临床经验 Open Access
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2015-06-28; 23(18): 2996-3000
在线出版日期: 2015-06-28. doi: 10.11569/wcjd.v23.i18.2996
2型糖尿病患者一级亲属胰岛功能与骨密度的关系
谢勇丽, 肖冬梅, 张雅薇, 袁拓萍, 苏晓清
谢勇丽, 肖冬梅, 张雅薇, 袁拓萍, 苏晓清, 萍乡市人民医院内分泌科 江西省萍乡市 337055
谢勇丽, 主治医师, 主要从事糖尿病及其并发症、甲状腺疾病、骨质疏松症研究.
作者贡献分布: 谢勇丽设计本课题; 谢勇丽、肖冬梅、张雅薇、袁拓萍及苏晓清负责研究过程; 谢勇丽与肖冬梅负责分析数据并撰写论文.
通讯作者: 谢勇丽, 主治医师, 337055, 江西省萍乡市安源区广场路128号, 萍乡市人民医院内分泌科. xieyonglibmb@126.com
电话: 0799-6881795
收稿日期: 2015-03-25
修回日期: 2015-04-30
接受日期: 2015-05-08
在线出版日期: 2015-06-28

目的: 探讨2型糖尿病(type 2 diabetes mellitus, T2DM)患者一级亲属中糖耐量正常(normal glucose tolerance, NGT)和糖耐量减低(impaired glucose tolerance, IGT)人群的胰岛β细胞分泌功能与骨密度的关系.

方法: 选择已确诊的T2DM患者一级亲属中NGT者30例[NGT(+)组]、IGT者30例[IGT(+)组], 无糖尿病家族史的健康对照组30例[NGT(-)组]. 采用电化学发光免疫分析法测定3组空腹胰岛素含量和口服75 g无水葡萄糖粉后2 h胰岛素含量, 另采用双能X线骨密度仪测定3组人群的腰椎和左股骨颈、股骨粗隆的骨密度.

结果: (1)胰岛β细胞分泌指数HOMA-β: IGT(+)组(2.42±0.65)、NGT(+)组(2.54±0.59)、NGT(-)组(3.96±0.81), NGT(-)组分别与IGT(+)组和NGT(+)相比, 在胰岛β细胞分泌功能的测量上差异有统计学意义(P<0.05); (2)IGT(+)组和NGT(+)组在骨密度测量上分别与NGT(-)组, 差异有统计学意义(P<0.05); 其他各组间比较差异均无统计学意义(P>0.05).

结论: T2DM患者的一级亲属不管处于NGT阶段还是IGT阶段均已出现胰岛功能的下降; 其一级亲属中IGT者, 在胰岛分泌功能下降的同时, 骨密度也随之下降.

关键词: 2型糖尿病; 一级亲属; 胰岛功能; 骨密度

核心提示: 2型糖尿病(type 2 diabetes mellitus, T2DM)患者的一级亲属不管处于糖耐量正常(normal glucose tolerance)阶段还是糖耐量减低(impaired glucose tolerance, IGT)阶段均已出现胰岛功能的下降; 其一级亲属中IGT者, 在胰岛分泌功能下降的同时, 骨密度也随之下降.


引文著录: 谢勇丽, 肖冬梅, 张雅薇, 袁拓萍, 苏晓清. 2型糖尿病患者一级亲属胰岛功能与骨密度的关系. 世界华人消化杂志 2015; 23(18): 2996-3000
Relationship between islet function and bone mineral density in first-degree relatives of patients with type 2 diabetes
Yong-Li Xie, Dong-Mei Xiao, Ya-Wei Zhang, Tuo-Ping Yuan, Xiao-Qing Su
Yong-Li Xie, Dong-Mei Xiao, Ya-Wei Zhang, Tuo-Ping Yuan, Xiao-Qing Su, Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337055, Jiangxi Province, China
Correspondence to: Yong-Li Xie, Attending Physician, Department of Endocrinology, Pingxiang People's Hospital, 128 Guangchang Road, Anyuan District, Pingxiang 337055, Jiangxi Province, China. xieyonglibmb@126.com
Received: March 25, 2015
Revised: April 30, 2015
Accepted: May 8, 2015
Published online: June 28, 2015

AIM: To explore the relationship between islet function and bone mineral density in first-degree relatives of type 2 diabetes mellitus (T2DM) patients.

