文献综述 Open Access
Copyright ©The Author(s) 2012. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2012-07-18; 20(20): 1848-1852
在线出版日期: 2012-07-18. doi: 10.11569/wcjd.v20.i20.1848
Cajal间质细胞的研究进展
翁超, 袁琴, 范莹
翁超, 袁琴, 中国医科大学临床七年制学院 辽宁省沈阳市 110001
范莹, 中国医科大学附属盛京医院普外二科 辽宁省沈阳市 110004
翁超, 在读硕士, 主要从事胆道动力调控及胆石成因的基础与临床研究.
基金项目: 国家自然科学基金资助项目, No. 81000183; 沈阳市科学技术计划基金资助项目, No. F11-264-1-24.
作者贡献分布: 本文由翁超与袁琴综述; 范莹审校.
通讯作者: 范莹, 副教授, 副主任医师, 硕士生导师, 110004, 辽宁省沈阳市和平区三好街36号, 中国医科大学附属盛京医院普外二科. surgeonfanying@yahoo.com.cn
电话: 024-96615-1-31211
收稿日期: 2012-04-14
修回日期: 2012-05-25
接受日期: 2012-06-28
在线出版日期: 2012-07-18

Cajal间质细胞(interstitial cells of Cajal, ICC)是一类主要分布于胃肠道的间质细胞, 是胃肠道的起搏细胞(pacemaker cell)和信号传导细胞, 与肌细胞以及末梢神经元有着紧密的关系, 具有激发和促进胃肠蠕动的作用. 借助于电子显微镜技术, 清楚观察到了ICC位置分布和内部精细结构; 应用免疫荧光等生化技术, 发现了其特殊表达的C-kit蛋白; 利用电生理技术, 得知多种胃肠动力障碍疾病也与其异常有关. 多年来, 学者逐渐在胃肠道、胆道、膀胱、子宫等部位发现了ICC的踪迹, 并试图阐述其与某些疾病的发生机制. 本文就ICC的起源、形态学、受体和功能、以及与其相关的疾病等作一综述.

关键词: Cajal间质细胞; 胃肠道; 信号传导

引文著录: 翁超, 袁琴, 范莹. Cajal间质细胞的研究进展. 世界华人消化杂志 2012; 20(20): 1848-1852
Progress in research of interstitial cells of Cajal
Chao Weng, Qin Yuan, Ying Fan
Chao Weng, Qin Yuan, Department of Seven-year Clinical College, China Medical University, Shenyang 110001, Liaoning Province, China
Ying Fan, Department of General Surgery (Division II), Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
Supported by: National Natural Science Foundation of China, No. 81000183; and the Science and Technology Project of Shenyang, No. F11-264-1-24.
Correspondence to: Ying Fan, Associate Professor, Department of General Surgery (Division II), Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China. surgeonfanying@yahoo.com.cn
Received: April 14, 2012
Revised: May 25, 2012
Accepted: June 28, 2012
Published online: July 18, 2012

Interstitial cells of Cajal (ICCs) are a kind of cells mainly found in the gastrointestinal tract as pacemaker and signal transduction cells. They have a close connection with muscular cells and terminal neurons and can stimulate and promote gastrointestinal motility. With the help of electron microscopes, we can clearly recognize their distribution and inner structure. C-kit protein is expressed by ICCs. Besides, many disorders of gastrointestinal motility are related to ICCs. In recent years, many scholars have found the trace of ICCs in different organs such as the gastrointestinal tract, biliary tract, bladder, and uterus, and they have tried to state the relationship between abnormal ICCs and some diseases. This article will review the progress in research of ICCs in terms of their origin, morphology, receptors, function, and related diseases.

