文献综述 Open Access
Copyright ©The Author(s) 2007. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2007-01-18; 15(2): 145-150
在线出版日期: 2007-01-18. doi: 10.11569/wcjd.v15.i2.145
人肝癌细胞系HepG2在遗传毒物检测中的应用及其进展
姚晓峰, 仲来福
姚晓峰, 仲来福, 大连医科大学毒理学研究室 辽宁省大连市 116027
通讯作者: 仲来福, 116027, 辽宁省大连市沙河口区中山路465号, 大连医科大学毒理学研究室. zhong@dlmedu.edu.cn
电话: 0411-84720583 传真: 0411-84720661
收稿日期: 2006-10-25
修回日期: 2006-11-01
接受日期: 2006-11-02
在线出版日期: 2007-01-18

外来化合物的体外遗传毒性实验常用于各种致癌物和致突变物的快速筛选. HepG2是一种分化好的人肝胚细胞瘤细胞系, 保留了较完整的代谢酶及其活性. 以HepG2细胞作为实验系统检测各种致癌及非致癌物, 在多个观察终点均获得相应的阳性及阴性结果.

关键词: 人肝癌细胞系; HepG2细胞系; 遗传毒物; 体外遗传毒性实验

引文著录: 姚晓峰, 仲来福. 人肝癌细胞系HepG2在遗传毒物检测中的应用及其进展. 世界华人消化杂志 2007; 15(2): 145-150
Application of human hepatoma cell line HepG2 and its progress in the detection of genotoxicants
Xiao-Feng Yao, Lai-Fu Zhong
Xiao-Feng Yao, Lai-Fu Zhong, Department of Toxicology, Dalian Medical University, Dalian 116027, Liaoning Province, China
Correspondence to: Lai-Fu Zhong, Department of Toxicology, Dalian Medical University, 465 Zhongshan Road, Shahekou District, Dalian 116027, Liaoning Province, China. zhong@dlmedu.edu.cn
Received: October 25, 2006
Revised: November 1, 2006
Accepted: November 2, 2006
Published online: January 18, 2007

Genotoxicity test is widely used in the detection of various carcinogens and mutagens. HepG2 is derived from human hepatoblastoma, and it retains the activities of drug-metabolizing enzymes. It has been demonstrated that various carcinogens can be detected in genotoxicity test with HepG2 cells at several endpoints, whereas negative results have been obtained with non-carcinogens.

Key Words: Human hepatoma cell line; HepG2 cell line; Genotoxicant; In vitro genotoxicity test


0 引言

一直以来, 遗传毒物的检测普遍受到人们的重视. 对于体外遗传毒性实验来说, 细胞的代谢系统将在很大程度上影响实验的结果. 而人肝癌细胞系HepG2保留了较完整的生物转化代谢Ⅰ相酶和Ⅱ相酶[1], 这意味着该细胞系既可作为外来化合物攻击遗传物质的靶细胞, 同时又是外来化合物的活化系统, 不需依赖传统外源性活化系统的加入. 自从1979年, Aden et al[2]从一个阿根廷男孩的原发性肝胚细胞瘤中分离出HepG2细胞, 科研人员多年来对其在遗传毒理学实验中的应用进行了深入的探索和广泛的研究. 

1 HepG2细胞内的生物转化代谢酶

HepG2细胞来源于人类肝胚细胞瘤[2], 其所含的生物转化代谢酶与人正常肝实质细胞具有同源性. 虽然HepG2是一种肿瘤细胞, 但是他的分化程度较高[3-4], 并且保留了较完整的生物转化代谢酶, 因此, 用这种细胞做遗传毒性实验, 不需加入外源性活化系统[5-8]. 人类原代肝实质细胞经分离后, 只能经历有限的几次分裂, 其内在的代谢酶很快失去活性[9], 而HepG2细胞作为分化好的细胞系, 其内在的药物代谢酶活性稳定, 不会随着传代次数的增多而降低[10-12]. 以上3点使得HepG2细胞较其他的外来化合物遗传毒性检测系统更具优势.