METHODS: In first-degree relatives of T2DM patients, 30 cases with normal glucose tolerance (NGT) [NGT (+) group] and 30 cases with impaired glucose tolerance (IGT) [IGT (+) group] were included in the study. Thirty healthy controls without family history of T2DM [NGT (-) group] were also included. Electrochemical luminescence immunoassay was used to test fasting insulin level and insulin level at 2 h after oral administration of 75 g anhydrous glucose powder. Lumbar spine and left femur bone mineral density was determined by X-ray absorptiometry.

RESULTS: The homeostasis model assessment-pancreatic beta-cell function (HOMA-beta) was significantly lower in the NGT (-) group than in the NGT (+) group and IGT (+) group, but showed no statistical difference between the NGT (+) group and IGT (+) group. Compared with the IGT (+) group and NGT (+) group, bone density of L2 to L4 (L2-L4), the femoral neck and femoral trochanter was significantly different in the NGT (-) group, although there was no statistical difference between NGT (+) group and NGT (-) group.

CONCLUSION: All T2DM first-degree relatives, regardless of whether they have NGT or IGT, have decreased islet function, and T2DM first-degree relatives with IGT have decreased bone mineral density in the lumbar spine and femoral both.

Key Words: Type 2 diabetes mellitus; First-degree relatives; Islet function; Bone mineral density


0 引言

2型糖尿病(type 2 diabetes mellitus, T2DM)患者的一级亲属是高危糖尿病人群, 大部分糖耐量正常(normal glucose tolerance, NGT)时即已出现胰岛素分泌功能的受损[1-3], 主要与其基因易感性及其家庭生活方式相关[4-8]. 糖尿病患者胰岛功能减退者骨密度亦明显降低, 从而易患骨质疏松[9]. T2DM非糖尿病一级亲属胰岛功能出现受损, 若进一步发展为T2DM可导致骨密度下降[10-13]. 本研究旨在通过测定T2DM患者一级亲属的胰岛功能及其骨密度, 并评估两者之间的关系.

1 材料和方法
1.1 材料

我们系统的收集了年龄15-60岁, 既往无糖尿病的受试者, 通过对其家族史的询问及行75 g无水葡萄糖耐量试验(oral glucose tolerance test, OGTT)后的结果分为: 无糖尿病家族史的正常对照组[NGT(-)组]30例, 其中男17例, 女13例; 已确诊的T2DM患者一级亲属糖耐量减低(impaired glucose tolerance, IGT)[IGT(+)组]30例, 其中男15例, 女15例, NGT(+)组30例(男16例, 女14例). 所有入选对象均排除肝、肾、心血管疾病、恶性肿瘤、甲状腺功能亢进症、甲状旁腺功能亢进症、肾小管酸中毒等其他影响骨代谢的疾病, 未使用过激素、维生素D、钙剂等影响骨密度的药物及任何影响胰岛素分泌的药物.

1.2 方法

1.2.1 指标测量: 对所有入选对象均进行腰围、腹围、身高、体质量、体质量指数、血脂(甘油三酯、低密度脂蛋白)进行测量.

1.2.2 OGTT试验及胰岛素水平测定: 用全自动生化仪氧化酶葡萄糖法测定血糖, 电化学发光免疫分析法测定空腹胰岛素(fasting insulin, FIns)和口服75 g无水葡萄糖后2 h的胰岛素(2 h fasting insulin, 2 h Ins)(试剂盒购自北京原子高科核技术应用公司). Ins批内变异系数<10%, 批间变异系数<15%.

1.2.3 胰岛功能评价: 胰岛β细胞功能指数(homeostasis model assessment-pancreatic beta-cell function, HOMA-beta) = FIns (Mu/L)×20/FPG(mmol/L)-3.5], 反映胰岛β细胞的分泌功能; 胰岛素抵抗(insulin resistance, IR)指数(HOMA-IR) = FIns(Mu/L)×FPG(mmol/L)/22.5[14].