Key Words: Interstitial cells of Cajal; Gastrointestinal tract; Signal transduction


0 引言

1893年, 西班牙神经解剖学家Sandago Puamony Cajal利用甲基蓝及嗜银染色的方法在胃肠道内首次发现了一类特殊的间质细胞, 称为Cajal间质细胞(interstitial cells of Cajal, ICC). 随着研究进展, 人们发现他是胃肠道的起搏细胞, 对维持胃肠道正常功能起着决定性作用. 后来大量研究证实, ICC不仅存在于胃肠道, 还普遍存在于其他系统和器官中, 例如泌尿生殖系统[1]、脉管系统[2]、胆道系统以及各种腺体之中[3]. 本文就ICC最新研究进展进行综述.

1 ICC的来源与鉴别

ICC最初发现于胃肠道, 与肌细胞、神经末梢有着紧密联系. 人们认为他可能来源于神经嵴细胞, 也可能来自于肠道间质细胞, 直到Young等[4]利用小鼠小肠来研究ICC的胚胎起源, 才解决了这一争论问题. 他们在小鼠胚胎神经嵴细胞形成前后的肠道上均发现了对ICC特异性的C-kit免疫反应蛋白, 这表明ICC并不是来源于神经嵴细胞, 而更可能来自肠道的间质细胞.

ICC区别于其他细胞的判断标准[5]主要基于以下几点: (1)细胞形态学和超微结构的特征: ICC主要沿着间质内的神经生长, 存在于肌束内的ICC非常有限, 而且细胞内有大量与平滑肌细胞相似的纤维束、细胞膜穴样内陷; (2)分子生物学特点: ICC特有的原癌基因C-kit能编码表达一种酪氨酸激酶受体; (3)胃肠道动力的电生理特性: ICC是一类起搏细胞, 能产生特殊的慢电波[6].

2 ICC的形态与分布

在光镜下, ICC可用C-kit免疫反应蛋白来标记, ICC呈纺锥形或星形, 细胞核较大, 以圆形或卵圆形为主, 染色质分散, 胞质少, 一般有2-5个突起, 相互连接形成细胞网络. 在电镜下, ICC的胞浆内具有丰富的线粒体、高尔基体、粗面和滑面内质网, 大量的中间纤维束以及间隙连接, 在细胞膜上可看见许多细胞膜穴样内陷[7], 但是不同物种和组织的ICC都有他们各自独特的形态特征. 小肠深肌丛ICC和结肠肌下丛ICC与平滑肌细胞非常相似, 有一层明显的基底膜和大量的细胞膜穴样内陷, 然而, 胃肠道所有的肠肌神经丛ICC与平滑肌细胞几乎没有相似之处, 而更像是纤维细胞. 不同器官ICC形态的不同可能与他们的微环境有关, 包括机械力的影响、神经分布的类型以及和平滑肌细胞的空间关系等[8].

根据ICC形态、分布位置以及与神经丛、平滑肌空间关系的不同可将其分为多个亚型: (1)肌丛ICC(ICC of the myenteric plexus, ICC-MP)是由包含3-5个初级胞突的多级细胞组成的, 在小肠周围肠肌丛形成致密的网络结构, 但在胃和结肠则形成疏松网状结构[9]; (2)肌内ICC(intramuscular ICC, ICC-IM)可分为环肌ICC(ICC of the circular muscle, ICC-CM)和纵肌ICC(ICC of the longitudinal muscle, ICC-LM). 前者是环肌层主要的双极细胞, 沿着周围平滑肌长轴方向生长, 主要分布于胃和结肠中, 而在小肠很少能发现[9]; 后者在形态上与前者相似, 但在数量上远远不如前者[10]; (3)深肌丛ICC(ICC of the deep muscular plexus, ICC-DMP)也是多极细胞, 但是胞突非常独特地沿着圆周生长, 这与他和小肠深肌丛神经束以及环行肌纤维有着密切的联系有关[11]; (4)黏膜下层ICC(ICC of submucosa, ICC-SM)和黏膜下丛ICC(submucosal plexus, ICC-SMP)存在于胃和结肠的黏膜下层结缔组织和环行肌内层之间[12,13], 含有次级突起的胞轴平行于相邻的环行肌细胞, 形成疏松的网状结构; (5)浆膜下ICC(ICC of the subserosa, ICC-SS)是存在于小鼠小肠和结肠浆膜层的星形间质细胞[14], 在细胞网状结构的形成过程中有一定作用.