HepG2内保留了多种细胞色素P450 (cytochrome P450, CYP)同工酶, 不同的同工酶负责激活不同的前致突变物, 所以HepG2细胞可广泛的应用于各种可疑致突变物的快速筛检[13-14]. 其中CYP 1A针对多环芳烃(polycyclic aromatic hydrocarbons, PAH)类及芳香胺类[15-16], CYP 3A对硝基芘及黄曲霉素类具有特异性[17]. CYP 2B可以激活很多种结构互不相关的化合物[18]. 环氧化物水解酶是一种Ⅱ相代谢酶, 可以水解多环芳烃环氧化物为二氢二醇, 接着被CYP 1A进一步活化为最终的致突变物--二氢二醇环氧化物[19-22]. 除了CYP同工酶, HepG2细胞内还保留了其他氧化还原酶, 参与电子传递, 活性氧的生成和清除[23].

需要特别指出的是, HepG2细胞内CYP 1A2和CYP 2E1的含量很少或检测不到[24]. CYP 1A2对于活化芳香胺起着重要的作用, 但是即使没有这种酶, 芳香胺依然对HepG2细胞表现出明显的遗传毒性, 这可能是因为HepG2细胞内CYP 1A1含量丰富, 芳香胺依然可以被CYP 1A1活化[25-29]. CYP 2E1在活化亚硝胺的过程中起着至关重要的作用[30], 大多数亚硝胺类物质对HepG2细胞仅表现出轻微或不具有遗传毒性, 可能和HepG2细胞内这种酶的缺失有关[31-32].

2 HepG2细胞在体外遗传毒性实验中的应用
2.1 遗传毒性实验的观察终点

HepG2细胞系成功分离后不久, Diamond et al[33]报道, 已知致癌物苯并(a)芘[B(a)P]在实验终点为抗6-硫化鸟嘌呤(6-TGr)时获得了阳性结果. 从此以后, 人们不断探索更多的实验观察终点. 现在比较常用的方法是微核(micronucleus, MN)实验[34]和单细胞凝胶电泳(single cell gel electrophoresis, SCGE)实验[35]. 人们注意到, MN实验结果阳性的化合物, SCGE实验结果往往也是阳性, 这一现象不仅对于HepG2细胞, 其他细胞株也是这样[13,36]. 但是橘霉素是个特例, 他能够引起HepG2细胞微核率显著增加, 但是SCGE实验结果阴性, Knasmuller et al[37]利用一种着丝点特异性荧光原位杂交(fluorescence in situ hybridization, FISH)探针, 发现这种真菌霉素可以诱发非整倍体, 没法通过SCGE实验检测到. 此外在HepG2细胞内还可观察到的遗传毒性实验终点有姐妹染色单体交换(sister-chromatid exchange, SCE)[38], 程序外DNA合成(unscheduled DNA synthesis, UDS)[39-40]等. 因为染色体很小, 对HepG2细胞分裂中期的分析十分费时[34]. Kohda et al[41]利用ICRF-193-一种Ⅱ型拓扑异构酶抑制剂, 延长分裂中期染色体长度. 在不久的将来, 这项技术可以缩短HepG2细胞染色体畸变分析(chromosome aberration analysis, CA)的时间.

另一项检测HepG2细胞内遗传性损伤的新技术是荧光分析DNA解旋(fluorometric analysis of DNA unwinding, FADU)实验, 可以用于检测DNA双链断裂[42]. Smith et al[43]把四环素阻遏蛋白及融合有绿色荧光蛋白的操纵序列转染给HepG2细胞, 当外源性化合物引起四环素阻遏蛋白基因突变时, 可以检测到荧光. 这个新方法比MN实验更敏感, 特别适用于当受试物浓度较高, 细胞生长已经停滞时.