1.2.4 骨密度测定: 采用美国Norland双能X线骨密度仪(dual energy X ray absorptiometry, DEXA)测量腰椎及左股骨骨密度. 进行L2-L4和近端股骨(包括Ward'S三角、股骨颈和股骨粗隆)骨密度的测定, 以测得部位骨密度低于骨峰值均值2.5个标准差(SD)诊断为骨质疏松; 介于骨峰值均值1.0-2.5个标准差(SD)诊断为骨量减少[15].

统计学处理 数据处理采用SPSS13.0软件. 所有统计推断均采用双侧检验, 具有统计意义的检验水准定位0.05. 当数据满足参数方法条件时, 采用参数方法; 当数据不满足参数方法条件时, 可采用数据转换使其满足条件, 若仍不满足, 可考虑采用基于秩次的非参数方法. P<0.05为差异有统计学意义.

2 结果

(1)3组间年龄、性别、绝经后妇女比例、体质量指数、腰围、腹围、血脂比较, 差异无统计学意义(表1); (2)NGT(-)组分别与NGT(+)组及IGT(+)组相比, HOMA-β差异有统计学意义, 余组间相比差异无统计学意义(表2); (3)IGT(+)组与NGT(-)组相比, L2-L4、股骨颈、股骨粗隆的骨密度差异均有统计学意义(表2); NGT(+)组与NGT(-)组相比, L2-L4、股骨颈、股骨粗隆的骨密度差异均有统计学意义(表2); IGT(+)组与NGT(+)组相比, 以上指标差异无统计学意义(表2).

表1 3组基线值的比较 (mean±SD).
分组性别(n)
年龄(岁)BMI(kg/m2)绝经比例腰围(cm)血脂(mmol/L)
TGLDL-C
IGT(+)组 15 15 35.8±8.6 24.7±1.3 5/15 89.6±6.1 1.89±0.14 1.12±0.13
NGT(+)组 16 14 36.7±5.7 23.5±0.9 4/14 85.4±5.2 1.71±0.21 1.23±0.21
NGT(-)组 17 13 35.6±7.1 22.4±0.8 4/13 84.7±8.1 1.78±0.18 1.26±0.18
表2 3组临床资料及数据比较 (mean±SD).
分组n
年龄(岁)骨密度(g/cm2)
FPG(mmol/L)FIns(μU/mL)HOMA-βHOMA-IR
(男/女) L2-L4 Neck Troch
IGT(+)组 30(15/15) 35.8± 8.60.88± 0.120.73± 0.130.61± 0.135.77± 0.3627.58± 0.312.42± 0.650.71± 0.55
NGT(+)组 30(16/14) 36.7± 5.70.93± 0.130.89± 0.120.69± 0.145.62± 0.3526.95± 0.332.54± 0.590.67± 0.57
NGT(-)组 30(17/13) 35.6± 7.11.02± 0.12ac0.96± 0.11ac0.75± 0.12ac4.65± 0.3722.76± 0.353.96± 0.81ac0.47± 0.57
3 讨论

许多研究[16-18]证实, 糖尿病患者的骨折以及骨质疏松概率明显高于非糖尿病患者. 众所周知, 1型糖尿病患者骨量减少和骨质疏松的患病率高达48%-72%. 绝经前1型糖尿病女性患者的骨折发生率也较年龄校正对照组人群明显增高[19-22]. T2DM和骨质疏松症在全球范围呈增长趋势, 严重危害患者身体健康并增加国家医疗负担. 有研究[2,7,8]表明, 在T2DM患者中, 血糖控制较差者骨折风险较非糖尿病患者及血糖控制良好者增高47%-62%. 其股骨颈、脊柱骨折的风险较正常人群分别增加2.1倍和3.1倍[23-25]. Meta分析结果提示, 不论1型糖尿病还是T2DM患者其髋部骨折风险较正常人明显升高[26-29]. 随着T2DM的进展及胰岛素分泌不足, 可干扰骨形成和骨吸收的代谢平衡, 引起骨密度水平下降, 因此T2DM患者也较正常人易发生骨质疏松[30,31]. 糖尿病对骨代谢的影响主要表现为骨吸收增加, 骨形成减少与缓慢, 使骨矿物质含量减少, 其主要发病机制是高血糖时葡萄糖从尿液排出, 渗透性利尿作用将大量钙、镁、磷离子排出体外, 低钙低磷刺激甲状旁腺激素的分泌, 使溶骨作用增强[32-35]. 此外, 糖基化产物的增多、胰岛素样生长因子的减少、糖尿病性微血管病变等也易导致骨质疏松[10].