3 ICC的功能和受体

1914年Keith最早提出了ICC可能是一种胃肠道起搏细胞的观点, 后来电生理研究和细胞超微结构研究发展不仅证实了他的观点, 而且认为ICC在胃肠道肌细胞中能产生慢电波[15], 介导兴奋和抑制运动神经传递[16], 同时ICC充当非神经源性牵张感受器, 影响平滑肌的兴奋性和慢波频率[17], 在迷走神经传入信号过程也发挥重要作用[18].

分子生物学研究表明ICC能够表达原癌基因C-kit, 编码产生特征性的Kit酪氨酸激酶受体. 人们通过RT-PCR方法分离出了多种ICC表达的受体. 胃底ICC-IM和小肠ICC-MY可表达毒蕈碱样乙酰胆碱能受体(M2和M3型), 神经激肽受体(NK1和NK3型)和VIP受体(VPAC1型)[19]. 小肠ICC-DMP除表达NK1受体[20]之外, 还表达毒蕈碱样M2受体[21]和生长抑素2A受体[22]. 在回肠ICC-DMP和ICC-MY则发现了5-HT3受体, 而5-HT4受体则在小肠被发现. 在ICC-IM, ICC-DMP和ICC-MY均可检测到嘌呤P2Y4受体[23], 嘌呤P2X2和P2X5受体却仅存在于ICC-MY[24]. 在幽门ICC和平滑肌细胞能表达缩胆囊素A受体[25]以及G蛋白耦连受体[26]. 另外NO是运动神经有效的抑制性神经递质, 能激活可溶性鸟苷酸环化酶(soluble guanylate cyclase, sGC), 而sGC存在于小肠ICC-DMP中[27], 由此可见, ICC也是受氮能抑制性神经元支配的. 此外, 有研究证实在豚鼠胆囊壁的ICC上存在着胆囊收缩素(cholecystokinin, CCK)受体[28], 他能控制胆囊的收缩.

4 ICC与胃肠道疾病

大量研究表明ICC是调节胃肠道动力的重要因素, 这也为许多胃肠道动力障碍相关疾病提供新的病理生理学解释. 目前所报道的病例中, 与ICC相关的疾病主要包括贲门失弛缓症、婴儿肥厚性幽门狭窄、慢性假性肠梗阻、先天性巨结肠、炎症性肠病、慢传输型便秘、糖尿病胃轻瘫、Oddi括约肌功能障碍和其他胃肠动力障碍相关疾病以及胃肠道间质肿瘤等.

(1)贲门失弛缓症: ICC细胞质中只有少量的线粒体和滑面内质网, 而且ICC与神经纤维之间的接触联系也在减少, 同时平滑肌细胞有一定形态上的变化[29]; (2)婴儿肥厚性幽门狭窄: ICC在肥厚性幽门环肌层连续缺乏[30], ICC的缺乏可能干扰了慢电波的传播, 影响了胃窦部和幽门部之间的协调运作, 另外神经元NO合成酶的缺乏也会导致肥厚性幽门狭窄的发生[31], 但在肥厚性幽门切开术后幽门病理标本中显示各类被标记的神经纤维、胶质细胞、神经元性NO合成酶和ICC与正常人的分布十分相似[32]. 因此, 尚无确切的证据证实ICC与该病发生的相关性; (3)慢性假性肠梗阻: 有研究[33]发现慢性假性肠梗阻小肠外肌层ICC的密度为正常人的3%, 在肠肌丛周围ICC明显缺乏. 但令人费解的是有实验[34]证实在对照组和患者组中, ICC均普遍分散于纵行肌和环行肌中, 因而, ICC可能只是导致慢性假性肠梗阻的多原因之一, 而非主要因素; (4)胃肠道间质瘤: 通常表达特有的标记物CD34[35], 但有专家认为Kit可能更适合作为胃肠道间质瘤的标记物, 而且追踪效果可能要优于CD34[36]. 因为在胃肠道间质瘤中发现了原癌基因Kit突变的存在, 而且其预后效果非常差[37], 但Kit基因突变可能只是肿瘤致癌过程中的一部分, 而非肿瘤来源的关键因素. 对此, Hirota等[38]提出Kit和CD34都呈阳性的间质瘤可能分化来源于ICC, 然而Vanderwinden等[39]发现Kit+ ICC和CD34+的纤维母细胞是两种相邻但不重叠的细胞, 很难支持前者的假说, 但关于胃肠道间质瘤起源问题尚未有可信有力的理论依据, 也不能排除Hirota提出的假说.