2.2 外源性化合物对HepG2细胞遗传毒性实验结果

迄今采用不同的实验终点已检测了数十种外源性化合物的遗传毒性, 主要结果如下: (1)真菌霉素类. 黄曲霉素B1在实验终点为UDS, MN和SCGE时, 获得阳性结果[24,39,44]. 已知啮齿动物致癌物赭曲霉毒素A(ochratoxin A, OTA)和伏马菌素B1(fumonisin B1, FB1)可能对人致癌(IARC, 1993)[45-46], 在其他体外遗传毒性实验中结果为阴性, 在HepG2细胞, 实验终点为SCGE时, 结果呈阳性[47-48]; (2)PAH类. 已知致癌物B(a)P在实验终点为MN, SCE和SCGE时, 均获阳性结果[24,34,49]. 已知啮齿动物强致癌物二甲基苯并蒽, 在实验终点为MN时, 结果呈阳性, 已知非致癌物芘在实验终点为SCE和MN时, 结果呈阴性[34]; (3)亚硝胺类. 如前所述, 可能由于CYP 2E1酶的缺失, HepG2细胞对大多数亚硝胺类物质不敏感. 已知致癌物1-亚硝胺在UDS和6-TGr实验中获得阴性结果[31-32]. 已知啮齿动物致癌物吡咯烷亚硝胺, 在MN实验中也获得阴性结果[24]; (4)芳香胺和杂环芳香胺类. 已知致癌物联苯胺, SCE实验结果呈阳性[50]. 非致癌物4-乙酰氨基芴, MN实验结果呈阴性[51]. 已知啮齿动物致癌物2-氨基-3-甲基-咪唑并(4, 5-f)喹啉(IQ), MN实验结果呈阳性[52]; (5)某些具有生物活性的天然植物成分.

近年来很多营养学家和毒理学工作者也利用HepG2细胞研究一些天然植物成分的抗突变效应, 但却发现某些植物成分在稍高一些剂量下表现出遗传毒性[53-58]. 十字花科蔬菜中硫甙的水解产物--异硫氰酸酯, 在实验终点为SCGE和MN时, 结果为阳性[59-61]. 一种黄酮化合物白杨素, MN实验结果呈阳性[62]. 从以上结果可以看出, 并不是所有的植物成分都具有防护效应(例如上述物质), 如果摄入较多, 就可能对人体造成健康危害.

以上实验结果表明, 除了亚硝胺类, HepG2细胞对其他外来化合物的遗传毒性的检测还是比较灵敏的.

2.3 影响HepG2细胞遗传毒性实验结果的因素

随着各种外来化合物在HepG2细胞内遗传毒性实验资料的不断积累, 研究发现, 同一种化合物在不同的实验中表现出遗传毒性的剂量范围不尽相同, 甚至出入较大[13]. 这表明实验结果可能被某些因素所影响. Majer et al[24]利用3种不同来源的HepG2细胞克隆, 在同样的实验条件下, 研究B(a)P诱导MN的情况. 结果发现, 不同克隆对B(a)P的敏感性存在明显差异, 其中的一个克隆甚至比另一个敏感4倍多. 这一研究结果表明, 选择不同的HepG2细胞克隆, 可能对实验结果产生影响. 培养基的成分也可能对实验结果产生影响. 如前所述, HepG2细胞内的生物转化代谢酶在活化外来化合物的过程中至关重要. Doostdar et al[63]和Feng et al[64]都报道, 培养基的配方和成分不同, 对HepG2细胞内Ⅰ相酶的活性影响很大.

基于以上因素对实验结果的影响, 当HepG2细胞用于遗传毒性实验, 细胞克隆的来源及细胞的培养条件等还需进一步标准化.

3 某些转基因的HepG2细胞在遗传毒性实验中的应用

为了研究病毒性肝炎的发病机制及药物的疗效, 人们常把特定的基因转染入HepG2细胞[65-67], 或者为了获得更敏感的遗传毒性实验终点, 弥补HepG2细胞某些生物转化代谢酶的缺陷, 有人也采用了这项技术.

HepG2细胞内缺少CYP 2E1, 使得其对亚硝胺类化合物的敏感性较低, 现在能够持续表达CYP 2E1的转染基因已经成功构建. Kessova et al[68]创建了一种具有CYP 2E1酶活性的HepG2细胞系, 这样就可以检测出亚硝胺类化合物的遗传毒性. 除此以外, Hu et al[69]指出, 转染谷胱甘肽S-转移酶Pi(GSTP)等位基因变异体的HepG2细胞, 对二氢二醇环氧苯并芘(BPDE)加合物具有防护作用. Tashiro et al[70]也指出, 将GSTP转染入HepG2细胞, 可以减轻阿霉素的毒性.