T2DM患者是骨质疏松症的高危人群, 而T2DM患者的一级亲属又是糖尿病的高危人群. 本研究通过对T2DM患者的非糖尿病一级亲属进行临床研究, 发现此类人群中IGT者胰岛分泌功能下降的同时亦伴随骨密度的下降. 然而, 有学者发现糖尿病早期骨密度高于正常, 后期骨密度减低. 推测早期与胰岛功能代偿、高胰岛素血症、成骨细胞活性增加有关; 后期因胰岛功能失代偿, 胰岛素水平下降, 成骨细胞活性减弱相关, 故提出高胰岛素血症可能在某种程度上可以对避免骨丢失起保护作用[11]. 尽管T2DM患者早期骨密度可高于正常, 但骨折的风险高于正常人, 因此对该类患者要早期进行骨折风险评估和防治. Cnop等[12]的研究表明有T2DM家族史的NGT者即已存在IR, 而胰岛β细胞功能的下降则导致了IGT的出现. 关于胰岛功能与骨代谢的关系, 有待从更加严谨的临床设计、更大的样本量及细胞、分子水平方面进一步研究. 本研究主要通过探讨T2DM患者一级亲属中NGT和IGT人群的胰岛β细胞分泌功能与骨密度的关系, 为临床上预防和治疗糖尿病导致的骨质疏松提供一定的科学依据.

研究结果表明, NGT(-)组分别与NGT(+)组及IGT(+)组相比, HOMA-β差异有统计学意义; IGT(+)组与NGT(-)组相比, L2-L4、股骨颈、股骨粗隆的骨密度差异均有统计学意义; NGT(+)组与NGT(-)组相比, L2-L4、股骨颈、股骨粗隆的骨密度差异均有统计学意义. 研究结果表明, T2DM患者胰岛细胞功能明显减弱, 骨质疏松几率显著增加.

该研究为临床有效防治糖尿病及骨质疏松的发生提供新的思路及理论依据. 临床上可对T2DM的非糖尿病一级亲属人群早期进行生活方式或药物的干预, 减少或延缓糖尿病及骨质疏松的发生、发展, 提高个人生活质量, 减轻社会经济负担.

评论
背景资料

2型糖尿病(type 2 diabetes mellitus, T2DM)患者的一级亲属是高危糖尿病人群, 大部分糖耐量正常(normal glucose tolerance, NGT)时即已出现胰岛素分泌功能的受损, 糖尿病患者胰岛功能减退者骨密度亦明显降低, 从而易患骨质疏松.

同行评议者

高国全, 教授, 中山大学中山医学院生物化学教研室

研发前沿

T2DM患者的一级亲属是高危糖尿病人群, 大部分NGT时即已出现胰岛素分泌功能的受损.

应用要点

本研究主要通过探讨T2DM患者一级亲属中NGT和糖耐量减低(impaired glucose tolerance, IGT)人群的胰岛β细胞分泌功能与骨密度的关系, 为临床有效防治糖尿病及骨质疏松的发生提供新的思路及理论依据.

同行评价

本文探讨了T2DM患者一级亲属中NGT和IGT人群的胰岛β细胞分泌功能与骨密度的关系. T2DM患者一级亲属也是糖尿病高危人群, 在研究中比较容易忽视的人群, 具有一定的创新性和科学意义.