5 ICC与胆道疾病

近年来, 通过豚鼠试验, 从形态学和生理学证明了Cajal样间质细胞(ICLC)在胆囊上的存在, 并认为胆囊能产生和传播自发性节律与其密不可分[40]; 之后又有学者在人类肝外胆道发现了ICC的存在, 与胆囊上存在的ICLC相比, 肝外胆管ICLC显得更加聚集致密, 但并未在肝内胆道上发现ICC的踪迹[41]. Huang等[42]发现ICLC主要存在于胆囊和胆管系统平滑肌层, 包括肝管、胆囊管、胆囊以及胆总管上端. 在胆总管下端和壶腹部, ICLC在数量上呈缓慢增长趋势, 尤以壶腹部数量为多, 与十二指肠ICC相当, 远超出胆囊和胆管上的数量. 在胆道系统之中, 胆总管ICLC的数量最多, 这可能与他自发性地调节胆道系统节律收缩, 防止胆道系统动力障碍性疾病发生相关[43].

目前, 尚缺乏ICC在胆道系统疾病致病过程中作用的资料. Xu等[28]发现胆囊壁上的Cajal细胞表达一种与胆囊收缩密切相关的CCK受体, 为胆囊运动障碍性疾病(如胆囊结石)的成因提供了新的理论依据. 在胆总管尤其在壶腹部周围, ICC更趋于密集, 为胆道动力障碍性疾病(如Oddi括约肌功能障碍)提供了有力的理论基础. 有人还在胆囊恶性间质瘤中发现肿瘤细胞高度表达CD117(C-kit蛋白)和波形蛋白[44], 表明恶性间质肿瘤同样可以发生在胆道系统中, 而且特异性的C-kit蛋白高度表达, 提示ICC在肿瘤发病过程中可能发挥重要作用.

6 ICC与胃电起搏治疗

在胃不同部位分离出的ICC上, 有人[45]记录了慢波的传播过程. 试验[46]表明, 用0.1 ms脉冲的电场刺激野生型小鼠胃窦细胞, 能产生本体固有频率的慢波, 而且波相位超前, 但慢波起搏能被河豚毒素和阿托品阻断, 提示相位超前是通过胆碱能神经介导的. 在缺乏ICC-IM的变异型小鼠胃窦细胞中, 相位超前和波的传送现象则不存在. 这表明慢波频率和平滑肌收缩的神经调节是依靠神经和ICC-IM之间的相互作用达到的. 然而用1-2 ms的脉冲刺激野生型和变异型小鼠, 他们都能产生相位超前和波的传送现象, 而且不能被河豚毒素和阿托品阻断, 表明在缺乏ICC-IM的情况下, 长时间的脉冲刺激能够直接启动ICC-MY上的起搏机制. 由此可知, ICC-IM是体内神经调节的关键. 这为体外胃电起搏治疗胃排空异常、胃轻瘫等疾病提供了新的理论依据[47]. 但是, ICC的缺乏却有利于某些糖尿病相关的胃病[48], 在体内神经刺激减少的非肥胖型糖尿病的小鼠中, 胃窦部环肌层ICC-IM的数量显著降低, 并且肠神经末梢和ICC-IM之间正常存在的密切联系也遭到明显破坏[49]. 所以, 对于某些特殊的胃病, 短时间脉冲(0.1 ms)不一定能通过调节慢波频率达到治疗的目的.