总之, HepG2细胞保存了较为完整的生物转化代谢酶. 除了亚硝胺类物质, 业已采用HepG2细胞检测了多种已知的致突变物和非致突变物, 均获得相应的阳性或阴性结果. 而通过转基因技术, 可以使HepG2细胞持续表达CYP 2E1, 从而提高对亚硝胺类物质的敏感性. 研究发现, 并不是所有的天然植物成分都具有防护效应, 某些植物成分在稍高一些剂量下对HepG2细胞表现出遗传毒性. 近些年来, 随着更多的遗传毒性实验终点的出现, HepG2细胞被广泛的应用于各种外来化合物遗传毒性的快速筛选, 成为体外遗传毒性实验的理想细胞系.

HepG2细胞的来源及培养基组分等因素可能影响遗传毒性实验结果, 细胞克隆的选择及培养条件等有待进一步标准化.

评论
背景资料

自从1979年, Aden et al从一个阿根廷男孩的原发性肝胚细胞瘤中分离出HepG2细胞, 科研人员多年来对其在遗传毒理学实验中的应用进行了深入的探索和广泛的研究, 近年来, 又获得了可喜的进展, 出现了更多的遗传毒性实验观察终点.

研发前沿

对于体外遗传毒性实验来说, 细胞的代谢系统将在很大程度上影响实验的结果, 而人肝癌细胞系HepG2保留了较完整的生物转化代谢Ⅰ相酶和Ⅱ相酶, 这意味着该细胞系既可作为外来化合物攻击遗传物质的靶细胞, 同时又是外来化合物的活化系统, 不需依赖传统外源性活化系统的加入.

应用要点

近些年来, 随着更多的遗传毒性实验终点的出现, HepG2细胞被广泛的应用于各种外来化合物遗传毒性的快速筛选, 成为体外遗传毒性实验的理想细胞系.

名词解释

1 单细胞凝胶电泳实验: 又称彗星实验, 用来检测外来化合物对细胞DNA的损伤情况.

2 微核: 是细胞染色体受损后, 在有丝分裂期不能结合进子代核, 而在胞质中形成的小核, 所以微核实验是检测外来化合物遗传毒性的重要方法.

同行评价

本文综述了以HepG2细胞作为试验系统检测各种致癌及非致癌物, 在多个观察终点均获得相应的阳性及阴性结果, 较详细探讨最新的研究进展. 文章论点明确, 文笔流畅, 有学术参考价值, 是一篇较好的综述.