编辑:韦元涛 电编:闫晋利

1.  邓 德耀, 张 瑛, 李 德璇. 2型糖尿病患者糖耐量正常的一级亲属脂代谢与胰岛β细胞功能的变化. 昆明医学院学报. 2009;30:139-141.  [PubMed]  [DOI]
2.  Sonne MP, Højbjerre L, Alibegovic AA, Vaag A, Stallknecht B, Dela F. Impaired endothelial function and insulin action in first-degree relatives of patients with type 2 diabetes mellitus. Metabolism. 2009;58:93-101.  [PubMed]  [DOI]
3.  韩 宝玲, 张 扬, 张 凤萍. 2型糖尿病患者骨质疏松的临床探讨. 中国实用内科杂志. 2001;21:214-215.  [PubMed]  [DOI]
4.  谢 勇丽, 赖 晓阳, 沈 云峰, 郑 国红, 刘 泽林. 2型糖尿病患者糖耐量正常一级亲属胰岛素第一时相分泌的变化. 中国糖尿病杂志. 2007;15:660-662.  [PubMed]  [DOI]
5.  韩 佳琳, 朱 娅梅, 栾 健, 郭 丽娜, 董 砚虎. 青岛城区居民2型糖尿病患者一级亲属不同糖耐量人群的糖和脂肪代谢状况. 中国糖尿病杂志. 2008;16:735-737.  [PubMed]  [DOI]
6.  邓 小戈, 廖 二元, 周 智广, 王 平芳, 伍 汉文, 超 楚生. 小剂量雌激素替代疗法治疗绝经后骨质疏松症. 湖南医学. 2001;18:245-247.  [PubMed]  [DOI]
7.  Stadler M, Pacini G, Petrie J, Luger A, Anderwald C. Beta cell (dys)function in non-diabetic offspring of diabetic patients. Diabetologia. 2009;52:2435-2444.  [PubMed]  [DOI]
8.  Emerson P, Van Haeften TW, Pimenta W, Plummer E, Woerle HJ, Mitrakou A, Szoke E, Gerich J, Meyer C. Different pathophysiology of impaired glucose tolerance in first-degree relatives of individuals with type 2 diabetes mellitus. Metabolism. 2009;58:602-607.  [PubMed]  [DOI]
9.  冯 玉欣, 逄 力男. 糖尿病与骨质疏松的研究进展. 国外医学: 内分泌学分册. 1999;19:37-38.  [PubMed]  [DOI]
10.  李 晓宇, 冯 正平. 糖尿病性骨质疏松发病机制的研究进展. 中国骨质疏松杂志. 2014;20:580-583.  [PubMed]  [DOI]
11.  李 莉, 刘 英敏. 2型糖尿病患者骨密度改变的初探. 中华内分泌代谢杂志. 1999;15:26-29.  [PubMed]  [DOI]
12.  Cnop M, Vidal J, Hull RL, Utzschneider KM, Carr DB, Schraw T, Scherer PE, Boyko EJ, Fujimoto WY, Kahn SE. Progressive loss of beta-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes. Diabetes Care. 2007;30:677-682.  [PubMed]  [DOI]
13.  Katsuda Y, Ohta T, Miyajima K, Kemmochi Y, Sasase T, Tong B, Shinohara M, Yamada T. Diabetic complications in obese type 2 diabetic rat models. Exp Anim. 2014;63:121-132.  [PubMed]  [DOI]
14.  Cândido FG, Bressan J. Vitamin D: link between osteoporosis, obesity, and diabetes? Int J Mol Sci. 2014;15:6569-6591.  [PubMed]  [DOI]
15.  Hamann C, Picke AK, Campbell GM, Balyura M, Rauner M, Bernhardt R, Huber G, Morlock MM, Günther KP, Bornstein SR. Effects of parathyroid hormone on bone mass, bone strength, and bone regeneration in male rats with type 2 diabetes mellitus. Endocrinology. 2014;155:1197-1206.  [PubMed]  [DOI]
16.  Ju MK, Jeong JH, Lee JI, Kim YS, Kim MS. Proliferation and functional assessment of pseudo-islets with the use of pancreatic endocrine cells. Transplant Proc. 2013;45:1885-1888.  [PubMed]  [DOI]
17.  Oh BJ, Oh SH, Jin SM, Suh S, Bae JC, Park CG, Lee MS, Lee MK, Kim JH, Kim KW. Co-transplantation of bone marrow-derived endothelial progenitor cells improves revascularization and organization in islet grafts. Am J Transplant. 2013;13:1429-1440.  [PubMed]  [DOI]
18.  Kim KS, Oh da H, Kim JY, Lee BG, You JS, Chang KJ, Chung HJ, Yoo MC, Yang HI, Kang JH. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med. 2012;44:665-673.  [PubMed]  [DOI]
19.  Xie H, Chang C, Jiang J, Li Q, Qi H, Deng C, Li F. [Feasibility of bone marrow mesenchymal stem cells differentiation in diabetic pancreatic microenvironment]. Zhongguo Xiufu Chongjian Waike Zazhi. 2011;25:597-601.  [PubMed]  [DOI]