7 结论

一个多世纪来, 人们逐步了解了ICC的形态学和超微结构, 以及他在胃肠道动力学方面发挥的重要作用, 如胃肠道ICC动力起搏、传导慢电波和介导神经递质传导等. 近年来, 在泌尿生殖系统、脉管系统、胆道系统、以及各种腺体之中也发现了ICC, 初步阐述了ICC与人类生理病理活动之间的关系. 目前, 人们虽然对ICC的功能已有一定的了解, 但是, ICC与疾病的关系仍待进一步深入研究.

评论
背景资料

1893年, 西班牙神经解剖学家Cajal首次在消化系内发现了Cajal间质细胞(ICC). 百年来, 人们逐渐认识到他是胃肠道的起搏细胞, 对正常胃肠蠕动有着重大作用. 其后在胃肠道外其他器官和系统相继发现了ICC的存在.

同行评议者

王承党, 教授, 福建医科大学附属第一医院消化内科

研发前沿

ICC首先发现于胃肠道, 后来在腺体、胆道系统、泌尿生殖系统等器官和系统逐渐发现ICC的存在, 相关的报道研究也屡见不鲜.

创新盘点

ICC的研究时有报道发表, 但其研究处于起步阶段, 研究部位相对单一, 本文综合世界前沿文献, 内容较全面, 使读者能大体了解当今ICC的研究方向和成果.

应用要点

ICC是一种起搏细胞, 他的数量和形态异常对动力障碍性疾病(如胃排空异常、胃轻瘫、Oddi括约肌功能障碍)有很大影响, 这为治疗此类疾病提供了新的思路和方法.

名词解释

Cajal间质细胞(ICC): 一类主要分布于胃肠道的间质细胞, 是胃肠道的起搏细胞(pacemaker cell)和信号传导细胞, 与肌细胞以及末梢神经元有着紧密的关系, 具有激发和促进胃肠蠕动的作用.

同行评价

本综述立题正确、文献收集相对比较齐全, 内容比较新颖, 对进一步深入认识ICC的生理功能及其与某些疾病的关系有很好的帮助.