电编: 张敏 编辑: 王晓瑜

1.  Doostdar H, Grant MH, Melvin WT, Wolf CR, Burke MD. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HEPG2 hepatoma cells. Biochem Pharmacol. 1993;46:629-635.  [PubMed]  [DOI]
2.  Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature. 1979;282:615-616.  [PubMed]  [DOI]
3.  Dearfield KL, Jacobson-Kram D, Brown NA, Williams JR. Evaluation of a human hepatoma cell line as a target cell in genetic toxicology. Mutat Res. 1983;108:437-449.  [PubMed]  [DOI]
4.  Roscher E, Wiebel FJ. Genotoxicity of 1,3- and 1,6-dinitropyrene: induction of micronuclei in a panel of mammalian test cell lines. Mutat Res. 1992;278:11-17.  [PubMed]  [DOI]
5.  Barbini L, Lopez P, Ruffa J, Martino V, Ferraro G, Campos R, Cavallaro L. Induction of apoptosis on human hepatocarcinoma cell lines by an alkyl resorcinol isolated from Lithraea molleoides. World J Gastroenterol. 2006;12:5959-5963.  [PubMed]  [DOI]
6.  Belloir C, Singh V, Daurat C, Siess MH, Le Bon AM. Protective effects of garlic sulfur compounds against DNA damage induced by direct- and indirect-acting genotoxic agents in HepG2 cells. Food Chem Toxicol. 2006;44:827-834.  [PubMed]  [DOI]
7.  Robichová S, Slamenová D, Chalupa I, Sebová L. DNA lesions and cytogenetic changes induced by N-nitrosomorpholine in HepG2, V79 and VH10 cells: the protective effects of Vitamins A, C and E. Mutat Res. 2004;560:91-99.  [PubMed]  [DOI]
8.  Onuki J, Chen Y, Teixeira PC, Schumacher RI, Medeiros MH, Van Houten B, Di Mascio P. Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Arch Biochem Biophys. 2004;432:178-187.  [PubMed]  [DOI]
9.  Strom SC, Jirtle RL, Jones RS, Novicki DL, Rosenberg MR, Novotny A, Irons G, McLain JR, Michalopoulos G. Isolation, culture, and transplantation of human hepatocytes. J Natl Cancer Inst. 1982;68:771-778.  [PubMed]  [DOI]
10.  Roe AL, Snawder JE, Benson RW, Roberts DW, Casciano DA. HepG2 cells: an in vitro model for P450-dependent metabolism of acetaminophen. Biochem Biophys Res Commun. 1993;190:15-19.  [PubMed]  [DOI]
11.  宋 旭霞, 闫 志勇, 王 斌, 牟 文凤, 钱 冬萌, 丁 守怡, 姚 宗良. 体外培养的肝癌细胞株与正常肝细胞株蛋白质的差异表达. 世界华人消化杂志. 2005;13:2689-2692.  [PubMed]  [DOI]
12.  Wu XJ, Lu WQ, Mersch-Sundermann V. Benzo(a)pyrene induced micronucleus formation was modulated by persistent organic pollutants (POPs) in metabolically competent human HepG2 cells. Toxicol Lett. 2003;144:143-150.  [PubMed]  [DOI]
13.  Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology. 2004;198:315-328.  [PubMed]  [DOI]
14.  Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res. 2003;523-524:173-182.  [PubMed]  [DOI]
15.  Park SY, Lee SM, Ye SK, Yoon SH, Chung MH, Choi J. Benzo[a]pyrene-induced DNA damage and p53 modulation in human hepatoma HepG2 cells for the identification of potential biomarkers for PAH monitoring and risk assessment. Toxicol Lett. 2006;167:27-33.  [PubMed]  [DOI]
16.  Séverin I, Jondeau A, Dahbi L, Chagnon MC. 2,4-Diaminotoluene (2,4-DAT)-induced DNA damage, DNA repair and micronucleus formation in the human hepatoma cell line HepG2. Toxicology. 2005;213:138-146.  [PubMed]  [DOI]
17.  Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res. 1998;402:185-202.  [PubMed]  [DOI]
18.  Grant MH, Duthie SJ, Gray AG, Burke MD. Mixed function oxidase and UDP-glucuronyltransferase activities in the human Hep G2 hepatoma cell line. Biochem Pharmacol. 1988;37:4111-4116.  [PubMed]  [DOI]
19.  杨 震, 秦 成勇, 朱 菊人, 任 万华, 王 旻. 环氧合酶-2对人肝癌细胞增殖和凋亡的调节作用. 世界华人消化杂志. 2006;14:1382-1387.  [PubMed]  [DOI]
