Polano M, Gasparotto D, Zanatta L, Racanelli D, Valori L, Lamon S, Dei Tos AP, Maestro R. Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J Pathol. 2016;238:543-549.  [PubMed]  [DOI]
43.  Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297:474-478.  [PubMed]  [DOI]
44.  Rodriguez-Viciana P, Tetsu O, Oda K, Okada J, Rauen K, McCormick F. Cancer targets in the Ras pathway. Cold Spring Harb Symp Quant Biol. 2005;70:461-467.  [PubMed]  [DOI]
45.  Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2:344-358.  [PubMed]  [DOI]
46.  Lasota J, Xi L, Coates T, Dennis R, Evbuomwan MO, Wang ZF, Raffeld M, Miettinen M. No KRAS mutations found in gastrointestinal stromal tumors (GISTs): molecular genetic study of 514 cases. Mod Pathol. 2013;26:1488-1491.  [PubMed]  [DOI]
47.  Hechtman JF, Zehir A, Mitchell T, Borsu L, Singer S, Tap W, Oultache A, Ladanyi M, Nafa K. Novel oncogene and tumor suppressor mutations in KIT and PDGFRA wild type gastrointestinal stromal tumors revealed by next generation sequencing. Genes Chromosomes Cancer. 2015;54:177-184.  [PubMed]  [DOI]
48.  Benes L, Kappus C, McGregor GP, Bertalanffy H, Mennel HD, Hagner S. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas. J Clin Pathol. 2004;57:172-176.  [PubMed]  [DOI]
49.  Watkins HA, Walker CS, Ly KN, Bailey RJ, Barwell J, Poyner DR, Hay DL. Receptor activity-modifying protein-dependent effects of mutations in the calcitonin receptor-like receptor: implications for adrenomedullin and calcitonin gene-related peptide pharmacology. Br J Pharmacol. 2014;171:772-788.  [PubMed]  [DOI]
50.  Barwell J, Gingell JJ, Watkins HA, Archbold JK, Poyner DR, Hay DL. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs? Br J Pharmacol. 2012;166:51-65.  [PubMed]  [DOI]
51.  Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L. A novel marker of tissue junctions, collagen XXII. J Biol Chem. 2004;279:22514-22521.  [PubMed]  [DOI]