编辑:张姗姗 电编:闫晋利

1.  Shafik A, El-Sibai O, Shafik AA, Shafik I. Identification of interstitial cells of Cajal in human urinary bladder: concept of vesical pacemaker. Urology. 2004;64:809-813.  [PubMed]  [DOI]
2.  Povstyan OV, Gordienko DV, Harhun MI, Bolton TB. Identification of interstitial cells of Cajal in the rabbit portal vein. Cell Calcium. 2003;33:223-239.  [PubMed]  [DOI]
3.  Popescu LM, Hinescu ME, Ionescu N, Ciontea SM, Cretoiu D, Ardelean C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005;9:169-190.  [PubMed]  [DOI]
4.  Young HM, Ciampoli D, Southwell BR, Newgreen DF. Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol. 1996;180:97-107.  [PubMed]  [DOI]
5.  Komuro T, Tokui K, Zhou DS. Identification of the interstitial cells of Cajal. Histol Histopathol. 1996;11:769-786.  [PubMed]  [DOI]
6.  Min KW, Leabu M. Interstitial cells of Cajal (ICC) and gastrointestinal stromal tumor (GIST): facts, speculations, and myths. J Cell Mol Med. 2006;10:995-1013.  [PubMed]  [DOI]
7.  Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62:295-316.  [PubMed]  [DOI]
8.  Komuro T. Comparative morphology of interstitial cells of Cajal: ultrastructural characterization. Microsc Res Tech. 1999;47:267-285.  [PubMed]  [DOI]
9.  Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol. 2006;576:653-658.  [PubMed]  [DOI]
10.  Mazet B, Raynier C. Interstitial cells of Cajal in the guinea pig gastric antrum: distribution and regional density. Cell Tissue Res. 2004;316:23-34.  [PubMed]  [DOI]
11.  Rumessen JJ, Thuneberg L, Mikkelsen HB. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine. Anat Rec. 1982;203:129-146.  [PubMed]  [DOI]
12.  Horiguchi K, Semple GS, Sanders KM, Ward SM. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum. J Physiol. 2001;537:237-250.  [PubMed]  [DOI]
13.  Ishikawa K, Komuro T. Characterization of the interstitial cells associated with the submuscular plexus of the guinea-pig colon. Anat Embryol (Berl). 1996;194:49-55.  [PubMed]  [DOI]
14.  Vanderwinden JM, Rumessen JJ, Bernex F, Schiffmann SN, Panthier JJ. Distribution and ultrastructure of interstitial cells of Cajal in the mouse colon, using antibodies to Kit and Kit(W-lacZ) mice. Cell Tissue Res. 2000;302:155-170.  [PubMed]  [DOI]
15.  Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97-111.  [PubMed]  [DOI]
16.  Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373:347-349.  [PubMed]  [DOI]
17.  Won KJ, Sanders KM, Ward SM. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A. 2005;102:14913-14918.  [PubMed]  [DOI]
18.  Sanders KM, Ward SM. Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol. 2006;576:721-726.  [PubMed]  [DOI]
19.  Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol. 2000;279:C529-C539.  [PubMed]  [DOI]
20.  Iino S, Ward SM, Sanders KM. Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J Physiol. 2004;556:521-530.  [PubMed]  [DOI]
21.  Iino S, Nojyo Y. Muscarinic M(2) acetylcholine receptor distribution in the guinea-pig gastrointestinal tract. Neuroscience. 2006;138:549-559.  [PubMed]  [DOI]
22.  Sternini C, Wong H, Wu SV, de Giorgio R, Yang M, Reeve J, Brecha NC, Walsh JH. Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of Cajal and enterochromaffin-like cells of the gastrointestinal tract. J Comp Neurol. 1997;386:396-408.  [PubMed]  [DOI]
23.  Van Nassauw L, Costagliola A, Van Op den Bosch J, Cecio A, Vanderwinden JM, Burnstock G, Timmermans JP. Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract. Auton Neurosci. 2006;126-127:299-306.  [PubMed]  [DOI]
24.  Burnstock G, Lavin S. Interstitial cells of Cajal and purinergic signalling. Auton Neurosci. 2002;97:68-72.  [PubMed]  [DOI]
25.  Patterson LM, Zheng H, Ward SM, Berthoud HR. Immunohistochemical identification of cholecystokinin A receptors on interstitial cells of Cajal, smooth muscle, and enteric neurons in rat pylorus. Cell Tissue Res. 2001;305:11-23.  [PubMed]  [DOI]
26.  Poole DP, Van Nguyen T, Kawai M, Furness JB. Protein kinases expressed by interstitial cells of Cajal. Histochem Cell Biol. 2004;121:21-30.  [PubMed]  [DOI]