20.  Liu NB, Peng T, Pan C, Yao YY, Shen B, Leng J. Overexpression of cyclooxygenase-2 in human HepG2, Bel-7402 and SMMC-7721 hepatoma cell lines and mechanism of cyclooxygenase-2 selective inhibitor celecoxib-induced cell growth inhibition and apoptosis. World J Gastroenterol. 2005;11:6281-6287.  [PubMed]  [DOI]
21.  Huang DS, Shen KZ, Wei JF, Liang TB, Zheng SS, Xie HY. Specific COX-2 inhibitor NS398 induces apoptosis in human liver cancer cell line HepG2 through BCL-2. World J Gastroenterol. 2005;11:204-207.  [PubMed]  [DOI]
22.  Lodovici M, Luceri C, Guglielmi F, Bacci C, Akpan V, Fonnesu ML, Boddi V, Dolara P. Benzo(a)pyrene diolepoxide (BPDE)-DNA adduct levels in leukocytes of smokers in relation to polymorphism of CYP1A1, GSTM1, GSTP1, GSTT1, and mEH. Cancer Epidemiol Biomarkers Prev. 2004;13:1342-1348.  [PubMed]  [DOI]
23.  Duverger-van Bogaert M, Dierickx PJ, Stecca C, Crutzen MC. Metabolic activation by a supernatant from human hepatoma cells: a possible alternative in mutagenic tests. Mutat Res. 1993;292:199-204.  [PubMed]  [DOI]
24.  Majer BJ, Mersch-Sundermann V, Darroudi F, Laky B, de Wit K, Knasmüller S. Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat Res. 2004;551:153-166.  [PubMed]  [DOI]
25.  Cherng SH, Hsu SL, Yang JL, Yu CT, Lee H. Suppressive effect of 1-nitropyrene on benzo[a]pyrene-induced CYP1A1 protein expression in HepG2 cells. Toxicol Lett. 2006;161:236-243.  [PubMed]  [DOI]
26.  Zdarilová A, Vrzal R, Rypka M, Ulrichová J, Dvorák Z. Investigation of sanguinarine and chelerythrine effects on CYP1A1 expression and activity in human hepatoma cells. Food Chem Toxicol. 2006;44:242-249.  [PubMed]  [DOI]
27.  Dvorák Z, Vrzal R, Ulrichová J, Pascussi JM, Maurel P, Modriansky M. Involvement of cytoskeleton in AhR-dependent CYP1A1 expression. Curr Drug Metab. 2006;7:301-313.  [PubMed]  [DOI]
28.  Delescluse C, Ledirac N, Li R, Piechocki MP, Hines RN, Gidrol X, Rahmani R. Induction of cytochrome P450 1A1 gene expression, oxidative stress, and genotoxicity by carbaryl and thiabendazole in transfected human HepG2 and lymphoblastoid cells. Biochem Pharmacol. 2001;61:399-407.  [PubMed]  [DOI]
29.  Knasmüller S, Schwab CE, Land SJ, Wang CY, Sanyal R, Kundi M, Parzefall W, Darroudi F. Genotoxic effects of heterocyclic aromatic amines in human derived hepatoma (HepG2) cells. Mutagenesis. 1999;14:533-540.  [PubMed]  [DOI]
30.  Caro AA, Cederbaum AI. Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol. 2004;44:27-42.  [PubMed]  [DOI]
31.  Eddy EP, Howard PC, McCoy GD, Rosenkranz HS. Mutagenicity, unscheduled DNA synthesis, and metabolism of 1-nitropyrene in the human hepatoma cell line HepG2. Cancer Res. 1987;47:3163-3168.  [PubMed]  [DOI]
32.  Silvers KJ, Eddy EP, McCoy EC, Rosenkranz HS, Howard PC. Pathways for the mutagenesis of 1-nitropyrene and dinitropyrenes in the human hepatoma cell line HepG2. Environ Health Perspect. 1994;102 Suppl 6:195-200.  [PubMed]  [DOI]
33.  Diamond L, Kruszewski F, Aden DP, Knowles BB, Baird WM. Metabolic activation of benzo[a]pyrene by a human hepatoma cell line. Carcinogenesis. 1980;1:871-875.  [PubMed]  [DOI]
34.  Natarajan AT, Darroudi F. Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens. Mutagenesis. 1991;6:399-403.  [PubMed]  [DOI]
35.  Uhl M, Helma C, Knasmüller S. Single-cell gel electrophoresis assays with human-derived hepatoma (Hep G2) cells. Mutat Res. 1999;441:215-224.  [PubMed]  [DOI]
36.  Valentin-Severin I, Le Hegarat L, Lhuguenot JC, Le Bon AM, Chagnon MC. Use of HepG2 cell line for direct or indirect mutagens screening: comparative investigation between comet and micronucleus assays. Mutat Res. 2003;536:79-90.  [PubMed]  [DOI]