20.  Petrelli A, Maestroni A, Fadini GP, Belloni D, Venturini M, Albiero M, Kleffel S, Mfarrej BG, Maschio AD, Maffi P. Improved function of circulating angiogenic cells is evident in type 1 diabetic islet-transplanted patients. Am J Transplant. 2010;10:2690-2700.  [PubMed]  [DOI]
21.  Song HJ, Xue WJ, Li Y, Tian XH, Ding XM, Feng XS, Song Y, Tian PX. Prolongation of islet graft survival using concomitant transplantation of islets and vascular endothelial cells in diabetic rats. Transplant Proc. 2010;42:2662-2665.  [PubMed]  [DOI]
22.  Zhang C, Wang M, Racine JJ, Liu H, Lin CL, Nair I, Lau J, Cao YA, Todorov I, Atkinson M. Induction of chimerism permits low-dose islet grafts in the liver or pancreas to reverse refractory autoimmune diabetes. Diabetes. 2010;59:2228-2236.  [PubMed]  [DOI]
23.  Neumiller JJ, Setter SM. Pharmacologic management of the older patient with type 2 diabetes mellitus. Am J Geriatr Pharmacother. 2009;7:324-342.  [PubMed]  [DOI]
24.  Ellegaard M, Thorkildsen C, Petersen S, Petersen JS, Jørgensen NR, Just R, Schwarz P, Ramirez MT, Stahlhut M. Amylin(1-8) is devoid of anabolic activity in bone. Calcif Tissue Int. 2010;86:249-260.  [PubMed]  [DOI]
25.  Wojcik MH, Meenaghan E, Lawson EA, Misra M, Klibanski A, Miller KK. Reduced amylin levels are associated with low bone mineral density in women with anorexia nervosa. Bone. 2010;46:796-800.  [PubMed]  [DOI]
26.  Park KS, Kim YS, Kim JH, Choi BK, Kim SH, Oh SH, Ahn YR, Lee MS, Lee MK, Park JB. Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5'-triphosphate)/ADP (adenosine-5'-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc. 2009;41:3813-3818.  [PubMed]  [DOI]
27.  Inokuchi C, Ueda H, Hamaguchi T, Miyagawa J, Shinohara M, Okamura H, Namba M. Role of macrophages in the development of pancreatic islet injury in spontaneously diabetic torii rats. Exp Anim. 2009;58:383-394.  [PubMed]  [DOI]
28.  Guzel S, Gunes N, Yildiz H, Yilmaz B. Effects of amylin on bone development and egg production in hens. Poult Sci. 2009;88:1719-1724.  [PubMed]  [DOI]
29.  Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G, Remuzzi A, Benigni A. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc. 2009;41:1797-1800.  [PubMed]  [DOI]
30.  Rossi L, Migliavacca B, Pierigé F, Serafini S, Sanvito F, Olivieri S, Nano R, Antonioli B, Magnani M, Bertuzzi F. Prolonged islet allograft survival in diabetic mice upon macrophage depletion by clodronate-loaded erythrocytes. Transplantation. 2008;85:648-650.  [PubMed]  [DOI]
31.  Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol. 2004;164:509-514.  [PubMed]  [DOI]
32.  Tiwari S, Ndisang JF. The heme oxygenase system and type-1 diabetes. Curr Pharm Des. 2014;20:1328-1337.  [PubMed]  [DOI]
33.  Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12:43.  [PubMed]  [DOI]
34.  Friedman AN, Chambers M, Kamendulis LM, Temmerman J. Short-term changes after a weight reduction intervention in advanced diabetic nephropathy. Clin J Am Soc Nephrol. 2013;8:1892-1898.  [PubMed]  [DOI]
35.  Yang HY, Wu LY, Yeh WJ, Chen JR. Beneficial effects of β-conglycinin on renal function and nephrin expression in early streptozotocin-induced diabetic nephropathy rats. Br J Nutr. 2014;111:78-85.  [PubMed]  [DOI]