27.  Salmhofer H, Neuhuber WL, Ruth P, Huber A, Russwurm M, Allescher HD. Pivotal role of the interstitial cells of Cajal in the nitric oxide signaling pathway of rat small intestine. Morphological evidence. Cell Tissue Res. 2001;305:331-340.  [PubMed]  [DOI]
28.  Xu D, Yu BP, Luo HS, Chen LD. Control of gallbladder contractions by cholecystokinin through cholecystokinin-A receptors on gallbladder interstitial cells of Cajal. World J Gastroenterol. 2008;14:2882-2887.  [PubMed]  [DOI]
29.  Faussone-Pellegrini MS, Cortesini C. The muscle coat of the lower esophageal sphincter in patients with achalasia and hypertensive sphincter. An electron microscopic study. J Submicrosc Cytol. 1985;17:673-685.  [PubMed]  [DOI]
30.  Langer JC, Berezin I, Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg. 1995;30:1535-1543.  [PubMed]  [DOI]
31.  Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993;75:1273-1286.  [PubMed]  [DOI]
32.  Vanderwinden JM, Liu H, Menu R, Conreur JL, De Laet MH, Vanderhaeghen JJ. The pathology of infantile hypertrophic pyloric stenosis after healing. J Pediatr Surg. 1996;31:1530-1534.  [PubMed]  [DOI]
33.  Isozaki K, Hirota S, Miyagawa J, Taniguchi M, Shinomura Y, Matsuzawa Y. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol. 1997;92:332-334.  [PubMed]  [DOI]
34.  Yamataka A, Ohshiro K, Kobayashi H, Lane GJ, Yamataka T, Fujiwara T, Sunagawa M, Miyano T. Abnormal distribution of intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction. J Pediatr Surg. 1998;33:859-862.  [PubMed]  [DOI]
35.  Sakurai S, Fukasawa T, Chong JM, Tanaka A, Fukayama M. Embryonic form of smooth muscle myosin heavy chain (SMemb/MHC-B) in gastrointestinal stromal tumor and interstitial cells of Cajal. Am J Pathol. 1999;154:23-28.  [PubMed]  [DOI]
36.  Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, Miettinen M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol. 1998;11:728-734.  [PubMed]  [DOI]
37.  Hou YY, Grabellus F, Weber F, Zhou Y, Tan YS, Li J, Shen KT, Qin J, Sun YH, Qin XY. Impact of KIT and PDGFRA gene mutations on prognosis of patients with gastrointestinal stromal tumors after complete primary tumor resection. J Gastrointest Surg. 2009;13:1583-1592.  [PubMed]  [DOI]
38.  Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577-580.  [PubMed]  [DOI]
39.  Vanderwinden JM, Rumessen JJ, De Laet MH, Vanderhaeghen JJ, Schiffmann SN. CD34+ cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest. 1999;79:59-65.  [PubMed]  [DOI]
40.  Lavoie B, Balemba OB, Nelson MT, Ward SM, Mawe GM. Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol. 2007;579:487-501.  [PubMed]  [DOI]
41.  Ahmadi O, Nicholson Mde L, Gould ML, Mitchell A, Stringer MD. Interstitial cells of Cajal are present in human extrahepatic bile ducts. J Gastroenterol Hepatol. 2010;25:277-285.  [PubMed]  [DOI]
42.  Huang Y, Mei F, Yu B, Zhang HJ, Han J, Jiang ZY, Zhou DS. Distribution of the interstitial Cajal-like cells in the gallbladder and extrahepatic biliary duct of the guinea-pig. Acta Histochem. 2009;111:157-16.  [PubMed]  [DOI]
43.  Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 2007;38:275-284.  [PubMed]  [DOI]
44.  Mendoza-Marin M, Hoang MP, Albores-Saavedra J. Malignant stromal tumor of the gallbladder with interstitial cells of Cajal phenotype. Arch Pathol Lab Med. 2002;126:481-483.  [PubMed]  [DOI]
45.  Beckett EA, McGeough CA, Sanders KM, Ward SM. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. J Physiol. 2003;553:545-559.  [PubMed]  [DOI]
46.  Buist ML, Corrias A, Poh YC. A model of slow wave propagation and entrainment along the stomach. Ann Biomed Eng. 2010;38:3022-3030.  [PubMed]  [DOI]
47.  Pasricha PJ, Pehlivanov ND, Gomez G, Vittal H, Lurken MS, Farrugia G. Changes in the gastric enteric nervous system and muscle: a case report on two patients with diabetic gastroparesis. BMC Gastroenterol. 2008;8:21.  [PubMed]  [DOI]
48.  Ciortescu I, Stanciu C. [Gastroparesis--diagnosis and treatment]. Rev Med Chir Soc Med Nat Iasi. 2009;113:33.  [PubMed]  [DOI]
49.  Ordög T, Takayama I, Cheung WK, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000;49:1731-1739.  [PubMed]  [DOI]