37.  Knasmüller S, Cavin C, Chakraborty A, Darroudi F, Majer BJ, Huber WW, Ehrlich VA. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: implications for risk assessment. Nutr Cancer. 2004;50:190-197.  [PubMed]  [DOI]
38.  Lu Y, Morimoto K, Takeshita T, Takeuchi T, Saito T. Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells. Environ Health Perspect. 2000;108:559-561.  [PubMed]  [DOI]
39.  Nwankwo JO, Tahnteng JG, Emerole GO. Inhibition of aflatoxin B1 genotoxicity in human liver-derived HepG2 cells by kolaviron biflavonoids and molecular mechanisms of action. Eur J Cancer Prev. 2000;9:351-361.  [PubMed]  [DOI]
40.  Valentin-Severin I, Thybaud V, Le Bon AM, Lhuguenot JC, Chagnon MC. The autoradiographic test for unscheduled DNA synthesis: a sensitive assay for the detection of DNA repair in the HepG2 cell line. Mutat Res. 2004;559:211-217.  [PubMed]  [DOI]
41.  Kohda A, Taguchi H, Okumura K. Preparation of extended metaphase chromosomes from human cultured cells using a topoisomerase II inhibitor, ICRF-193. Biosci Biotechnol Biochem. 2001;65:1248-1251.  [PubMed]  [DOI]
42.  Wang YF, Hu ML. Use of rat liver slices for the study of oxidative DNA damage in comparison with isolated rat liver nuclei and HepG2 human hepatoma cells. Food Chem Toxicol. 2000;38:451-458.  [PubMed]  [DOI]
43.  Smith CC, Lynch AM, Gooderham NJ.  Model in vitro screening assay for detecting genotoxicity using engineered HepG2 cells. From Hazard to Risk. 2003;Thirty Third Annual EEMS Meeting, Aberdeen, UK.  [PubMed]  [DOI]
44.  Uhl M, Helma C, Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutat Res. 2000;468:213-225.  [PubMed]  [DOI]
45.  IARC, Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins In: Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon: France 1993; 489-521.  [PubMed]  [DOI]
46.  IARC, International Agency for Research on Cancer IARC monographs on the evaluation of carcinogenic risk to humans. IARC Lyon: France 1993; 445-466.  [PubMed]  [DOI]
47.  Ehrlich V, Darroudi F, Uhl M, Steinkellner H, Gann M, Majer BJ, Eisenbauer M, Knasmüller S. Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food Chem Toxicol. 2002;40:1085-1090.  [PubMed]  [DOI]
48.  Ehrlich V, Darroudi F, Uhl M, Steinkellner H, Zsivkovits M, Knasmueller S. Fumonisin B(1) is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis. 2002;17:257-260.  [PubMed]  [DOI]
49.  Aruoma OI, Colognato R, Fontana I, Gartlon J, Migliore L, Koike K, Coecke S, Lamy E, Mersch-Sundermann V, Laurenza I. Molecular effects of fermented papaya preparation on oxidative damage, MAP Kinase activation and modulation of the benzo[a]pyrene mediated genotoxicity. Biofactors. 2006;26:147-159.  [PubMed]  [DOI]
50.  Grady MK, Jacobson-Kram D, Dearfield KL, Williams JR. Induction of sister chromatid exchanges by benzidine in rat and human hepatoma cell lines and inhibition by indomethacin. Cell Biol Toxicol. 1986;2:223-230.  [PubMed]  [DOI]
51.  Darroudi F, Meijers CM, Hadjidekova V, Natarajan AT. Detection of aneugenic and clastogenic potential of X-rays, directly and indirectly acting chemicals in human hepatoma (Hep G2) and peripheral blood lymphocytes, using the micronucleus assay and fluorescent in situ hybridization with a DNA centromeric probe. Mutagenesis. 1996;11:425-433.  [PubMed]  [DOI]
52.  Sanyal R, Darroudi F, Parzefall W, Nagao M, Knasmüller S. Inhibition of the genotoxic effects of heterocyclic amines in human derived hepatoma cells by dietary bioantimutagens. Mutagenesis. 1997;12:297-303.  [PubMed]  [DOI]
53.  Dávalos A, Fernández-Hernando C, Cerrato F, Martínez-Botas J, Gómez-Coronado D, Gómez-Cordovés C, Lasunción MA. Red grape juice polyphenols alter cholesterol homeostasis and increase LDL-receptor activity in human cells in vitro. J Nutr. 2006;136:1766-1773.  [PubMed]  [DOI]
54.  Lhoste EF, Gloux K, De Waziers I, Garrido S, Lory S, Philippe C, Rabot S, Knasmüller S. The activities of several detoxication enzymes are differentially induced by juices of garden cress, water cress and mustard in human HepG2 cells. Chem Biol Interact. 2004;150:211-219.  [PubMed]  [DOI]
55.  Lamy E, Kassie F, Gminski R, Schmeiser HH, Mersch-Sundermann V. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells. Toxicol Lett. 2004;146:103-109.  [PubMed]  [DOI]
56.  Dauer A, Hensel A, Lhoste E, Knasmüller S, Mersch-Sundermann V. Genotoxic and antigenotoxic effects of catechin and tannins from the bark of Hamamelis virginiana L. in metabolically competent, human hepatoma cells (Hep G2) using single cell gel electrophoresis. Phytochemistry. 2003;63:199-207.  [PubMed]  [DOI]
57.  Chen CL, Chi CW, Chang KW, Liu TY. Safrole-like DNA adducts in oral tissue from oral cancer patients with a betel quid chewing history. Carcinogenesis. 1999;20:2331-2334.  [PubMed]  [DOI]
58.  Musonda CA, Chipman JK. Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-kappaB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis. 1998;19:1583-1589.  [PubMed]  [DOI]
59.  Kassie F, Knasmüller S. Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC). Chem Biol Interact. 2000;127:163-180.  [PubMed]  [DOI]
60.  Kassie F, Laky B, Nobis E, Kundi M, Knasmüller S. Genotoxic effects of methyl isothiocyanate. Mutat Res. 2001;490:1-9.  [PubMed]  [DOI]
61.  Kassie F, Pool-Zobel B, Parzefall W, Knasmüller S. Genotoxic effects of benzyl isothiocyanate, a natural chemopreventive agent. Mutagenesis. 1999;14:595-604.  [PubMed]  [DOI]
62.  Uhl M, Ecker S, Kassie F, Lhoste E, Chakraborty A, Mohn G, Knasmüller S. Effect of chrysin, a flavonoid compound, on the mutagenic activity of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) and benzo(a)pyrene (B(a)P) in bacterial and human hepatoma (HepG2) cells. Arch Toxicol. 2003;77:477-484.  [PubMed]  [DOI]
63.  Doostdar H, Duthie SJ, Burke MD, Melvin WT, Grant MH. The influence of culture medium composition on drug metabolising enzyme activities of the human liver derived Hep G2 cell line. FEBS Lett. 1988;241:15-18.  [PubMed]  [DOI]
64.  Feng Q, Kumagai T, Nakamura Y, Uchida K, Osawa T. Induction of cytochrome P4501A1 by autoclavable culture medium change in HepG2 cells. Xenobiotica. 2002;32:1033-1043.  [PubMed]  [DOI]
65.  Saito Y, Kawakami S, Yabe Y, Yamashita F, Hashida M. Intracellular trafficking is the important process that determines the optimal charge ratio on transfection by galactosylated lipoplex in HEPG2 cells. Biol Pharm Bull. 2006;29:1986-1990.  [PubMed]  [DOI]
66.  谢 怡, 唐 承薇, 王 春晖. 乙肝病毒x基因转染对奥曲肽抑制肝癌细胞HepG2生长的影响. 癌症. 2005;24:965-969.  [PubMed]  [DOI]
67.  林 纳, 陈 红英, 张 生君, 李 丹, 陈 治新, 王 小众. HBV X基因转染对HepG2肝癌细胞凋亡的影响及其机制. 中西医结合肝病杂志. 2005;15:19-23.  [PubMed]  [DOI]
68.  Kessova I, Cederbaum AI. CYP2E1: biochemistry, toxicology, regulation and function in ethanol-induced liver injury. Curr Mol Med. 2003;3:509-518.  [PubMed]  [DOI]
69.  Hu X, Herzog C, Zimniak P, Singh SV. Differential protection against benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage in HepG2 cells stably transfected with allelic variants of pi class human glutathione S-transferase. Cancer Res. 1999;59:2358-2362.  [PubMed]  [DOI]
70.  Tashiro K, Asakura T, Fujiwara C, Ohkawa K, Ishibashi Y. Glutathione-S-transferase-pi expression regulates sensitivity to glutathione-doxorubicin conjugate. Anticancer Drugs. 2001;12:707-712.  [PubMed]  [DOI]